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SUMMARY 

 

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high 

blood sugar, insulin resistance, and relative insulin insufficiency. Being a life-long 

condition, T2DM exposes affected subjects to life-threatening sequelae, which 

typically arise one or more decades after disease onset, consisting of cardiovascular 

disease, stroke, and diabetic neuropathy, all sustained by the widespread damage to 

the microcirculation, caused by the metabolic derangement.  

The number of T2DM patients by 2035 is projected to reach 592 million people 

worldwide, rising concern among the National Health Care Institutions regarding the 

sustainability of health care to the increasing T2DM population. For this reason, a 

concerted effort is underway within the scientific community to meet the demand for 

innovative therapeutic and preventive strategies for T2DM treatment. While T2DM is 

a life-long condition, pre-diabetes is reversible: thus, pharmacological and life-style 

interventions aimed at preventing or delaying the progression of pre-diabetes to the 

overt disease are currently investigated. 

Interestingly, the plant hormone abscisic acid (ABA) has been recently identified as a 

new mammalian hormone involved in the regulation of glycaemia through its 

receptor LANCL2, paving the way to the potential use of ABA as a new therapeutic in 

diabetes. Among the currently utilized anti-diabetic drugs, GLP-1 mimetics reduce 

glycemia and also provide neuro- and cardio-protective effects, which are particularly 

advantageous in the diabetic patient.  

The aims of my thesis were the following: i) to investigate the functional cross-talk 

between GLP-1 and ABA in vitro and in vivo on a rodent whole-body perfusion model, 

and to investigate the possible neuroprotective role of ABA (I chapter); ii) to 

https://en.wikipedia.org/wiki/Hyperglycemia
https://en.wikipedia.org/wiki/Hyperglycemia
https://en.wikipedia.org/wiki/Insulin_resistance
https://en.wikipedia.org/wiki/Insulin
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investigate the role of the ABA/LANCL2 system in the regulation of glucose uptake, 

adipogenesis and adipocyte browning in rodent and human adipocytes (II chapter).  

Parts of the results described in the 1st and 2nd chapter of this thesis have been already 

published (Bruzzone S et al, Plos One 2015 and Sturla L et al, Biochim Biophys Acta 

2017). I performed all the experiments described in this thesis.  

 

[Bruzzone S, Magnone M, Mannino E, Sociali G, Sturla L, Fresia C, Booz V, Emionite L, De Flora A, 

Zocchi E. Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion from L-Cells and Its Oral 

Administration Increases Plasma Glucagon-Like Peptide-1 Levels in Rats. PLoS One. 2015]. 

 

[Sturla L, Mannino E, Scarfì S, Bruzzone S, Magnone M, Sociali G, Booz V, Guida L, Vigliarolo T, Fresia 

C, Emionite L, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Zocchi E. “Abscisic acid enhances 

glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo.” Biochim Biophys 

Acta. 2017]. 

 

  

https://www.ncbi.nlm.nih.gov/pubmed/26488296
https://www.ncbi.nlm.nih.gov/pubmed/26488296
https://www.ncbi.nlm.nih.gov/pubmed/27871880
https://www.ncbi.nlm.nih.gov/pubmed/27871880
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I CHAPTER 

 

1.0 Introduction 

 

1.1. Abscisic acid 

ABA is a phytohormone regulating several physiological responses in plants, such as 

seed dormancy, seedling development and tolerance to abiotic stress, including 

drought. ABA is an isoprenoid hormone (Fig. 1) and the naturally occurring 

enantiomeric form of ABA is (S)-ABA. The presence of ABA in animal tissues has been 

known since the 1980s [Le Page-Degivry et al, 1986]. Interestingly, in the last 10 years 

it has been demonstrated that ABA is present also in humans. Despite the kingdom-

specific signaling and biosynthesis, there are also commonalities between plants and 

animals where both plants and animals rely on intracellular free ABA for activation of 

their receptors [Klingler et al, 2010]. 

 

Fig. 1. Chemical structures of ABA 

 

In the animal kingdom, several cell types produce and respond to ABA : innate 

immune cells (granulocytes, microglia, monocytes and macrophages), in which ABA 

functions as a novel inflammatory cytokine [Bruzzone S et al, 2007] ; mesenchymal 

and hematopoietic stem cells, which are expanded by ABA via autocrine and 
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paracrine mechanisms [Scarfi S et al, 2009]; β- pancreatic cells, in which ABA induces 

synthesis and release of insulin (both glucose-independent and glucose-stimulated) 

[Bruzzone S et al, 2008 ]; skeletal muscle cells and adipocytes, which respond to ABA 

with increased glucose uptake due to GLUT4 translocation on the plasma membrane 

[Bruzzone S et al, 2012 (a]. The multiplicity of functional effects exerted by ABA in 

animal cells suggests that endogenous ABA dysfunction may play a role in numerous 

diseases, including diabetes, metabolic syndrome, inflammatory and autoimmune 

diseases, atherosclerosis, and also that administration of exogenous ABA through 

nutritional sources or as a drug might have therapeutic potential. 

 

1.2. The ABA signalling pathway  

ABA regulates cell growth, development and immune responses to various stimuli 

through a signalling pathway that is similar in plants and mammals. It has been 

demonstrated that lanthionine synthetase component C-like-2 (LANCL-2) is an ABA 

receptor. LANCL-2 is a member of the highly conserved and widely distributed 

lanthionine synthetase component C-like (LANCL) protein family. LANCL-2 is 

associated with the plasma membrane through N-terminal myristolation [Landlinger 

C et al, 2006], and it is coupled to a G-protein responsible for the activation of the 

ensuing signalling cascade. Indeed, following ABA-binding to LANCL-2, adenylyl 

cyclase (AC) is activated, with generation of cyclic AMP, PKA (protein kinase A) 

stimulation, activation of the ADP-ribosyl cyclase CD38, overproduction of the 

universal calcium mobilizer cyclic ADP-ribose (cADPR) and increase of the intracellular 

calcium concentration ([Ca2+]i); this signalling cascade has been demonstrated in 

granulocytes, monocytes and insulin-releasing cells [Bruzzone et al, 2007 and 2008; 

Magnone M et al, 2009]. The G-protein coupled to LANCL-2 was identified as Gi by its 

sensitivity to pertussis toxin (PTX) [Bruzzone S et al, 2007], and it has been 
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demonstrated that the βγ subunits of Gi are responsible for the activation of AC 

[Sturla L et al, 2009]. The signalling pathway activated by LANCL2 is shown in Fig. 2. 

Upon ABA-binding, LANCL2 also translocates into the nucleus [Fresia C et al, 2016]. 

Thus, LANCL-2 combines features typical of peptide as well as of steroid receptors, 

making it an unprecedented example among the hormone receptors family. (Fig. 2) 

 

 

Fig. 2. The ABA signalling pathway. 
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1.3. Type 2 diabetes mellitus 

Diabetes mellitus comprises type 1 diabetes (T1DM) and type 2 diabetes (T2DM). T1D 

is characterized by absolute insulin deficiency, whereas insulin resistance 

characterizes T2DM. T1DM is caused by the autoimmune destruction of pancreatic 

insulin-producing -cells, while T2DM is caused by relative insulin deficiency due to 

insulin resistance. T2DM is indeed a complex chronic endocrine and metabolic 

disorder and the number of people with T2DM is significantly increasing in developing 

as well as in rich countries. It is estimated that in 2030 439 million people will be 

affected by T2DM [Chamnan P et al, 2011], with the principal risk factors depending 

on genetic predisposition sedentary lifestyle, hypercaloric diet and consequent 

obesity [Kielgast U et al, 2009; Knop FK et al, 2009].  

Pancreatic insulin and glucagon are the primary regulators of blood glucose levels. 

Insulin is produced in -cells and glucagon in α-cells, all arranged in the endocrine 

islets of Langerhans [Cabrera O et al, 2006]. Insulin signals that blood glucose is higher 

than necessary, stimulating cells to take up excess glucose for storage and to convert 

it into glycogen (liver and muscle tissue) or triacylglycerols (adipose tissue) [Saltiel AR 

et al, 2001]. Glucagon signals that blood glucose is too low, stimulating hepatic 

glucose production through glycogenolysis and gluconeogenesis [Gromada J et al, 

2007]. When glucose enters the systemic circulation, insulin secretion is increased 

and glucagon secretion is decreased. 

The pathophysiology of T2DM is caused by both -cell dysfunction and insulin 

resistance. The -cells are still capable of producing insulin but do not respond 

appropriately to elevated blood glucose causing relative insulin deficiency. Target 

tissues have a decreased insulin sensitivity and thus become “insulin resistant”, this 

term denoting a condition where excess insulin is required to achieve glycemic 

control. The decline in β-cell function of T2DM patients is attributed to chronic 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chamnan%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20622160
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hyperglycaemia, chronic exposure to non-esterified fatty acids, oxidative stress, 

inflammation, and amyloid formation. Patients with T2DM also have a pancreatic α-

cell dysfunction that results in increased (or not suppressed) glucagon secretion in the 

presence of hyperglycaemia [Sakurai H et al, 1974; Holst JJ et al, 2008] and probably 

a reduced post-prandial GLP- 1 secretion. [Olokaba AB et al, 2012]. 

Glucagon-like peptide 1 (GLP-1) is an incretin hormone, produced by the intestinal 

epithelial endocrine L-cells. GLP-1 is derived from proglucagon, and proteolytic 

cleavage of the first six residues results in the biologically active peptide, GLP-1 (7–

36) amide. GLP-1 is secreted in the bloodstream in response to nutrient intake, 

especially in response to meals high in fats and carbohydrates [Baggio LL et al, 2007], 

and is rapidly inactivated by the circulating peptidase DPP-IV (dipeptidyl peptidase 4) 

in vivo. One of the actions of GLP-1 is to stimulate insulin release from beta cells. 

