
c©2018 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.



Collaborative Development within a Social Robotic, Multi-Disciplinary
Effort: the CARESSES case study

Roberto Menicatti∗†, Carmine T. Recchiuto∗†, Barbara Bruno†, Renato Zaccaria† Ali Abdul Khaliq‡,
Uwe Köckemann‡, Federico Pecora‡, Alessandro Saffiotti‡, Ha-Duong Bui§, Nak Young Chong§,

Yuto Lim§, Van Cu Pham§, Nguyen Tan Viet Tuyen§, Nicholas Melo‖, Jaeryoung Lee‖,
Maxime Busy¶, Edouard Lagrue¶, Jean–Marc Montanier¶, Amit Kumar Pandey¶ and Antonio Sgorbissa†

Corresponding author’s email: carmine.recchiuto@dibris.unige.it

Abstract— In many cases, complex multidisciplinary research
projects may show a lack of coordinated development and
integration, and a big effort is often required in the final phase
of the projects in order to merge software developed by hetero-
geneous research groups. This is particularly true in advanced
robotic projects: the objective here is to deliver a system that
integrates all the hardware and software components, is capable
of autonomous behaviour, and needs to be deployed in real-
world scenarios toward providing an impact on future research
and, ultimately, on society. On the other hand, in recent years
there has been a growing interest for techniques related to
software integration, but these have been mostly applied to the
IT commercial domain.

This paper presents the work performed in the context of
the project CARESSES, a multidisciplinary research project
focusing on socially assistive robotics that involves 9 partners
from the EU and Japan. Given the complexity of the project,
a huge importance has been placed on software integration,
task planning and architecture definition since the first stages
of the work: to this aim, some of the practices commonly used
in the commercial domain for software integration, such as
merging software from the early stage, have been applied. As a
case study, the document describes the steps which have been
followed in the first year of the project discussing strengths and
weaknesses of this approach.

I. INTRODUCTION

It is commonly agreed that the coordination and inte-
gration within complex research projects involving software
development is an open issue, in particular when project
partners are distributed across different time zones, cultures
and languages.

This is extremely relevant in the industrial - commercial
domain, where deadlines and timing constraints related to
the release of new features and products should be respected
as much as possible, and where the quality of the produced
software is of the utmost importance. As a consequence, in
recent years, a number of practices have been taken into
account as basic principles for software development, with
the aim of reducing the time needed for the integration

∗R. Menicatti and C. Recchiuto equally contributed to this work.
†DIBRIS, University of Genova, Genova, Italy
‡AASS, Örebro University, Örebro, Sweden
§JAIST, Japan Advanced Institute of Science and Technology, Japan
‖Dept of Robotic Science and Technology, Chubu University, Japan
¶Softbank Robotics Europe, Paris, France

of software written by multiple developers, without com-
promising its quality: Continuous Integration, Continuous
Delivery and Continuous Deployment are some of these
practices, which share the common view that integrating
source code as frequently as possible, reliably releasing
products to customers and using tools for software control
can guarantee the overall optimization of time and resources
[1], [2].

Far from being similar to commercial activities, scientific
research projects share with them some characteristics that
make software integration critical: they usually foresee a
work plan spanning a number of years, they involve de-
velopers from different research entities, different countries
and with different backgrounds, and their output should be a
system including software components reliable enough to be
made available to other researchers external to the project,
and hopefully start a process of industrial exploitation.

However, joint scientific projects may lack a central co-
ordination unit for software development and, as a result,
research partners tend to develop and test their own soft-
ware during the whole project, with limited communication
channels, and a big effort is then required for the integra-
tion activities at the very end of the project1. In recent
years, the adoption of industry-strength practices for software
integration and development in the context of scientific
research activities turned out to be successful, greatly easing
the management and coordination of complex collaborative
projects (valid examples are the projects DREAM [3] and
BRICS [4]).

