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Abstract

This thesis is divided into two main parts. In Chapter 1, we consider the average of
modular coefficients over prime numbers, using the classical circle method.
In Chapter 2 and 3, which correspond to the second part, we focus on Dirichlet series. In
particular, in Chapter 2 we deal with the distribution of the zeros, giving an account of
the main examples of Dirichlet series with infinitely many zeros in the region of absolute
convergence. We prove the existence of zeros of this type for a generalized version of the
Hurwitz zeta function. In Chapter 3, we consider this problem in the framework of the Selberg
Class S of L-functions. We first give a general overview of the theory of S and its extension
S]. Then, we focus on our main problem. Given a degree 1 function in S], we are interested
in studying the analytic properties of its linear twists. We prove that the linear twists satisfy
a functional equation of Hurwitz-Lerch type and we also give some results on the distribution
of the zeros outside the critical strip.
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Introduction

This thesis is divided into two main parts. In the first part (Chapter 1), we consider the
average of modular coefficients over prime numbers. The result can be seen as the analogue of
the prime number theorem for the convolution of a Hecke-Maass eigenform and the modular
form of half-integral weight whose n-th Fourier coefficient is the number of representations
of n as the sum of three squares (cf. equation (1.1.11)). Our result (cf. Theorem 1.1, [60,
Theorem 1]) improves a recent bound obtained by Hu in [25]. The main technique used is the
classical circle method (cf. e.g. [58]) and a key tool in the proof of our estimate is a result
of Fouvry and Ganguly [21], based on the absence of Siegel zeros proved by Hoffstein and
Ramakrishnan [24]. It is interesting to observe that, since our work is roughly equivalent to
proving the cancellation for the correlation of the Möbius function with modular coefficients,
our problem can be linked with the so-called Möbius Randomness Law. This predicts that
the terms 1 and -1 of the Möbius function will cancel on average when multiplied by any
"reasonable" function (cf. Section 1.1).

In the second part (Chapters 2 and 3), we deal with Dirichlet series and their analytic
properties. In Chapter 3, we consider the Selberg class S of L-functions. In particular, we focus
on its extension S], which is the class of the absolutely convergent Dirichlet series admitting
a meromorphic continuation to the complex plane and satisfying a functional equation. We
give a brief general overview of the theory of the Selberg class, also giving some examples of
important functions belonging to it. Our main purpose is to study the analytic properties of
the linear twists of a function of degree 1 in S]. The first step is proving that the linear twists
satisfy a functional equation reflecting s into 1− s, which can be seen as a Hurwitz-Lerch type
of functional equation. Going further in the study of the linear twists, we focus on the problem
of the distribution of their zeros. In particular, we are interested in analyzing the zeros outside
the critical strip. In fact, it is well-known that there exist several examples of Dirichlet series
which do not satisfy the Riemann hypothesis. As a first work on this topic, we mention Potter
and Titchmarsh’s paper on the zeros of the Epstein zeta function [47], where they stated that
numerical evidence suggests the existence of a particular Epstein zeta function, without an
Euler product, with a zero outside of the critical line. The case of the Epstein zeta function
was later studied by Davenport and Heilbronn [16], together with the Hurwitz zeta function.
To prove the existence of infinitely many zeros in the region of absolute convergence, the
authors introduced a new technique, essentially based on the fact that equivalent Dirichlet
series (see Definition 2.4) take the same set of values in vertical strips. Other key ingredients
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in their argument are the almost periodicity property of L-functions (cf. Section 2.1.3) and
Rouché’s theorem (cf. Theorem 2.7). In Chapter 2, we discuss the result of Davenport and
Heilbronn, giving a sketch of their proof, and we mention Cassels’ work [9], which completes
the analysis of the Hurwitz zeta function. We also present other results about Dirichlet series
with zeros in the half-plane σ = <(s) > 1. Indeed, the technique of Davenport and Heilbronn
has been refined and applied in several cases. For instance, Conrey and Ghosh [14] considered
the L-function associated to a cusp form of weight 24 for the full modular group, while Saias
and Weingartner [52] studied the case of Dirichlet series with periodic coefficients. Booker
and Thorne [7] extended the result to the case of combinations of L-functions coming from
automorphic representations, under Ramanujan conjecture. Finally, Righetti [50] generalized
the proof to combinations of Dirichlet series with Euler products.
Theorem 2.15 (appearing in our preprint [61, Theorem 1]) also goes in this direction. Indeed,
we consider a generalization of the Hurwitz zeta function, defined by

F (s, f, α) =
∞∑
n=0

f(n)

(n+ α)s
,

for σ > 1, where 0 < α ≤ 1 and f(n) is a non identically zero periodic function. We generalize
the results of Davenport-Heilbronn and Cassels to F (s, f, α). Since the proof is obtained
without any additional assumption, our result also improves the work of Chatterjee and Gun
[10], where some restrictive conditions were required.
In the proof of our result, we distinguish three cases. If α is transcendental, we essentially
apply the argument of Davenport and Heilbronn. The case of α rational can be deduced by
Saias and Weingartner [52], while for algebraic irrational values of α we will need to prove a
suitably modified version of Cassels’ lemma [9, Lemma].

Going back to the linear twists, we observe that the two terms on the right-hand side of
the functional equation (3.3.2) are Hurwitz zeta functions with periodic coefficients. Then, our
result on the distribution of the zeros of generalized Hurwitz zeta functions can be applied to
prove the existence of infinitely many zeros for the linear twists, provided that some conditions
hold. In particular, thanks to Theorem 2.15, for any value of α we can deduce that the
linear twist has infinitely many zeros in the left half-plane σ < 0. On the other hand, as will
be explained in detail in Section 3.6, in the region of absolute convergence the proof of the
existence of the zeros is complete only if α is rational.
Our results on the linear twists (cf. [62]) are collected in Sections 3.3-3.6.
We want to remark that in [37], Kaczorowski and Perelli considered a similar problem for
degree 2 functions. In particular, they studied the standard twist of L-functions associated
to half-integral weight cusp forms, deriving a functional equation and analyzing trivial and
non-trivial zeros. In Section 3.2.1, we briefly recall the main results of their paper.
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Chapter 1

On the average of modular coefficients
over primes

1.1 Introduction

Given f : N→ C, one of the basic problems in analytic number theory is to estimate sums of
the form ∑

p≤x
f(p)

as x → +∞, where p runs over prime numbers. A very closely related sum, essentially
equivalent and more convenient to deal with, is∑

n≤x
f(n)Λ(n), (1.1.1)

where Λ is the von Mangoldt function, defined by

Λ(n) =

log p if n = pm with m ≥ 1

0 otherwise.

Recall the identity

Λ(n) =
∑
d|n

µ(d) log

(
n

d

)
, (1.1.2)

where µ is the Möbius function,

µ(n) =


1 if n = 1

(−1)k if n = p1 · · · · · pk, pi 6= pj if i 6= j

0 otherwise.

(1.1.3)

7



8 CHAPTER 1. ON THE AVERAGE OF MODULAR COEFFICIENTS OVER PRIMES

Then, dealing with (1.1.1) is roughly similar to giving an estimate of∑
n≤x

µ(n)f(n). (1.1.4)

Sums of the form (1.1.4) are related to a principle concerning the randomness of µ. It states
that summing the Möbius function against any "reasonable" f leads to a significant cancellation.
This is the so-called Möbius Randomness Law (cf. [28, 13.1]), saying that µ does not correlate
with any function of "low complexity". In general it means that

∑
n≤x

µ(n)f(n) = o

(∑
n≤x
|f(n)|

)
, (1.1.5)

and, assuming that f is bounded,∑
n≤x

µ(n)f(n) = o(x) as x→∞. (1.1.6)

An interesting problem is trying to understand for which functions f equations (1.1.5) and
(1.1.6) hold. In particular, precise notions of reasonable and low complexity are required. This
is the main purpose of Sarnak’s lectures on Möbius function randomness and dynamics [53].
The problem is still open, but there are interesting conjectures in this field. We refer to these
lectures for more details.

In this thesis, we focus on the particular case of the sum

πa,Λ(x) =
∑

m2
1+m2

2+m2
3≤x

a(m2
1 +m2

2 +m2
3)Λ(m2

1 +m2
2 +m2

3), (1.1.7)

where (a(n))n≥1 is the sequence of the normalized Fourier coefficients of a holomorphic or
Maass cusp form f . This problem has been studied by Hu in [25]. He proved the bound

πa,Λ(x) = O(x3/2 logc x), (1.1.8)

where c is a suitable positive constant. It can be observed that (1.1.8) could be obtained in
a simpler way applying Cauchy-Schwarz’s inequality. We also claim that a stronger bound
can be obtained, taking into account the absence of exceptional zeros proved by Hoffstein and
Ramakrishnan in [24] (see Lemma 1.8 below).

We now give a brief account of the theory of holomorphic and Maass cusp forms. Even
if we will focus on forms of level one, we now consider a general level N ≥ 1. Given the full
modular group

SL2(Z) =

{(
a b

c d

) ∣∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
,
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the Hecke congruence subgroup Γ0(N) is defined as

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N)

}
.

The action of this group on the upper half-plane H = { z = x+ iy ∈ C | y > 0 } is

γ(z) :=
az + b

cz + d
, for all z ∈ H, γ =

(
a b

c d

)
∈ Γ0(N).

The quotient space Γ0(N)\H is not compact, but a compactification can be obtained by adding
a finite number of points, called cusps (cf. e.g. [28, 14.1] for a precise argument).
Let now χ be a Dirichlet character modulo N . For any γ ∈ Γ0(N) as above, we define
χ(γ) := χ(d), thus considering χ as a character on the group Γ0(N). A modular form of level
N , weight k ≥ 1 and character χ is a function f : H→ C holomorphic on H and at the cusps,
satisfying

f|γ(z) = χ(γ)f(z) for all γ =

(
a b

c d

)
∈ Γ0(N), (1.1.9)

where
f|γ(z) := (cz + d)−kf(γ(z)).

We spend a few words about holomorphy at the cusps. Since γ =

(
1 1

0 1

)
∈ Γ0(N), if f(z)

satisfies (1.1.9) it is 1-periodic, then it admits a Fourier expansion

f(z) =
∑
n∈Z

a(n)n
k−1

2 e(nz),

for <(z) > 0, where e(z) := e2πiz and the a(n), n ≥ 1 are the normalized Fourier coefficients
of f . We say that f is holomorphic at i∞ if a(n) = 0 for n < 0. If c is another cusp, f is
holomorphic at c if

f|γc(z) =

∞∑
n=0

a(n, c)e(nz),

where γc ∈ SL2(R) is the scaling matrix sending i∞ to c. A cusp form is a modular form
vanishing at all cusps. Then, in particular, it can be written as a Fourier series of the form

f(z) =
∞∑
n=1

a(n)n
k−1

2 e(nz).

The space of cusp forms of level N , weight k and character χ is denoted by Sk(N,χ).
Consider now the Laplace operator ∆k of weight k, defined by

∆k = y2

(
∂2

∂x2
+

∂2

∂x2

)
− iky ∂

∂x
.
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A smooth function f : H → C satisfying (1.1.9) that is also an eigenfunction of the above
Laplace operator, i.e. such that (∆k + λ)f = 0 for some complex number λ, is a Maass form
of level N , weight k, character χ and Laplace eigenvalue λ. Moreover, it is a Maass cusp form
if it vanishes at all cusps (cf. [19, §4]). As shown in [21, 2.2] or in [30, §1.4.6], a Maass form
admits a Fourier expansion

f(z) =
∑
n 6=0

ρ(n)W kn
2|n| ,ir

(4π|n|y)e(nx),

where r is the spectral parameter, which is related to the Laplace eigenvalue by r2 = λ− 1
4 ,

and Wα,β is the Whittaker function [59]. We then define the normalized Fourier coefficients by

a(n) :=

(
4π|n|y
coshπr

) 1
2

ρ(n).

Again, see [19, §4] for more details. It can be observed that the space Sk(N,χ) can be
embedded into the space of Maass cusp forms, via the map

f ∈ Sk(N,χ) 7−→ yk/2f(z), where y = =(z).

We can define the n-th Hecke operator acting on the space Sk(N,χ) as

Tn,χ : f(z) 7−→ (Tn,χf)(z) =
1

n

∑
ad=n

χ(a)ak
∑

b (mod N)

f

(
az + b

d

)
,

and similarly the action of the n-th Hecke operator on the space of Maass cusp forms can be
defined by

T ′n,χ : f(z) 7−→ (T ′n,χf)(z) =
1√
n

∑
ad=n

χ(a)
∑

b (mod N)

f

(
az + b

d

)
.

The forms which are common eigenfunctions of the Hecke operators Tn,χ for (n,N) = 1

define an orthonormal basis, the so-called Hecke basis. The elements of this basis are called
Hecke-Maass cusp forms. If a Hecke-Maass cusp form is not induced by a modular form of
lower level it is called a primitive form. Observe that a Hecke-Maass cusp form of level one is
trivially a primitive form. In the following, we will assume f to be either a holomorphic or a
Maass cusp form of level one, with normalized Fourier coefficients a(n), n ≥ 1. In particular,
we will focus on primitive Maass-cusp form, with the meaning that holomorphic cusp forms
are included. Thus, we can proceed with a unified argument.

Remark 1.1. We want to observe that∑
m2

1+m2
2+m2

3≤x

a(m2
1 +m2

2 +m2
3) =

∑
n≤x

a(n)r3(n),

where r3(n) is the number of representations of the integer n as the sum of three squares.
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In general, given a positive integer k, if rk(n) is the number of representations of n as the sum
of k squares, we have

∞∑
n=0

rk(n)e(nz) = θ(z)k, (1.1.10)

where θ denotes the classical theta function

θ(z) =
∑
n∈Z

e(n2z).

The theta function is a modular form of weight 1
2 for the group Γ0(4). Recall that, given an

odd integer k, a positive integer N divisible by 4 and a character χ modulo N , a modular
form of half-integral weight k

2 , level N and character χ is a holomorphic function defined on
the upper half plane H, satisfying

f(γz) = χ(d)j(γ, z)kf(z),

for all γ ∈ Γ0(N), and being holomorphic at the cusps. Here the automorphy factor j(γ, z) is

j(γ, z) =
θ(γ(z))

θ(z)
.

It follows that (1.1.10) is a modular form of weight k
2 and, particular, r3(n) is the n-th Fourier

coefficient of a modular form of weight 3
2 . Then, we can write

πa,Λ(x) =
∑

m2
1+m2

2+m2
3≤x

a(m2
1 +m2

2 +m2
3)Λ(m2

1 +m2
2 +m2

3) =
∑
n≤x

a(n)r3(n)Λ(n). (1.1.11)

Hence, our result can be seen as the analogue of the prime number theorem for the convolution
of a Maass cusp form and a modular form of half-integral weight. For a more detailed theory
of modular forms of half-integral weight we refer to Shimura [55], while one can see Iwaniec
[27, Chapter 10-11] for an overview of the theta function.

Remark 1.2. We recall that the Ramanujan’s conjecture, claiming that

|a(p)| ≤ 2, for p prime,

is a well-known result for holomorphic cusp forms of integral weight (cf. Deligne [17], [18]).
It follows that, for all ε > 0, the normalized coefficients satisfy a(n) = O(nε). On the other
hand, for Maass forms the best bound currently obtained is

|a(p)| ≤ 2pθ with θ =
7

64
,

due to Kim and Sarnak [38]. Hence, the coefficients of Maass cusp forms satisfy, for all ε > 0,

a(n) = O(nθ+ε).
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In the above described setting, we prove the following theorem (cf. [60, Theorem 1]), which
improves the bound (1.1.8) obtained by Hu.

Theorem 1.1. Let f be either a holomorphic or Maass cusp form for the full modular group
and let a(n) be the n-th normalized Fourier coefficient of f . Then, there exists a constant
c > 0 such that

πa,Λ(x) = O(x3/2 exp(−c
√

log x)).

In the following sections, we first introduce some notations and preliminary results, then
we focus on the proof of our statement.

1.2 Notation and outline of the method

Since we follow Hu’s approach to the problem and refer to his paper [25] for some details, we
introduce the same notation. For α ∈ R and y > 1, define

S1(α, y) :=
∑

1≤m≤y
e(m2α), S2(α, y) :=

∑
|m|≤y

e(m2α) (1.2.1)

and the exponential sum
T (α, y) :=

∑
1≤n≤y

a(n)Λ(n)e(nα). (1.2.2)

As a first step, we have

πa,Λ(x) =

∫ 1

0
S3

2(α,
√
x)T (−α, x)dα.

In fact, recalling ∫ 1

0
e(nα)dα =

1 if n = 0

0 otherwise,

we can easily observe that∫ 1

0
S3

2(α,
√
x)T (−α, x)dα =

∫ 1

0

∑
|mi|≤

√
x

i=1,2,3

e((m2
1 +m2

2 +m2
3)α)

∑
1≤n≤x

a(n)Λ(n)e(−nα)dα

=
∑

|mi|≤
√
x

i=1,2,3
n≤x

a(n)Λ(n)

∫ 1

0
e((m2

1 +m2
2 +m2

3 − n)α)dα

=
∑

m2
1+m2

2+m2
3≤x

a(m2
1 +m2

2 +m2
3)Λ(m2

1 +m2
2 +m2

3) = πa,Λ(x).

Moreover, since S2(α, y) = 2S1(α, y) + 1, we get, for all ε > 0,

πa,Λ(x) = 8

∫ 1

0
S3

1(α,
√
x)T (−α, x)dα+O(x1+θ+ε).
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Let now P = exp(C
√

log x), for a positive constant C, and let Q = xP−1 = x exp(−C
√

log x).
Thanks to the periodicity of the integrand,

πa,Λ(x) = 8

∫ 1

0
S3

1(α,
√
x)T (−α, x)dα+O(x1+θ+ε)

= 8

∫ 1+1/Q

1/Q
S3

1(α,
√
x)T (−α, x)dα+O(x1+θ+ε).

(1.2.3)

Dirichlet’s theorem on rational approximation (cf. e.g. [58, Lemma 2.1]) assures that for any
real α and any Q ≥ 1 there exists a rational number a

q , with (a, q) = 1, 1 ≤ q ≤ Q such that

α =
a

q
+ β with |β| ≤ 1

qQ
.

For 1 ≤ q ≤ P and 1 ≤ a ≤ q, (a, q) = 1 let

M(a, q) =

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
.

The setM of the major arcs is given by the union of theM(a, q), as a, q run in the above
ranges. As usual, the set m of the minor arcs is instead

m =

[
1

Q
, 1 +

1

Q

]
\M.

Hence, by equation (1.2.3)

πa,Λ(x) = 8

∫
M
S3

1(α,
√
x)T (−α, x)dα+ 8

∫
m
S3

1(α,
√
x)T (−α, x)dα+O(x1+θ+ε). (1.2.4)

Our goal is now to give an estimate of the integrand on major and minor arcs.

Remark 1.3. For an introduction to the classical circle method we refer again to [58]. In
particular, in Chapter 1 a historical background is given.

1.3 First estimates

In this section we first recall the estimates of S1(α,
√
x) on major and minor arcs given by

Hu in Lemma 4.1 and 4.2 of [25] respectively. Then, we discuss a key result that allows us to
improve the estimate of T (α, x) on major arcs (Lemma 1.8).
We start presenting a list of preliminary lemmas (cf. [25, §3]). For a real number t, we denote
by ||t|| the distance of t from the nearest integer, i.e.

||t|| := min({t}, 1− {t}),

where {t} := t− btc is the fractional part of t. The following lemma (cf. [25, Lemma 3.1]) is a
partial summation result.
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Lemma 1.1. Let (bn), n ≥ 1 be a sequence of complex numbers such that

B(u) =
∑
n≤u

bn = M(u) + E(u),

where M is continuously differentiable on (0,+∞). Suppose that f is a continuously differen-
tiable function on [u1, u2], where u1 ≥ 0. Then

∑
u1<n<u2

bnf(n) =

∫ u2

u1

f(u)M ′(u)du+

∫ u2

u1

f(u)dE(u).

Lemma 1.2. Let α ∈ R. Then,

∑
1≤n≤y

e(nα)� min

(
y,

1

||α||

)
.