 

1.4. ABA in glycemia control  

In the past 10 years several studies were performed, both in vitro and in vivo, to 

evaluate the possible use of ABA in the treatment of T2DM. Starting from the fact that 

the second messengers involved in ABA signalling, cAMP and cADPR, are known to 

play a role in the signalling pathway leading to glucose-induced insulin secretion and 

that acute physical stress induces hyperglycemia, a condition which leads to increased 

plasma ABA levels [Bruzzone S el al, 2012 (a], it was hypothesized that ABA might be 

involved in glycemia homeostasis and possibly in its dysregulation as well.  

Indeed, ABA potentiates glucose-induced insulin release and stimulates glucose-

independent insulin secretion from insulinoma cells and from murine and human β 

pancreatic islets. Furthermore, in these cell types, ABA activated the same signalling 

pathway shown in Fig. 2. These results were the first demonstration that ABA is an 
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endogenous stimulator of insulin secretion in human and murine pancreatic cells. 

[Bruzzone S et al,2008]. 

Furthermore, a study conducted by Guri AJ [Guri AJ at el, 2008] provided the first 

evidence in vivo that dietary ABA intake improves glucose tolerance in obese db/db 

(leptin receptor-deficient) mice fed a high fat diet. Indeed, ABA was shown to have a 

similar efficacy as thiazolidinediones (TZDs), and to increase the expression of PPAR γ 

in a mouse model of diet-induced diabetes [Guri AJ et al, 2008]. 

Beside stimulating insulin release from pancreatic β- cells, ABA exerts other effects 

impacting on glucose homeostasis. In vitro experiments with murine adipocytes and 

rat myoblasts demonstrated that nanomolar ABA stimulates glucose uptake via an 

increased translocation of the glucose transporter 4 (GLUT-4) to the 

plasmamembrane [Bruzzone S el al, 2012 (a]. Moreover, Bruzzone showed that 

plasma ABA (ABAp) increases after oral glucose load (OGTT) in normal subjects, and 

found a positive correlation between the ABA area under the curve (AUC) and the 

glucose AUC [Bruzzone S et al, 2012 (a]. The increase of ABAp in response to 

hyperglycemia is impaired in subjects with T2DM and in women with gestational 

diabetes (GDM) [Ameri P et al, 2015]. GDM is a glucose intolerance with onset during 

pregnancy and, unlike T2DM, it is a reversible condition. Indeed, restoration of normal 

glucose tolerance after childbirth was accompanied by normalization of the ABAp 

response to hyperglycemia [Ameri P et al, 2015]. GMD and T2DM subjects have in 

common the impairment of the response of ABAp to hyperglycemia compared with 

normal glucose-tolerant controls, suggesting a causal role of defective endogenous 

ABA in glucose intolerance. 

Finally, an in vivo study has demonstrated that microgram amounts of ABA improve 

glucose tolerance without increasing insulinemia in rats and in healthy humans 

undergoing an OGTT compared with the untreated controls [Magnone M et al, 2015]. 
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Altogether, these results indicate that ABA has a beneficial effect on glycemic control 

and that a dysfunctional endogenous ABA response to hyperglycemia occurs in 

diabetes mellitus.  

Interestingly, little or no increase of ABAp was observed in healthy subjects, when 

glucose was administered intravenously (IVGTT) instead of orally, suggesting a role 

for incretins in stimulating endogenous ABA release [Bruzzone S et al, 2012 (a]. 

 

1.5. ABA and GLP-1 may be functionally intertwined 

The latest therapeutic strategies for the treatment of TD2M are based on incretins, 

either with drugs mimicking the effects of GLP-1 (GLP-1 mimetics) or with drugs 

preventing the hydrolysis of circulating endogenous GLP-1.  

The main actions of GLP-1 are to stimulate insulin secretion, to inhibit glucagon 

secretion, to delay gastric emptying, and to signal satiety in the central nervous 

system, thereby contributing to the reduction of postprandial glucose excursions. In 

T2DM, the loss of the incretin effect mainly reflects a reduced GLP-1 potency and an 

impaired secretion of GLP-1: pre-prandial administration of GLP-1 reduces plasma 

glucose and improves glucose tolerance [Todd JF et al, 1997]. 

In contrast to other insulinotropic agents, the insulinotropic effect of GLP-1 depends 

on hyperglycemia, allowing blood glucose normalization without the risk of 

hypoglycemia [Nauck MA et al, 1993]. However, due to its short circulating half-life, 

native GLP-1 is ill-suited for chronic therapy [Baggio LL et al, 2007]. The short half-life 

(1–2 min in humans) results from DPP4-mediated proteolysis, which rapidly removes 

the N-terminal dipeptide, inactivating GLP-1. A single GLP-1 dose, therefore, results 

in only a limited, short-lasting increase in insulin secretion and a correspondingly brief 

effect on the plasma glucose concentration [Holst JJ et al, 2009]. Two strategies have 

been developed to address this problem in the treatment of T2DM: 1) treatment with 
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synthetic GLP-1 receptor agonists that are resistant to degradation by DPP4 (“incretin 

mimetics”) or 2) protection of endogenous GLP-1 (and GIP) by inhibition of DPP4, 

whereby the effect of GLP-1 will be prolonged (DPP4 inhibitors – “incretin 

enhancers”) [Knop FK et al, 2009; Holst JJ et al, 2009]. 

Two lines of evidence suggest a functional cross-talk between endogenous ABA and 

GLP-1: i) as mentioned above, ABAp increases in healthy subjects after on oral, but 

not after an intravenous glucose load, which does not induce release of endogenous 

GLP-1 [Bruzzone S et al,2012 (a]; ii) GLP-1 stimulates ABA release from rat insulinoma 

cells and from human pancreatic islets, by ∼10- and 2-fold in low and high glucose, 

respectively [Bruzzone S et al, 2012 (a].  

 

1.6. Diabetes and cerebrovascular disease 

In the past 20 years, a dramatic increase in the prevalence of T2DM is being observed, 

which has been attributed to the increase in the prevalence of obesity. T2DM causes 

extensive microvascular and macrovascular damage, often resulting in 

cerebrovascular complications, including stroke and cognitive impairment. Moreover, 

diabetic neuropathy is a complication of diabetes that may affect the nervous system. 

This pathological condition results in part from the microangiopathy, and in part from 

the direct effect of hyperglycemia on neurons [ Katona I et al, 2017]. 

Indeed, the prevalence of Alzheimer’s disease and of vascular dementia is also on the 

rise, and T2DM is an established risk factor for both conditions [Riederer P et al, 2017]. 
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1.7. eNOS and nitric oxide  

Nitric oxide (NO) acts as a neurotransmitter and is involved in a variety of 

physiological processes in the brain, such as control of cerebral blood flow, 

interneuronal communications, synaptic plasticity, memory formation, receptor 

functions, intracellular signal transmission. NO is synthesized from L-arginine by nitric 

oxide synthase (NOS). Cerebral blood flow needs to be strictly regulated because the 

cerebral circulation supplies oxygen to the brain tissue and neuronal activation 

requires large amounts of metabolic energy [Moncada S et al, 1991]. 

Three isoform of NOS are present in the human body: endothelial nitric oxide 

synthase (eNOS), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide 

synthase (iNOS) [Toda N et al, 2009]. eNOS is expressed in the vascular endothelium 

and choroid plexus. NO derived from eNOS plays a key role in preserving and 

maintaining the brain’s microcirculation [Toda N et al, 2009]. 

Interestingly, ABA has been shown to stimulate NO production in different cell types, 

including the microglia, human granulocytes and keratinocytes [Bruzzone S et al, 2012 

(b and 2007; Bodrato N et al, 2009]. 

 

1.8. ABA in the brain 

In 1986, Le Page-Degivry [Le Page-Degivry et al, 1986] published the first evidence 

that ABA is present in the mammalian brain. This observation was obtained by using 

a very specific radioimmunoassay in brains of pigs and rats. 

Thirty years later, Sanchez-Sarasua [Sanchez-Sarasua et al, 2016] showed that ABA 

can cross the blood brain barrier, that it has a protective effect against 

neuroinflammation caused by a high fat diet and that it restores cognitive function. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Le%20Page-Degivry%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=2937056


20 
 

Chronic treatment with ABA in rats showed a beneficial antidepressant effect, which 

was attributed to the molecular structural similarities between ABA and retinoic acid 

[Qi CC et al, 2014]. 

Presence of ABA in the brain, together with the observation that the hormone can 

stimulate NO synthesis in innate immune cells, including microglia, suggests a possible 

role of ABA as an endogenous stimulator of NO production in the brain.  
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2.0 Aims of this study 

In the past 10 years, ABA has been demonstrated to be involved in the regulation of 

glycemia in mammals. Indeed, ABA is released by human and murine pancreatic β- 

cells, an oral glucose load increases plasma ABA in healthy human subjects, ABA 

stimulates glucose uptake by rodent adipocytes and myoblasts and oral ABA intake 

improves glucose tolerance in rodents and in healthy humans. Moreover, GLP-1 

stimulates ABA release from an insulinoma cell line and from human islets and 

indirect evidence points to the possible stimulation of ABA release by incretins in vivo 

in humans.  

One aim of this study was to investigate the possible cross-talk between ABA and GLP-

1, to elucidate a possible role of ABA in mediating the functional effects currently 

ascribed to GLP-1. 

In particular, the first objective of this thesis was to investigate whether ABA affects 

GLP-1 secretion in vitro, using enteroendrocrine cells, and in vivo, on rodents.  

Another aim of this study was to investigate the effect of ABA on the release of insulin 

and of GLP-1 in a perfused organ system, which allows to directly apply ABA to the 

target cells in vivo, via the circulatory system.  

Finally, based on the observation that ABA induces NO release from microglia, we 

hypothesized a neuroprotective role for ABA, via stimulation of NO production. 