Given these premises, it is evident that scientific research
could greatly benefit from the application of some of the
practices usually applied in the commercial domain for
software integration. The article presents the case study of
CARESSES, a multidisciplinary research project on socially
assistive robotics, started in January 2017 and involving 9
partners from the EU and Japan, in which the issue of soft-
ware integration has been taken into account from the early
stage (CARESSES stands for Culturally-Aware Robots and
Environmental Sensor Systems for Elderly Support, http:
//caressesrobot.org). The article is structured as fol-

1These problems have been recently faced in the ERF2018 workshop
“Packaging, Releasing and Maintaining software for robots”, moderated by
Andriy Petlovanyy

carmine.recchiuto@dibris.unige.it
http://caressesrobot.org
http://caressesrobot.org


lows: Section II presents the project at a glance, underlying
the most critical aspects related to integration. In section III,
the steps for the collaborative development of the software
and all integration activities conducted in the first year of the
project are reported. Finally, Section IV presents conclusions.

II. THE CARESSES PROJECT

The CARESSES project (Fig. 1) is a 37-months multi-
disciplinary project aimed at building culturally competent
robots, i.e. robots able to match the culture, customs and
etiquette of the person that they are assisting, while au-
tonomously reconfiguring their way of acting and speaking
[5]. The project starts from the observation that, while
cultural competence has been deeply investigated in Nurs-
ing Literature (in particular, in the so-called Transcultural
Nursing research field [6]), it has been only marginally
introduced in the robotics domain, even in projects dealing
with assistive robots [7]. Thus, the project is based on the
idea that assistive robots that are more sensitive to the user’s
cultural identity could have a great impact on older persons’
quality of life, reducing a caregiver’s burden and improving
efficiency and efficacy. To this aim the project involves
six European and three Japanese partners: the presence of
a multidisciplinary consortium, involving partners with a
background in robotics, AI, Human-Robot Interaction, Tran-
scultural Nursing, Social Psychology, Evaluation of complex
public health interventions, and professional Health-Care
makes particularly complex communication between partners
and - consequently - the integration of research outcomes into
a common system to be deployed and tested.

Fig. 1. Logo of the Caresses project

The project foresees a testing phase2 where the assis-
tive robot will directly interact with a number of older
persons and with their informal caregivers. In order to
prove the project assumption, the robot will be endowed
with knowledge about the cultural group the person belongs
to and specific knowledge about her (Cultural Knowledge
Base), planning abilities for autonomously choosing the more
appropriate action to execute (Cultural Sensitive Planner
and Execution Module), and a wide range of sensorimotor
capabilities for implementing plans and interacting with
the person and with sensors in the environment, possibly
updating the knowledge base whenever new information with
cultural relevance is acquired (Culture-Aware Human-Robot
Interaction Module). It is evident that all these aspects are
strictly interconnected to each other, and therefore a high
level of software integration is required.

2Testing will be led by University of Bedfordshire, UK

For this reason, in the context of CARESSES, much
attention has been paid to the integration of the software
modules developed by different partners, since the early
stages of the project. During the first year, developers located
in three different European countries (University of Gen-
ova, Italy; Örebro University, Sweden; SoftBank Robotics,
France) and in Japan (JAIST)3 have used off-the-shelf tools
for collaborating on shared tasks, adapting them to the
peculiar context of a social robotics research project.

III. COLLABORATIVE DEVELOPMENT STEPS

A. Definition of Software Components and Functional Ar-
chitecture

Within the first two months of CARESSES (M1-M2),
the global functional architecture of the system, with the
analysis of the principal software modules and the message
exchanged between them, has been defined. The functional
architecture has been built starting from scenarios prepared
by CARESSES Transcultural Nursing experts, psychologists
and Health-Care professionals4, describing daily routines of
older persons and the kind of assistance they may receive
from a robot companion5.

As mentioned in Section II, the functional software ar-
chitecture of CARESSES is based on three modules: the
Cultural Knowledge Base (CKB), the Cultural Sensitive
Planner and Execution Module (CSPEM) and the Culture-
Aware Human-Robot Interaction Module (CAHRIM).

1) CKB: It contains a-priori general knowledge about
each cultural group and specific knowledge about the user,
which is built partly at set-up and partly through the inter-
action with the person (inputs from CAHRIM). Knowledge
is stored in the form of an ontology (a formal naming and
definition of the types, properties and interrelationships of
the entities that exist for a particular domain of discourse
[8]), complemented with probabilistic information in the
form of a Bayesian Network (to merge generic cultural
knowledge at a national level with individual preferences,
thus avoiding stereotyped representations). Thanks to the
information stored in the ontology, CKB provides CSPEM
with information about the available (and preferred) planning
and action operators, goals, norms, habits, beliefs, values,
etc., each possibly depending on the person’s cultural group
as well as on her individual preferences.