The above lemma easily follows from the observation that

∑
1≤n≤y

e(nα) = e(α)
e(αy)− 1

e(α)− 1
=

sin(πyα)

sin(πα)
e

(
α

2
(y + 1)

)
.

Then, one concludes noticing that | sin(πα)| ≥ 2||α|| (cf. e.g. [28, eq. (8.7)]).

Lemma 1.3. Let α = a
q + β with (a, q) = 1, q ≥ 3 and |β| ≤ 1/q2. Then

∑
n≤N

min

(
y,

1

||αn||

)
� (y + q log q)

(
1 +

N

q

)
.

For the proof of Lemma 1.3, Hu refers to [41]. We observe that this lemma is in the spirit
of [58, Lemma 2.2]. See also [28, Chapter 8] where similar estimates are given.

Let now t be a real number. We define

ψ1(t) := {t} − 1

2

and for j ≥ 1 ψj+1(u)− ψj+1(0) =
∫ u

0 ψj(t)dt∫ 1
0 ψj+1(u)du = 0.

With the above notation, the following results hold.

Lemma 1.4. For any H ≥ 2, we have

ψ1(u) =
∑

1≤|h|≤H

e(hu)

2πh
+O

(
min

(
1,

1

H||u||

))
.

Also, we have

min

(
1,

1

H||u||

)
=

∞∑
−∞

f(h)e(hu), (1.3.1)
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where f : Z→ R is a function satisfying

f(0)� logH

H
and f(h)� min

(
1

|h|
,
H

h2

)
.

Lemma 1.5. Let l ≥ 1. Then

ψ2l(u) = (−1)l−1
∞∑
h=1

2

(2hπ)2l
cos(2πu),

ψ2l+1(u) = (−1)l−1
∞∑
h=1

2

(2hπ)2l+1
sin(2πu).

For the proofs of Lemma 1.4 and Lemma 1.5 we refer, as in Hu’s, to [23] and [41] respectively.
We now introduce the quadratic Gauss sum. For a, b ∈ Z, q ≥ 1 let

G(a, b, q) =

q∑
r=1

e

(
ar2 + br

q

)
.

Assume that (a, q) = 1, then the above sum satisfies (see [25, Lemma 3.5] and [28, eq. (8.6)])

G(a, b, q)� √q. (1.3.2)

Below, we give an estimate of S1(α,
√
x) on major arcs (cf. [25, §4.1]).

Lemma 1.6. Let 1 ≤ q ≤ P , 1 ≤ a ≤ q, (a, q) = 1 and α = a
q + β ∈ M(a, q) with |β| ≤ 1

qQ .
Then,

S1(α,
√
x) =

G(a, 0, q)

q

√
x

∫ 1

0
e(xβv2)dv +O(

√
q log(q + 1)).

Proof. Recalling (1.2.1), we have

S1(α,
√
x) =

∑
1≤n≤

√
x

e

(
n2a

q

)
e(n2β) =

q∑
r=1

e

(
r2a

q

) ∑
1≤n≤

√
x

n≡r (mod q)

e(n2β).

Observe that ∑
n≤u

n≡r (mod q)

1 =
∑

0≤k≤u−r
q

1 = 1 +

⌊
u− r
q

⌋
=

1

2
+
u− r
q
− ψ1

(
u− r
q

)
.

We apply Lemma 1.1 with

M(u) =
1

2
+
u− r
q

, and E(u) = −ψ1

(
u− r
q

)
,

then in the notation of the lemma, bn = 1 if n ≡ r (mod q) and bn = 0 otherwise, while
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f(n) = e(n2β). We get

∑
1≤n≤

√
x

n≡r (mod q)

e(n2β) =

∫ √x
0

e(u2β)M ′(u)du+

∫ √x
0

e(u2β)dE(u)

=
1

q

∫ √x
0

e(u2β)du−
∫ √x

0
e(u2β)dψ1

u− r
q

=

∫
1
−
∫

2
,

say. Consider
∫

1. By the change of variables u =
√
xv,∫

1
=

√
x

q

∫ 1

0
e(xv2β)dv

and hence
q∑
r=1

e

(
r2a

q

)∫
1

=
G(a, 0, q)

q

√
x

∫ 1

0
e(xv2β)dv.

Let us now focus on the second integral. In order to simplify the notation, put g(u) = e(u2β).
Using partial integration,

∫
2

= g(u)ψ1

(
u− r
q

)
√
x

0

−
∫ √x

0
g′(u)ψ1

(
u− r
q

)
du

= g(u)ψ1

(
u− r
q

)
√
x

0

− q
∫ √x

0
g′(u)dψ2

(
u− r
q

)
du,

since, by definition,

ψ2

(
u− r
q

)
= ψ2(0) +

∫ (u−r)/q

0
ψ1(t)dt

and hence
dψ2

(
u− r
q

)
=

d

du
ψ2

(
u− r
q

)
1

q
= ψ1

(
u− r
q

)
.

Using repeated partial integrations,

∫
2

= g(u)ψ1

(
u− r
q

)
√
x

0

− qg′(u)ψ2

(
u− r
q

)
√
x

0

+ q

∫ √x
0

g′′(u)ψ2

(
u− r
q

)
du

=

l∑
j=0

(−1)jqjg(j)(u)ψj+1

(
u− r
q

)
√
x

0

+ (−1)l+1ql
∫ √x

0
g(l+1)(u)ψl+1

(
u− r
q

)
du,

where l ≥ 1 is a fixed positive integer (the last equality can be easily verified by induction).
Hence,

q∑
r=1

e

(
r2a

q

)∫
2

=
l∑

j=0

(−1)jqjg(j)(u)

q∑
r=1

e

(
r2a

q

)
ψj+1

(
u− r
q

)
√
x

0

+ (−1)l+1ql
∫ √x

0
g(l+1)(u)

q∑
r=1

e

(
r2a

q

)
ψl+1

(
u− r
q

)
du.

(1.3.3)
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Assume at first the following facts (which will be proved later).

(i) For any fixed j ≥ 0 and uniformly for 0 ≤ u ≤
√
x

q∑
r=1

e

(
r2a

q

)
ψj+1

(
u− r
q

)
�


√
q log(q + 1) if j = 0
√
q if j ≥ 1.

(ii) For any fixed k ≥ 0, uniformly for 0 ≤ u ≤
√
x,

g(k)(u)�k

(√
x

qQ

)k
.

Then, equation (1.3.3) gives

q∑
r=1

e

(
r2a

q

)∫
2

=

q∑
r=1

e

(
r2a

q

)∫ √x
0

e(u2β)dψ1
u− r
q

� |g(u)|√q log(q + 1)


√
x

0

+
l∑

j=1

(−1)jqj |g(j)(u)|√q

√
x

0

+ (−1)l+1ql
∫ √x

0

√
q|g(l+1)(u)|du

� √q log(q + 1) +
√
q

l∑
j=1

qj
(√

x

qQ

)j
+ ql
√
q

(√
x

qQ

)l+1√
x

� √q log(q + 1) +
√
q

l∑
j=1

(√
x

Q

)j
+

1
√
q

√
x

(√
x

Q

)l+1

.

Let l = b2/εc, with 0 < ε < 1, then

√
x

(√
x

Q

)l+1

� 1 and
√
q

l∑
j=1

(√
x

Q

)j
� √q,

recalling the choice of the value of Q. It follows that

q∑
r=1

e

(
r2a

q

)∫
2
� √q log(q + 1) +

√
q +

1
√
q
� √q log(q + 1).

So, we conclude

S1(α,
√
x) =

q∑
r=1

e

(
r2a

q

)(∫
1
−
∫

2

)
=
G(a, 0, q)

q

√
x

∫ 1

0
e(xv2β)dv +O(

√
q log(q + 1)).

We still have to prove (i) and (ii). A direct calculation shows that (i) holds for q = 1, 2.
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Assume now q ≥ 3 and j = 0. Then, using Lemma 1.4 with H = q we get

q∑
r=1

e

(
r2a

q

)
ψ1

(
u− r
q

)
=

q∑
r=1

e

(
r2a

q

) ∑
1≤|h|≤q

e(h(u− r)/q)
2πh

+

q∑
r=1

O

(
min

(
1,

1

q||(u− r)/q||

))
=
∑

1

+
∑

2

,

say. Consider the first sum. Thanks to (1.3.2) and using partial summation,

∑
1

=
∑

1≤|h|≤q

e(hu/q)

2πh
G(a,−h, q)� √q

∑
1≤|h|≤q

1

h
� √q log q.

Moreover, by Lemma 1.4 and the fact that for q, r ∈ N

q∑
h=1

e

(
hr

q

)
=

q if q | r

0 otherwise,

we obtain by (1.3.1) the estimate

∑
2

�
q∑
r=1

∑
h∈Z

f(h)e

(
h(u− r)

q

)
=
∑
h∈Z

f(h)e

(
hu

q

) q∑
r=1

e

(
−hr
q

)
= q

∑
h∈Z
q|h

f(h)e

(
hu

q

)
� q

∑
h∈Z
q|h

|f(h)| = q
∑
k∈Z
|f(kq)|

= q(|f(0)|+
∞∑
k=1

|f(kq)|+
−1∑

k=−∞
|f(kq)|)

� q
log q

q
+ 2q

∞∑
k=1

min

(
1

|kq|
,
q

q2k2

)
� log q + 2q

1

q

∞∑
k=1

1

k2
� log q.

For j ≥ 1, we apply Lemma 1.5 and again equation (1.3.2). If j + 1 is even,

q∑
r=1

e

(
r2a

q

)
ψj+1

(
u− r
q

)
� √q

∞∑
h=0

1

h2l
,

for some l ≥ 1. On the other hand, if j + 1 is odd,

q∑
r=1

e

(
r2a

q

)
ψj+1

(
u− r
q

)
� √q

∞∑
h=0

1

h2l+1
,

again with l ≥ 1. Then, for some k ≥ 2 we have

q∑
r=1

e

(
r2a

q

)
ψj+1

(
u− r
q

)
� √q

∞∑
h=0

1

hk
� √q,
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since the series
∑∞

h=0 h
−k converges. Then (i) follows gathering the above cases.

We now focus on (ii). Let f(u) = 4πiuβ. Since, |g(u)| = |e(u2β)| ≤ 1, one immediately sees
that (ii) holds for k = 0. Moreover, g′(u) = 4πiβue(u2β) = f(u)g(u), so

|g′(u)| ≤ |f(u)| �
√
x|β| �

√
x

qQ
.

Now, by Leibniz formula, for k ≥ 1,

g(k+1)(u) = (g(u)f(u))(k) =
k∑

m=0

(
k

m

)
g(m)(u)f (k−m)(u) = g(k)(u)f(u) + kg(k−1)(u)f ′(u),

where the last equality holds since f (m)(u) = 0 for m ≥ 2.
Proceeding by induction on k, suppose that the estimate (ii) holds for g(k). Then,

g(k+1)(u)� |β|
√
x

(√
x

qQ

)k
+ k

(√
x

qQ

)k−1

�
(√

x

qQ

)k+1

+
1

qQ

(√
x

qQ

)k−1

�
(√

x

qQ

)k+1

,

since the inequality qQ ≤ PQ = x implies that 1
qQ ≤

(√x
qQ

)2.
Thus (ii) follows and this concludes the proof of the lemma.

In the following lemma we recall the corresponding bound on minor arcs, (cf. [25, §4.2]).

Lemma 1.7. Let α = a
q + β ∈ m with 1 ≤ a ≤ q, (a, q) = 1 and |β| ≤ 1

qQ . Then,

S1(α,
√
x)� x1/2q−1/2 + q1/2(log q)1/2 + x1/4(log q)1/2. (1.3.4)

Proof. By definition of S1(α,
√
x), we get

|S1(α,
√
x)|2 = S1(α,

√
x)S1(α,

√
x) =

∑
1≤m,n≤

√
x

e((m2 − n2)α)

=
∑
m=n

1≤m≤
√
x

1 +
∑

1≤n<m≤
√
x

e((m2 − n2)α) +
∑

1≤m<n≤
√
x

e((m2 − n2)α)

= b
√
xc+ T (

√
x) + T (

√
x),

where

T (
√
x) =

∑
1≤n<m≤

√
x

e((m2 − n2)α) =
∑

1≤n<m≤
√
x

e((m− n)(m+ n)α)

=
∑

1≤v≤
√
x−1

∑
1≤n≤

√
x−v

e((v2 + 2nv)α),
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taking v = m− n and hence m+ n = v + 2n. Thus, by Lemma 1.2

T (
√
x) =

∑
1≤v≤

√
x−1

e(v2α)
∑

1≤n≤
√
x−v

e(2nvα)�
∑

1≤v≤
√
x−1

min

(√
x− v, 1

||2vα||

)

�
∑

1≤z≤2
√
x

min

(√
x,

1

||zα||

)
� (
√
x+ q log q)

(
1 +

√
x

q

)
� x1/2 + xq−1 + q log q + x1/2 log q,

(1.3.5)

applying Lemma 1.3. The wanted estimate now easily follows from (1.3.4) and (1.3.5).

Remark 1.4. Recalling that on minor arcs P ≤ q ≤ Q and that we chose P = exp(C
√

log x),
by Lemma 1.7, the estimate (1.3.4) becomes

S1(α,
√
x)� x1/2P−1/2 = x1/2 exp(−C

2

√
log x).

Let now χ be a Dirichlet character modulo q and define

ψf (x, χ) =
∑
n≤x

a(n)χ(n)Λ(n).

Lemma 1.8. There exists a constant A > 0 such that

ψf (x, χ)� √qx exp(−A
√

log x).

Proof. The bound follows with standard methods by formula (28) of [21, Theorem 4.1],∑
p≤x

a(p)χ(p) log p� √qx exp(−A1

√
log x),

where A1 is a positive constant. The proof of the above bound is essentially based on the
zero-free region derived by Hoffstein-Ramakrishnan (cf. [24, Theorem C, part (3)] or [21,
Theorem C]) and the absence of exceptional zeros for GL(2) L-functions. The result of
Hoffstein and Ramakrishnan states that if f is a primitive form of level q, spectral parameter
r and weight k, the corresponding L-function Lf (s) (cf. Section 3.1.1, equation (3.1.1)) does
not vanish in

σ ≥ 1− c

log(q(|t|+ |r|+ 2))
,

where c is a positive absolute constant. For the complete argument to prove formula (28), we
refer to the proof of Theorem 4.1 of [21].

We can now improve Hu’s bound [25, Lemma 5.1], giving a stronger estimate of T (α, x)

on major arcs. As we shall see, the result proved in Lemma 1.8 is a key ingredient in our
argument. To prove Lemma 1.9, we also apply some classical identities, briefly recalled below.
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Let a,m be coprime integers. Then,

e

(
a

m

)
=

1

ϕ(m)

∑
χ (mod m)

χ̄(a)τχ, (1.3.6)

where τχ is the Gauss sum defined as

τχ =
∑

b (mod m)

χ(b)e

(
b

m

)
. (1.3.7)

Moreover, note that

χ(a)τχ̄ =
∑

b (mod m)

χ̄(b)e

(
ab

m

)
. (1.3.8)

For the details and the proof of the above identities, we refer to [28, Section 3.4].

Lemma 1.9. Let 1 ≤ q ≤ P = exp(C
√
logx), 1 ≤ a ≤ q with (a, q) = 1 and α = a

q + β ∈
M(a, q) with |β| ≤ 1

qQ . Then, for C small enough, there exists a constant B > 0 such that

T (α, x)� x exp(−B
√

log x).

Proof. By definition (1.2.2), since α = a
q + β, we have

T (α, x) =
∑
n≤x

a(n)Λ(n)e

(
an

q

)
e(nβ)

=
∑
n≤x

(n,q)=1

a(n)Λ(n)e

(
an

q

)
e(nβ) +

∑
n≤x

(n,q)>1

a(n)Λ(n)e

(
an

q

)
e(nβ).

(1.3.9)

By (1.3.6), (1.3.7) and (1.3.8),

∑
n≤x

(n,q)=1

a(n)Λ(n)e

(
an

q

)
e(nβ) =

∑
n≤x

(n,q)=1

a(n)Λ(n)

(
1

ϕ(q)

∑
χ (mod q)

χ̄(an)τχ

)
e(nβ)

=
∑
n≤x

(n,q)=1

a(n)Λ(n)

(
1

ϕ(q)

∑
χ (mod q)

χ̄(n)
∑

b (mod q)

χ(b)e

(
ab

q

))
e(nβ)

=
∑

b (mod q)

e

(
ab

q

)(
1

ϕ(q)

∑
χ (mod q)

χ(b)
∑
n≤x

a(n)χ̄(n)Λ(n)e(βn)

)

=
∑

b (mod q)

e

(
ab

q

)(
1

ϕ(q)

∑
χ (mod q)

χ(b)

(
ψf (x, χ̄)e(βx)− 2πiβ

∫ x

1
ψf (u, χ̄)e(βu)du

))
,

where, for the last equality we apply partial summation. On the other hand, the second sum
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in (1.3.9) gives rise to an error term of the form O(xθ+ε log2 x), since∑
n≤x

(n,q)>1

a(n)Λ(n)e(nα)�
∑
n≤x

(n,q)>1

a(n)Λ(n)� xθ+ε
∑
n≤x

(n,q)>1

Λ(n)

= xθ+ε
∑
p|q

∑
pr≤x

log p = xθ+ε
∑
p|q

log p
∑
pr≤x

1� xθ+ε log2 x.

Then, we have

T (α, x)�
∑

b (mod q)

(1 + |β|x)
√
qx exp(−A

√
log x)

� xP 3/2 exp(−A
√

log x)� x exp(−B
√

log x),

where B = A− 3
2C and A is the constant of Lemma 1.8. Hence, taking C in the definition of

P to satisfy

C <
2

3
A, (1.3.10)

we have B > 0, as desired.

Remark 1.5. In [25], the author claims that, simply normalizing the coefficients, it is possible
to generalize [43, Theorem 1] to the case of Maass forms. However, the proof of that result is
strongly based on Ramanujan’s conjecture (which is not known for Maass forms, as recalled in
Remark 1.2), so we are not sure of the estimate stated in [25, Lemma 5.1]. For this reason,
our argument for T (α, x) on major arcs follows a different approach.

1.4 Proof of the main result

We are now ready to prove Theorem 1.1. We start by considering the major arcs. By
construction,

∫
M
S3

1(α,
√
x)T (−α, x)dα =

∑
1≤q≤P

q∑
a=1

(a,q)=1

∫ a
q

+ 1
qQ

a
q
− 1
qQ

S3
1(α,
√
x)T (−α, x)dα.

Assume now that α ∈M(a, q). By Lemma 1.6 and since (X + Y )3 � X3 + Y 3 for X,Y > 0,
we have

S3
1(α,
√
x)� G3(a, 0, q)

q3
x3/2 + q3/2 log3(q + 1)� x3/2q−3/2. (1.4.1)

Hence, Lemma 1.9 and equation (1.4.1) give

S3
1(α,
√
x)T (−α, x)� x3/2q−3/2x exp(−B

√
log x) = x5/2q−3/2 exp(−B

√
log x).
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Now, recalling that the length of the intervalM(a, q) is 2(qQ)−1,

∫ a
q

+ 1
qQ

a
q
− 1
qQ

S3
1(α,
√
x)T (−α, x)dα� (qQ)−1x5/2q−3/2 exp(−B

√
log x)

= q−1x3/2q−3/2P exp(−B
√

log x),

since Q = xP−1 and so Q−1 = x−1P . We sum over the residue classes modulo q, obtaining

q∑
a=1

(a,q)=1

∫ a
q

+ 1
qQ

a
q
− 1
qQ

S3
1(α,
√
x)T (−α, x)dα� x3/2q−3/2P exp(−B

√
log x),

and finally over 1 ≤ q ≤ P . Observing that
∑P

q=1 q
−3/2 = O(1), we get∫

M
S3

1(α,
√
x)T (−α, x)dα� x3/2P exp(−B

√
log x) = x3/2 exp(−(B − C)

√
log x), (1.4.2)

since P = exp(C
√

log x). Note that, for our purpose we have to impose B − C > 0, so

C < B = A− 3

2
C ⇐⇒ C <

2

5
A. (1.4.3)

We still have to find an estimate for∫
m
S3

1(α,
√
x)T (−α, x)dα.