Dysregulation of ABA function in T2DM might thus be responsible for both the 

impaired glucose tolerance (via reduced insulin and GLP-1 release) and the increased 

risk of neurological damage (via the impairment of neuroprotective NO generation). 

A third aim of my thesis was to investigate the effect of ABA on NO production and 

cell survival to hypoxia in the neuroblastoma cell line N2a as a model of neuronal cell. 
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3.0 Materials and Methods 

 

3.1. In vitro and in vivo effects of ABA on GLP-1 release from L-cells 

3.1.1. hNCI-H716 cell culture and GLP-1 secretion studies 

The human L cell line hNCI-H716, derived from a poorly differentiated 

adenocarcinoma of the cecum, was obtained from the American Type Culture 

Collection (Manassas, VA). Cells were grown in suspension in RPMI-1640 (Sigma, 

Milano, Italy), supplemented with 10% fetal bovine serum (FBS), 50 U/ml penicillin 

and 50 μg/ml streptomycin. 

For GLP-1 secretion assays, a protocol similar to the one described in [Reimer RA et 

al, 2001] was followed: briefly, hNCI-H716 cells were seeded on Matrigel matrix 

(Becton Dickinson, Bedford, MA), at the density of 2x105cells/well in 24-well plates, 

in DMEM medium supplemented with 10% FCS, 50 U/ml penicillin, and 50 μg/ml 

streptomycin. After 48 h, cells were washed in Hank’s Balanced Salt Solution (HBSS) 

and then incubated for 2 h in Krebs Ringer Hepes buffer (KRH buffer: 130 mM NaCl, 5 

mM KCl, 1.3 mM CaCl2, 25 mM HEPES, 10 mM Na2HPO4, 1.3 mM MgSO4, 0.2% BSA), 

in the presence or absence of the different treatments: glucose (200 mM), or 

glutamine (10 mM), or ABA (0.1, 10 or 200 μM). 

After treatment, medium and cells were collected separately: GLP-1 content in the 

supernatant was analyzed by GLP-1 Total ELISA Kit (Merck Millipore, Vimodrone, MI, 

Italy); total protein content in cells was analyzed by Bradford assay (Bio-Rad, Milano, 

Italy). 
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3.1.2. Quantitative real time-PCR 

Total mRNA was extracted from hNCI-H716 using Qiazol (Qiagen, Milan, Italy) 

according to the manufacturer's instructions. Quality and quantity of RNA were 

analysed using a NanoDrop spectrophotometer (Nanodrop Technologies, 

Wilmington, DE). The cDNA was synthesized by the iScriptTM cDNA Synthesis Kit (Bio-

Rad, Milan, Italy) starting from 1 μg of total RNA. PCR primers were designed through 

Beacon Designer 2.0 Software and their sequences were as indicated in Table 1. 

Table 1. Primers 

Human gene Sequence, 5’-3’ 

GLP-1 Forward GCTGAAGGGACCTTTACCAGT 

Reverse CCTTTCACCAGCCAAGCATG 

GLUCAGON Forward ATTCACAGGGCACATTCACCA 

Reverse GGTATTCATCAACCACTGCAC 

ACTIN 

 

Forward GCGAGAAGATGACCCAGATC 

Reverse GGATAGCACAGCCTGGATAG 

HPRT-1 

 

Forward GGTCAGGCAGTATAATCCAAAG 

Reverse TTCATTATAGTCAAGGGCATATCC 

 

qPCR was performed in an iQ5 real-time PCR detection system (Bio-Rad) using 2× iQ 

Custom Sybr Green Supermix (Bio-Rad). Values were normalized on mRNA expression 

of human β-actin and HPRT. Statistical analysis of the qPCR was performed using the 

iQ5 Optical System Software version 1.0 (Bio-Rad) based on the 2– Ct method 

[Sturla L et al, 2009]. The dissociation curve for each amplification was analysed to 

confirm absence of unspecific PCR products. Experiments were repeated three times 

in triplicate. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/table/pone.0140588.t001/
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3.1.3. Measurement of the intracellular cAMP concentration 

hNCI-H716 cells were seeded at the density of 5x105/well in 12-well, Matrigel matrix-

coated plates. After 24 h, cells were washed with HBSS, pre-incubated for 10 min in 

HBSS containing 10 μM IBMX, an inhibitor of phosphodiesterases, and then 

stimulated with 10 mM glutamine or 200 μM ABA for 2.5 and 5 min. 

The supernatant was removed and cells were lysed in 0.6 M PCA. Intracellular cAMP 

content was evaluated by EIA (Cayman, Ann Arbor, MI, USA) on neutralized extracts 

[Moreschi I et al, 2006]. 

 

3.1.4 Vector construction 

The full length LANCL2 cDNA was amplified by PCR using cDNA obtained with reverse 

transcription of total RNA from human granulocytes and using the following 

primers: 5’-CACCATGGGCGAGACCATGTCAAAG-AG-3’(forward);  

5’ATCCCTCTTCGAAGAGTCAAGTTC-3’(reverse). 

The PCR was performed in 25 μl containing undiluted reaction buffer, 200 μM dNTP, 

5 pmol of primers and using 1.25 U of Herculase HotStart DNA polymerase. The PCR 

reaction profile was 1 cycle at 94°C for 2 min, 35 cycles at 94°C for 15 s, 62°C for 30 s 

and 72°C for 1 min with a final extension for 5 min at 72°C. The PCR product was 

purified with Nucleospin® Extract Kit (Macherey-Nagel) and cloned into pcDNA3.1/V5-

His-TOPO©. This vector allows the synthesis of the recombinant protein as a C-

terminal fusion to the V5 epitope and a Histidine tag. The LANCL2 plasmid was 

purified using PureLink™ HiPure Plasmid Filter Kit (Invitrogen) and sequenced by 

TibMolbiol (Genova, Italy). 
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3.1.5. LANCL2 overexpression 

hNCI-H716 cells were transfected in parallel with pcDNA3.1(+) (control plasmid) or 

with the plasmid containing the full-length LANCL2 cDNA, LANCL2-pcDNA3.1(+) 

(LANCL2 plasmid). Transient transfection of hNCI-H716 cells (1.5x106) was performed 

using the Nucleofector System (Amaxa GmbH, Köln, Germany), program X-005, 

solution T, with 3 μg LANCL2-plasmid or control plasmid. hNCI-H716 cells were then 

resuspended in DMEM and seeded in Matrigel-coated 24-well plates. Experiments 

were performed 48 h after transfection. 

 

3.1.6. Western blot analysis 

hNCI-H716 cells (2.5x105) were lysed in 50 μl HES lysis buffer (20 mM Hepes, pH 7.4, 

1 mM EDTA, 250 mM sucrose) containing a protease inhibitor cocktail (Sigma), and 

LANCL2 expression was analyzed by Western blot, using a monoclonal antibody 

against LANCL2 [Vigliarolo T et al, 2015]. LANCL2 expression was normalized on 

vinculin levels, detected with a goat polyclonal antibody against actin (Santa Cruz 

Biotechnology, Dallas, TX).  

After SDS-PAGE, performed according to the standard method on 10% gels, proteins 

were transferred to a nitrocellulose membrane (Bio-Rad Laboratories). The 

membrane was blocked for 1 h with PBS-0.1% Tween 20 (PBST) containing 5% non-

fat dry milk and incubated overnight at room temperature with the primary antibody. 

After washing with PBST, the membrane was incubated with an appropriate HRP-

conjugated secondary antibodies (Cell Signaling, Danvers, MA; Santa Cruz 

Biotechnology) and developed with ImmobilonTM Western Chemiluminescent HRP 

Substrate (Millipore, Milano, Italy), following the manufacturer’s instructions. Band 

intensity was evaluated with the Chemidoc system (Bio-Rad Laboratories).  
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3.1.7. In vivo experiments 

Two-months old female Wistar rats weighing 160 to 198 g (obtained from Charles 

River Laboratories Italia, Calco, LC, Italy) were housed singly under a 12 h/12 h 

light/dark cycle under free feeding conditions, in temperature- and humidity-

controlled rooms. 

After an overnight fast, the DPP4 inhibitor Sitagliptin (Januvia®, 10 mg/Kg) [Forest T et 

al, 2014], was orally administered 30 min prior to ABA (50 mg/Kg) or vehicle (water) 

gavage. After anesthesia with ketamine/xylazine, blood samples were collected at 0, 

20, 40 and 60 min by orbital sinus bleeding in heparin and plasma aliquots were stored 

at -20°C. The dose of ABA was chosen based on the effect of dietary ABA 

supplementation [Guri AJ et al, 2007]. 

In other experiments, where animals were not pre-treated with Sitagliptin, GLP-1 

concentration was also evaluated in the portal vein blood, as in [Hirasawa A et al, 

2005], 10 min after intragastric vehicle or ABA administration. 

Animal rearing conditions were consistent with the guidelines of the Italian Ministry 

of Health and the study was approved by the IRCCS AOU San Martino-IST Ethical 

Committee (Genova, Italy). 
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3.1.8. Measurements of plasma GLP-1, glucose, insulin and ABA 

Plasma GLP-1 concentrations were determined by ELISA (Merck Millipore; the kit 

detects the total GLP-1 levels). Glycemia was measured with a glucometer (Bayer, 

Milano, Italy) and insulinemia by ELISA (Bertin-Pharma, Montigny, France). ABA 

plasma concentrations were determined by ELISA, with a sensitive and specific kit 

(Agdia), according to the manufacturer's instructions and measuring absorption at 

405 nm [Bruzzone S et al, 2012 (a]. 

 

3.2. Insulin, GLP-1 and ABA release from rat pancreas and proximal small 

intestine 

The perfused-organ setting allows to better explore the physiology of hormone 

secretion compared to the in vitro experimentation on isolated cells. 

The perfused pancreas and intestine maintains a correct cell polarity and correct 

cellular functional capacity and vascular/neuronal integrity as opposed to isolated cell 

cultures. In the perfused organ, maintenance of the cytoarchitecture and the 

vasculature allows for the study of metabolic, endocrine and paracrine factors.  