2) CSPEM: It computes the plan for the robot to reach
its goals and sends the request for actuating the plan to
CAHRIM, based on the cultural information received by
CKB and additional messages provided by CAHRIM (i.e.
the current state of the robot, the user and the environment,
as well as user requests).

3CARESSES includes another robotic partner, i.e., Chubu University,
Japan. The integration of software components provided by this fifth partner
starts in the second year of the project

4Middlesex University, UK; Nagoya University, Japan; Advinia Health-
Care, UK

5http://caressesrobot.org/en/2018/03/08/
caresses-scenarios-and-guidelines-available

http://caressesrobot.org/en/2018/03/08/caresses-scenarios-and-guidelines-available
http://caressesrobot.org/en/2018/03/08/caresses-scenarios-and-guidelines-available


3) CAHRIM: It is responsible for the interaction between
the user and the robot and controls the robot and the smart
environment. It receives from CSPEM requests to execute
verbal or sensorimotor actions, and it returns information
(possibly related to cultural factors) to update CKB about
the person’s goals, habits, beliefs, values, and preferences.
From a functional point of view CAHRIM can be seen as
split in different software blocks, including the management
of the robot and of the smart environment.

Figure 2 shows the three modules of the CARESSES
architecture, and the messages exchanged between them.
Different CARESSES partners are responsible for the de-
velopment of the three components above, thus making
things more complex: University of Genova for CKB, Örebro
University for CSPEM, JAIST, SoftBank Robotics, Chubu
University for CAHRIM.

B. Selection of the middleware

The next step (months M3-M4) has been related to the
definition of a middleware in order to allow the three
modules to exchange information, to acquire information
from sensors, and to control devices in the environment. To
this aim, an analysis of the state-of-the-art frameworks has
been carried out, starting from the required characteristics:
• Resources scalability (to comply with devices with

limited computational and power resources);
• Interoperability (to support heterogeneous devices);
• Devices scalability (to retain good performance even

with a large number of devices connected);
• Mobility (to allow for devices to change their location,

thus possibly leading to a reconfiguration of the net-
work, while being connected to the others);

• Heterogeneity abstraction (to hide lower-level complex-
ity from higher-level);

• Modularity (to make the middleware itself more flexible
and maintainable);

• Adaptability (to deal with random and unpredictable
changes, e.g., portions of the network suddenly becom-
ing unavailable);

• Security and privacy (to protect the data shared over the
network from being accessed by unauthorised applica-
tions);

• Tools and algorithms (to solve typical robotic problems
wasting resources on problems that have been already
faced by the community);

• Real-time and efficiency (to guarantee compliance with
real-time constraints related to software, hardware and
communication mechanisms).

In the past decades, many middleware for robot control
with some of the required characteristics have been de-
veloped. For the sake of brevity, the reader is referred to
complete surveys of robotics software frameworks such as
[9], [10]. Here it will be only remarked that, among all
possible frameworks, universAAL [11] (uAAL) has been
chosen for the CARESSES architecture, being one of the
most widespread open software platforms for smart en-
vironments. In particular, it has been preferred to more

popular frameworks such as ROS [12] in this context since it
has been specifically designed for Ambient Assisted Living
applications in smart homes6. Given these premises, it is
a good candidate to become a standard for the develop-
ment of assistive solutions in smart ICT environments that
include distributed and wearable sensors, devices, robots,
and multimodal user interfaces. Moreover, it meets almost
all the requirements listed before (except Tools and algo-
rithms and Real-time, that however are not mandatory for
the CARESSES purposes) and it implements three different
communication policies: Publish/subscribe, Service-oriented
architecture and Semantic ontology approaches.

Being an ontology-based middleware, uAAL allows de-
signers to describe the semantics of the exchanged messages
in a unique, machine understandable, way.

C. Messages for Inter-Module Communication

As already mentioned, the three CARESSES components
exchange messages with each other: categories of exchanged
messages are depicted in Figure 2, and briefly listed below.
• D1. Planning info. Required information to generate

a plan depending on the cultural context (CKB to
CSPEM).

• D2. Actions and Topics. Required information to execute
actions and switch to the desired conversation topics
depending on the plan and the cultural context (CKB to
CSPEM).