Using Cauchy-Schwarz inequality,∫
m
S3

1(α,
√
x)T (−α, x)dα� max

m
|S1(α,

√
x)|
∫ 1

0
|S1(α,

√
x)|2|T (−α, x)|dα

� max
m
|S1(α,

√
x)|
(∫ 1

0
|S1(α,

√
x)|4dα

)1/2(∫ 1

0
|T (−α, x)|2dα

)1/2

.

Now, as observed in Lemma 1.7,

max
m
|S1(α,

√
x)| � x1/2P−1/2 = x1/2 exp(−C

2

√
log x). (1.4.4)

Moreover, we have ∫ 1

0
|T (−α, x)|2dα�

∑
n≤x

a2(n)Λ2(n)� x log2 x, (1.4.5)

since the average bound ∑
n≤x
|a(n)|2 � x

holds for Maass forms (see e.g. [21, Corollary 3.1]).
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Finally, we have∫ 1

0
|S1(α,

√
x)|4dα =

∫ 1

0

∑
1≤m1,m2≤

√
x

e((m2
1 −m2

2)α)
∑

1≤m3,m4≤
√
x

e((m2
3 −m2

4)α)dα

=
∑

1≤mi≤
√
x

i=1,2,3,4

∫ 1

0
e((m2

1 +m2
3 −m2

2 −m2
4)α)dα

=
∑

1≤mi≤
√
x

i=1,2,3,4
m2

1−m2
2=m2

4−m2
3

1�
∑
n≤x

d2(n)� x log3 x,

(1.4.6)

where d(n) is the number of divisors of n (cf. e.g. [26, Theorems 5.3, 5.4] for the last estimate).
Then, it follows that, for a positive constant C ′ such that C ′ < C

2 ,∫
m
S3

1(α,
√
x)T (−α,

√
x)dα� x1/2P−1/2x1/2 log xx1/2 log3/2 x

= x3/2 log5/2 x exp(−C
2

√
log x)� x3/2 exp(−C ′

√
log x).

(1.4.7)

Now, equations (1.4.2) and (1.4.7) give

πa,Λ(x)� x3/2 exp(−(B − C)
√

log x) + x3/2 exp(−C ′
√

log x).

Hence, combining (1.3.10) and (1.4.3), we choose P = exp(C
√

log x), with C < 2
5A, getting

πa,Λ(x)� x3/2 exp(−c
√

log x),

where c = min(B − C,C ′) = min(A− 5
2C,C

′).

Before concluding this part, we point out that a similar argument can be applied to
Theorem 2 of [43]. Indeed, Theorem 2 therein can be strengthen as follows

Theorem 1.2. There exists a positive constant c′ such that∑
n1+n2+n3=N

τ(n1)Λ(n1)τ(n2)Λ(n2)τ(n3)Λ(n3)� N37/2 exp(−c′
√

logN),

where τ is the Ramanujan’s function.

The key point is again Hoffstein-Ramakrishnan’s result, since Ramanujan’s τ function
is a holomorphic cusp form of level 12. This assures the non-existence of exceptional zeros
and then an analogous version of Lemma 1.8 holds also in this case. We can apply the circle
method choosing P = exp(A′

√
logN), where A′ > 0 depends on the constant A of Lemma 1.8.

As a consequence, the Corollary in [43] gives

Sτ (α)� N13/2 exp(−C
√

logN),
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where again the positive constant C depends on A and

Sτ (α) =
∑
n≤N

τ(n)Λ(n)e(nα).

The result then follows as in [43] (the constant c′ of the statement will depend on A).





Chapter 2

Zeros of generalized Hurwitz zeta
functions

2.1 Introduction

In the literature, several results show that non-trivial linear combinations of L-functions may
have infinitely many zeros in the region of absolute convergence, so they do not satisfy the
Riemann hypothesis. For instance, in [47] Potter and Titchmarsh showed that the Epstein zeta
function has infinitely many zeros on the critical line σ = 1

2 , but they also gave an example
of an Epstein zeta function, without an Euler product, which has a zero in the critical strip
not lying on the critical line. Later, Davenport and Heilbronn [16] studied the distribution of
the zeros of the Epstein and the Hurwitz zeta functions in the region of absolute convergence,
proving the existence of infinitely many zeros in some cases. The study of the Hurwitz zeta
function was then completed by Cassels in [9]. Other examples in this direction are the works
of Conrey and Ghosh [14], Saias and Weingartner [52], Booker and Thorne [7] and Righetti
[50], [51]. In the following sections, we give a brief account of these results.

In our work [61], we consider the case of a particular generalization of the Hurwitz zeta
function, proving that it admits infinitely many zeros in the region of absolute convergence.
The idea is to proceed as Davenport and Heilbronn did for the Epstein zeta function without
an Euler product and for the classical Hurwitz zeta function. They were the first to use Bohr’s
equivalence theorem (cf. Theorem 2.4 below) as a main tool to deal with the existence of
zeros. Later, the same technique has been often applied in this kind of problems. We now
briefly recall the preliminary definitions and results we need in our work. We also describe,
without the complete details, the case of the Hurwitz zeta function and some other examples
of Dirichlet series with infinitely many zeros in the right half-plane.

2.1.1 Bohr’s equivalence theorem

We give a brief overview of Bohr’s theory of generalized Dirichlet series. In particular we
will focus on Bohr’s equivalence theorem, which is an important ingredient in the proof of
the existence of the zeros. Roughly speaking, this theorem allows one to turn the problem

27
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of finding the zeros of a function into the problem of finding a function, with a zero in the
half-plane σ > 1, which is equivalent (in Bohr’s definition) to the one we are studying. Indeed,
as we shall see, equivalent Dirichlet series take the same values on vertical strips, and so it is
sufficient to find a zero for an equivalent series to state that our Dirichlet series itself has a
zero. The existence of infinitely many zeros can be deduced by almost periodicity (see Section
2.1.3). We refer to Bohr [3] or to Apostol [1, Chapter 8] for a complete treatment of Bohr’s
theory.

Definition 2.1. Let {λ(n)} be a strictly increasing sequence of real numbers such that
λ(n)→ +∞ as n→ +∞. A generalized Dirichlet series is a series of the form

f(s) =
∞∑
n=1

a(n)e−λ(n)s,

where the numbers a(n) ∈ C are the coefficients and the λ(n) are the exponents of the series.

Remark 2.1. Observe that if λ(n) = log(n) for n ≥ 1, then f(s) is the ordinary Dirichlet series

f(s) =
∞∑
n=1

a(n)

ns
.

See [1, §8.2] for a discussion on the absolute convergence of generalized Dirichlet series.

Definition 2.2. Let Λ = {λ(n)} be an infinite sequence of distinct real numbers. A basis of
Λ is a finite or countably infinite sequence B = {β(n)} of real numbers satisfying the following
conditions

(1) the element of B are linearly independent over the rationals,

(2) for all n ≥ 1, λ(n) can be expressed as a linear combination over Q of elements of B,

(3) for all n ≥ 1, β(n) can be expressed as a linear combination over Q of elements of Λ.

Remark 2.2. Let Λ = {log(n)}. In this case, it is easy to verify that a basis for Λ is given by
B = {log(pn)}, where pn is the n-th prime number. It can also be observed that any sequence
of exponents has infinitely many bases.

It can be useful to express the above facts in matrix notation. We consider Λ and B as
infinite column vectors (notice that B could also be finite). We also consider finite or infinite
square matrices R of rational entries, such that all but a finite number of elements in each row
are zero. These rational square matrices are called Bohr matrices. Addition and multiplication
are defined as for finite matrices. In the above notation, we say that B is a basis for Λ if the
following conditions hold

(1) if RB = 0 for some Bohr matrix R, then R = 0,

(2) there exists a Bohr matrix RB such that Λ = RBB,
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(3) there exists a Bohr matrix TB such that B = TBΛ.

Remark 2.3. If B,B′ are two bases for Λ, then B′ = TB′RBB, (cf. [1, Theorems 8.5 and 8.6]).

Given a Dirichlet series f(s) =
∑∞

n=1 a(n)e−λ(n)s and a basis B = {β(n)} for the sequence
of exponents, we can associate to f(s) a function FB(z1, z2, . . . ) of countably many complex
variables. Let Z be the column vector with entries zj for j ≥ 1 and let RB be the Bohr matrix
such that Λ = RBB.

Definition 2.3. The Bohr function FB(Z) = FB(z1, z2, . . . ) associated to f(s) with respect
to the basis B is the series

FB(Z) =

∞∑
n=1

a(n)e−(RBZ)n ,

where (RBZ)n is the n-th entry of the column vector RBZ.

Remark 2.4. If B,B′ are two basis for Λ, then FB(Z) = FB′(TB′RBZ), (cf. [1, Theorem 8.7]).

It can be observed that the formal substitution Z = sB leads to

FB(sB) =
∞∑
n=1

a(n)e−s(RBB)n =
∞∑
n=1

a(n)e−sΛn = f(s).

We deduce that if f(s) converges absolutely for s0 = σ0 + it0, then the associated Bohr function
FB(Z) converges absolutely for any choice of z1, z2, . . . such that <(zn) = σ0β(n) for all n ≥ 1.
Note that in this case <(Z) = σ0B. Then, we define

Uf (σ0;B) = { F (Z) | <(Z) = σ0B } .

It can be proved that Uf (σ0, B) does not depend on the basis (cf. [1, Theorem 8.8]), then
from now on it will be denoted as Uf (σ0). The next step is relating the above set with the set
of values taken by f(s) on the vertical line σ = σ0. So let

Vf (σ0) = { f(σ0 + it) | t ∈ R } .

The following theorem holds (see [1, Theorem 8.9]).

Theorem 2.1. Let σ0 be such that f(s) is absolutely convergent for σ = σ0. Then,

Vf (σ0) ⊆ Uf (σ0) ⊆ Vf (σ0), hence Uf (σ0) = Vf (σ0).

Given σ0 as in Theorem 2.1, let δ0 > 0 be such that f(s) is absolutely convergent for
|σ − σ0| < δ0. For any 0 < δ < δ0, define

Wf (σ0, δ) = { f(σ + it) | |σ − σ0| < δ, t ∈ R } and Wf (σ0) =
⋂

0<δ≤δ0

Wf (σ0, δ).

Theorem 8.15 of [1] establishes the relation between the above defined set and the set of values
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taken by f(s) on the vertical line σ = σ0, i.e,

Wf (σ0) = Vf (σ0).

We are now ready to give the definition of equivalent Dirichlet series in Bohr’s theory. To
this end, let Λ = {λ(n)} be a sequence of exponents, let B = {β(n)} be a basis for Λ and
write Λ = RBB. Consider two generalized Dirichlet series

f(s) =
∞∑
n=1

a(n)e−λ(n)s and g(s) =
∞∑
n=1

b(n)e−λ(n)s.

Definition 2.4. The Dirichlet series f(s) and g(s) are equivalent with respect to the basis B
if there exists a finite or infinite sequence of real numbers Y = {y(n)} such that

b(n) = a(n)ei(RBY )n for all n ≥ 1.

It can be proved that the above definition does not depend on the basis. Moreover, two
equivalent Dirichlet series have the same region of absolute convergence. For both results, the
reference is [1, Theorem 8.10]. An important result on equivalent Dirichlet series is used in
the proof of Bohr’s equivalence theorem, i.e. if f(s) and g(s) are equivalent general Dirichlet
series absolutely convergent for σ = σ0, then

Uf (σ0) = Ug(σ0),

(see [1, Theorem 8.13]). We can now state

Theorem 2.2 (Bohr’s equivalence theorem). Let f(s) and g(s) be equivalent general Dirichlet
series with abscissa of absolute convergence σa. Then, in any open half-plane σ > σ1 ≥ σa the
functions f(s) and g(s) take the same set of values.

As observed by Righetti in [50], even if the theorem is stated for right half-planes, from
the proof one can deduce that the same result holds for vertical strips. In his Ph.D thesis [49,
Theorem 2.1.11], Righetti proved a different version of the above theorem, adapting the proof
of Theorem 8.15 in [1].

Theorem 2.3. Let f(s) be a general Dirichlet series absolutely convergent for σ = σ0. Then,

Vf (σ0) = { g(σ0) | g(s) is a general Dirichlet series equivalent to f(s) } .

For ordinary Dirichlet series, i.e. if Λ = {log(n)}, the equivalence relation can be formulated
as below (cf. [1, Theorem 8.12]).

Theorem 2.4. The ordinary Dirichlet series

f(s) =
∞∑
n=1

a(n)

ns
and g(s) =

∞∑
n=1

b(n)

ns
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are equivalent if and only if there exists a completely multiplicative function ϕ(n) such that

(i) b(n) = a(n)ϕ(n) for all n ≥ 1,

(ii) |ϕ(p)| = 1 for all the primes p | n with a(n) 6= 0.

2.1.2 Addition of convex curves

In the proof of our result (cf. Section 2.3), we also need to apply Bohr’s results on addition of
convex curves. We give the statements of the theorems and refer to the original work of Bohr
[2] or to Jessen and Wintner [29] for a complete treatment.
We recall that, given two sets of points A and B in C, the set A+B is the set of points a+ b

with a ∈ A, b ∈ B. We say that A+B is the vectorial sum of A and B.

Theorem 2.5. Let N ≥ 2 and let C1, . . . , CN be circles with centers cj and radii rj for
j = 1, . . . , N . Assume that r1 ≥ rj for all j ≥ 1. Then, if

c =

N∑
j=1

cj and R =

N∑
j=1

rj ,

the following holds

(1) if 2r1 > R, then C1 + · · ·+CN is the set of the points z such that 2r1−R ≤ |z− c| ≤ R,

(2) if 2r1 ≤ R, then C1 + · · ·+ CN is the set of the points z such that |z − c| ≤ R.

In other words, in the first case the vectorial sum of the circles gives rise to a ring centered
in c with internal radius 2r1 −R and external radius R. Otherwise, C1 + · · ·+CN is a disk of
center c and radius R. Bohr also proved the corresponding result for an infinite sum of curves.

Theorem 2.6. For j ≥ 1 let Cj be a circle with center cj and radius rj. Assume that r1 ≥ rj
for all j ≥ 1. Then, denoting

c =
∑
j≥1

cj and R =
∑
j≥1

rj ,

if |c| < +∞, we have

(1) if R < +∞ and 2r1 > R, then
∑

j≥1Cj is the set of the points z such that 2r1 − R ≤
|z − c| ≤ R.

(2) if R < +∞ and 2r1 ≤ R, then
∑

j≥1Cj is the set of the points z such that |z − c| ≤ R.

(3) if R =∞, but
∑

j≥1 r
2
j <∞, then

∑
j≥1Cj is the whole complex plane.
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2.1.3 Bohr almost periodic functions

Definition 2.5. A holomorphic function f(s) = f(σ + it) defined in some vertical strip
−∞ ≤ σ1 < σ < σ2 ≤ +∞ is Bohr almost periodic in (σ1, σ2) if for any ε > 0 the set

{ τ ∈ R | |f(s+ iτ)− f(s)| < ε for all σ1 < σ < σ2, t ∈ R }

is relatively dense, i.e. there exists ` = `(f, ε, σ1, σ2) > 0 such that any interval of length `
contains at least an element of the above set. Moreover, f(s) is Bohr almost periodic in [σ1, σ2]

if it is Bohr almost periodic in any interval (σ′, σ′′) with σ1 < σ′ < σ′′ < σ2.

It can be proved that a general Dirichlet series is Bohr almost periodic in the region of
absolute convergence. For the details one can refer to Bohr [4].

2.1.4 Rouché’s theorem

We recall the statement of an important result in complex analysis, which is often a key tool
in the proofs of the results we present. See e.g. [1, Lemma 2] for the proof.

Theorem 2.7 (Rouché’s theorem). Let two functions f(s) and g(s) be analytic inside and on
a closed simple curve C. Assume that

|f(s)| > |g(s)| on C.

Then, f(s) and f(s) + g(s) have the same number of zeros inside C.

We remark that, from an application of Rouché’s theorem to the definition of Bohr almost
periodicity, one can deduce the following result.

Theorem 2.8. Let f(s) be a holomorphic Bohr almost periodic function in [σ1, σ2]. For any
σ1 ≤ σ′ < σ′′ ≤ σ2 and T1, T2 > 0, define

N(σ′, σ′′, T1, T2) = |
{
ρ = β + iγ ∈ C

∣∣ f(ρ) = 0, σ′ < β < σ′′, T1 < γ < T2

}
|.

Then, if N(σ′, σ′′, T1, T2) ≥ 1, we get

lim inf
T2−T1→∞

N(σ′, σ′′, T1, T2)

T2 − T1
� 1.

2.1.5 The Hurwitz zeta function

Let 0 < α ≤ 1 be a real number, the Hurwitz zeta function is defined by

ζ(s, α) =
∞∑
n=0

1

(n+ α)s
, (2.1.1)

for s = σ + it ∈ C with σ > 1. It is well-known that it admits a meromorphic continuation to
C with a simple pole at s = 1 (cf. e.g. [22]). If α = 1, then ζ(s, 1) = ζ(s), while for α = 1

2 , we
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get ζ(s, 1
2) = (2s − 1)ζ(s). In particular, for these values of α, the Hurwitz zeta function does

not vanish in the half-plane σ > 1. In their paper [16], Davenport and Heilbronn proved that
if α /∈ {1, 1

2} is either rational or transcendental, then ζ(s, α) has infinitely many zeros for
σ > 1. They observed that the set of values of ζ(s, α) in any strip 1 < σ1 < σ < σ2 coincides
with the set of values of the series

∞∑
n=0

ϕ(n)

(n+ α)s
, (2.1.2)

where ϕ(n) is any function satisfying some conditions. If α is transcendental, the numbers
log(n+ α) are linearly independent over the rationals, then the only condition on ϕ(n) is that
it is of absolute value 1. Since ζ(s, α) is absolutely convergent for σ > 1, for any δ > 0 there
exist an integer m such that

m∑
n=0

1

(n+ α)1+δ
>

∞∑
n=m+1

1

(n+ α)1+δ
.

Choosing ϕ(n) = 1 if n ≤ m and ϕ(n) = −1 if n ≥ m+ 1, it can be verified that the series
(2.1.2) has a real zero in (1, 1 + δ). Then, by Rouché’s theorem and almost periodicity one
concludes that ζ(s, α) has infinitely many zeros for σ > 1 (cf. Theorem 2.8).
If α = l

k , with (l, k) = 1, is rational, then ζ(s, α) can be written as a linear combination of
Dirichlet L-functions L(s, χ), with χ modulo k, i.e.

ζ(s, α) =
ks

φ(k)

∑
χ (mod k)

χ̄(l)L(s, χ).

The Dirichlet L-functions are replaced by the equivalent series

Lϕ(s, χ) =
∞∑
n=1

χ(n)ϕ(n)

(n+ α)s
,

where ϕ(n) is of absolute value 1 and completely multiplicative. The corresponding linear
combination of Lϕ(s, χ) turns out to have a sequence of zeros with real part greater than 1,
then one conclude as in the transcendental case. Note that, since in the rational case ζ(s, α)

is a linear combination of Dirichlet L-functions, one could deduce the existence of infinitely
many zeros by the result of Saias and Weingartner [52], provided that α /∈ {1, 1

2}. See also [6,
§1.2] for an overview of the work of Davenport and Heilbronn on the Hurwitz zeta function.
The remaining case when α is algebraic irrational required a more complicate argument and
was later settled by Cassels in [9]. The key ingredient in this case is a lemma of algebraic
number theory. We do not give more details here, since we apply the same argument, with
suitable small modifications, in the proof of our Theorem 2.15.
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2.1.6 The Epstein zeta function and other results

In [16], the authors also studied the case of the Epstein zeta function. Consider a positive-
definite quadratic form

Q(x, y) = ax2 + bxy + cy2,

with integer coefficients and fundamental discriminant D = b2 − 4ac. The associated Epstein
zeta function is defined by

ζ(s,Q) =
∑

(m,n)6=(0,0)

1

Q(m,n)s
.