Isolated islets of Langerhans from rats mainly reflect metabolism of the insulin- 

producing β cells since they constitute the major part of the islets. Furthermore, the 

islets lose their natural orientation concerning cytoarchitecture and vasculature when 

isolated. Important to note is also that the secretion using this model occurs by 

diffusion, which is not the mechanism by which the products are secreted in vivo 

[Samols E et al,1986]. 

Single cell cultures are especially appropriate for studying intracellular mechanisms 

coupled to the activation of receptors located in the cell membranes. In addition, the 

details of regulated exocytosis of hormone-containing granules can be studied. 

However, this does not result in much information about the integrated 



28 
 

communication and regulation between cells. In addition, the cells are not very viable. 

Both β and α cells can be purified from cell cultures, but the α cells are often 

contaminated by surrounding γ cells. Moreover, the islets are not very rich in α cells, 

so after isolation the amount of cells is often quite low. The β cells are more numerous 

than α cells, and thus provide a higher amount following isolation. 

In the perfused small intestine model, the experimental setup enables to differentiate 

between luminal and vascular stimuli, which is crucial for localizing sites of 

stimulation. Additionally, isolation and perfusion of the colon ensures that the impact 

from other sites of the organism, that would otherwise produce a secondary effect 

disturbing the result, is prevented. Importantly, degradation of hormones and test 

substances by whole-body metabolism is also avoided and the exact concentration 

reaching the organ can be calculated accurately. 

In conclusion, in vivo experiments allow studies of blood-borne factors, since the 

natural anatomy and natural perfusion is not disturbed. Nevertheless, it is very 

difficult to study the dynamics of secretion in small rodents and especially intra-islet 

mechanisms in vivo [Holst JJ et al, 2011]. 

 

3.2.1. In situ perfused rat pancreas 

Handling of the animals was performed in accordance with international guidelines 

(1987), and experiments were carried out with permission from the Danish Animal 

Experiments Inspectorate (2013-15-2934-00833) and the local ethics committee 

(EMED, P-15-408). Male Wistar rats (250-300g), approximately 8 weeks of age, were 

purchased from Janvier labs (Le Genest-Saint-Isle, France) more than one week 

before experiments were performed and given free access to standard rodent chow 

and water. Animals were housed 2 per cage under a 12:12-h light-dark cycle.  
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The rats were anaesthetised with a subcutaneous injection of Hypnorm/Midazolam 

(0.0158 mg fentanyl citrate + 0.5 mg fluanisone + 0.25 mg midazolam / 100 g), and 

supplemented with half the dose for every 30 min if more time was needed. After lack 

of reflexes was established, the operation was started by opening the abdomen and 

the intestine pulled aside to expose the pancreas [Deacon CF et al, 2006]. 

For perfusion the catheter is inserted in aorta, thereby perfusing the pancreas 

through the superior mesenteric artery and celiac arteries. However, the small 

intestine, spleen and stomach are also perfused through the two arteries; thus, to 

circumvent this, we ligated their blood supply and removed the organs. All vessels 

were ligated using suture. 

The draining catheter was placed into the vena portae as close to the liver as possible, 

and recirculation with perfusion buffer was started. The flow was adjusted to 4 

ml/min. Proximal to the portal catheter, vena portae and the bile duct were also 

ligated, and a small hole was cut in the distal part of the duodenum for drainage. 

Finally, cutting into diaphragma killed the rat. Moreover, euthanasia of the animal 

prevented stress responses that might have affected the experiment. For overview of 

the perfusion setup see Figs. 3 and 4. 

 

 

 

Fig. 3. The catheter at the bottom of the picture is 

placed in the aorta, and provides the pancreas with 

perfusion buffer. The catheter at the top collects the 

effluent. Pancreas appears pale because of the clear 

perfusion buffer 
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A scheme of the perfusion setup can be seen in Fig. 5. We used equipment dedicated 

for rodent organ perfusion (Hugo Sachs Elektronik, March-Hugstetten, Germany). The 

system includes a heating plate, a pump, a bubble trap, a water bath of 37°C, a syringe 

infusion pump and a pressure gauge. The pancreas was perfused using a modified 

Krebs-Ringer bicarbonate buffer containing in addition 5% dextran T-705% dextran T-

70 (Pharmacosmos, Holbaek, Denmark), 0.1% human serum albumin, 10 mM or 7 mM 

glucose, and 5 mM pyruvate, fumarate and glutamate. Prior to the experiment the 

buffer was filtered to remove possible contaminations. 

  

Fig. 4 Overview of the perfusion setup. The buffer was 

oxygenated and then pumped through the heating 

chamber and the bubble trap. A fraction collector (barely 

visible at the bottomleft in this picture), collected the 

effluent. 



31 
 

 

Fig 5. Schematic overview of the perfusion setup. Oxygenated perfusion buffer is collected from a 

glass reservoir and pumped through a bubble trap and then into the pancreas. Different 

substances can be added through the infusion pump. The effluent is collected and kept on ice until 

frozen at -20°C. Perfusion pressure is recorded on a connected computer. 

 

The perfusion buffer was heated to approximately 37°C and continuously gassed 

throughout the experiment with 95% O2 and 5% CO2 using a glass frit placed in the 

perfusion buffer reservoir to achieve pH 7.4 and a high oxygen partial pressure. During 

an equilibrium period of 20 min baseline samples were collected each minute, and 

afterwards ABA was infused into the arterial vascular supply to reach the final 

concentrations of 1, 10 or 100 µM for 10 min periods, separated by baseline periods 

allowing hormone secretion to stabilize before and after stimulation. A 5-minute L-

Arginine (10 mM) infusion was included at the end of each experiment as a positive 

control of hormone response. ABA and L-Arginine were added at a flow rate of 0.2 

ml/min. Samples were collected from the portal vein at 1 min intervals, and stored at 

-20°C until analysis.  
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3.2.2. In situ perfused proximal small intestine 

The experimental method and protocol have been described elsewhere in detail 

[Kuhre RE et al, 2014]. In brief, non fasted male Wistar rats (weight: 300-320 g) were 

anesthetized with a subcutaneous Hypnorm/Midazolam injection and placed on a 

37°C heating plate. The abdominal cavity was opened; the entire large intestine and 

the distal half of the small intestine was carefully removed, leaving 42 ± 3 cm of the 

upper small intestine in situ (approximately half of the entire small intestine). A 

plastic tube was inserted into the proximal part of the lumen and the intestinal 

content was carefully removed by flushing with isotonic saline. Next, the lumen was 

perfused with saline at a steady flow of 0.5 mL/min. A catheter was placed in the 

superior mesenteric artery and the intestine was vascularly perfused with perfusion 

buffer with the same composition of the buffer used to perfuse pancreas (see 

above), plus 10 µmol/L 3-Isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich, cat. no. 

5879), 2 mL/L Vamin (cat. no. 11338; Fresenius Kabi, Uppsala, Sweden), and 3.5 

mmol/L glucose, (95% O2−5% CO2), warmed to 37°C at a rate of 7.5 mL/min. The 

rats were sacrificed by cardiac perforation and after an equilibration period of 30 

min, perfusion effluent was collected each minute from a catheter inserted in the 

vena portae and samples kept on ice and stored at −20°C until analysis. ABA was 

luminally infused into the proximal part of the lumen and vascularly into the arterial 

vascular supply to reach the final concentrations of 200 µM for 10 min periods, 

separated by baseline periods allowing hormone secretion to stabilize before and 

after administration. A 5-minute infusion with Bombesin (10 nM) was included at the 

end of each experiment as a positive control of hormone response. 
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3.2.3. Hormone analysis  

Insulin and GLP-1 concentrations in the venous effluent were analyzed using a 

radioimmunoassay (RIA). RIA is a technique based on immunological reactions 

between an antibody and an antigen, combined with radioactive labeling to 

determine low concentrations of antigenic substances. 

Insulin concentrations were determined using guinea pig antiserum raised against 

porcine insulin (2006-3), which strongly cross-reacts with both insulin I and II. A 

standard solution obtained from Peninsula was used to generate the standard curve. 

GLP-1 concentrations in the venous effluents were determined using a rabbit 

antiserum directed against the C-terminus of GLP-1 (code no. 89390), thus reacting 

with all amidated forms of GLP-1 (1-36NH2, 7-36NH2 and 9-36NH2). 

 

3.2.4. Detection of ABA by ELISA 

The amount of ABA in the effluent samples was measured by ELISA, see above 3.1.8. 

 

3.2.5. Statistical analysis and graphic presentation of perfusion experiment 

Data are expressed as means ± SEM or SD. Statistical analysis of hormone secretion 

was performed by a comparison of the mean basal level 10 min prior to the infusion 

and the mean output during the 10 min of infusion. 

Statistical significance levels were tested using a paired t-test. All statistics were 

performed using Graphpad Prism 7 program (La Jolla, CA). P< 0.05 was considered 

significant. Sample size (n) was at least 5 or 6 in the different experiments.  
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3.3. Effect of ABA on cell survival and NO production in N2a cells 

 

3.3.1. Determination of nitrite in N2a cells 

Murine neuroblastoma N2a cells were maintained in Dulbecco’s modified Eagle’s 

culture medium (DMEM) supplemented with 10% fetal bovine serum and 

penicillin/streptomycin in a humidified atmosphere containing 5% CO2 at 37°C.  

N2a cells (500,000 cells/well) were seeded in 6-well plates. After 24h, the culture 

medium was removed and the cells were pre-incubated at 37°C for 1h in Hank's 

balanced salt solution (HBSS) with 1 mM Arginine. Cells were then washed 3 times 

with 1ml HBSS and then stimulated at 22°C in triplicate without or with 10 μM ABA 

for 0, 5, 10, 20 min. Nitrite content was determined using 10 μM 2,3-

diaminonaphthalene (DAN) to form the fluorescent product 1-(H)-naphthotriazole, as 

described [Misko S et al, 1993]. 