• D3. Cultural Norms and Preferences. Constraints or
preferences on the admissible states (CKB to CSPEM).

• D4. Goals. Persistent goals that are stored in the Cul-
tural Knowledge Base (CKB to CSPEM).

• D5. User input. Inputs acquired through speech recog-
nition and through the robot’s tablet (CAHRIM to CKB
and CSPEM).

• D6. Current State. Current state of the user, the envi-
ronment and the robot (CAHRIM to CSPEM).

• D7. Action and topic request. Actions to be executed
(CSPEM to CAHRIM).

• D8. User habit - personality. Detected user habits,
preferences or personality traits (CAHRIM to CKB).

To enable modules developed by different researchers to
exchange message with a shared semantics (i.e., to avoid
ambiguity in the format and interpretation of messages), a
handbook describing the type, subtypes, and format of all
messages in details has been prepared as a support to the
functional architecture (months M3-M4) and made available
to developers. Also, based on the universAAL framework and
its ontology-based communication mechanisms, a “software
skeleton” has been prepared (Figure 2 below). The software
skeleton includes the uAAL communication buses as well
as three mock-up modules CAHRIM, CKB, CSPEM: these
modules are initially empty, and can be used by researchers
as starting points to iteratively develop, test, and refine their

6universAAL has resulted from a consolidation process conducted
within the EU-FP7 project, http://universaal.sintef9013.
com/index.php/en/

http://universaal.sintef9013.com/index.php/en/
http://universaal.sintef9013.com/index.php/en/


Fig. 2. Above: CARESSES architecture. Below: implementation in uAAL. An additional fourth component, Echonet interface represents the framework
used by JAIST, one of the Japanese partners, for the management of the smart environment, integrated within the uAAL framework.

solutions, by guaranteeing that all the developed solutions are
integrated since the first months of the project. Even more,
the software skeleton constrains CAHRIM, CKB, CSPEM
to exchange only messages whose type is coherent with the
functional architecture.

D. Collaboration and integration tools

The process of software integration during the first year of
CARESSES has taken inspiration from the DevOps concept,
i.e., the boost to fuse together software development (Dev)
and software operation (Ops), whose techniques have been
mainly applied to the IT commercial domain. In particular,
some of the main methodologies descending from the De-
vOps concept are:

1) Continuous Integration: Continuous Integration (CI)
is a software development practice consisting mainly in
frequent, possible daily, integration of the work of the single
developer (ideally this practice leads to multiple integrations
per day) [2], [13]. This methodology is based on some key
practices [14], among which the most relevant are the usage
of a single source repository, tools for automated builds and
tests, daily commits to the repository.

The idea underlying CI is that the process of integrating
software on a daily basis, without using different branches
and by exploiting tools for automated builds and tests can
greatly help in reducing risks of deferred integration, in de-
tecting bugs and in having frequent deployments, increasing
therefore the link between customers and developers.

Obviously it requires a quite experienced team and some
time for getting acquainted with the tools and procedure.

2) Continuous Delivery: Continuous Delivery (CDE) ex-
tends the concept of CI, focussing on the practice of fre-
quently delivering quality software [15]. To this aim, the
application should be always in a production-ready state,
after successfully passing automated tests and quality checks.
Among its key concepts, the most important are the imple-
mentation of a good branching strategy for software reposi-
tories and the usage of distributed testing infrastructures.

Some of the key aspects of the methodologies described
before have then been adopted for software integration within
the project, taking into account the peculiar characteristics of
a joint scientific research project with respect to an IT com-
mercial project (e.g. different backgrounds and experience of
the developers involved, absence of real customers). Among



Fig. 3. Gitflow workflow.

the key concepts adopted, the integration of software starting
from the early stage, the usage of a single source repository,
periodic commits, delivery of releases (this corresponds to
the implementation of integrated demos) and the adoption
of a multi-branching strategy follow the DevOps general
guidelines.

Going more into details, the developed software has been
shared among CARESSES partners since the beginning of
the project through a Git repository, set up on GitLab. The
software repository’s organization has been structured to
reflect the CARESSES software’s architecture, with a hier-
archical organization considering the three modules CKB,
CSPEM, CAHRIM and a folder for universAAL compo-
nents. Additionally, the repository contains a folder to host
the documentation and the auxiliary files which are needed to
run the official, past and upcoming, demos. The idea is that
everything, including third party libraries and install scripts,
should be added to the repository, so that anyone should be
able to fully build the system, even on a virgin machine, by
simply doing a checkout from the repository.