The equivalence classes of quadratic forms Q of fundamental discriminant D are in one-to-one
correspondence with the ideal classes Q of the quadratic field Q(

√
D), (cf. [20, Section VII]

and also [6]). Given a quadratic form Q of discriminant D, the correspondence is such that
the number of representations of an integer n by Q is ωD (the number of roots of unity in
Q(
√
D)) times the number of integral ideals I ∈ Q such that Norm(I) = n in the ideal class

Q corresponding to Q. It follows that

ζ(s,Q) = ωD
∑
I∈Q

1

Norm(I)s
,

and using the orthogonality of characters

ζ(s,Q) =
ωD
h(D)

∑
χ

χ̄(Q)L(s, χ),

where χ is a character of the ideal class group of Q(
√
D), h(D) is the class number and

L(s, χ) =
∑
I

χ(I)

Norm(I)s
.

If h(D) = 1, the Epstein zeta function is expected to satisfy the Riemann hypothesis, since it
is a multiple of the Dedekind zeta function of Q(

√
D) and it has an Euler product. On the

other hand, for h(D) > 1, Davenport and Heilbronn in [16] proved the following result.

Theorem 2.9 (Davenport−Heilbronn). Let Q be a positive-definite quadratic forms with
integer coefficients and fundamental discriminant D. Then, if h(D) > 1, the Epstein zeta
function ζ(s,Q) has infinitely many zeros in the half-plane σ > 1.

The argument used for the rational case of the Hurwitz zeta function also applies in this
case, provided that ζ(s,Q) can be written as a linear combination of at least two Hecke
L-functions.

In [14], Conrey and Ghosh gave another example of Dirichlet series with infinitely many
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zeros in the region of absolute convergence. They consider the Dirichlet series

F (s) =
∞∑
n=1

f(n)

ns
where

∞∑
n=1

f(n)e(nz) = ∆2(z),

and ∆ is the Ramanujan cusp form of weight 12 for the full modular group, i.e.

∆(z) = (2π)12
∞∑
n=1

τ(n)e(nz),

and τ(n) is the Ramanujan tau function. The authors proceeded using the method of Daven-
port and Heilbronn, defining a series equivalent to F (s) with a zero for σ > 1 and applying
Rouché’s theorem. See Theorem 2 of [14] and the related Lemma and Corollary for the details.

Saias and Weingartner considered the general case of Dirichlet series with periodic co-
efficients (cf. [52]). As a first step, they show that the set of these Dirichlet series is a
P-module, where P is the set of Dirichlet polynomial. A basis for this P-module is the family
of the Dirichlet L-functions associated to primitive characters (see [52, Theorem PDCB]). In
particular, the fact that a Dirichlet series with periodic coefficients can be written as a finite
linear combination of Dirichlet L-functions comes from [12, Lemma 1], while [33, Lemma 8.1]
gives the linear independence. Thus, if (a(n)) is a periodic sequence of complex numbers, the
corresponding Dirichlet series can be written as

F (s) =
∞∑
n=1

a(n)

ns
=

N∑
j=1

Pj(s)L(s, χj), (2.1.3)

where for j = 1, . . . , N , Pj(s) is a Dirichlet polynomial and χj is a primitive character.
Moreover, let Na(σ1, σ2, T ) and N ′a(σ1, σ2, T ) be the number zeros of F (s) in the rectangle
σ1 < σ < σ2, |t| ≤ T counted respectively with and without multiplicity. With the above
notation, the following result holds (cf. [52, Theorem]).

Theorem 2.10 (Saias−Weingartner). Let (a(n))n≥1 be a periodic sequence of complex numbers.
If the associated Dirichlet series F (s) is not of the form P (s)L(s, χ), then there exists η > 0

such that for any 1 < σ1 < σ2 ≤ 1 + η, F (s) has infinitely many zeros with σ1 < σ < σ2. In
particular, there exist positive numbers c1, c2 and T0 such that, for all T ≥ T0,

c1T ≤ N ′a(σ1, σ2, T ) ≤ Na(σ1, σ2, T ) ≤ c2T.

As a consequence of this theorem, the Dirichlet series with periodic coefficients which do
not vanish in σ > 1 can be precisely characterized [52, Corollary].

Corollary 2.1. Let F (s) be a Dirichlet series with periodic coefficients. The following
statements are equivalent

(i) F (s) does not vanish in the half-plane σ > 1.
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(ii) F (s) = P (s)L(s, χ), where χ is a Dirichlet character and P (s) is Dirichlet polynomial
which does not vanish in σ > 1.

Their idea is a reminiscence of the method used by Kaczorowski and Kulas in [31] to
show that series of the form (2.1.3) have infinitely many zeros in 1

2 < σ < 1 off the critical
line. However, the universality property introduced in [31, Theorem 3] does not hold in strips
in the half-plane σ > 1, so the two results are based on rather different techniques. In [52,
Lemma 2], Saias and Weingartner proved a sort of weak joint universality property of Dirichlet
L-functions, using Brouwer fixed-point theorem.

A generalization of the result of Saias and Weingartner was given by Booker and Thorne in
[7]. They proved that combinations of L-functions coming from unitary cuspidal automorphic
representations, with Dirichlet polynomial as coefficients, have infinitely many zeros with
σ > 1, provided that they do not have Euler product and that they satisfy the generalized
Ramanujan conjecture at every finite place.

In [50], Righetti was able to properly modify the proof of [7, Theorem 1.2], in order to
obtain the analogous result in a more general setting. He axiomatically defined the class E of
the complex functions F (s) satisfying

(E1) F (s) =
∑∞

n=1
aF (n)
ns is absolutely convergent for σ > 1,

(E2) logF (s) =
∑

p Fp(s) =
∑

p

∑∞
k=1

bF (pk)
pks

, absolutely convergent for σ > 1,

(E3) there exists a constant kF such that |a(p)| ≤ kF for all primes p,

(E4)
∑

p

∑∞
k=1

|bF (pk)|
pks

<∞,

(E5) for any pair of functions F,G ∈ E there exists mF,G ∈ C, with mF,F > 0, such that

∑
p≤x

aF (p)aG(p)

p
= (mF,G + o(1)) log log x as x→ +∞.

Remark 2.5. Two functions F,G ∈ E are said to be orthogonal if mF,G = 0.

Consider now the set P of the prime numbers and, for Q ⊆ P let

〈Q〉 = { n ∈ N | every prime factor of n is in Q } .

Righetti introduced the ring of p-finite Dirichlet series absolutely convergent in σ ≥ 1 (cf. [8]),

F =

 ∑
n∈〈Q〉

a(n)

ns
absolutely convergent for σ ≥ 1

∣∣∣∣∣∣ Q ⊆ P has finitely many elements

 .

Observe that the above family contains in particular the Dirichlet polynomials. In this setting,
Righetti proved the following result (cf. [50, Theorem 3]).

Theorem 2.11 (Righetti). Let N ≥ 1 and for j = 1, . . . , N let Fj ∈ E be pairwise orthogonal.
Then any polynomial P ∈ F [X1, . . . , XN ] is either monomial or P (F1(s), . . . , FN (s)) has
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infinitely many zeros for σ > 1. In the second case, there exists η > 0 such that for any
1 < σ1 < σ2 ≤ 1 + η

| { ρ = β + iγ | P (F1(ρ), . . . , FN (ρ)) = 0, σ1 < β < σ2, T1 < γ < T2 } | � T2 − T1,

for T2 − T1 sufficiently large.

The idea of the proof follows the arguments of Saias and Weingartner [52] and Booker
and Thorne [7]. So, the first step is reducing the problem of finding the zeros to a problem of
value distribution of N -uples of logarithms of Euler products. Then, Righetti proved a weak
universality property for orthogonal Euler products, i.e., ([50, Proposition 1])

Proposition 2.1. Let N ≥ 1 and for j = 1, . . . , N let Fj ∈ E be pairwise orthogonal. Given
the real numbers R, y ≥ 1 there exists η > 0 such that for every σ ∈ (1, 1 + η] we have{(∏

p>y

F1,p(σ + itp), . . . ,
∏
p>y

FN,p(σ + itp)

)∣∣∣∣tp ∈ R
}
⊃
{

(z1, . . . , zN ) ∈ CN
∣∣∣∣ 1

R
≤ |zj | ≤ R

}
.

An immediate consequence of Theorem 2.11 is the following corollary [50, Corollary 1].

Corollary 2.2. Let N ≥ 2 and let F1, . . . , FN ∈ E be pairwise orthogonal. Then, given
non-zero constants c1, . . . , cN ∈ C, there exists σ̃ such that σ ∈ (1, σ̃]

∣∣∣∣∣∣ ∃t ∈ R such that
N∑
j=1

cjFj(σ + it) = 0

 is dense in (1, σ̃].

We remark that Bombieri and Ghosh [6] conjectured that the real parts of the zeros of a
linear combination of two or more L-functions are dense in the interval (1, σ∗], where σ∗ is the
least upper bound of the real parts of these zeros, so Corollary 2.2 seems to be a partial result
in this direction. However, the conjecture has been disproved by Righetti in [51]. Indeed, even
if there are examples for which this fact is known to hold, he showed that it is not true in
general. In particular, he proved the following result [51, Theorem 1.1].

Theorem 2.12 (Righetti). Let N ≥ 2. For j = 1, . . . , N consider non-identically zero Dirichlet
series Fj(s) =

∑∞
n=1 a(n)n−s absolutely convergent for σ > 1. Then, if

∑N
n=1 |aj(1)| 6= 0, there

exist infinitely many c = (c1, . . . , cN ) ∈ CN such that the Dirichlet series Lc(s) =
∑N

j=1 cjFj(s)

has no zeros in some vertical strip σ1 < σ < σ2, with 1 < σ1 < σ2 < σ∗(Lc).

2.2 Generalized Hurwitz zeta functions

Let now f(n) be a periodic function of period q ≥ 1 and let α ∈ (0, 1]. For σ > 1, we define
the generalized Hurwitz zeta function as

F (s, f, α) =
∞∑
n=0

f(n)

(n+ α)s
. (2.2.1)
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Since the coefficients are periodic, it can be easily observed that

F (s, f, α) =
1

qs

q−1∑
b=0

f(b)ζ

(
s,
b+ α

q

)
.

Then, it follows by the well-known properties of the classical Hurwitz zeta function (cf. e.g.
[22]) that F (s, f, α) admits a meromorphic continuation to the whole complex plane with a
possible simple pole at s = 1 with residue

Ress=1 F (s, f, α) = q−1
q−1∑
b=0

f(b).

In [10], Chatterjee and Gun proved that F (s, f, α) has infinitely many zeros in the half-plane
σ > 1 if α is either transcendental or algebraic irrational, under some specific assumptions on
the coefficients. Indeed, they proved the following two results [10, Theorems 1.1 and 1.2].

Theorem 2.13 (Chatterjee−Gun). Let α be a positive transcendental number and let f be a
real valued periodic function with period q ≥ 1. If F (s, f, α) has a pole at s = 1, then F (s, f, α)

has infinitely many zeros for σ > 1.

Theorem 2.14 (Chatterjee−Gun). Let α be a positive algebraic irrational number and let f
be a positive valued periodic function with period q ≥ 1. Moreover, let

c :=
max
n
f(n)

min
n
f(n)

< 1.15. (2.2.2)

If F (s, f, α) has a pole at s = 1, then F (s, f, α) has infinitely many zeros for σ > 1.

In [61], we show that these assumptions can be removed, proving the result in full generality,
including the case of α rational, which can be easily deduced from Theorem 2.10.

Theorem 2.15. Let f(n) be a non identically zero periodic function with period q ≥ 1 and let
0 < α ≤ 1 be a real number. If α /∈ {1, 1

2}, or if α ∈ {1, 1
2} and F (s, f, α) is not of the form

P (s)L(s, χ), where P (s) is a Dirichlet polynomial and L(s, χ) is the L-function associated to
a Dirichlet character χ, then F (s, f, α) has infinitely many zeros with σ > 1.

2.3 Proof of Theorem 2.15

2.3.1 Case α rational

If α = 1, F (s, f, 1) is a Dirichlet series with periodic coefficients. By the result of Saias and
Weingartner (Corollary 2.1), we know that it does not vanish in the half-plane σ > 1 if and
only if it is the product of a Dirichlet polynomial and a Dirichlet L-function.

Remark 2.6. Examples of functions f(n) giving rise to series F (s, f, 1) which do not vanish
in the right half-plane are f(n) = χ(n + 1), where χ is a Dirichlet character modulo q, or
f(n) = (−1)n.
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If 0 < α < 1 is rational, F (s, f, α) can be written as a linear combination of Dirichlet
L-functions, i.e.

F (s, f, α) =
∑
χ∈C

Pχ(s)L(s, χ), (2.3.1)

where C is a set of primitive characters and Pχ(s) is a Dirichlet polynomial. Again by Corollary
2.1, expression (2.3.1) does not vanish in the half-plane σ > 1 if and only if the sum reduces
to a single term. Let now α = a

b ∈ Q, with (a, b) = 1, 1 ≤ a < b. Then,

F (s, f, a/b) = bs
∞∑
n=0

f(n)

(bn+ a)s
= bs

∑
m≡a (mod b)

g(m)

ms
, (2.3.2)

where g(m) is periodic of period bq. We prove the following lemma.

Lemma 2.1. Let α = a
b , with (a, b) = 1, 1 ≤ a < b. If a

b 6=
1
2 , then F (s, f, ab ) is not of the

form P (s)L(s, χ), where P is a Dirichlet polynomial and L(s, χ) is the Dirichlet L-function
associated to the character χ.

Proof. Consider a Dirichlet polynomial P (s) =
∑

n∈N
a(n)
ns , where N is a non-empty finite set

of positive integers, and let χ be a Dirichlet character modulo k. Then,

P (s)L(s, χ) =
∑
m

b(m)

ms
, where b(m) =

∑
n∈N
n|m

a(n)χ

(
m

n

)
,

and the coefficients b(m) are periodic of period k
∏
n∈N n. Assume that there exist two coprime

integers h, r with h < r, such that b(m) 6= 0 only if m ≡ h (mod r). Let n1 := minN , then
b(n1) = a(n1) 6= 0 and so our assumption implies n1 ≡ h (mod r).
On the other hand, b(−n1) = χ(−1)a(n1) 6= 0, then we also have −n1 ≡ h (mod r). It follows
that 2h ≡ 0 (mod r), which implies r = 2. Thus, we conclude that expression (2.3.2) can be
of the form P (s)L(s, χ) only if α = 1

2 .

Remark 2.7. Observe that if α = 1
2 , the sum on the right-hand side of (2.3.1) reduces to a

single term for instance if g(m) = cχ(m), where χ is a Dirichlet character modulo 2q and c is a
non-zero constant (i.e. f(n) = cχ(2n+ 1)). In this case, F (s, f, 1

2) = c2sL(s, χ) 6= 0 in σ > 1.

2.3.2 Case α transcendental

If α is transcendental, the argument of Davenport and Heilbronn for the Hurwitz zeta function
applies also to F (s, f, α), since we have

∞∑
n=0

|f(n)|
(n+ α)σ

→ +∞ as σ → 1+. (2.3.3)
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In fact, let A = { n ∈ N | f(n) 6= 0 } and β = min
n∈A
|f(n)| > 0. Since f(n) is periodic of period q,

there exists b ∈ { 0, 1, . . . , q − 1 } such that |f(n)| = β if n ≡ b (mod q). Moreover, for n ∈ A,

|f(n)| ≥ β1B(n), where B = { n | n ≡ b (mod q) } .

Then, we have

∑
n∈A

|f(n)|
(n+ α)σ

≥
∑
n∈A

β1B(n)

(n+ α)σ
= β

∑
n≡b (mod q)

1

(n+ α)σ
= βq−σζL

(
σ, 0,

α+ b

q

)
.

Thus (2.3.3) follows, since the Hurwitz zeta function has a pole at s = 1, and the assumption
on the existence of the pole for F (s, f, α) can be avoided. We can now proceed applying
Bohr’s theory of equivalent Dirichlet series. The set { log(n+ α) } is a basis for the sequence
of the exponent of F (s, f, α), since the numbers log(n+α) are linearly independent over Q, as
already observed for the Hurwitz zeta function in Section 2.1.5. Then, for any function ϕ(n)

of absolute value 1

Fϕ(s, f, α) =
∞∑
n=0

f(n)ϕ(n)

(n+ α)s

is equivalent to F (s, f, α) (see Definition 2.4). Then, by Theorem 2.2 the set of values taken
by F (s, f, α) on the vertical line <s = σ is{∑

n∈A

f(n)ϕ(n)

(n+ α)σ

∣∣∣∣∣ ϕ(n) arithmetic function of abolute value 1

}
. (2.3.4)

To prove that F (s, f, α) has infinitely many zeros in σ > 1, it is then sufficient to show that
there exists a function ϕ(n) of absolute value 1 such that Fϕ(σ, f, α) = 0 for some σ > 1.
We rearrange the sum over n and rewrite the set (2.3.4) as {

∑
i ciri } where

ri =
|f(ni)|

(ni + α)σ
, |ci| = 1 and r1 = max

n∈A

|f(n)|
(n+ α)σ

.

So r1 ≥ rj for any j > 1. Moreover, by (2.3.3) there exists δ > 0 such that for any 1 < σ < 1+δ,

r1 =
|f(n1)|

(n1 + α)σ
≤
∑
i>1

|f(ni)|
(ni + α)σ

.

Then, Bohr’s results on addition of complex curves (cf. Theorem 2.6 part (2)) imply that

∑
n∈A

f(n)ϕ(n)

(n+ α)σ

takes any value z with |z| ≤
∑

n∈A
|f(n)|

(n+α)σ = R. Thus, for any 1 < σ < 1 + δ and any z in the
disk of center 0 and radius R there exists ϕ(n) of absolute value 1 such that Fϕ(σ, f, α) = z.
The wanted result follows taking z = 0.
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2.3.3 Case α algebraic irrational

We now focus on the case of α algebraic irrational. The proof of the theorem in this case is
based on a modification of Cassels’ original lemma (see [9]). A suitable decomposition over
the residue classes allows us to remove the assumption (2.2.2).
Let K = Q(α) and let OK be its ring of integers. Denote by a the denominator ideal of α,
i.e. a = { r ∈ OK | r · (α) ⊆ OK }, where (α) is the principal fractional ideal generated by α.
Then for any integer n ≥ 0, (n+ α)a is an integral ideal. The following result holds.

Lemma 2.2. Let α be algebraic irrational and let K = Q(α). Given an integer q ≥ 1, fix
b ∈ { 0, . . . , q − 1 }. There exists an integer N0 > 106q, depending on α and q, satisfying the
following property:
for any integer N > N0 put M = b10−6Nc, then at least 0.54Mq of the integers n ≡ b (mod q),
N < n ≤ N +M are such that (n+ α)a is divisible by a prime ideal pn for which

pn -
∏

m≤N+M
m 6=n

(m+ α)a.

In the following sections, we first show how to complete the proof of Theorem 2.15 assuming
the above lemma and then we give a proof of the lemma itself.

Proof of the main result

The idea is to rearrange Cassels’ argument, applying it to each residue class modulo q. As in
[9], or directly by Bohr’s theory (see Theorem 2.2), it suffices to show that for any 0 < δ < 1

there exist a σ, with 1 < σ < 1 + δ, and a function ϕ of absolute value 1 multiplicative on the
group of ideals of OK , such that

∞∑
n=0

f(n)ϕ((n+ α)a)

(n+ α)σ
= 0.

Notice that it is enough to define ϕ(p), with |ϕ(p)| = 1, on the prime ideals p of OK dividing
(n+ α)a, since if (n+ α)a =

∏
pvp , then we have

ϕ((n+ α)a) =
∏

ϕ(p)vp .