 

3.3.2. Hypoxia 

N2a cells (500,000 cells/well) were seeded in 25 cm2 culture flasks. After 24h, the 

culture medium was removed, cells were washed 2 times with HBSS. Cells were pre- 

incubated at 37°C for 1h in HBSS with or without 10 µM ABA and with or without the 

eNOS inhibitor L-NAME (100 µM) and then subjected to normoxic culture conditions 

or to hypoxia. To induce hypoxia (<2% O2) cells were subjected to 30 min of 

continuous nitrogen flushing, as described by Keira and collegues [Keira SM et al, 

2004]. Briefly, 25 cm2 culture flasks with 2 ml of HBSS were closed with silicon 

stoppers and sealed with a double layer of cellulose film (Parafilm M®); nitrogen 

flushing was maintained for 30 minutes with a constant flow and then the culture 

flasks were kept sealed at 37°C in the incubator. After 6h of incubation, cell viability 

was determined by Trypan blue exclusion.  

http://www.sciencedirect.com/science/article/pii/S1357272516300607?via%3Dihub#bib0105
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3.3.3. Western blot analysis 

The cell pellets were lysed in H2O in the presence of a protease inhibitor mixture for 

mammalian cells (Sigma). The lysates were sonicated 3 times for 30s on ice and the 

protein concentration was estimated with the Bradford assay. After SDS-PAGE, 

Western blot analyses were performed using nitrocellulose membranes (Bio Rad) 

according to the standard method (see above, paragraph 3.1.6) The used antibodies 

were as follows: anti-p-ERK 1/2 (Santa Cruz, CA, USA), anti-mouse IgG antibody for 

vinculin (kindly provided by Prof. Emilia Turco, University of Turin, Italy). 

 

3.3.4. Statistical analysis. 

Data are expressed as means ± SD. Statistical significance was tested using a paired t-

test. All statistics were performed using Graphpad Prism 7 program (La Jolla, CA). P< 

0.05 was considered significant. Sample size (n) was at least 2 in the different 

experiments.  
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4.0 Results 

 

4.1. ABA stimulates GLP-1 release from L-cells both in vitro and in vivo  

 

4.1.1. ABA stimulates GLP-1 secretion from an enteroendocrine cell line 

The human L cell line hNCI-H716 was challenged for 2 h with different ABA 

concentrations and GLP-1 levels were measured in the supernatants. The basal GLP-

1 concentration was 347 ± 106 pM. As shown in Fig.6A, 200 μM ABA approximately 

doubled the extent of the GLP-1 secretion. 10 μM ABA was sufficient to trigger a 

statistically significantly higher GLP-1 release, compared to the untreated control. No 

stimulation of GLP-1 secretion was obtained in the presence of 100 nM ABA. The 

calculated EC50 for the ABA-induced GLP-1 release was 23 ± 3 μM (not shown). To 

compare the effect of ABA on GLP-1 release with that of other secretagogues, cells 

were also incubated in the presence of 200 mM glucose or 10 mM glutamine [Jang HJ 

et al,2007; Reimann F et al, 2004]: GLP-1 secretion was increased by approximately 

1.4-fold with both stimuli (Fig. 6A). 

Interestingly, ABA treatment also significantly increased preproglucagon mRNA 

levels, as demonstrated by qPCR using two different sets of primers, specific for GLP-

1 and glucagon, respectively, yielding a similar result (Fig. 6B). 

 

4.1.2. The ABA-induced GLP-1 secretion is mediated by a cAMP-dependent 

mechanism 

In different human cell types, the cell-specific ABA-induced response is mediated by 

an increase of the second messenger cAMP and by the consequent PKA activation 

[Bruzzone S et al, 2007, 2008; Sturla L et al, 2009; Bassaganya-Riera J et al, 2011; Guri 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g001/
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AJ et al, 2010 (b]. Since GLP-1 release is regulated by the [cAMP]i [Ezcurra M et al, 

2013], we verified whether ABA was able to induce an increase of the [cAMP]i in hNCI-

H716 cells. As a positive control, cells were incubated with glutamine, which is known 

to determine a [cAMP]i increase in hNCI-H716 cells [Tolhurst G et al, 2011]. As shown 

in Fig. 7A, a 2.5-min incubation in the presence of 200 μM ABA induced a 2-fold 

increase of the [cAMP]i, while 10 mM glutamine increased the [cAMP]i approximately 

1.4-fold. 

In mammalian cells, the ABA-induced cAMP increase is mediated by the protein 

LANCL2 [Sturla L et al, 2009; Bassaganya-Riera J et al, 2011]. hNCI-H716 cells were 

transfected by electroporation with an empty plasmid, or with a plasmid containing 

the full-length cDNA for human LANCL2. LANCL2 overexpression, confirmed by 

Western blot analysis with a specific monoclonal antibody (Fig. 7B), was accompanied 

by a significant increase in ABA-induced cAMP accumulation, as compared to cells 

transfected with an empty plasmid (Fig. 7C), as well as by a significant increase in ABA-

induced GLP-1 release (Fig. 7D). The ABA-induced [cAMP]I increase and GLP-1 release 

were approximately 1.4-fold in cells transfected with the empty plasmid (control bars 

in Fig. 7D), and not 2-fold as observed in untransfected cells (Figs. 6B and 7A), 

indicating that cell responsiveness was slightly affected by the transfection 

procedure per se. 

In order to verify whether the ABA-induced [cAMP]i increase mediates the ABA-

stimulated GLP-1 release, hNCI-H716 cells were pre-incubated in the presence of a 

specific adenylyl cyclase inhibitor (2′,3′-Dideoxyadenosine), or a cell permeable PKA 

inhibitor: both inhibitors abrogated the GLP-1 release stimulated by 200 μM ABA (Fig. 

6A). 

  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g001/
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4.1.3. ABA increases plasma GLP-1 in rats 

First, we examined the effect of a single oral dose of ABA (at 50 mg/Kg) on GLP-1 

levels in normal rats (6 animals per experimental group) pre-treated with Sitagliptin. 

20 min after ABA administration, plasma GLP-1 (GLP-1p) increased by approximately 

50%, whereas the vehicle alone had no effect on GLP-1p levels (Fig. 8A). The area 

under the curve of GLP-1p (GLP-1p AUC) over the entire time-frame was calculated 

from GLP-1p values relative to time zero: the GLP-1p AUC was significantly higher in 

the ABA-treated compared to the control animals (Fig. 8B). 

GLP-1 levels also significantly increased in the portal vein blood of rats not pre-treated 

with Sitagliptin 10 min after ABA administration indicating that ABA alone is capable 

of increasing plasma GLP-1. ABA concentration in the portal vein blood was in the low 

nM range (4.2 ± 1.9 nM) in the vehicle-treated animals and in the μM range (3.9 ± 0.4 

μM) in the ABA-treated animals. 

The observation that ABA induced an increase of GLP-1p, together with the fact that 

exogenous ABA is known to directly stimulate insulin release from β-cells in vitro 

[Bruzzone S et al, 2008], prompted us to measure insulin levels in the ABA-treated 

rats. As shown in Fig. 8C and 8D, insulinemia indeed significantly increased after ABA 

administration and the plasma insulin AUC was consequently higher in the ABA-

treated than in the vehicle-treated group. 

Glycemia was slightly increased in vehicle-treated animals: this increase was not 

observed upon oral ABA administration (Figs. 8E and 8F). The increase of glycemia 

observed in the control animals can be attributed to anesthesia: indeed, 

ketamine/xylazine have been shown to induce hyperglycemia in fed rats and, to a 

lower extent, also in fasted animals [Saha JK et al, 2005], as in our experimental 

protocol. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619318/figure/pone.0140588.g003/
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In conscious rats, oral ABA administration at the same dose used in the anesthetized 

animals (50 mg/Kg) resulted in a slight, yet significant reduction of blood glucose after 

60 min (81 ± 6 mg/dL, n = 6) compared with time zero values (92 ± 10, n = 12, p = 0.03) 

and with values measured at the same time point in the vehicle-treated controls (99 

± 14, n = 6; p = 0.02) 

 

4.2. Insulin, GLP-1 and ABA release in the perfused pancreas and proximal 

small intestine rat model 

 

4.2.1. ABA stimulates insulin secretion from perfused rat pancreas 

Rat pancreas perfused with 10 μM or 100 μM ABA showed a significant increase of 

insulin secretion compared to baseline values (Fig. 9A). Specifically, the area under 

the curve (AUC) increased from 10.2 ± 0.8 (calculated from 1 to 10 min) to 13.6 ± 2.3 

(calculated from 11 to 20 min) in rats perfused with 10 μM ABA (Fig. 9B); the AUC 

increased from 10.8 ± 0.3 (calculated from 31 to 40 min) to 16.7 ± 19 (calculated from 

41 to 50 min) in rats perfused with 100 μM ABA (Fig. 9C). In this experimental setting, 

ABA failed to induce a significant release of insulin at a concentration of 1 μM. At the 

end of all experiments, Arginine was administered as a positive control. 

These results are in line with our previous studies, showing that ABA induces the 

release of insulin in a dose-dependent fashion.  

 

4.2.2. GLP-1 stimulates the release of ABA from the perfused rat pancreas 

Next, rat pancreas was perfused with GLP-1, which was previously shown to evoke 

ABA release from beta-pancreatic cells [Bruzzone S et al, 2012 (a]. Upon perfusion 

with GLP-1 in a high-glucose buffer, both ABA and insulin concentrations were 

evaluated in the collected samples. As expected, 1 nM GLP-1 evoked insulin secretion 
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(Fig. 10A). Indeed, upon GLP-1 infusion, ABA was also released, together with insulin: 

the ABA concentration increased in a biphasic manner, from a basal value of 

approximately 4.5 to 15.0 and 9.9 pmol/ml, after 3 and 11 min after GLP-1 infusion, 

respectively (Fig. 10B). Notably, a positive correlation was found between the ABA 

AUC and the insulin AUC upon GLP-1 administration (r=0.84, p<0.05, n=6). 