In order to successfully work on the same shared software
hosted on the repository, a standard unique workflow, based
on a multi-branching strategy, to be followed by all partners
has been adopted: the Gitflow workflow [16].

In the Gitflow workflow (Fig. 3), two main branches are
present: master and develop. The master branch stores the
official release history, and the develop branch serves as
the testbed for new features and functionalities. To work
on new features, each developer must fork a feature branch
from develop. Each new feature should reside in its own
branch, which can be pushed to the shared repository for
backup/collaboration. When a feature is complete, the devel-
oper merges the feature branch into develop and tests whether
the newly added feature works properly or not. Once develop
has acquired enough features for a release (integrated demo)
and each developer has tested and documented the new
features they have developed, a release branch is forked
from develop. On the release branch, all the partners test
the whole software but no new features can be added (only
bug and documentation fixes). Once the software is ready and

working, the release branch is merged into master and the
commit is tagged with a version number. In addition, release
is merged into develop. A multibranch-based workflow such
as the one used enables to split out the development as
per specific features, keeping the master branch safe while
working on single code aspects.

A Wiki has been created in the software repository to host
the necessary documentation (guidelines and tutorials), to
sum up the goals expected in each demo and to officially
report the testing-state of the ongoing integrated demo.

However, adopting common guidelines to work on the
same repository is not sufficient to successfully collaborate
on the development of the same software. Therefore, impor-
tance has been given to the use of specific communication
channels in order to help developers in easily discuss and
take low-level decisions. To this aim, Slack7, a set of team
collaboration tools meant for organizational communication,
has been adopted and used, for example, to share pieces
of code and architecture schemes, give feedbacks, notify
about software components updates and give more detailed
explanation on specific developed features by exploiting the
topic-oriented multichannel strategy.

Finally, in order to foster the integration activities, two
integrated demos have been planned during the first year (in
July 2017 – M7, and November/December 2017 – M11/12),
with an increasing number of features.

E. Design of the integrated demos

As mentioned before, two integrated demos (software
releases) have been planned and implemented during the first
year of the project.

1) Demo 1 (June 2017): The first demo has been mainly
focused on testing the data exchange through the uAAL
framework, by purposely ignoring the specific objectives of
CARESSES (achieving a culturally competent robotic be-
haviour). Thus, with the main purpose of testing the process
for collaborative software development and integration, the
following three tasks have been planned:

7https://slack.com/

https://slack.com/


• Approach the user and greet him/her (the task does not
imply interaction with the user or with the environment);

• Approach the user and propose him/her to place a video
call (the task implies only interaction with the user);

• Approach the user and let him/her ask for the room
temperature, retrieved with sensors in the environment
(the task implies interaction with the user and with
sensors in the environment).

The demo has been carried out with a limited set of
actions, that are available to CSPEM for planning and im-
plemented in CAHRIM for execution: ApproachUser, Gree-
tUser, PlaceVideoCall, ListenUserRequests and SayTemper-
ature. All tasks require a strict integration between the three
CARESSES components. Let us analyze for instance the first
task. At the beginning, CSPEM (developed by Örebro Uni-
versity) requires messages of type D1 and D2 (i.e. available
planning operators and actions) from CKB (developed by
University of Genova); then, after a while, CKB sends a
message of type D4 (current goal: Greet the user - now).
Once received the goal, CSPEM computes a plan made
of two actions: ApproachUser and GreetUser and sends a
message of type D7 on the uAAL bus. The message is
received by CAHRIM that executes the action ApproachUser
(developed by JAIST), while periodically sending a message
D6 (the action execution state) through the uAAL bus. As
soon as the message D6 notifies that the action has been
executed, the planner sends a second message D7 with the
second action to be executed (GreetUser). Again CAHRIM
executes the action, sending periodic information to CSPEM,
and notifying the end of the action. Finally CSPEM declares
that the goal Greet the user - now has been reached and
waits for another goal or user requests. For all tasks, UML
Sequence Diagrams have been prepared and made available
to all partners in the common repository.