Let 0 < δ < 1, N1 = max(N0, 107q) and consider σ such that 1 < σ < 1 + δ and

N1∑
n=0

|f(n)|
(n+ α)σ

<
1

100

∞∑
n=N1+1

|f(n)|
(n+ α)σ

. (2.3.5)

Observe that such a σ exists by (2.3.3). Now, for p | a or p | (n+ α)a with n ≤ N1 we choose
ϕ(p) = 1. Proceeding by induction, for j ≥ 1, we put Mj = b10−6Njc and Nj+1 = Nj +Mj .
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Suppose we have defined ϕ(p) for any p | (n+ α)a with n ≤ Nj in such a way that

∣∣∣∣ Nj∑
n=0

f(n)ϕ((n+ α)a)

(n+ α)σ

∣∣∣∣ < 1

100

∞∑
n=Nj+1

|f(n)|
(n+ α)σ

. (2.3.6)

We want to define ϕ(p) for any prime ideal

p |
∏

n≤Nj+1

(n+ α)a (2.3.7)

in such a way that (2.3.6) holds for j + 1 in place of j. For any b ∈ { 0, . . . , q − 1 }, we divide
the integers Nj < n ≤ Nj+1, with n ≡ b (mod q) into two sets A(b) and B(b) according to
whether a prime ideal pn as in Lemma 2.2 exists or not for N = Nj and M = Mj . It can be
easily noticed that |A(b)| ≥ 5, since

|A(b)| ≥ 54

100

Mj

q
=

54

100

b10−6Njc
q

,

and Nj ≥ 107q. Then we have divided the integers Nj < n ≤ Nj+1 into the disjoint sets
A = ∪q−1

b=0A(b) and B = ∪q−1
b=0B(b). As in Cassels’, given a prime ideal as in (2.3.7), we

distinguish three cases:

(1) p |
∏
n≤Nj (n+ α)a: in this case ϕ(p) is fixed by the inductive hypothesis.

(2) p = pn for some n ∈ A

(3) the remaining p with property (2.3.7). In this case, we fix arbitrarily ϕ(p) = 1.

In particular, ϕ((n + α)a) is defined for any n ∈ B, whereas if n ∈ A, we have that ϕ((n +

α)a) = cnϕ(pn), with cn fixed of modulus 1. Now assume n ∈ A and n ≡ b (mod q) with
b ∈ { 0, . . . , q − 1 }, i.e. n ∈ A(b). We apply Bohr’s results on addition of convex curves (cf.
Theorem 2.5).
For an appropriate choice of ϕ(pn) for all n ∈ A(b), we have that

∑
n∈A(b)

f(n)ϕ((n+ α)a)

(n+ α)σ
=
∑
n∈A(b)

f(n)cnϕ(pn)

(n+ α)σ
= f(b)

∑
n∈A(b)

cnϕ(pn)

(n+ α)σ
(2.3.8)

takes any given value z satisfying

|z| ≤ S3,b := |f(b)|
∑
n∈A(b)

1

(n+ α)σ
.

In fact, (2.3.8) is the vectorial sum of circles with center 0 and radius |f(b)|
(n+α)σ . To show that

this sum is a disk, we observe that for any n, n′ ∈ A(b),(
n+ α

n′ + α

)σ
< 2
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Moreover, given n1, n2, n3 ∈ A(b) with n1 < n2 < n3, we have

|f(n1)|
(n1 + α)σ

− |f(n2)|
(n2 + α)σ

− |f(n3)|
(n3 + α)σ

= |f(b)|
(

1

(n1 + α)σ
− 1

(n2 + α)σ
− 1

(n3 + α)σ

)
< 0,

then we can apply part (2) of Theorem 2.5, recalling that |A(b)| > 5. Let now

Λ(b) := f(b)

( ∑
n≤Nj

n≡b (mod q)

ϕ((n+ α)a)

(n+ α)σ
+
∑

n∈B(b)

ϕ((n+ α)a)

(n+ α)σ

)
,

and define ϕ(pn) for n ∈ A(b) so that

∑
n∈A(b)

f(n)ϕ((n+ α)a)

(n+ α)σ
=

−Λ(b) if |Λ(b)| ≤ S3,b

−S3,b
Λ(b)
|Λ(b)| if |Λ(b)| > S3,b.

With this choice, it is easy to verify that∣∣∣∣ ∑
n≤Nj+1

n≡b (mod q)

f(n)ϕ((n+ α)a)

(n+ α)σ

∣∣∣∣ ≤ max(0, |Λ(b)| − S3,b). (2.3.9)

We introduce the notation

S1,b =

∣∣∣∣ Nj∑
n=0

n≡b (mod q)

f(n)ϕ((n+ α)a)

(n+ α)σ

∣∣∣∣, S4,b = |f(b)|
∑

n>Nj+1

n≡b (mod q)

1

(n+ α)σ
,

S2,b = |f(b)|
∑

n∈B(b)

1

(n+ α)σ
.

Since B(b) contains at most 0.46
Mj

q elements and A(b) at least 0.54
Mj

q , we have

S3,b

S2,b
≥ 54

46

(Nj + α)σ

(Nj+1 + α)σ
>

101

99
.

Thus, we deduce

S3,b − S2,b >
1

100
(S3,b + S2,b). (2.3.10)

Now, by the equations (2.3.6), (2.3.9) and (2.3.10) we get

∣∣∣∣ Nj+1∑
n=0

n≡b (mod q)

f(n)ϕ((n+ α)a)

(n+ α)σ

∣∣∣∣ < 1

100
S4,b =

1

100

∑
n>Nj+1

n≡b (mod q)

|f(n)|
(n+ α)σ

.
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Summing over the residue classes modulo q, we finally get that

∣∣∣∣Nj+1∑
n=0

f(n)ϕ((n+ α)a)

(n+ α)σ

∣∣∣∣ < 1

100

q−1∑
b=0

S4,b =
1

100

∑
n>Nj+1

|f(n)|
(n+ α)σ

.

So, equation (2.3.6) also holds for j + 1 in place of j, as desired. By induction, it then holds
for all j ≥ 1. Since F (s, f, α) is absolutely convergent for σ > 1, the right-hand side goes to
zeros as j → +∞. It then follows that

∑∞
n=0

f(n)ϕ((n+α)a)
(n+α)σ = 0 and the proof is complete.

Proof of Lemma 2.2

Let P be the set of the prime ideals p of OK such that if p | (n+ α)a for some integer n, then
(n + α)a/p is not divisible by any prime ideal p′ with Norm(p′) = Norm(p) and such that
(p, q) = 1, with p := Norm(p). For any integer n we write

(n+ α)a = b
∏
p

pu(p), (2.3.11)

where u(p) is an integer and b contains all the prime factors of (n+ α)a which are not in P.
The norm of the ideal b is uniformly bounded and so, if n is large enough,

Norm((n+ α)a) > cn2,

where c is a positive constant which does not depend on n. So, taking the logarithms,∑
p

u(p) log p ≥ 2 log n− C, (2.3.12)

for n sufficiently large and again with C independent of n.
Consider now an integer N > 106q and let M = b10−6Nc. Given b ∈ { 0, . . . , q − 1 }, define
S = S(N, q, b) as the set of the integers N < n ≤ N +M , n ≡ b (mod q) such that, for all
the primes p ∈ P in (2.3.11) one has pu(p) < M . Let S = S(N, q, b) be the cardinality of S.
We want to deduce an upper bound for S. For any prime p ∈ P and any integer v, let

φ(pv, n) =

log p if pv | (n+ α)a

0 otherwise
and σ(n) =

∑
φ(pv, n),

where the sum is over the primes p ∈ P and the integers v such that pv < M . Then, by
(2.3.12), we have

σ(n) ≥ 2 logM − C. (2.3.13)

Summing over n ∈ S, we get, as N →∞,∑
n∈S

σ(n) ≥ (2 + o(1))S logM. (2.3.14)
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Moreover, by the definition of P, if pv | (n1 + α)a and pv | (n2 + α)a for some integer v, then

n1 ≡ n2 (mod pv). (2.3.15)

Since by our assumptions (p, q) = 1, the Chinese remainder theorem gives n1 ≡ n2 (mod pvq).
As in [9], we obtain

∑
n∈S

φ(pv, n) ≤
∑

N<n≤N+M
n≡b (mod q)

φ(pv, n) ≤
(
M

pvq
+ 1

)
log p, (2.3.16)

and, assuming p1 6= p2,∑
n∈S

φ(pv1, n)φ(pv2, n) ≤
∑

N<n≤N+M
n≡b (mod q)

φ(pv1, n)φ(pv2, n) ≤ log p1 log p2

(
M

p1p2q
+ 1

)
. (2.3.17)

Let now σ(n) = σ1(n) + σ2(n) + σ3(n), where σ1, σ2, σ3 are the sums over p and v in the sets
v > 1 and pv < M , v = 1 and M

1
2 ≤ p < M , and v = 1 and p < M

1
2 respectively. By the

prime ideal theorem, partial summation and equations (2.3.16), (2.3.17), we get

∑
n∈S

σ2(n) ≤
(

1

2
+ o(1)

)
M

q
logM, (2.3.18)

∑
n∈S

(σ3(n))2 ≤
(

3

8
+ o(1)

)
M

q
log2M. (2.3.19)

Similarly, as in Cassels’ proof, we have∑
n∈S

σ1(n) = O(M) = o(M logM). (2.3.20)

Let now ρ := qS
M ≤ 1. Combining (2.3.14), (2.3.18) and (2.3.20), we have

∑
n∈S

σ3(n) =
∑
n∈S

(σ(n)− σ1(n)− σ2(n)) ≥
(

2ρ− 1

2
+ o(1)

)
M

q
logM. (2.3.21)

If the last member is negative, then ρ ≤ 1
4 + o(1). Otherwise, by (2.3.19) and (2.3.21), the

Cauchy-Schwarz inequality gives(
2ρ− 1

2
+ o(1)

)2M2

q2
log2M ≤

(∑
n∈S

σ3(n)

)2

≤ ρM

q

(
3

8
+ o(1)

)
M

q
log2M,

and so
(
2ρ− 1

2

)2− 3
8ρ ≤ o(1). The left-hand side of the last relation is positive for ρ > 19+

√
105

64 ,
hence we get

S =
ρM

q
≤
(

19 +
√

105

64
+ o(1)

)
M

q
. (2.3.22)
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Let now N < n ≤ N + M , n ≡ b (mod q) be such that n /∈ S. Then, there exist a prime
p ∈ P and an integer v such that

pv | (n+ α)a and pv ≥M. (2.3.23)

By (2.3.15), given p ∈ P there exists at most one integer N < n ≤ N + M with property
(2.3.23), while the prime ideal theorem implies that there are only o(N +M) prime ideals p
with p ≤ N +M . Hence, by (2.3.22) there are at least(

45−
√

105

64
+ o(1)

)
M

q
(2.3.24)

integers n ≡ b (mod q), N < n ≤ N + M such that the prime ideal pn in (2.3.23) satisfies
pn > N+M . Thus, for these values of n, by (2.3.15), pn - (n′+α)a for any n′ 6= n, n′ ≤ N+M ,
as desired. For N sufficiently large, (2.3.24) is greater than 54

100
M
q and thus the Lemma follows.



Chapter 3

On the linear twist of degree 1
functions in the extended Selberg
Class

3.1 Introduction

L-functions are a very important and powerful tool in number theory, since they play a central
role in many different problems. The simpler and most famous example of an L-function is the
classical Riemann zeta function, defined for σ > 1 by the absolutely convergent Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
.

It is well-known that ζ(s) admits a meromorphic continuation to C with a simple pole at s = 1

and that it satisfies the functional equation

Φ(s) = Φ(1− s), where Φ(s) = π−
s
2 Γ

(
s

2

)
ζ(s).

Moreover, it is connected to the prime numbers by the Euler product

ζ(s) =
∏
p

(
1− 1

ps

)−1

for σ > 1.

It has been observed that most of the known L-functions share these basic analytic properties,
namely meromorphic continuation, functional equation and Euler product. For this reason,
there is a great interest in trying to describe the common properties of the known L-functions
in order to define a reasonable class of such functions. The main questions are

• What is an L-function?

• Are all L-functions already known?

47
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There have been several attempts to define the class of all L-functions and different approaches
in establishing the axioms which describe their common properties (see e.g. [8], [11], [42],
[46], [48]). The most satisfactory approach seems to be Selberg’s definition [54], presented in
Section 3.2. As we shall observe, the class described by Selberg contains most of the known
L-functions, (for some of them this is known only under the assumption of some conjectures).
The main conjecture on the Selberg class states that S coincides with the class of automorphic
L-functions.
In Section 3.1.1 below, we briefly describe the main examples of known L-functions. We do
not enter deeply into the details, but we give references for a more complete discussion.

3.1.1 Classical L-functions

Besides the Riemann zeta function, several L-functions have been introduced in number theory.
As a first example, we can consider a generalization of ζ(s). Given a Dirichlet character χ
modulo q ≥ 1, the Dirichlet L-function L(s, χ) is defined for σ > 1 as

L(s, χ) =

∞∑
n=1

χ(n)

ns
,

and by analytic continuation elsewhere. Observe that the Riemann zeta function corresponds
to the particular case q = 1. A Dirichlet L-function has an Euler product of the form

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

and satisfies a functional equation of Riemann type, reflecting s into 1 − s. For a detailed
overview of the theory of Dirichlet L-functions we refer e.g. to Davenport [15].
Let K be an algebraic number field of degree n = r1 + 2r2 and discriminant DK and let f be a
non-zero integral ideal of the ring of integers Ok. If χ is a Hecke character of modulus f, the
Hecke L-function L(s, χ) is defined for σ > 1 by

LK(s, χ) =
∑
I

χ(I)

Norm(I)s
,

where I runs over the non-zero ideals ofOK . The Hecke L-function admits analytic continuation
and satisfies the functional equation

Φ(s, χ) = ωχΦ(1− s, χ̄),

where the root-number ωχ is a complex number of absolute value 1 and the function Φ(s, χ) is
the completed L-function defined as

Φ(s, χ) =

(
Norm(f)|DK |

4r2πn

) s
2 ∏
ν real

Γ

(
s+ nν + itν

2

) ∏
ν complex

Γ

(
s+
|nν |

2
+ itν

)
L(s, χ),
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where ν runs over the Archimedean primes and nν ∈ Z, tν ∈ R satisfy some suitable conditions
(cf. Neukirch [40]). A Hecke L-function also has an Euler product of the form

L(s, χ) =
∏
p

(
1− χ(p)

Norm(p)s

)−1

,

since the characters are multiplicative over the ideals. It can be observed that the Hecke
L-functions reduce to Dirichlet L-functions when K = Q. Moreover, if χ is the trivial character
L(s, χ) coincides with the Dedekind zeta function,

ζK(s) =
∑
I

1

Norm(I)s
.

Another example of L-functions with algebraic nature are Artin L-functions. Given a Galois
extension K/k with Galois group G and a finite dimensional representation ρ of G, the Artin
L-function L(s,K/k, ρ) is defined by an Euler product for σ > 1 and it can be expressed
as a product of integer powers of Hecke L-functions, as a consequence of Artin’s reciprocity
law. Then, some analytic properties of Artin L-functions can be deduced. Artin’s conjecture
states that L(s,K/k, ρ), with ρ irreducible, is entire if the character corresponding to ρ is
non-trivial, otherwise it has a simple pole at s = 1. Again, as a reference for the theory of
Artin L-functions, we cite Neukirch [40].

In Chapter 1, we introduced holomorphic modular forms for congruence subgroups. There
exists a standard way to associate a L-function to such forms. So, given a holomorphic modular
form f(z) of weight k with Fourier coefficients (an), we consider the corresponding Dirichlet
series defined for σ > 1 as

Lf (s) =
∞∑
n=1

a(n)

ns
, (3.1.1)

where a(n) := ann
− k−1

2 . Under this normalization, the analytic properties of (3.1.1) are
reminiscent of those of the Riemann zeta function. Almost the same holds for the L-functions
associated to Maass forms, also introduced in Chapter 1. We refer to Iwaniec-Kowalski [28,
Section 5.11] for a thorough treatment of these last examples.
Let now f and g be two modular forms. An interesting operation between the corresponding
L-functions can be defined, namely the Rankin-Selberg convolution. If a(n) and b(n) are
normalized Fourier coefficients of f and g respectively, the Rankin-Selberg convolution is
defined by the Dirichlet series

Lf×ḡ(s) =

∞∑
n=1

a(n)b(n)

ns
.

Again, under suitable restrictions, the Ranking-Selberg convolution satisfies analytic properties
similar to those of the Riemann zeta function.
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The above description shows that some analytic properties shared by L-functions can be
deduced, even though they are of very different nature. This fact seems to go in the direction
of a deep unifying theory of L-functions.
As a general reference for the classical theory of L-functions we indicate [28, Chapter 5].

3.2 The Selberg Class

The Selberg Class S was introduced by Selberg in [54] as the class of the functions F (s) of a
complex variable s satisfying the following axioms.

(i) Dirichlet series. For σ > 1, F is an absolutely convergent Dirichlet series

F (s) =
∞∑
n=1

c(n)

ns
.

(ii) Analytic continuation. For some integer m ≥ 0, (s− 1)mF (s) is an entire function of
finite order.

(iii) Functional equation. F (s) satisfies a functional equation of the form

Φ(s) = ωΦ̄(1− s), where Φ(s) = Qs
r∏
j=1

Γ(λjs+ µj)F (s) = γ(s)F (s),

with Q > 0, λj > 0, <(µj) ≥ 0 and |ω| = 1.

(iv) Ramanujan hypothesis. For every ε > 0, c(n)� nε.

(v) Euler product. For σ sufficiently large,

logF (s) =
∞∑
n=1

b(n)

ns
,

where b(n) = 0 unless n is a positive power of a prime and b(n)� nθ for some θ < 1
2 .

Examples of functions belonging to S are the Riemann zeta function, the shifted Dirichlet L-
functions, the Hecke L-functions associated with algebraic number fields, the Hecke L-functions
associated with a modular form (under suitable normalizations) and the Rankin-Selberg
convolution of some Hecke L-functions. Moreover, other L-functions belong to S provided that
certain conjectures hold. For instance, the Artin L-functions belong to S if Artin’s conjecture
holds, while the automorphic L-functions are in S if Ramanujan’s conjecture is true. We refer
to [30] or to [44] for a detailed discussion of these examples.

The extended Selberg class S] is defined as the larger class of the non identically zero
functions satisfying axioms (i), (ii) and (iii), which describe analytic properties of the functions.
On the other hand, one can observe that the properties described by axioms (iv) and (v) have
an arithmetic nature. In particular, the Euler product implies that the Dirichlet coefficient
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are multiplicative. From the Euler product we also deduce that F ∈ S does not vanish in
the half-plane σ > 1. On the other hand, the functional equation allows to find the zeros
in the half-plane σ < 0, since they are located at the poles of the γ-factor (i.e. the function
γ(s) defined in (iii)). These zeros are called trivial zeros, while the non-trivial zeros lie in the
critical strip 0 ≤ σ ≤ 1. For F ∈ S], we can still define trivial and non-trivial zeros, but in
this case the critical strip is 1− σF ≤ σ ≤ σF , where σF > 0 is the greatest lower bound of
the real numbers such that F (s) 6= 0 for σ > σF . An analogue of the Riemann Hypothesis is
expected to hold in the Selberg class, i.e. (cf. [54])

Conjecture (GRH). Let F ∈ S, then F (s) 6= 0 for σ > 1
2 .

Moreover, given T ≥ 0, we can denote as NF (T ) the number of non-trivial zeros ρ = β+ iγ

with |γ| ≤ T . Then, an analogue of the Riemann-von Mangoldt formula holds,

NF (T ) =
dF
π
T log T + cFT +O(log T ), (3.2.1)

where cF is a constant depending on F and dF is the degree of F , defined as

dF = 2

r∑
j=1

λj . (3.2.2)

One can observe by (3.2.1) that the degree only depends on the function F . In general, the
data, i.e. Q,ω, λj , µj , for j = 1, . . . , r, are not uniquely defined in terms of F . For instance,
it can be noticed that the shape of the γ-factor changes applying Legendre multiplication
formula to the Euler Γ-function. For this reason, the notion of invariant plays an important
role. An invariant is an expression defined in terms of the data of F ∈ S, which is uniquely
determined by the function itself. Besides the degree, other important invariants associated to
F ∈ S are the conductor and the ξ-invariant, defined respectively as

q = (2π)dQ2
r∑
j=1

λj and ξ = 2
r∑
j=1

(µj −
1

2
) = η + iθ.

The following results give a characterization of the invariants.