 

4.2.3. ABA stimulates GLP-1 secretion from the perfused rat proximal small intestine 

and is absorbed into the circulation 

Vascular administration of 200 µM ABA in the perfused rat proximal small intestine 

significantly increased the venous effluent GLP-1 concentration: the baseline AUC of 

GLP-1, calculated from 26 to 35 min, was 224.0 ± 61.1 pmol/L and the AUC of GLP-1 

after infusion of ABA calculated from 36 to 45 min, was 381.3 ± 129.9 pmol/L 

(*p=0.048; Figs. 11A and 11B). In contrast, luminal administration of 200 µM ABA did 

not appear to significantly affect GLP-1 secretion: the baseline AUC of GLP-1, 

calculated from 1 to 10 min, was 235.6 ± 38.2 pmol/L and the AUC of GLP-1 after 

perfusion with luminal ABA, calculated from 11 to 20 min, was 351.4 ± 21.6 pmol/L 

(p>0.05; Fig. 11C). In all experiments, bombesin (BBS) was intravascularly 

administered as a positive control. In order to verify that luminal ABA is adsorbed in 

this experimental settings, the vascular ABA concentration upon luminal 

administration of 200 μM ABA was measured. Indeed, already after 1 min from its 

luminal administration, ABA was present at micromolar concentrations in the vascular 

effluent. After 4 min from luminal ABA perfusion, the final ABA concentration in the 

venous effluent was approximately 5 μM (Fig. 12). 
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4.3 ABA improves survival of N2a cells to hypoxia through the stimulation of 

eNOS 

 

4.3.1. ABA stimulates NO production by N2a cells 

N2a cells were incubated under normoxic conditions without (control) or with 10 µM 

ABA and nitrite accumulation in the supernatant was measured with the fluorescent 

probe 2,3-diaminonaphthalene (DAN). ABA stimulated NO release by N2a cells, with 

an approximately two-fold increase over control cells observed after 5,10, 20 min 

incubation with 10 μM ABA(*p<0,05) (Fig. 13). 

 

4.3.2. ABA improves cells survival to hypoxia via NO  

After 6h of hypoxia, cell mortality was approximately 55% compared with normoxic 

conditions. N2a cultures pre-incubated with 10 μM ABA showed a significant increase 

(*p<0,02) in cell survival compared with control cultures, not pre-incubated with ABA 

under hypoxia condition (Fig. 14). Pre-treatment of the cells with L-NAME abrogated 

the ABA-induced rescue of the cells from hypoxia-induced death (**p<0,01) (Fig. 14). 
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4.3.3. ABA induces upregulation of p-ERK in N2a cells under hypoxia 

Several studies have demonstrated that the MAPK/ERK pathway plays a role in 

neuroprotection. To determine whether ABA regulates the MAPK/ERK pathway, we 

investigated the expression and phosphorylation levels of ERK in N2a cells cultured 

under hypoxia.  

Levels of p-ERK were significantly increased in N2a cells exposed to hypoxia, as 

compared with normoxic conditions, both at 1h and 6h; presence of 10 µM ABA 

during hypoxia further significantly increased p-ERK expression compared with 

normoxic cells. (Fig. 15). (*p<0,05). No difference in p-ERK expression was registered 

between cells treated with ABA and without ABA under hypoxia condition.  
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5.0 Discussion  

 

The number of people with T2DM is rapidly growing in both developed and 

developing countries. In the US, it is estimated that 10% of the present population 

aged between 20 and 79 is affected by T2DM and in Asia, where the percentage of 

diabetic subjects was negligible in the year 2000, it has risen to 7.6% of the population 

in 2010 and will further increase to 9.1% in 2030, according to the International 

Diabetes Federation. This would mean that approximately 450 million people will be 

affected by T2DM in the world by the year 2030 [Chamnan P et al, 2011]. These 

numbers demand an intense search for effective therapeutic strategies to combat 

T2DM. 

Over the past decade, several studies have unveiled the role of ABA in mammals as a 

new hormone involved in the regulation of glycemia, suggesting its possible use in 

T2DM prevention and treatment. 

Emerging anti-diabetic therapies rely heavily on GLP-1 mimetics and any new 

information regarding the physiology of endogenous GLP-1 will be important to 

improve its therapeutical use. The observation that GLP-1 stimulates ABA release 

from β-pancreatic cells [Bruzzone S et al, 2012 (a] can now be further extended by 

results obtained in this thesis, demonstrating that ABA can also induce GLP-1 release, 

both in vitro and in vivo. Together, these results indicate presence of a positive feed-

back mechanism between ABA and GLP-1, which may be relevant to the physiology 

of glycemia regulation and may also be explored as a means to improve endogenous 

GLP-1 function. 

The molecular mechanism by which ABA induces GLP-1 release by hNCI-H716 cells is 

similar to the one described in several other cell systems (including immune cells, β-

pancreatic cells and endothelial cells), i.e. through the cAMP/PKA axis [Bruzzone S et 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chamnan%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20622160
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al, 2007 and 2008; Tossi V et al, 2012; Sturla L et al, 2009; Bassaganya-Riera J et al, 

2011; Guri AJ et al,2010 (a and (b]. Indeed, this signaling pathway is known to regulate 

GLP-1 release also in response to other stimuli, such as glucose and glutamine 

[Ezcurra M et al, 2013; Sandoval DA et al, 2015; Tolhurst G et al, 2011]. 

In the in vivo experiments, we chose to administer a dose of ABA of 50 mg/Kg, based 

on the results obtained by Guri [Guri AJ et al, 2007], showing that dietary ABA at 100 

mg/Kg, introduced over a 24-h period, was effective in reducing glycemia in db/db 

mice fed a high-fat diet. We hypothesized that a smaller dose could also be effective, 

if bolus-administered by gavage. 

The increase of plasma insulin upon ABA administration was expected, based on the 

in vitro effect of ABA on insulinoma cells and on murine and human β-cells: exogenous 

ABA, added at concentrations in the low nM range, stimulated insulin secretion both 

in the presence and absence of glucose [Bruzzone S et al, 2008]. The plasma ABA 

concentration measured in the rats 10 min after oral ABA administration was in the 

micromolar range and could thus be responsible for the observed increase of plasma 

insulin (Fig. 8C). The increase of plasma GLP-1 peaked at 20 min (Fig. 8A), preceding 

the insulin increase (which conversely was maximal at 40 min, Fig. 8C). Indeed, 

detection of high GLP-1 levels in the portal vein upon ABA administration 

demonstrates that oral ABA alone is capable of increasing plasma GLP-1 (Fig. 8A). 

In control animals, glycemia was significantly higher at both 20 and 40 min compared 

with time zero. The increase of glycemia observed in the control animals might be 

attributed to anesthesia, as described by Saha [Saha JK et al, 2005], who showed that 

ketamine and xylazine significantly altered glycemia in fed and, to a much lower 

extent, also in fasted rats, as occurred in our study (Fig. 8E, white squares).  

In ABA-treated rats, the increase of glycemia was not observed, neither at 20 nor at 

40 min (Fig. 8E, black squares): while, at 40 min, a significant increase of insulinemia 

(Fig. 8C) may have contributed to glycemia control, at 20 min insulinemia was not 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Tossi%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22698377
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(yet) increased. Thus, two mechanisms may be responsible for the maintenance of 

normal blood glucose levels in the ABA-treated, anesthetized animals: i) an “early” (0-

20 min), insulin-independent glycemia lowering effect of ABA, followed by, ii) a “late” 

(20-40 min) glycemia reducing effect, attributable to the increase of insulinemia. We 

previously reported that ABA can trigger glucose uptake in myocytes and in 

adipocytes [Bruzzone S et al, 2012 (a], to a similar extent as that observed with insulin 

at the same concentration (i.e. 100 nM). Thus, the normalization of glycemia observed 

in the ABA-treated animals compared with the controls could result from stimulation 

by ABA of both glucose transport and insulin release. The plasma concentration of 

ABA measured 10 min after its administration, which was in the micromolar range, 

was markedly higher than the one capable of stimulating myoblast glucose uptake in 

vitro [Bruzzone S et al, 2012 (a]. 

Results obtained on isolated cells were confirmed and extended in the perfused 

pancreas and small intestine experimental system.  

Indeed, infusion with 10 µM and 100 µM ABA stimulated insulin release in the 

perfused rat pancreas. These data confirm previous results obtained with human 

pancreatic islets, RIN-m and INS-1 insulinoma cells [Bruzzone et al, 2008], 

demonstrating that ABA stimulates insulin release in the low nanomolar range. In the 

perfusion model, ABA stimulated insulin release at higher concentrations, with 1 µM 

being not effective, indicating a lower sensibility for this experimental setting to 

register ABA-induced responses. This observation may be in line with results obtained 

in the in vivo setting: ABA induced insulin release when orally administered at 50 

mg/Kg in fasted rats [Guri AJ et al, 2007]. Conversely, microgram amounts of ABA 

improved the glycemic profile without increasing insulinemia in rats and in healthy 

humans undergoing an oral glucose tolerance test [Magnone M et al, 2015].  