The other two tasks have been implemented in a very
similar way. However, the third task requires also communi-
cation between CAHRIM and a module for the management
of temperature sensors (which - in our case - require bridging
universAAL with the iHouse ECHONET environment, a
duplex apartment at JAIST fully embedded with sensors and
actuators (Fig. 2) [17]).

2) Demo 2 (December 2017): The second demo has been
mainly focused on (i) adding cultural aspects, and on (ii)
increasing the number of actions available for planning and
execution

In relation to point (i), the CKB has been populated by
encoding culturally competent behaviours related to three
reference cultures considered in the project: English, Indian
and Japanese (thus, the demo can be executed by simulating
persons belonging to these three different nationalities). More
specifically, the core of the CKB encodes elements that
may play a key role in socially assistive robotic scenarios:
in relation to the three different culture, different goals
to be suggested, different actions with different parameters
(e.g., distance from the person during interaction, navigation
speed, volume), different norms, and finally conversation
topics with different sentences and likeliness values (i.e.,

Fig. 4. General scheme of the second Integrated demo.

representing the probability that a person belonging to a
specific culture may have a positive attitude towards that
topic of conversation).

Please notice that all this information have been encoded
at a general cultural level: this means that, in absence
of person-specific knowledge, the robot will presume that
information generally valid for a culture holds for the specific
person. However, to avoid stereotyped representations, it will
always ask the person for confirmation: as soon as the robot
acquires specific knowledge (through observation or verbal
interaction), it will create new instances in the ontology that
will be used as new references for the interaction8.

Regarding (ii), the demo has been modelled as a state
machine with three phases (Fig. 4):
• Waiting. The robot waits for somebody to enter the

room. When the robot detects a person and/or a person
asks the robot that he/she wants to start the interaction,
the robot switches to the state Accepting request.

• Accepting Request. The robot is waiting for requests,
that can either be given through verbal interaction or
through the robot’s tablet. If the user makes a request,
the robot switches to the state Achieving Goal. Other-
wise, if the user does not make any request for a long
time, or says explicitly that he/she wants to terminate
the interaction, the robot switches to the state Waiting.

• Achieving Goal. The robot performs the sensorimotor
and verbal actions required to achieve the goal. After
achieving the goal, the robot goes back to the state
Accepting Request.

Moreover, in order to enrich the interaction with the
user, new actions have been added to the system (once
again, planning info are initially sent by CKB to CSPEM
as messages of type D1 and D2; actions are executed by
sending proper messages of type D7 to CAHRIM; a feedback
to CSPEM about the current system state is sent back as a
message of type D6):
• Chitchat (developed by University of Genova). Please

remind that the CKB stores possible conversation topics,
together with keywords that trigger the dialogue, sen-
tences and questions that the robot may say and finally
likeliness values for each considered culture. All these

8Elements that are culturally relevant have been defined in accordance to
the guidelines provided by Transcultural Nursing experts, note 5.



elements and the hierarchical organization of the ontol-
ogy allows the robot to follow some basic strategies for
a more involving dialogue pattern. For instance, if an
English man says something about sport, the robot will
probably ask him if he likes sport and then (in case of
a positive answer) if he likes watching rugby or soccer
on TV (since these sports are very popular in the UK).
With the same rationale, when talking about food with a
Japanese person, the robot will initially assume that the
person prefers Japanese food and, upon confirmation,
it may ask something about ramen or sushi. Please
notice that this does not prevent an Indian person from
speaking about Japanese food or rugby, given that the
related triggering keywords are pronounced. During the
action, the robot acquires person-specific information
that update the CKB (messages D5).

• AcceptRequest (developed by SoftBank Robotics and
University of Genova). The robot acquires a request
from the user, using verbal interaction or through the
tablet. The most probable requests for each culture (or
for each individual, if this information is in the CKB)
are passed as cultural parameters, so that the robot can
suggest tasks it is ready to perform for the person in a
culturally competent way. When the person has selected
a goal, a message D5 encoding the user’s request is
produced and sent to CSPEM.

• Greeting (developed by SoftBank Robotics). Three ac-
tions have been implemented: GreetByWaving (the robot
waves the hand), GreetNamaste (the robot makes the
Namaste gesture) and GreetBow (the robot bows). When
the robot has to greet the person, one of them is selected
by taking cultural information into account.