Theorem 3.1 ([13]). Let γ(s), γ′(s) be two gamma-factors of F ∈ S]. Then, there exists a
constant C = C(γ, γ′) ∈ C such that γ(s) = Cγ′(s).

Theorem 3.2 ([34]). Let γ(s), γ′(s) be two gamma-factors of F ∈ S]. Then, γ(s) can be
transformed into Cγ′(s) by repeated applications of the Legendre-Gauss multiplication formula
and the factorial formula.

Remark 3.1. We recall that Legendre-Gauss multiplication formula is given by

Γ(s) = ms− 1
2 (2π)

1−m
2

m−1∏
k=0

Γ

(
s+ k

m

)
m = 2, 3, . . .
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and the factorial formula is
Γ(s+ 1) = sΓ(s).

As an immediate consequence of the above theorems we get

Corollary 3.1 ([34]). An expression defined in terms of the data of a function F ∈ S is an
invariant if and only if it is stable by multiplication and factorial formulae.

Since the degree is an invariant, we can split S (resp. S]) into the disjoint union of the
subclasses of the functions of fixed degree d ≥ 0, i.e.

S = ∪d≥0Sd and S] = ∪d≥0S]d,

where
Sd = {F ∈ S | dF = d } and S]d = {F ∈ S] | dF = d } .

The main conjecture in the theory of the Selberg class, which, if true, implies that all L-
functions are already known, can be reformulated in terms of two conjectures involving the
degree, as shown below.

Conjecture (Main conjecture). The Selberg class S is the class of automorphic L-functions.

Since automorphic L-functions have integer degree, the above conjecture can be split.

Conjecture (General converse theorem). Let d ∈ N. Then, Sd is the class of automorphic
functions of degree d.

Conjecture (Degree conjecture). Sd = ∅ if d /∈ N.

The analogous conjecture can be formulated for the extended Selberg class.

Conjecture (Strong degree conjecture). S]d = ∅ if d /∈ N.

So far, the degree conjecture is proved in the range 0 < d < 2. In particular, several
authors independently proved that S]d = ∅ for 0 < d < 1, (cf. [48], [5], [13], [39]), while the
proof for 1 < d < 2 is due to Kaczorowski and Perelli [36]. For degrees d = 0 and d = 1, the
elements of S and S] have been completely characterized. The results below describe the
structure of S]0 and S]1 (cf. [33, Theorems 1 and 2]).

Theorem 3.3 (Kaczorowski-Perelli). (i) Let F ∈ S]0. Then q ∈ N, the pair (q, ω) is an
invariant for F and S]0 is the disjoint union of the subclasses S]0(q, ω), with q ∈ N and
|ω| = 1.

(ii) Let F ∈ S]0(q, ω), with q, ω as above. Then F (s) is a Dirichlet polynomial of the form

P (s) =
∑
n|q

a(n)

ns
. (3.2.3)

(iii) V ]
0 (q, ω) = S]0(q, ω) ∪ {0} is a real vector space of dimension d(q) =

∑
d|q 1.
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Remark 3.2. As shown in [33, §3] the functional equation in the case d = 0 implies the following
relation on the coefficients

a(n) =
ω
√
q
nā

(
q

n

)
for n | q. (3.2.4)

Remark 3.3. In [13], starting from (3.2.3) and assuming the Euler product axiom, Conrey and
Gosh proved that S0 = {1}.

Let now χ be a Dirichlet character modulo q. Denote by χ∗ the primitive character inducing
χ and by fχ its conductor. If τχ∗ is the Gauss sum corresponding to χ∗, let

ωχ∗ =
τχ∗

ia
√
fχ

where a =

0 if χ(−1) = 1

1 if χ(−1) = −1.

If d = 1 the root-number is defined as

ω∗ = ω(βQ2)iθ
r∏
j=1

λ
−2i=(µj)
j , where β =

r∏
j=1

λ
2λj
j .

Moreover, write

X(q, ξ) =

{ χ (mod q) | χ(−1) = 1 } if η = −1

{ χ (mod q) | χ(−1) = −1 } if η = 0.

With the above notation, a complete characterization of S]1 is given.

Theorem 3.4 (Kaczorowski-Perelli). (i) Let F ∈ S]1. Then q ∈ N, η ∈ {−1, 0} and the
triple (q, ξ, ω∗) is an invariant. Moreover, S]1 is the disjoint union of the subclasses
S]1(q, ξ, ω∗), with q ∈ N, η ∈ {−1, 0}, θ ∈ R and |ω∗| = 1.

(ii) Let F ∈ S]1(q, ξ, ω∗), with q, ξ, ω∗ as above. Then, F (s) can be uniquely written as

F (s) =
∑

χ∈X(q,ξ)

Pχ(s+ iθ)L(s+ iθ, χ∗), (3.2.5)

where Pχ is a Dirichlet polynomial in S]0(q/fχ, ω
∗ω̄χ∗) and L(s, χ∗) the Dirichlet L-

function associated to the primitive character χ∗.

(iii) If c(n) is the n-th Dirichlet coefficient of F ∈ S]1, then c̃(n) = c(n)niθ is periodic of
period q.

(iv) V ]
1 (q, ξ, ω∗) = S]1(q, ξ, ω∗) ∪ {0} is a real vector space of dimension

dimV ]
1 (q, ξ, ω∗) =


⌊ q

2

⌋
if ξ = −1⌊ q−1−η

2

⌋
otherwise.
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Remark 3.4. Observe that, since all the characters in X(q, ξ) have the same parity, a is
completely determined by η, then by ξ, which is an invariant for F ∈ S]1. In particular, we
have a = η + 1.

Remark 3.5. In [39], Molteni provided two different approaches to the proof of the degree
conjecture for 0 < d < 1. As a corollary of the second approach, he gave a direct proof of the
Ramanujan conjecture for every F ∈ S]d with 0 ≤ d ≤ 1. This result was proved in [33] as a
consequence of the characterization of S]1, but Molteni’s corollary allows one to simplify the
proof of Theorem 3.4, since one can proceed as Soundararajan in [56], where the Ramanujan
conjecture is assumed to hold.

With the further assumption of an Euler product, Theorem 3 of [33] completely characterizes
the functions of degree 1 in the Selberg class S. The result is essentially based on the fact
that the coefficients c̃(n) are both multiplicative and periodic.

Theorem 3.5. Let F ∈ S1. If q = 1, then F (s) = ζ(s). If q ≥ 2, there exist a primitive
character χ modulo q and θ ∈ R such that F (s) = L(s+ iθ, χ).

The main tool in the proof of Theorem 3.4 is the so-called linear twist, defined for σ > 1 as

F (s, α) =
∞∑
n=1

c(n)

ns
e(−nα), (3.2.6)

where F ∈ S]1, α ∈ R and as usual e(x) = e2πix. In [33, Theorem 7.1], Kaczorowski and
Perelli also established some analytic properties of the linear twist, such as the meromorphic
continuation to the half-plane σ > 0 and the possible existence of a simple pole at s = 1− iθ.

In [35], Kaczorowski and Perelli showed that the theorem for the linear twist is a special
case of a general result holding for S]d for any degree d > 0. Given α ∈ R and F ∈ S]d, with
d > 0, for σ > 1 they introduced the so-called standard twist

Fd(s, α) =
∞∑
n=1

c(n)

ns
e(−n1/dα). (3.2.7)

Remark 3.6. Observe that for d = 1 the standard twist coincides with the linear twist (3.2.6).

Let now nα = qd−dαd and c(nα) = 0 if nα /∈ N. The result below (c.f [35, Theorem 1])
summarizes the main analytic properties of Fd(s, α).

Theorem 3.6 (Kaczorowski-Perelli). Let d > 0, F ∈ S]d and α > 0. Then the standard twist
Fd(s, α) has a meromorphic continuation to C. Moreover, it is entire if c(nα) = 0, while if
c(nα) 6= 0 then Fd(s, α) has at most simple poles at the points

sk =
d+ 1

2d
− k

d
− iθ

d
, k = 0, 1, . . . ,

with non-vanishing residue at s0.

Remark 3.7. As already observed, the degree conjecture for 0 < d < 1 is a well-known result,
but it is interesting to notice that a simple proof of this fact can be deduced by Theorem 3.6.
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Indeed, suppose that there exists F ∈ S]d, with 0 < d < 1 and let c(m) 6= 0 for some integer m.
If we choose α such that nα = m, Theorem 3.6 implies the existence of a pole at s0 = d+1

2d − i
θ
d .

Since <(s0) > 1, this contradicts the absolute convergence of the standard twist in σ > 1 and
so such a function F cannot exist.

In this work we will focus on the case d = 1. We are interested in investigating further
analytic properties of the linear twist. In particular, as a first step we derive a functional
equation for the linear twist. Then, we go on studying the growth on vertical strips and the
distribution of the zeros. Before discussing our problem in detail, we present a similar result for
degree 2 functions. In [37], Kaczorowski and Perelli considered the standard twist of a Hecke
L-function associated to a cusp form of half-integral weight, deriving a functional equation
which can be seen as a degree 2 analogue of the Hurwitz-Lerch functional equation.

3.2.1 The standard twist of L-functions of half-integral weight cusp forms

Let f be a cusp form of half-integral weight κ = k
2 and level N , where k is a positive odd

integer and 4 | N (cf. Remark 1.1). The corresponding L-function Lf (s) is the Dirichlet series

Lf (s) =
∞∑
n=1

an
ns
,

where the an are the Fourier coefficients of f . Then, Lf (s) is entire and satisfies the functional
equation

Λf (s) = ωΛf∗(κ− s), where Λf (s) =

(√
N

2π

)s
Γ(s)Lf (s), (3.2.8)

ω = i−κ and f∗ is given by the relation

f∗(z) = (
√
Nz)−κf(−1/Nz).

Observing equation (3.2.8), it can be easily seen that Lf (s) does not belong to the extended
Selberg class. For this reason, Kaczorowski and Perelli considered the normalization s 7→ s+κ−1

2 .
Then, writing

F (s) = Lf

(
s+

κ− 1

2

)
(3.2.9)

and
F ∗(s) = Lf∗

(
s+

κ− 1

2

)
, (3.2.10)

the functional equation (3.2.8) becomes(√
N

2π

)s
Γ

(
s+

κ− 1

2

)
F (s) = ω

(√
N

2π

)1−s
Γ

(
1− s+

κ− 1

2

)
F ∗(1− s). (3.2.11)

Even if it is not exactly the the functional equation of the Selberg class, several results in the
theory of S] hold in this case. In particular, F (s) and F ∗(s) are absolutely convergent for
σ > 1 and F (s) has degree 2 and conductor q. Then, denoting as a(n) and a∗(n) the Dirichlet
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coefficients of F and F ∗ respectively, they considered the standard twist with d = 2

F (s, α) =
∞∑
n=1

a(n)

ns
e(−n1/2α).

Adjusting some details of [35, Theorem 1] and defining

nα = Nα2/4, Spec(F ) = {α > 0|a∗(nα) 6= 0},

with a∗(nα) = 0 if nα /∈ N, it can be proved that F (s, α) is entire if α /∈ Spec(F ). Moreover, if
α ∈ Spec(F ), then F (s, α) is meromorphic on C with at most simple poles at

sl =
3

4
− l

2
l = 0, 1, . . . ,

with non-zero residue at s = s0 given by

Ress=s0 F (s, α) = c0(F )
a∗(nα)

n
1/4
α

, c0(F ) 6= 0.

The main result of [37], is that F (s, α) satisfies a functional equation reflecting s into 1− s.
We introduce the following notation

k = 2h+ 1 with h ∈ {0, 1, 2, . . . }, µ =
2h− 1

4
, h∗ = max(0, h− 1),

ν = ±
√
n with n = 1, 2, . . . and να =

√
nα.

Moreover, for l = 0, . . . , h∗, let

F ∗l (s, α) = e−iπsF+
l (s, α) + eiπsF−l (s, α), (3.2.12)

where F±l (s, α) are generalized Dirichlet series defined respectively as

F+
l (s, α) =

∑
ν>−να

c∗(ν2)

|ν|1/2+l|ν + να|2s−1/2−l , F−l (s, α) =
∑

ν<−να

c∗(ν2)

|ν|1/2+l|ν + να|2s−1/2−l ,

with

c∗(ν2) = c∗l (ν
2) =


−eiπµa∗(ν2) if ν ≥ 1

eiπ(1/2+l−µ)a∗(ν2) if − να ≤ ν ≤ −1

e−iπµa∗(ν2) if ν < −να.

The coefficients al = al(h
∗) are defined using the polynomial identity

∏
1≤j≤h∗

(X + 2j − 1) =

h∗∑
l=0

al
∏

0≤ν≤h∗−1−l
(X + ν).
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It can be verified that the series F±l (s, α) are absolutely convergent for σ > 1, thanks to the
convergence properties of F ∗(s). With the above notation, Kaczorowski and Perelli proved
the following result (cf. [37, Theorem]).

Theorem 3.7 (Kaczorowski-Perelli). Let α > 0 and let l = 0, . . . , h∗. Then the functions
F ∗l (s, α) are entire and F (s, α) satisfies the functional equation

F (s, α) =
ω

i
√

2π

(√
N

4π

)1−2s h∗∑
l=0

alΓ(2(1− s)− 1/2− l)F ∗l (1− s, α). (3.2.13)

As the authors observed, this functional equation is not exactly of Riemann type, but
it still reflects s into 1 − s and it can be seen as a degree 2 analogue of the Hurwitz-Lerch
functional equation.

Starting from (3.2.13), further properties of the standard twist can be investigated. For
instance, a more precise analysis of the order of growth on vertical strips can be done, even if
by [35, Theorem 2], it is already known that the standard twist has polynomial growth on
vertical strip. Let now,

µ(σ) = µF (σ, α)

be the Lindelöf function associated to F (s, α). In [37], the authors also proved that F±l (s, α)

have polynomial growth on vertical strips and defined

µ±(σ) = inf
{
ξ
∣∣∣ F±0 (σ + it, α)� |t|ξ as t→ ±∞

}
,

observing that this one-side Lindelöf function satisfies the main properties of the classical
Lindelöf function. Moreover, they wrote

µ∗(σ) = max(µ+(σ), µ−(σ))

and proved the following result [37, Corollary 1].

Corollary 3.2. Let α > 0 and let l = 0, . . . , h∗. Then the functions F ∗l (s, α) are entire with
polynomial growth on vertical strips and

µ(σ) = 1− 2σ + µ∗(1− σ).

It follows by the convergence properties and the continuity of the Lindelöf function that

µ(σ) = 0 if σ ≥ 1 and µ(σ) = 1− 2σ if σ ≤ 0.

Another result proved by Kaczorowski and Perelli involves the so called trivial zeros. In this
case, they come from the interference of the two terms in (3.2.12). So let

ν+ = ν+(α) be the value of ν > −να such that c∗(ν2) 6= 0 and |ν + να| is minimum,

ν− = ν−(α) be the value of ν < −να such that c∗(ν2) 6= 0 and |ν + να| is minimum



58 CHAPTER 3. ON THE LINEAR TWIST OF F ∈ S]1

and denote

m± = m±(α) = |ν± + να| and c∗± =
√
m±

c∗0(ν2
±)

|ν±|1/2
= ρ±e

iθ± ,

where m±, ρ± > 0, θ± ∈ [0, 2π). Moreover, with the usual notation s = σ + it, define the line

`(α) : t =
σ

π
log

(
m+

m−

)
+

1

2π
log

(
ρ+m

2
−

ρ−m2
+

)
(3.2.14)

and for ε > 0 consider the region

Lε(α) = { s ∈ C with distance < ε from the line `(α) } . (3.2.15)

Then, the following result holds [37, Corollary 2].

Corollary 3.3. Let α > 0. There exists δ > 0 and σ− ≥ 0 such that F (s, α) 6= 0 for σ < −σ−

unless s ∈ Lδ(α). More precisely, there exists c1(α) > 0 such that for every 0 < ε < c1(α)

there exists σε ≥ 0 with the following properties

(i) F (s, α) 6= 0 for σ < −σε unless s ∈ Lε(α),

(ii) there exists infinitely many zeros of F (s, α) in Lε(α) with real part β < −σε.

Finally, Kaczorowski and Perelli examined the non-trivial zeros of the standard twist.
These are the zeros in the vertical strip −σ− ≤ σ ≤ σ+, where σ− is as in Corollary 3.3, and
σ+ is the upper bound of the real parts of the zeros of F (s, α). Denoting as n0 the smallest
integer n such that a(n) 6= 0 and defining the counting function of non-trivial zeros as

NF (T, α) = |
{
ρ = β + iγ

∣∣ F (ρ, α) = 0,−σ− ≤ β ≤ σ+, |γ| ≤ T
}
|,

in [37, Corollary 3] an analogue of the von Mangoldt function is obtained.

Corollary 3.4. Let α > 0. Then, as T →∞ we have

NF (T, α) =
2

π
T log T +

T

π
log

(
N

n0m+m−(2πe)2

)
+O(log T ).

Remark 3.8. In [37, Remark 2], the authors observed that the functional equation (3.2.13)
essentially depends on the shape of the Γ-factors in (3.2.11), since they allow the computation
of particular hypergeometric functions. They also pointed out that the same argument can be
applied to a certain class of Γ-factors, for instance of the form Γ(ds/2 + µ) with d ≥ 1 and
suitable µ ∈ R. So they deduced that, even in some cases of higher degree, the standard twist
satisfies a functional equation of Hurwitz-Lerch type. Kaczorowski and Perelli concluded their
introduction with a final remark on the case d = 1, considered in this work.



3.3. A FUNCTIONAL EQUATION FOR THE LINEAR TWIST 59

3.3 A functional equation for the linear twist

Let F ∈ S]1 and α ∈ R. Since F (s, α) = F (s, {α}), we can assume α ∈ (0, 1]. For β ∈ R, let

F∗(s, α, β) :=
∑

n+β>0

c̃(n)

(n+ β)s+iθ
e(−nα), (3.3.1)

where c̃(n) is as in Theorem 3.4.

Remark 3.9. In the definition above n ∈ Z and c̃(n) is extend to Z by periodicity.

It can be easily seen that equation (3.3.1) with β = 0 coincides with the linear twist F (s, α).
In the above notation, our goal is now proving the following result.

Theorem 3.8. Let F ∈ S]1 and let α ∈ (0, 1]. Then, the linear twist F (s, α) satisfies the
functional equation

F (1− s, α) =
ω∗Γ(s− iθ)qs−iθ−

1
2

ia(2π)s−iθ

(
ei
π
2

(s−iθ)F̄∗(s, 0,−αq) + (−1)ae−i
π
2

(s−iθ)F̄∗(s, 0, αq)

)
.

(3.3.2)

Remark 3.10. As already observed for degree 2 L-functions, the functional equation (3.3.2) is
not of Riemann type, even if it still reflects s into 1−s. Again, it can be seen as a Hurwitz-Lerch
type of functional equation, as will be explained in the following.

The key point to derive the functional equation is the structural theorem for S]1, i.e.
Theorem 3.4, and, in particular, expression (3.2.5). So, assume that for any χ ∈ X(q, ξ), Pχ is
a Dirichlet polynomial with coefficients a(n) = aχ(n) for n | q

fχ
. We rewrite the linear twist as

F (s, α) =
∑

χ∈X(q,ξ)

∑
n|q/fχ
m≥1

a(n)χ∗(m)

(mn)s+iθ
e(−mnα).

Then, rearranging the sums over n and m, we get

F (s, α) =
∑

χ∈X(q,ξ)

∑
n|q/fχ

a(n)

ns+iθ

∑
m≥1

χ∗(m)

ms+iθ
e(−mnα)

=
∑

χ∈X(q,ξ)

∑
n|q/fχ

a(n)

ns+iθ
L(s+ iθ, χ∗, nα),

where L(s+ iθ, χ∗, nα) is the linear twist of the Dirichlet L-function associated to χ∗.