Moreover, we demonstrated on the isolated perfused rat small intestine that ABA 

induced GLP-1 release upon vascular perfusion, while luminal stimulation with ABA 
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did not evoke a detectable GLP-1 release. However, as mentioned above, ABA 

stimulated GLP-1 release in an in vivo model, where plasma GLP-1 increased after a 

single-dose oral administration of ABA in fasted rats, indicating that luminal ABA is 

effective in releasing GLP-1, either by acting directly from the lumen, or after its 

absorption. It was shown that vascular, but not luminal, administration of linoleic acid 

stimulates GLP-1 release from isolated rat small intestine: linoleic acid is an essential 

fatty acids, that the human body cannot synthesize and must be taken with the diet 

and absorbed by the intestine [Christensen LW et al, 2015]. Thus, it is possible that 

ABA behaves similarly to linoleic acid and stimulates GLP-1 release acting on the 

vascular side only of the L-cells. Nevertheless, it should also be noted that application 

of 100 μmol/L taurodeoxycholate (TDCA), via the vasculature, in perfused rat small 

intestine, robustly increased GLP-1 release, whereas luminal application of TDCA at 

the same concentration was significantly less effective. A much higher concentration 

of TDCA (1 mmol/L) was needed to stimulate GLP-1 secretion [Brighton CA et al, 

2015]. Our results indicate that ABA is more effective, at least in this experimental 

setting, when acting from the vascular side compared to the luminal side: a direct 

effect of luminal ABA, in vivo, on GLP-1 release cannot be excluded.  

Interestingly, we demonstrate that GLP-1 stimulates ABA release from the perfused 

rat pancreas (Fig. 10). This result is in line with our previous observation, obtained 

using the insulinoma cell line INS-1, that GLP-1 stimulates ABA release from β-

pancreatic cells, in the presence of both a low or a high glucose concentration 

[Bruzzone S el at,2012 (a]. Notably, a positive correlation was found between the ABA 

AUC and the insulin AUC upon GLP-1 administration, suggesting: i) a cooperation 

between ABA and GLP-1 in insulin release; ii) the possibility that endogenous ABA 

might be necessary to stimulate the GLP-1-induced insulin release. 

https://en.wikipedia.org/wiki/Essential_fatty_acids
https://en.wikipedia.org/wiki/Essential_fatty_acids
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In conclusion, ABA induces GLP-1 secretion from L cells, GLP-1 stimulated ABA and 

insulin secretion in β-cells and ABA induces insulin secretion in this cell type, 

indicating a cross-talk between GLP-1 and ABA. 

Future studies should explore the effect of GLP-1 analogues or DPP-IV inhibitors on 

the release of endogenous ABA. 

Identifying LANCL2-activating compounds might indeed prove a successful strategy, 

in view of the multiple anti-diabetic effect that they might trigger. The potential role 

of LANCL2 as a new drug target in diabetes has recently been suggested [Lu P et al, 

2014]. 

So far, it is not possible to exclude that, when administered in vivo, ABA can also 

trigger GLP-1 release from organs/tissues other than L-type cells, e.g. β-pancreatic 

cells [Sandoval DA et al, 2015]. Moreover, it is not possible to exclude that ABA 

stimulates GLP-1 from the luminal side of L-cells, like a nutrient; interestingly, ABA 

can stimulate GLP-1 release from the vascular side of the L-cells, as an endogenous 

hormone. 

Finally, results presented in this thesis contribute new information on the role of ABA 

in the hormonal cross-talk between insulin and GLP-1, which lies at the heart of 

glycemia homeostasis. These results provide a strong rationale for testing the 

possibility of exploiting ABA as a new anti-diabetic drug, possibly in combination with 

GLP-1 mimetics, in the clinical setting. 

Furthermore, GLP-1 has neuroprotective effects: thus, impairment of the ABA-GLP-1 

cross-talk in T2DM may contribute to the increased incidence of neurological 

complications in T2DM patients. Indeed, the results obtained with ABA on the 

neuroblastoma cell line N2a support the conclusion that ABA plays a role in the 

protection of neuronal cells to hypoxia, a condition which frequently occurs in the 

diabetic tissues due to microvascular damage. We demonstrated that ABA stimulates 
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NO release from N2a cells, and this result is in line with previous observations that 

ABA induced NO release in microglia, human granulocytes and keratinocytes 

[Bruzzone S et al, 2012 (b and 2007; Bodrato N et al, 2009]. 

Indeed, we demonstrated that ABA improves N2a survival to hypoxia and this event 

is NO- and NOS-dependent. ABA increases cell survival to hypoxia by 30% compared 

to untreated cultures, and this effect is abrogated by the NOS inhibitor L-NAME. This 

result suggests a neuroprotective role of ABA under hypoxic conditions. 

NO is an important signaling molecule that is widely used in the nervous system. 

Evidence suggests that after an ischemia/reperfusion injury, stimulation of eNOS and 

increase in NO generation occur and that this signalling pathway plays an essential 

neuroprotective role in the regulation of cerebral blood flow [Garry PS et al, 2015]. 

Furthermore, we demonstrated that ABA induces the phosphorylation of ERK1/2 in 

N2a cells under hypoxia condition, suggesting a role for p-ERK in the ABA-induced 

activation of eNOS. These results are in line with a study conducted by Liu XW [Liu XW 

et al, 2015], where they demonstrate that melatonin prevented hypoxia-induced 

apoptosis in N2a cells by activating the ERK pathway. In cerebral endothelial cells, 

resveratrol promotes angiogenesis via NO/eNOS and this signalling is mediated by p-

ERK [Simão F et al, 2012] 

Based on the results obtained with ABA on neuroblastoma cells, we propose that ABA 

may indeed participate to neuronal protection against hypoxia by stimulating 

neuronal NO generation via the activation of the pERK/eNOS pathway: it remains to 

be established whether stimulation by ABA of NO synthesis might occur also on 

cerebral endothelial cells.  
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II CHAPTER 

 

1.0 Introduction 

 

1.1. White and brown adipose tissues 

During the past two decades, the incidence of obesity and type 2 diabetes mellitus 

(T2DM) has increased rapidly worldwide and a cause-effect relationship between the 

two conditions has been established. Consequently, interest has grown to elucidate 

the molecular mechanisms underlying the diabetogenic role of obesity. 

In mammals, two different types of adipose tissue (AT) are present, which have 

essentially different functions: the white AT (WAT) stores excess energy as 

triglycerides; conversely, the brown AT (BAT) is specialized in the dissipation of 

metabolic energy through the production of heat. 

WAT has long been recognized as the main site of storage of excess energy derived 

from food intake [Rosen ED et al, 2006]. White adipocytes (the predominant cell type 

in white adipose tissue) store dietary energy in a highly concentrated form as 

triglyceride, mostly in a single large lipid droplet. These triglycerides can be rapidly 

hydrolysed by lipases and the resulting fatty acids are transported to other tissues to 

be oxidized in mitochondria as an energy source. The first indication that adipose 

tissue also functions as an endocrine organ was the discovery of leptin production by 

adipocytes. Adipose tissue secretes a large number of peptide hormones and 

cytokines and also activated lipids [Kershaw EE et al, 2004]. 

In a normal healthy subjects, when energy intake is scarce, triglycerides stored in the 

WAT can be hydrolysed and the fatty acids are released as into the blood stream, 
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where they can be taken up by other tissues (e.g. liver and skeletal muscle) and used 

as an energy source. When energy intake consistently exceeds energy expenditure, 

the AT expands due to hypertrophy, but also due to hyperplasia of the adipocytes. 

By contrast, BAT is specialized primarily in non-shivering thermogenesis, a cold 

climate adaptation in many homeotherms [Smith RE et al, 1969]. Brown adipocytes 

are characterized by multiple, smaller droplets of triglycerides, which are accessible 

for rapid hydrolysis and rapid oxidation of the fatty acids. A high content of 

mitochondria (responsible for the brown colour) and the presence of the uncoupling 

protein-1 (UCP-1) allow the use of the metabolic energy derived from fatty acid 

oxidation for the generation of heat. Significant depots of brown fat are found in 

rodents and in other hibernating mammals, and also in newborn infants. Recent 

investigations, have shown that human adults also have metabolically active BAT and 

that BAT may indeed play an important role in energy homeostasis in adults [Gesta S 

et al, 2007]. Human BAT is activated by acute cold exposure, by beta-adrenergic 

stimulation and by thyroid hormones, all of which stimulate energy expenditure. The 

metabolic activity of BAT is lower in older and obese individuals. The inverse 

relationship between BAT activity and (white) body suggests that BAT, because of its 

energy dissipating activity, is protective against body fat accumulation. 

WAT mass, and thus the body-mass-index, largely depends on the balance between 

lipid storage and utilization, which is challenged under conditions of excess food 

intake. Major pathological consequences of overnutrition and obesity result from an 

increase in lipid flux to non-adipose organs and the development of insulin resistance. 
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1.2. GLUT-4  

GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake 

to maintain normal blood glucose levels. GLUT4 transporters are insulin sensitive, and 

are predominantly expressed in skeletal muscle and AT, where they are responsible 

for the post-prandial uptake of excess glucose from the bloodstream. 

In the absence of insulin, GLUT4 is stored in intracellular vesicles. In response to acute 

insulin stimulation, these vesicles translocate to the plasma membrane, resulting in 

the redistribution of GLUT4 to the plasma membrane, where it facilitates glucose 

uptake.  

The signal transduction pathway initiated by insulin to translocate GLUT4 and 

increase glucose uptake has been extensively studied, and two signal transduction 

pathways have been identified in this process. One is the insulin receptor substrate 

(IRS)-phosphatidylinositol (PI) 3-kinase-dependent pathway, in which activated 

phosphatidylinositide 3-kinases (PI3K) in turn activates downstream signaling 

molecules, such as PDK1 and Akt [Huang S et al, 2007].The other mechanism is the 

de-repression of GLUT4 transcription by removal of bound PPARγ from the GLUT4 

promoter by PPARγ ligands (such as the antidiabetic drugs thiazolidinediones, TZDs). 