• SetReminder (developed by University of Genova) The
action includes a dialogue pattern to set the task and
the time of the reminder. Then it generates a proper
message D5 that is received by CSPEM to produce a
proper goal to be performed in the future (notice that
this information may also be stored in the CKB through
a message D8 as it corresponds to a habit). As for the
AcceptRequest action, the most probable goals to be
reminded for each culture are passed as parameters of
the action and used by the robot as suggestions for the
user.

• ApproachObject (developed by JAIST). The robot ap-
proaches the requested object by avoiding obstacles.

• PlayMusic (developed by JAIST). After a short dialogue
pattern for selecting the music genre, the robot plays
music on its tablet.

• ReadTemperature (developed by JAIST). The robot re-
trieves the temperature from sensors in the environ-
ment by communicating with the iHouse ECHONET
network, and displays / says its value.

• DisplayWeatherReport (developed by JAIST). The robot
displays on the tablet weather information streamed
from the Internet and reads them.

Please notice that adding a new action requires a high level

of integration of the system: indeed, new actions should be
modelled in the CKB (and linked to their cultural and formal
parameters), in CSPEM (described in the planner formalism
and associated to action operators) and in CAHRIM (with the
actual description of the sensorimotor behaviour necessary
for implementing the action). Thus, the integration approach
based on daily commits and branching strategy turned out to
be fundamental for the success of this integrated demo.

F. Practical Implementation

The two demos have been tested in four different locations
(University of Genova, Italy; Örebro University, Sweden;
JAIST, Japan; SoftBank Robotics, France), thus allowing
for obtaining a useful feedback on the software integration.
Since the developed system may allow the user to freely
interact with the robot (within the limits of the available and
feasible tasks), specific steps have been defined to guarantee
an equal execution of the demos in every location. As a
result, all partners have been able to execute the whole set
of actions, with their specific cultural parameters, through
verbal interaction with the robot, achieving an identical
behaviour in their home laboratories within the end of the
first project’s year.

Video footages of the experimental sessions have been
recorded and used as a very practical way to compare the
obtained results and bring out unforeseen differences (Fig.
5). An edited video, showing all partners interacting with the
robot as fictional English, Indian and Japanese characters is
attached to this article9.

IV. CONCLUSIONS

This article discusses the importance of a solid integration
strategy in the context of joint international research projects,
on the heels of common practices followed in the commercial
IT domain. As a case study, the CARESSES project and the
integration work performed since the beginning of the project
by the authors have been deeply described and analyzed.

Generally speaking, the successful design and implemen-
tation of two integrated demos shows that adopting a fully
collaborative approach since the early stages of the project
has clear advantages, even in a context different from the IT
commercial domain: (i) periodic releases of software that can
be therefore tested by all partners; (ii) immediate detection of
bugs and deviations from workplan; (iii) continuous refining
of the single software components.

Moreover, while automated tools for parallel testing have
not been used, the possibility of experimenting the whole
system in four different locations (University of Genova,
Italy; Örebro University, Sweden; JAIST, Japan; SoftBank
Robotics, France), with different hardware, helped signif-
icantly to define a minimum set of third-party software
components (that have been added to the common repository)
necessary for running both demos. Given the peculiar context
of a social robotic project, video footages of the experimental
sessions have been used not only as a tool for disseminating

9https://www.youtube.com/watch?v=QNkpjzwLri0

https://www.youtube.com/watch?v=QNkpjzwLri0


Fig. 5. Snapshots of the demonstrations, performed by all technical partners of the CARESSES project. Names and nationalities are simulated for the
demo purposes.

the results, but also as an internal method for evaluating the
overall performance across different locations.

On the other side, the implementation of such an approach
requires a not negligible amount of time for defining clear
guidelines, for getting all developers acquainted with the
methodology and for implementing some simple procedures
to test the system: it can be pointed out that this may
slow down the development of single software components.
However, this approach guarantees the compatibility of each
component with the others, since the interface with the rest
of the system is fully defined. This means that developers can
rely on a solid structure for future work, integrating features
without the risk of modifying big portions of the code for
integration purposes at the very end of the project.

ACKNOWLEDGMENT

This work has been supported by the European Com-
mission Horizon2020 Research and Innovation Programme
under grant agreement No. 737858, and from the Ministry
of Internal Affairs and Communication of Japan. The au-
thors acknowledge the contribution of other CARESSES
partners: University of Bedfordshire (UK), Middlesex Uni-
versity (UK), Advinia HealthCare, (UK), Nagoya University
(Japan).