3.3.1 A functional equation for L(s, χ, α)

As a first step, we derive a functional equation for the linear twist of a Dirichlet L-function
associated to a primitive character. So, let χ be a primitive Dirichlet character modulo q and
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let α ∈ R. Using the orthogonality properties of characters we get

L(s, χ, α) =
∞∑
n=1

χ(n)

ns
e(−nα) =

∞∑
n=1

χ(n)

ns
e(−n{α})

=

∞∑
n=1

1

τχ̄

q−1∑
a=0

χ̄(a)e

(
na

q

)
n−se(−n{α})

=
1

τχ̄

q−1∑
a=0

χ̄(a)

∞∑
n=1

e

(
n

(
a

q
− {α}

))
n−s =

1

τχ̄

q−1∑
a=0

χ̄(a)ζL(s, a/q − {α}, 0),

(3.3.3)

where ζL(s, x, y) is the Hurwitz-Lerch zeta function defined as

ζL(s, x, y) =
∑

n>−{y}

e(n{x})
(n+ {y})s

, (3.3.4)

for x, y ∈ R and n ∈ Z. Observe that equation (3.3.4) coincides with the Hurwitz zeta function
defined in (2.1.1), when x = 0 and y ∈ (0, 1]. It is well known that the Hurwitz-Lerch zeta
function can be analytically continued to a holomorphic function in C with the possible
exception of a simple pole of residue 1 at the point s = 1 if and only if x ∈ Z. Moreover, it
satisfies a functional equation of the form

ζL(1− s, x, y) =
Γ(s)

(2π)s

(
ei
π
2
s−2πi{x}{y}ζL(s,−y, x) + e−i

π
2
s+2πi{−x}{y}ζL(s, y,−x)

)
. (3.3.5)

We refer e.g. to Garunkstis-Laurincikas [22] for a detailed discussion on the properties of the
Hurwitz-Lerch zeta function. Now, for α, β ∈ R, we introduce the notation

L∗(s, χ, α, β) =
∑

n+β>0

χ(n)

(n+ β)s
e(−nα),

observing that L∗(s, χ, α, 0) = L(s, χ, α). Then, the following result holds.

Theorem 3.9. Let L(s, χ) be the Dirichlet L-function associated to the primitive character χ
modulo q. Then, given α ∈ R, the linear twist L(s, χ, α) admits a meromorphic continuation
to C with a possible simple pole at s = 1. Moreover, it satisfies the functional equation

L∗(1− s, χ, α, 0) =
Γ(s)τχχ(−1)

(2π)sq1−s

(
ei
π
2
sL∗(s, χ̄, 0,−αq) +χ(−1)e−i

π
2
sL∗(s, χ̄, 0, αq)

)
. (3.3.6)

Proof. Writing L(s, χ, α) as a linear combination of Hurwitz-Lerch zeta function as in (3.3.3),
we deduce that the linear twist can be extended to a meromorphic function on C with a
possible simple pole at s = 1. Given a ∈ {0, . . . , q − 1} with (a, q) = 1, the pole at s = 1 of
ζL(s, a/q − {α}, 0) exists if and only if a

q − {α} ∈ Z. Then, L(s, χ, α) has a pole at s = 1 if
and only if χ(αq) 6= 0 (we assume that χ(x) = 0 if x /∈ Z). In this case, the residue is

Ress=1 L(s, χ, α) =
χ̄(αq)

τχ̄
.
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On the other hand, by (3.3.3) and (3.3.5), we get

L(1− s, χ, α) =
1

τχ̄

q−1∑
a=0

χ̄(a)ζL(1− s, a/q − {α}, 0)

=
1

τχ̄

q−1∑
a=0

χ̄(a)
Γ(s)

(2π)s

(
ei
π
2
sζL(s, 0, a/q − {α}) + e−i

π
2
sζL(s, 0,−a/q + {α})

)

=
Γ(s)

(2π)sτχ̄

(
ei
π
2
s
q−1∑
a=0

χ̄(a)
∑

n>−{a
q
−{α}}

(n+ {a/q − {α}})−s

+ e−i
π
2
s
q−1∑
a=0

χ̄(a)
∑

n>−{−a
q

+{α}}

(n+ {−a/q + {α}})−s
)
.

We now denote the two sums above respectively as

Σ1 =

q−1∑
a=0

χ̄(a)
∑

n>−{a
q
−{α}}

(n+ {a/q − {α}})−s

Σ2 =

q−1∑
a=0

χ̄(a)
∑

n>−{−a
q

+{α}}

(n+ {−a/q + {α}})−s.

Observe that a
q − {α} ∈ (−1, 1). Moreover, if a

q − {α} > 0, then {aq − {α}} = a
q − {α},

otherwise a
q − {α} < 0 implies {aq − {α}} = a

q − {α}+ 1. Then we get

Σ1 =
∑

a=0,...,q−1
a>{α}q

χ̄(a)
∑
n≥0

(n+ a/q − {α})−s +
∑

a=0,...,q−1
a≤{α}q

χ̄(a)
∑
n≥0

(n+ a/q − {α}+ 1)−s

= qs
∑

a=0,...,q−1
a>{α}q

χ̄(a)
∑
n≥0

(nq + a− {α}q)−s + qs
∑

a=0,...,q−1
a≤{α}q

χ̄(a)
∑
n≥0

(nq + a− {α}q + q)−s

= qs
( ∑

m≥0
{m
q
}>{α}

χ̄(m)

(m− {α}q)s
+

∑
m≥0

{m
q
}≤{α}

χ̄(m)

(m− q({α} − 1))s

)
.

On the other hand,

Σ2 =
∑

a=0,...,q−1
a≥{α}q

χ̄(a)
∑
n≥0

(n− a/q + {α}+ 1)−s +
∑

a=0,...,q−1
a<{α}q

χ̄(a)
∑
n≥0

(n− a/q + {α})−s

= qs
∑

a=0,...,q−1
a≥{α}q

χ̄(a)
∑
n≥0

(nq − a+ {α}q + q)−s + qs
∑

a=0,...,q−1
a<{α}q

χ̄(a)
∑
n≥0

(nq − a+ {α}q)−s

= qsχ(−1)

( ∑
m>−q

{−m
q
}≥{α}

χ̄(m)

(m+ q({α}+ 1))s
+

∑
m>−q

{−m
q
}<{α}

χ̄(m)

(m+ {α}q))s

)
.
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Then, recalling that τχτχ̄
q = χ(−1), we get

L(s, χ, α) =
Γ(s)τχχ(−1)

(2π)sq1−s

(
ei
π
2
s

( ∑
m≥0

{m
q
}>{α}

χ̄(m)

(m− {α}q)s
+

∑
m≥0

{m
q
}≤{α}

χ̄(m)

(m− q({α} − 1))s

)

+ χ(−1)e−i
π
2
s

( ∑
m>−q

{−m
q
}≥{α}

χ̄(m)

(m+ ({α}+ 1)q)s
+

∑
m>−q

{−m
q
}<{α}

χ̄(m)

(m+ {α}q)s

))
.

(3.3.7)

We now proceed analyzing each term of the above functional equation, in order to simplify the
expression. Consider the first sum. Since {α} = α− bαc, we have m− {α}q = m+ bαcq− αq.
Then, changing m into m− bαcq, we have

∑
m≥0

{m
q
}>{α}

χ̄(m)

(m− {α}q)s
=

∑
m≥bαcq
{m
q
}>{α}

χ̄(m)

(m− αq)s

=
∑

bαcq≤m≤αq
{m
q
}>{α}

χ̄(m)

(m− αq)s
+

∑
m>αq
{m
q
}>{α}

χ̄(m)

(m− αq)s
=

∑
m>αq
{m
q
}>{α}

χ̄(m)

(m− αq)s

where the last equality holds since bαcq ≤ m ≤ αq is not compatible with the condition
{mq } > {α}. We proceed in a similar way with the second sum, changing m into m− q(bαc+ 1)

∑
m≥0

{m
q
}≤{α}

χ̄(m)

(m− q({α} − 1))s
=

∑
m≥q(bαc+1)
{m
q
}≤{α}

χ̄(m)

(m− αq)s

=
∑
m>αq
{m
q
}≤{α}

χ̄(m)

(m− αq)s
−

∑
αq<m<q(bαc+1)
{m
q
}≤{α}

χ̄(m)

(m− αq)s
=

∑
m>αq
{m
q
}≤{α}

χ̄(m)

(m− αq)s
,

since the conditions αq < m < q(bαc+ 1) and {mq } ≤ {α} lead to bαc < bmq c < bαc+ 1. On
the other hand, with the change m 7−→ m− (bαc − 1)q, we have

∑
m>−q

{−m
q
}≥{α}

χ̄(m)

(m+ ({α}+ 1)q)s
=

∑
m>−qbαc
{−m

q
}≥{α}

χ̄(m)

(m+ αq)s

=
∑

m>−αq
{−m

q
}≥{α}

χ̄(m)

(m+ αq)s
−

∑
−αq<m≤−qbαc
{−m

q
}≥{α}

χ̄(m)

(m+ αq)s
=

∑
m>−αq
{−m

q
}≥{α}

χ̄(m)

(m+ αq)s
,

since the set
{
−αq < m ≤ −qbαc

∣∣∣ {−m
q } ≥ {α}

}
is empty. Indeed, combining the conditions

we get b−m
q c < bαc < b−

m
q c+ 1. Finally, we apply the same argument to the fourth and last
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sum in (3.3.7), changing m into m+ bαcq. We get

∑
m>−q

{−m
q
}<{α}

χ̄(m)

(m+ {α}q)s
=

∑
m>−q(bαc+1)
{−m

q
}<{α}

χ̄(m)

(m+ αq)s

=
∑

m>−αq
{−m

q
}<{α}

χ̄(m)

(m+ αq)s
+

∑
−q(bαc+1)<m≤−αq
{−m

q
}<{α}

χ̄(m)

(m+ {α}q)s
=

∑
m>−αq
{−m

q
}<{α}

χ̄(m)

(m+ αq)s
,

where the last equality holds since the conditions −q(bαc+ 1) < m ≤ −αq and {−m
q } < {α}

are not compatible. Now, observe that

∑
m>αq
{m
q
}>{α}

χ̄(m)

(m− αq)s
+

∑
m>αq
{m
q
}≤{α}

χ̄(m)

(m− αq)s
=
∑
m>αq

χ̄(m)

(m− αq)s
= L∗(s, χ̄, 0,−αq),

and similarly

∑
m>−αq
{−m

q
}≥{α}

χ̄(m)

(m+ αq)s
+

∑
m>−αq
{−m

q
}<{α}

χ̄(m)

(m+ αq)s
=

∑
m>−αq

χ̄(m)

(m+ αq)s
= L∗(s, χ̄, 0, αq).

Then, equation (3.3.7) can be rewritten as

L∗(1− s, χ, α, 0) =
Γ(s)

(2π)s
τχχ(−1)

q1−s

(
ei
π
2
sL∗(s, χ̄, 0,−αq) + χ(−1)e−i

π
2
sL∗(s, χ̄, 0, αq)

)
.

Remark 3.11. It can be noticed that (3.3.6) has a shape which is similar to (3.3.5). For this
reason, we say that (3.3.6) is a Hurwitz-Lerch type of functional equation. The same holds for
(3.3.2) and (3.2.13), which is said to be a degree 2 analogue of the Hurwitz-Lerch functional
equation.

3.3.2 A functional equation for the linear twist of Pχ(s)L(s, χ∗)

Our next step is studying the linear twist of the generic term of the sum (3.2.5). To this end,
consider a character χ ∈ X(q, ξ) and let Pχ ∈ S]0(q, /fχ∗ , ω

∗ω̄χ∗). We denote

Fχ(s) := Pχ(s)L(s, χ∗).

Then, given F ∈ S]1, it can be rewritten as

F (s) =
∑

χ∈X(q,ξ)

Fχ(s+ iθ).
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Assume that Pχ(s) =
∑

n|q/fχ
a(n)
ns . The linear twist of Fχ(s) becomes

Fχ(s, α) :=
∑
n|q/fχ
m≥1

a(n)χ∗(m)

(mn)s
e(−mnα)

=
∑
n|q/fχ

a(n)

ns

∑
m≥1

χ∗(m)

ms
e(−mnα) =

∑
n|q/fχ

a(n)

ns
L(s, χ∗, nα).

We recall that the following relation holds

a(n)

n
=

ω∗ω̄χ∗√
q/fχ

ā

(
q

nfχ

)
, (3.3.8)

as a consequence of the functional equation for S]0 (cf. (3.2.4)). Then, combining (3.3.8) with
(3.3.6), we get

Fχ(1− s, α) =
∑
n|q/fχ

a(n)

n1−sL∗(1− s, χ
∗, nα, 0)

=
∑
n|q/fχ

a(n)

n1−s

(
Γ(s)

(2π)s
τχ∗χ(−1)

f1−s
χ

(
ei
π
2
sL∗(s, χ̄

∗, 0,−αnfχ) + χ(−1)e−i
π
2
sL∗(s, χ̄

∗, 0, αnfχ)

))

=
Γ(s)τχ∗χ(−1)

(2π)sf1−s
χ

( ∑
k=±1

χ(k)eki
π
2
s
∑
n|q/fχ

a(n)

n1−s

∑
m−kαnfχ>0

χ̄∗(m)

(m− kαnfχ)s

)

=
ω∗ω̄χ∗Γ(s)τχ∗χ(−1)√

q/fχ(2π)sf1−s
χ

( ∑
k=±1

χ(k)eki
π
2
s

∑
n|q/fχ

m/n−kαfχ>0

ā(q/nfχ)χ̄∗(m)

(m/n− kαfχ)s

)

=
ω∗fsχ
ia
√
q

Γ(s)

(2π)s

(
ei
π
2
s

∑
n|q/fχ

m/n−αfχ>0

ā(q/nfχ)χ̄∗(m)

(m/n− αfχ)s
+ χ(−1)e−i

π
2
s

∑
n|q/fχ

m/n+αfχ>0

ā(q/nfχ)χ̄∗(m)

(m/n+ αfχ)s

)
,

observing that
ω̄χ∗ = ωχ̄∗ =

τχ̄∗

ia
√
fχ

and
τχ∗τχ̄∗

fχ
χ(−1) = 1.

We now note that for n | q
fχ
, n′ = q

nfχ
also divides q

fχ
, so we can rearrange the sum over n

Fχ(1− s, α) =
ω∗fsχ
ia
√
q

Γ(s)

(2π)s
×(

ei
π
2
s

∑
n|q/fχ

mn−αq>0

ā(n)χ̄∗(m)

(mn− αq)sfsχq−s
+ χ(−1)e−i

π
2
s

∑
n|q/fχ

mn+αq>0

ā(n)χ̄∗(m)

(mn+ αq)sfsχq
−s

)

=
ω∗qs−

1
2 Γ(s)

ia(2π)s

(
ei
π
2
s

∑
n|q/fχ

mn−αq>0

ā(n)χ̄∗(m)

(mn− αq)s
+ χ(−1)e−i

π
2
s

∑
n|q/fχ

mn+αq>0

ā(n)χ̄∗(m)

(mn+ αq)s

)
.
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For α ∈ (0, 1] and β ∈ R, let

Fχ(s, α, β) :=
∑
n|q/fχ
mn+β>0

a(n)χ∗(m)

(mn+ β)s
e(−mnα).

It can be easily observed that

∑
n|q/fχ

mn±αq>0

ā(n)χ̄∗(m)

(mn± αq)s
= F̄χ(s, 0,±αq).

Then, for the linear twist of Fχ(s) we derive the functional equation

Fχ(1− s, α) =
ω∗qs−

1
2 Γ(s)

ia(2π)s
(ei

π
2
sF̄χ(s, 0,−αq) + χ(−1)e−i

π
2
sF̄χ(s, 0, αq)). (3.3.9)

3.3.3 Proof of Theorem 3.8

Let now F ∈ S]1. With the usual notation, we write

F (s, α) =
∑

χ∈X(q,ξ)

∑
n|q/fχ
m≥1

a(n)χ∗(m)

(mn)s+iθ
e(−mnα) =

∑
χ∈X(q,ξ)

Fχ(s+ iθ, α). (3.3.10)

The functional equation for F (s, α) comes from the results of the previous sections.

F (1− s, α) =
∑

χ∈X(q,ξ)

Fχ(1− s+ iθ, α)

=
∑
χ

(
ω∗Γ(s− iθ)qs−iθ−

1
2

ia(2π)s−iθ
(
ei
π
2
s−iθF̄χ(s− iθ, 0,−αq) + χ(−1)e−i

π
2
s−iθF̄χ(s− iθ, 0, αq)

))
.

Recall that all the characters in X(q, ξ) have the same parity and a only depends on ξ = η+ iθ,
since a = η + 1 (cf. Remark 3.4). So, the linear twist satisfies

F (1− s, α) =
ω∗Γ(s− iθ)qs−iθ−

1
2

ia(2π)s−iθ

(
ei
π
2

(s−iθ)F̄∗(s, 0,−αq) + (−1)ae−i
π
2

(s−iθ)F̄∗(s, 0, αq)

)
,

since we have∑
χ∈X(q,ξ)

F̄χ(s− iθ, 0,±αq) =
∑

χ∈X(q,ξ)

∑
n|q/fχ

mn+±αq>0

ā(n)χ̄∗(m)

(mn± αq)s−iθ
= F̄∗(s, 0,±αq).

3.4 Meromorphic continuation and pole

As already observed, it is well-known that the linear twist F (s, α) has a meromorphic continu-
ation to C with a possible simple pole at s = 1− iθ, (cf. [33, Theorem 7.1] or Theorem 3.6).
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We now briefly sketch the steps to calculate the residue. Recall that

F (s, α) =
∑

χ∈X(q,ξ)

∑
n|q/fχ

a(n)

ns+iθ
L(s+ iθ, χ∗, nα).

Let χ ∈ X(q, ξ) and n | q
fχ
. Since L(s + iθ, χ∗, nα) = 1

τχ̄

∑fχ−1
a=0 χ̄(a)ζL(s, a/fχ − α, 0), the

linear twist of the L-function has a pole at s = 1− iθ if and only if a
fχ
− {αn} ∈ Z for some

a ∈ {1, . . . , fχ}, with (a, fχ) = 1, then if and only if χ∗({αn}fχ) = χ(αnfχ) 6= 0 (as already
pointed out in Theorem 3.9). In particular, the residue is

Ress=1−iθ L(s+ iθ, χ∗, αn) =
χ̄∗(αnfχ)

τχ̄∗
.

Then, using again (3.3.8) and writing m = q
nfχ

, we get

Ress=1−iθ F (s, α) =
∑

χ∈X(q,ξ)

∑
n|q/fχ

a(n)

n

χ̄∗(αnfχ)

τχ̄∗

=
ω∗ω∗χ̄√
q/fχ

∑
χ∈X(q,ξ)

∑
n|q/fχ

ā

(
q

nfχ

)
χ̄∗(αnfχ)

τχ̄∗

=
ω∗

ia
√
q

∑
χ∈X(q,ξ)

∑
m|q/fχ

ā(m)χ̄∗
(
αq

m

)
=

ω∗

ia
√
q
c̃(αq).

Remark. Note that, as stated in Theorem 3.6, the pole exists if and only if c(αq) = c(nα) 6= 0.

3.5 The order of growth

Once we have the functional equation, we can go on studying the analytic properties of the
linear twist. We start investigating the order of growth on vertical strips. It is already known
by [35, Theorem 2] that the linear twist has polynomial growth on vertical strips. However,
we consider the Lindelöf function associated to F (s, α),

µ(σ, α) = inf { ξ ∈ R | F (σ + it, α)� |t|ξ as |t| → +∞} . (3.5.1)

We recall that the Lindelöf function is continuous, convex, non-negative and strictly decreasing
until it becomes identically zero (cf. e.g. [57, Section 9.41]). We now define

F̃ (s, α) := ei
π
2

(s−iθ)F̄∗(s, 0,−αq) + (−1)ae−i
π
2

(s−iθ)F̄∗(s, 0, αq),

and
µ±(σ, α) = inf { ξ ∈ R | F̄∗(σ + it, 0,∓αq)� |t|ξ as t→ ±∞} .

Moreover, let
µ∗(σ, α) := max(µ+(σ, α), µ−(σ, α)).
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With the above notation, we prove the following result.