REFERENCES

[1] Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration,
delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access, 5, 3909-3943.

[2] Fowler, M., & Foemmel, M. (2006). Continuous integration. Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf,
122, 14.

[3] David, V., Erik, B., Paul, H., Serge, T., & Tom, Z. (2015). An
Architecture-oriented Approach to System Integration in Collabora-
tive Robotics Research Projects. An Experience Report. Journal of
Software Engineering in Robotics, 6(1), 15-32.

[4] Bubeck, A., Weisshardt, F., Sing, T., Reiser, U., Hgele, M., & Verl, A.
(2012, December). Implementing best practices for systems integration
and distributed software development in service robotics-the Care-
O-bot R© robot family. In System Integration (SII), 2012 IEEE/SICE
International Symposium on (pp. 609-614). IEEE.

[5] Bruno, B., Chong, N. Y., Kamide, H., Kanoria, S., Lee, J., Lim, Y.,
... & Saffiotti, A. (2017). Paving the Way for Culturally Competent
Robots: a Position Paper. In 26th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN).

[6] I. Papadopoulos (2006). Transcultural health and social care: develop-
ment of culturally competent practitioners. Elsevier Health Sciences.

[7] Wang, L., Rau, P. L. P., Evers, V., Robinson, B. K., & Hinds, P. (2010,
March). When in Rome: the role of culture & context in adherence
to robot recommendations. In Proceedings of the 5th ACM/IEEE
international conference on Human-robot interaction (pp. 359-366).
IEEE Press.

[8] Guarino, N. (Ed.). (1998). Formal ontology in information systems:
Proceedings of the first international conference (FOIS’98), June 6-8,
Trento, Italy (Vol. 46). IOS press.

[9] Iñigo-Blasco P., Diaz-del-Rio, F., Romero-Ternero, M. C., Cagigas-
Muiz, D., & Vicente-Diaz, S. (2012). Robotics software frame-
works for multi-agent robotic systems development. Robotics and
Autonomous Systems, 60(6), 803-821.

[10] Recchiuto, C. T., & Sgorbissa, A. Post-disaster assessment with un-
manned aerial vehicles: A survey on practical implementations and re-
search approaches. Journal of Field Robotics. DOI: 10.1002/rob.21756

[11] Hanke, S., Mayer, C., Hoeftberger, O., Boos, H., Wichert, R., Tazari,
M. R., ... & Furfari, F. (2011). universAAL-an open and consolidated
AAL platform. In Ambient assisted living (pp. 127-140). Springer,
Berlin, Heidelberg.

[12] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
... & Ng, A. Y. (2009, May). ROS: an open-source Robot Operating
System. In ICRA workshop on open source software (Vol. 3, No. 3.2,
p. 5).

[13] Ståhl, D., & Bosch, J. (2014). Modeling continuous integration prac-
tice differences in industry software development. Journal of Systems
and Software, 87, 48-59.

[14] Meyer, M. (2014). Continuous integration and its tools. IEEE software,
31(3), 14-16.

[15] Pathania, N. (2017). Elements of Continuous Delivery. In Pro Contin-
uous Delivery (pp. 1-21). Apress, Berkeley, CA.

[16] Driessen V., A successful Git Branching model http://nvie.
com/posts/a-successful-git-branching-model/, Last
accessed on 2018-03-20.

[17] Lim, Y., Lim, S. Y., Nguyen, M. D., Li, C., & Tan, Y. (2017,
June). Bridging between universAAL and ECHONET for smart home
environment. In Ubiquitous Robots and Ambient Intelligence (URAI),
2017 14th International Conference on (pp. 56-61). IEEE.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

	INTRODUCTION
	The CARESSES project
	Collaborative Development Steps
	Definition of Software Components and Functional Architecture
	CKB
	CSPEM
	CAHRIM

	Selection of the middleware
	Messages for Inter-Module Communication
	Collaboration and integration tools
	Continuous Integration
	Continuous Delivery

	Design of the integrated demos
	Demo 1 (June 2017)
	Demo 2 (December 2017)

	Practical Implementation

	CONCLUSIONS
	References