Theorem 3.10. Let F ∈ S]1 and α ∈ (0, 1]. Then, the linear twist F (s, α) has polynomial
growth on vertical strips and the corresponding Lindelöf function satisfies

µ(σ, α) =
1

2
− σ + µ∗(1− σ, α). (3.5.2)

Proof. As a first step, we combine the functional equation (3.3.2) with Stirling’s formula for
the Γ-factor, getting

|F (σ + it, α)| �q
1
2
−σ(2π)σ−

1
2 |t|

1
2
−σe−

π|t+θ|
2 ×

(e
π(t+θ)

2 |F̄∗(1− σ − it, 0,−αq)|+ e−
π(t+θ)

2 |F̄∗(1− σ − it, 0, αq)|).

Then we can state

inf
{
ξ ∈ R

∣∣∣ F (σ + it, α)� |t|ξ
}

≤

1
2 − σ + inf

{
ξ ∈ R

∣∣ F̄∗(1− σ − it, 0,−αq)� |t|ξ } t→ +∞
1
2 − σ + inf

{
ξ ∈ R

∣∣ F̄∗(1− σ − it, 0, αq)� |t|ξ } t→ −∞,

i.e., the above relation can be summarized as

µ(σ, α) ≤ 1

2
− σ + µ∗(1− σ, α). (3.5.3)

On the other hand, again by the functional equation and Stirling’s formula we have

e−
π
2
|t+θ|F̃ (1− σ − it, α)� (2π)

1
2
−σqσ−

1
2 |t|σ−

1
2 |F (σ + it, α)|.

Then, as t→ +∞,

inf
{
ξ
∣∣∣ F̄∗(1− σ − it, 0,−αq)� |t|ξ } ≤ σ − 1

2
+ µ(σ, α),

while if t→ −∞ we get

inf
{
ξ
∣∣∣ F̄∗(1− σ − it, 0, αq)� |t|ξ } ≤ σ − 1

2
+ µ(σ, α).

Gathering the above inequalities we have

µ∗(1− σ, α) = max(µ+(1− σ, α), µ−(1− σ, α)) ≤ σ − 1

2
+ µ(σ, α). (3.5.4)

Thus, by (3.5.3) and (3.5.4), we conclude

µ(σ, α) =
1

2
− σ + µ∗(1− σ, α).
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Remark 3.12. Since the linear twist F (s, α) is absolutely convergent for σ > 1, then µ(σ, α)

vanishes in the half-plane σ > 1. Moreover, the Lindelöf function is continuous, thus we get

µ(σ, α) = 0 if σ ≥ 1.

On the other hand, for σ < 0 we have µ∗(1− σ, α) = 0 and by continuity,

µ(σ, α) =
1

2
− σ if σ ≤ 0.

Moreover, by the convexity of the Lindelöf function we deduce the upper bound

µ(σ, α) ≤ 1− σ
2

if 0 < σ < 1.

3.6 Distribution of the zeros

We are now interested in studying the distribution of the zeros of the linear twist outside the
critical strip 0 < σ < 1. Our first result concerns the zeros in the left half-plane σ < 0 coming
from the interaction between the two terms on the right-hand side of the functional equation.
Since the Γ-factor does not vanish, the zeros of the linear twist are the zeros of the function

H(s) := F̃ (1− s, α) = ei
π
2

(1−s−iθ)F̄∗(1− s, 0,−αq) + (−1)ae−i
π
2

(1−s−iθ)F̄∗(1− s, 0, αq).

The theorem below shows that, for σ sufficiently small, the linear twist has infinitely many
zeros which are all located inside circles whose centers are in arithmetic progression (and in
particular they lie on the same line).

Theorem 3.11. There exist infinitely many circles Ch, h ≥ 0, of center sh = αh+ β, with
α, β ∈ C, <(α),<(β) < 0, and radius η−<(sh) for some 0 < η < 1, such that F (s, α) has
exactly one zero inside each circle.

Proof. Let m1 = min {m > αq | c̃(m) 6= 0 } and m2 = min {m > −αq | c̃(m) 6= 0 }, then

F̄∗(1− s, 0,−αq) =
∑

m−αq>0

c̃(m)

(m− αq)1−s−iθ =
c̃(m1)

(m1 − αq)1−s−iθ +
∑
m>m1

c̃(m)

(m− αq)1−s−iθ

and similarly

F̄∗(1− s, 0, αq) =
∑

m+αq>0

c̃(m)

(m+ αq)1−s−iθ =
c̃(m2)

(m2 + αq)1−s−iθ +
∑
m>m2

c̃(m)

(m+ αq)1−s−iθ .

Moreover, we write H(s) = W (s) + V (s), where

W (s) = ei
π
2

(1−s−iθ) c̃(m1)

(m1 − αq)1−s−iθ + (−1)ae−i
π
2

(1−s−iθ) c̃(m2)

(m2 + αq)1−s−iθ (3.6.1)
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and

V (s) = ei
π
2

(1−s−iθ)
∑
m>m1

c̃(m)

(m− αq)1−s−iθ + (−1)ae−i
π
2

(1−s−iθ)
∑
m>m2

c̃(m)

(m+ αq)1−s−iθ . (3.6.2)

The idea is now to study the zeros of W (s) and then to apply Rouché’s theorem to localize
those of H(s). Let c̃(m1) = ρ1e

iθ1 and c̃(m2) = ρ2e
iθ2 , with ρ1, ρ2 > 0 and θ1, θ2 ∈ [0, 2π).

Then W (s) = 0 if and only if

ei
π
2

(1−σ)+π
2

(t+θ)elog ρ1+iθ1e(σ−1+i(t+θ)) log(m1−αq)

= eπ(a+1)e−i
π
2

(1−σ)−π
2

(t+θ)elog ρ2+iθ2e(σ−1+i(t+θ)) log(m2+αq).

The equality of the moduli of the two sides gives

` = `(α) : t+
1

π
σ log

(
m1 − αq
m2 + αq

)
+

1

π
log

(
ρ1(m2 + αq)

ρ2(m1 − αq)

)
+ θ = 0, (3.6.3)

while from the arguments we get, for k ∈ Z,

`k = `k(α) : t log

(
m1 − αq
m2 + αq

)
− πσ + θ1 − θ2 + θ log

(
m1 − αq
m2 + αq

)
+ (2k + a)π = 0. (3.6.4)

Observe that the above lines are orthogonal. Then, as k runs over the integers, W (s) has
infinitely many zeros in the half-plane σ < 0 lying on the non-vertical line `. We denote these
zeros as sk = σk + itk ∈ `, k ∈ Z, observing that they are in arithmetic progression.
Equation (3.6.3) can be rewritten as

π

2
(t+ θ) = log

(
ρ2

ρ1

(
m2 + αq

m1 − αq

)σ−1) 1
2

,

hence, on the line ` the moduli of the two terms of W (s) have value

(ρ1ρ2)
1
2 ((m1 − αq)(m2 + αq))

σ−1
2 .

Let now s = σ + it ∈ ` and δ > 0. Define t∗ = t+ δ and s∗ = σ + it∗. For δ sufficiently small,

|W (s∗)| =
∣∣∣∣eπ2 (1−s∗−iθ) c̃(m1)

(m1 − αq)1−s∗−iθ + (−1)ae−
π
2

(1−s∗−iθ) c̃(m2)

(m2 + αq)1−s∗−iθ

∣∣∣∣
≥ e

π
2

(t∗+θ) ρ1

(m1 − αq)1−σ − e
−π

2
(t∗+θ) ρ2

(m2 + αq)1−σ

= e
π
2
δe

π
2

(t+θ) ρ1

(m1 − αq)1−σ − e
−π

2
δe−

π
2

(t+θ) ρ2

(m2 + αq)1−σ

= ((m1 − αq)(m2 + αq))
σ−1

2 (ρ1ρ2)
1
2 (e

π
2
δ − e−

π
2
δ)

� ((m1 − αq)(m2 + αq))
σ−1

2 (ρ1ρ2)
1
2 δ.

(3.6.5)

We now want an upper bound for |V (s∗)|. The idea is to write the explicit expression of the
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two series in (3.6.2) and to use the integral criterion to estimate them. We denote

m̃1 = min {m > m1 | c̃(m) 6= 0 } and m̃2 = min {m > m2 | c̃(m) 6= 0 } .

Consider the first series in the definition of V (s) and recall that

∑
m≥m̃1

c̃(m)

(m− αq)1−s−iθ =
∑

χ∈X(q,ξ)

∑
n|q/fχ

∑
m≥ m̃1

n

ā(n)χ̄∗(m)

(mn− αq)1−s−iθ .

Moreover, the sums over χ and n are finite and the set
{
|ā(n)|
n

∣∣∣ χ ∈ X(q, ξ), n| qfχ
}
is bounded.

Then, we get the following estimate∣∣∣∣ ∑
m≥m̃1

c̃(m)

(m− αq)1−s−iθ

∣∣∣∣� ∑
χ∈X(q,ξ)

∑
n|q/fχ

|ā(n)|
n1−σ

∑
m≥ m̃1

n

1

(m− αq
n )1−σ

�
∑

χ∈X(q,ξ)

∑
n|q/fχ

|ā(n)|
n1−σ

(∫ +∞

m̃1
n

1

(x− αq
n )1−σ dx+

1

( m̃1
n −

αq
n )1−σ

)

�
∑

χ∈X(q,ξ)

∑
n|q/fχ

|ā(n)|
n1−σ

1

nσ(m̃1 − αq)−σ
� 1

(m̃1 − αq)−σ
,

Similarly, the same argument applied to the second term gives

∑
m≥m̃2

|c̃(m)|
(m+ αq)1−σ �

1

(m̃2 + αq)−σ
.

It follows that

|V (s∗)| ≤ e
π
2

(t∗+θ) 1

(m̃1 − αq)−σ
+ e−

π
2

(t∗+θ) 1

(m̃2 + αq)−σ

= e
π
2
δe

π
2

(t+θ) 1

(m̃1 − αq)−σ
+ e−

π
2
δe−

π
2

(t+θ) 1

(m̃2 + αq)−σ
� (1 + δ + o(δ2))×((

ρ2

ρ1

) 1
2
(
m2 + αq

m1 − αq

)σ−1
2 1

(m̃1 − αq)−σ
+

(
ρ1

ρ2

) 1
2
(
r1 − αq
r2 + αq

)σ−1
2 1

(m̃2 + αq)−σ

)
� ((m1 − αq)(m2 + αq))

σ−1
2

(
A

(
m1 − αq
m̃1 − αq

)1−σ
+B

(
m2 + αq

m̃2 + αq

)1−σ)
,

(3.6.6)

where A =
(ρ2

ρ1

) 1
2 (m̃1 − αq) and B =

(ρ1

ρ2

) 1
2 (m̃2 + αq). We now observe that m1−αq

m̃1−αq < 1, so(m1−αq
m̃1−αq

)1−σ → 0 as σ → −∞ and similarly the other term. Then, if δ = η−σ0 , with

max

(
m1 − αq
m̃1 − αq

,
m2 + αq

m̃2 + αq

)
< η0 < 1, (3.6.7)

combining equations (3.6.5) and (3.6.6), for σ sufficiently small we have |W (s∗)| − |V (s∗)| > 0.
The same result follows by the same argument with s∗ = σ + i(t− δ), δ > 0.
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Since s = σ + it varies on the line `, we have proved that for σ > −σ′, with a suitable σ′ > 0,
|W (s)| − |V (s)| > 0 on the boundary of the region

Lδ = Lδ(α) = { s ∈ C with distance < δ from the line ` } .

Let now k ∈ Z and consider the line lk, where we know that

arg

(
e
π
2

(1−s−iθ) c̃(m1)

(m1 − αq)1−σ

)
= arg

(
(−1)a+1e−

π
2

(1−s−iθ) c̃(m2)

(m2 + αq)1−σ

)
+ 2kπ.

Assume that for δ > 0 the following relation holds

arg

(
e
π
2

(1−s−iθ) c̃(m1)

(m1 − αq)1−σ

)
= arg

(
(−1)a+1e−

π
2

(1−s−iθ) c̃(m2)

(m2 + αq)1−σ

)
+ 2kπ + δ

(then we are in a neighborhood of the line `k). Let us denote

e
π
2

(1−s−iθ) c̃(m1)

(m1 − αq)1−s−iθ = α1e
iβ1 , with α1 > 0, β1 ∈ [0, 2π),

(−1)a+1e−
π
2

(1−s−iθ) c̃(m2)

(m2 + αq)1−s−iθ = α2e
iβ2 , with α2 > 0, β2 ∈ [0, 2π).

Since we are on the line `k − δ, we know that β2 = β1 − δ. Then we have

|W (s)| = |α1e
iβ1−α2e

i(β1−δ)| = |eiβ1(α1−α2e
−iδ)| > =|α1−α2e

−iδ| = α1=|1−
α2

α1
e−iδ| � δα2,

for δ > 0 sufficiently small. Proceeding as above with β1 = β2 + δ, we can state that
W (s)� δα1. The same argument applies on `k + δ, with δ > 0. So we have proved that on
`k ± δ, with δ > 0 sufficiently small,

W (s)� δmax

(∣∣∣∣eπ2 (1−s−iθ) c̃(m1)

(m1 − αq)1−s−iθ

∣∣∣∣, ∣∣∣∣e−π2 (1−s−iθ) c̃(m2)

(m2 + αq)1−s−iθ

∣∣∣∣)
� δmax

(
e
π
2

(t+θ)ρ1(m1 − αq)σ−1, e−
π
2

(t+θ)ρ2(m2 + αq)σ−1
)
.

(3.6.8)

Now, as already observed

V (s)� e
π
2

(t+θ) 1

(m̃1 − αq)1−σ + e−
π
2

(t+θ) 1

(m̃2 + αq)1−σ .

Then,

V (s)� max

(
e
π
2

(t+θ)(m1 − αq)σ−1

(
m1 − αq
m̃1 − αq

)1−σ
, e−

π
2

(t+θ)(m2 + αq)σ−1

(
m2 + αq

m̃2 + αq

)1−σ)
.

So by (3.6.8) and the above upper bound, there exist σ′′ ≥ 0 such that for σ < −σ′′

|W (s)| > |V (s)|,
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when s ∈ `k ± δ for any sufficiently small δ > 0.
Let now σ̄ = max(σ′, σ′′). By Rouché’s theorem, there exists η ∈ (η0, 1) with η0 as in (3.6.7)
such that for each zero sk = σk + itk of W (s) with σk < −σ̄, F (s, α) has exactly one zero in a
circle of center sk and radius η−σk . Re-parameterizing the zeros the statement follows.

Remark 3.13. The above result corresponds to Corollary 3.3, which describes the distribution
of the trivial zeros of the standard twist in degree 2. However, it can be noticed that our
theorem is slightly more precise. Indeed, Kaczorowski and Perelli showed that the zeros are
located around the line (3.2.14), but, as they observed, the problem of the finer location of
the zeros is open. On the other hand, we prove that the zeros in our case are located inside
circles centered on the line ` with radius which tends to zero as σ → −∞.

We now present another theorem on the distribution of the zeros. In this case, the proof is
complete only if α is rational, while for irrational values of α only partial results are known.

Theorem 3.12. Let 0 < α ≤ 1 be rational. If F (s, α) and F̄∗(s, 0,±αq) are not of the form
P (s)L(s, χ), where P (s) is a Dirichlet polynomial and L(s, χ) is a Dirichlet L-function, then

(i) there exist σ1, σ
′
1 > 0 such that the set

{σ ∈ (1, 1 + σ1] | F (σ + it, α) = 0, t ∈ R}

is dense in (1, 1 + σ1] and F (σ + it, α) 6= 0 if σ > 1 + σ′1.

(ii) there exist σ2 > 0 such that the set

{σ ∈ [−σ2, 0) | F (σ + it, α) = 0, t ∈ R}

is dense in the interval [−σ2, 0).

The following picture represents a typical distribution of the zeros outside the critical strip
of the linear twist F (s, α) when α is rational (see Theorems 3.11 and 3.12).
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Proof. If α is rational, F (s, α), and F̄ (s, 0,±αq) can be written as linear combinations of
Dirichlet L-functions, since the coefficients c̃(n) are periodic (cf. [52, Theorem PDCB]).
Then, by the result of Saias and Weingartner (Theorem 2.10), if these linear combinations do
not reduce to a single term of the form P (s)L(s, χ), they have infinitely many zeros in the
half-plane σ > 1. The density of the real parts and the possible existence of gaps in the region
where the zeros exist are consequences of Theorem 2.12. As already observed, with this result
Righetti proved that there exist infinitely many Dirichlet series which do not vanish in strips
contained in the region where the zeros exist, disproving a conjecture of Bombieri and Ghosh.
Therefore, part (i) is proved.

Let now σ < 0. The main tool in the proof of assertion (ii) is the functional equation.
Consider again the function

H(s) = ei
π
2

(1−s−iθ)F̄∗(1− s, 0,−αq) + (−1)ae−i
π
2

(1−s−iθ)F̄∗(1− s, 0, αq)

= ei
π
2

(1−s−iθ)F1(s) + (−1)ae−i
π
2

(1−s−iθ)F2(s).
(3.6.9)

Observe that, if they are not of the form P (s)L(s, χ), F1(s) and F2(s) have infinitely many
zeros, since 1− σ > 1. Moreover, the exponential factors imply that if one of the two terms of
H(s) tends to infinity, the other tends to zero.

Assume t = =(s) > 0. Let ρ be a zero of F1(s) and consider δ > 0 sufficiently small such
that F1 does not vanish on a circle of center ρ and radius δ. Define

γ = min
|s|=δ
|F1(s+ ρ)| > 0. (3.6.10)

Since we are working with generalized Dirichlet series, by almost periodicity (cf. Definition
2.5) we can state that, for any ε > 0, the set of τ ∈ R such that

max
|s|=δ
|F1(s+ ρ+ iτ)− F1(s+ ρ)| < ε (3.6.11)

is relatively dense. Moreover, we have

|e−
π
2

(1−s−iθ)H(s)− F1(s)| = |e−π(1−s−iθ)F2(s)| = e−π(t+θ)|F2(s)|.

Then, the polynomial growth on vertical strips (Theorem 3.10) implies, for some positive A,

max
|s|=δ
|H(s+ ρ+ iτ)e−i

π
2

(1−s−ρ−iτ) − F1(s+ ρ+ iτ)| � e−πττA. (3.6.12)

We gather equations (3.6.10), (3.6.11) and (3.6.12), choosing ε and τ such that ε+e−πττA < γ.
Then, by triangular inequality we get

max
|s|=δ
|H(s+ ρ+ iτ)e−i

π
2

(1−s−ρ−iτ) − F1(s+ ρ)| < γ = min
|s|=δ
|F1(s+ ρ)|.

Applying Rouché’s theorem, we deduce that F1(s) and H(s) have the same number of zeros
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inside the circle of center ρ and radius δ. Since F1(ρ) = 0, we conclude that H(s), then F (s, α),
has a zero inside the considered circle.
The same argument applies for t < 0, replacing F1(s) with F2(s), since in this case the second
term is dominating in H(s). This concludes the proof of part (ii).

If α is irrational, F̄∗(s, 0,±αq) can be seen as generalized Hurwitz zeta functions with periodic
coefficients. Thus, by Theorem 2.15 we deduce that they have infinitely many zeros for σ > 1.
Therefore, if σ < 0, F̄∗(1− s, 0,±αq) have infinitely many zeros (cf. equation (3.6.9)) and the
same argument used in the proof of (ii) applies. Thus, part (ii) of Theorem 3.12 even holds
for α irrational. On the other hand, part (i), i.e. the existence of infinitely many zeros of the
linear twist F (s, α) in the right half-plane, is still an open problem if α is not rational, since
the analogue for the classical Hurwitz-Lerch zeta function is still not known.

Remark 3.14. Observe that the linear twist F (s, α) is of the form P (s)L(s, χ) only if α ∈ {1, 1
2}.

In particular, if α = 1, the linear twist does not vanish in the region of absolute convergence if
and only if the sum (3.2.5) reduces to a single term. On the other hand, F̄∗(s, 0,±αq) reduce
to the product of a Dirichlet polynomial and a Dirichlet L-function if and only if αq ∈ Z or
αq = a+ 1

2 with a ∈ Z. For a more detailed discussion, we refer to Theorem 2.15, where we
consider the case of the Hurwitz zeta function with periodic coefficients. In particular, one
can see Section 2.3.1.
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