Insulin resistance arises when glucose uptake by muscle and AT is reduced in response 

to insulin, and it is associated with the pathophysiology of T2DM. Indeed, insulin 

resistance in AT is caused by impaired initial-phase insulin signaling and reduced 

GLUT4 levels. A central role for GLUT4 in whole-body metabolism is strongly 

supported by a variety of genetically engineered mouse models where expression of 

the transporter is either enhanced or ablated in muscle or AT or both. Indeed, in mice 

lacking GLUT-4 in adipocytes, a systemic insulin resistance is observed [Favaretto F et 

al, 2014; Wallberg-Henriksson H et al, 2001]. This in vivo evidence suggests that 

adipocyte glucose metabolism is critical to whole-body glucose homeostasis. 

https://en.wikipedia.org/wiki/GLUT4
https://en.wikipedia.org/wiki/Insulin
https://en.wikipedia.org/wiki/Post-prandial
http://www.sciencedirect.com/science/article/pii/S1550413107000678#!
https://www.ncbi.nlm.nih.gov/pubmed/?term=Favaretto%20F%5BAuthor%5D&cauthor=true&cauthor_uid=25299671
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wallberg-Henriksson%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11681787
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1.3. PPARγ 

The family of peroxisome proliferator-activated receptors (PPARs) comprises several 

nuclear receptors characterized as adopted orphan receptors, which are activated by 

a variety of fatty acids and their derivatives, such as prostaglandins [Desvergne B et 

al, 1999]. PPAR is the master transcription factor regulating adipogenesis. This 

receptor is known to be obligate for adipocyte differentiation [Rosen ED et al, 1999] 

and its overexpression/activation is in many cases sufficient to convert non-adipose 

cells to adipocyte-like cells.  

PPARγ also induces PGC-1α, and promotes transcription of UCP-1, the key marker of 

BAT. UCP-1 is specifically expressed in the inner membrane of mitochondria from 

brown adipocytes to generate heat by uncoupling oxidative phosphorylation [Tiraby 

C et al, 2003]. 

 

1.4. ABA and AT 

As mentioned in the first Chapter, ABA plays a role in the regulation of glycemia by 

stimulating GLP-1 and insulin release and by promoting glucose transport in GLUT4-

expressing cells, which include muscle and AT.  

Indeed, several observations suggest that the AT could be a metabolic target of ABA. 

ABA activates PPARγ in vitro in the murine pre-adipocyte cell line 3T3-L1 and dietary 

ABA-supplementation increases PPARγ-responsive gene expression and reduces 

white adipose tissue inflammation in mice [Guri AJ et al, 2007]. Moreover, ABA 

treatment improves insulin sensitivity, decreases adipocyte hypertrophy, reduces 

macrophage infiltration into the WAT, and down-regulates the levels of the 

inflammation markers tumor necrosis alpha (TNFα) and MCP-1 in obese mice [Guri AJ 

http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2010.06.010/full#feb2s0014579310004928-bib-bib13
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tiraby%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12807871
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tiraby%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12807871
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et al, 2008]. Human adipose tissue releases ABA in response to high glucose and 

nanomolar ABA stimulates glucose uptake, similarly to insulin, in 3T3-L1 cells 

differentiated to adipocytes, by increasing GLUT-4 translocation to the plasma 

membrane [Bruzzone S et al, 2012 (a].  

  



54 
 

2.0 Aim of the study 

 

Obesity represents a major medical and societal challenge, due to its associated 

morbidity, particularly insulin resistance and T2DM. Over the past 10 years, several 

studies were conducted to elucidate the molecular mechanisms through which excess 

adipose tissue predisposes to the development of T2DM, aiming at developing new 

therapeutic approaches for the prevention of obesity and of obesity-related 

metabolic diseases. 

We hypothesized a role for ABA as an endogenous hormone in the AT, based on the 

observations that: i) ABA is released from human adipose tissue (AT) stimulated with 

high glucose concentrations; ii) ABA stimulates GLUT4 translocation to the 

plasmamembrane in mouse pre-adipocytes [Bruzzone S et al, 2012 (a] and iii) ABA 

activates PPARγ, the transcription factor presiding over adipogenesis [Guri AJ et al, 

2007].  

For this reason, we investigated the role of the ABA/LANCL2 system in the regulation 

of glucose uptake, in the metabolic fate of the internalized glucose and in the 

transcription of specific genes involved in adipogenesis and browning in rodent and 

human adipocytes.  
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3.0 Materials and Methods 

 

3.1. Materials 

Dulbecco's modified Eagle's culture medium (DMEM) was purchased from Euroclone 

SpA (Milano, Italy) and the Fetal Calf Serum (FCS) was from LGC Standards (Milano, 

Italy). Lipofectamine 2000 was purchased from Lonza (Milano, Italy). [14C]-2-deoxy-D-

glucose (specific activity 266 mCi/mmol) and [U-14C]-glucose (specific activity 289 

mCi/mmol) were from Perkin Elmer (Waltham,MA). All other chemicals were 

obtained from Sigma (Milano, Italy), unless otherwise stated. 

The following antibodies were used for protein detection in Western blot: mouse 

monoclonal antibodies against LANCL2 [Vigliarolo T et al, 2015], UCP1 (Sigma), PPARγ 

1/2 (Santa Cruz Biotechnology, Dallas, TX), vinculin (kindly provided by Prof. Emilia 

Turco, University of Turin, Italy), a rabbit polyclonal anti-GLUT4 (Abcam, Cambridge, 

UK), a rabbit polyclonal anti-pAkt (Santa Cruz Biotechnology) and a rabbit polyclonal 

anti-Akt (Cell Signaling Technology, Danvers, MA). Human adipose tissue (obtained 

from abdominoplasty performed on healthy subjects for esthetic reasons) was kept 

in complete DMEM medium during transportation from the surgical room to the 

laboratory and then immediately used for experiments. CD1 mice were purchased 

from Charles River Laboratories Italia (Calco, LC, Italy). 
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3.2. Cell culture and adipocyte differentiation 

3T3-L1 mouse fibroblasts were purchased from LGC Standards and maintained in 

DMEM with 10% fetal calf serum (FCS) and penicillin/streptomycin in a humidified 

atmosphere containing 5% CO2 at 37°C. For some experiments we used the same cell 

line 3T3-L1 kindly provided by Prof. Beguinot (University of Naples). For adipocyte 

differentiation, cells were seeded at 105 per well in 12-well plates or at 106 per 75 cm2 

flasks; at 2-day post confluence, adipogenesis was induced with a differentiation 

cocktail containing 100 nM insulin, 1 μM dexametasone, and 500 μM 3-isobuthyl-1-

methylxanthine (IBMX) in DMEM with 10% FCS for 3 days, followed by 100 nM insulin 

in DMEM with 10% FCS for 5 days, changing the medium every 2–3 days. At day 8, the 

medium was switched to DMEM with 10% FCS without any addition for further 2 days 

before performing experiments: at day 5, approximately 60% of cells showed an 

adipocyte morphology, with accumulation of lipid droplets, while at day 10 this 

percentage increased to about 80-90%. During differentiation, 3T3-L1 cells were 

treated or not with 100 nM ABA. Adipogenic differentiation was monitored at day 1, 

3 and 8 by q-PCR analysis of the specific adipogenic differentiation markers 

adiponectin, AP2, fatty acid synthase (FAS), GLUT4, PPAR1 and 2 (PPAR 1/2) and 

leptin, and at day 10 by lipid staining with Oil Red O Stain [Ariemma F et al, 2016]. 

Areas and diameters of fully differentiated adipocytes were measured using the 

Image J program; the measures were carried out on at least 150 cells for each 

condition. 

AT-derived human mesenchymal stem cells (ATMSC) were purchased from Lonza 

(Basel, Switzerland) and cultured as described [Scarfi S et al, 2008]. Alternatively, they 

were purified from subcutaneous AT samples obtained from healthy subjects 

undergoing plastic surgery and cultured as described [Zuk PA et al,2011]. For 

adipogenic differentiation, ATMSC at the second passage were trypsinized and plated 
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onto 6-well plates at a density of 2x105 cells/well. Cells were then cultured in a 

differentiation cocktail containing DMEM-F12 with 10% FCS and 100 nM insulin, 1 M 

dexamethasone, 100 M indomethacin and 500 M IBMX, in the presence or absence 

of 100 nM ABA, and the medium was replaced every three days. Adipogenic 

differentiation was assessed at day 3, 7, 10 by q-PCR analysis of the specific 

adipogenic differentiation markers adiponectin, AP2, FAS, PPAR and LPL. At day 10, 

80-90% of cells showed accumulation of lipid droplets, as determined by Oil Red O 

staining [Ariemma F et al, 2016]. The browning effect of ABA was monitored at day 2, 

5 and 8 by analysing the expression of the browning-specific markers, UCP1, PPAR 

coactivator-1  (PCG-1), cell death-inducing DNA fragmentation factor (CIDE-A), 

transmembrane protein 26 (TMEM26) and PRDM16. 

 

3.3. Glucose uptake assay 

Differentiated 3T3-L1 adipocytes, transfected or not with pcDNA6.2/V5/GW/D-

TOPO (empty, control plasmid) or with LANCL2-pcDNA6.2/V5/GW/D-TOPO 

(LANCL2 plasmid), cultured in 12-well plates, were starved for 4 h in serum-free 

medium. Cells were then washed once with 1 ml of Krebs-Ringer HEPES buffer (KRH) 

and stimulated with 100 nM insulin or ABA in KRH for 1 h at 37°C. Glucose transport 

was measured by the addition of 0.5 mM D-glucose containing [14C]-2-deoxy-D-

glucose (0.5 μCi/well) for 20 min at 37°C. Glucose uptake was stopped by removal of 

the labeling mix and washing the cells 3 times with ice-cold KRH. Cells were then lysed 

with 0.05 M NaOH and radioactivity in each lysate was determined by scintillation 

counting in a Beta-Counter LS 6500 (Beckman-Coulter, Krefeld, Germany). Unspecific 

radioactivity uptake, determined in the presence of 20 μM cytochalasin B and 200 μM 

phloretin, was subtracted from each experimental value.  For the experiment with the 
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PI3K inhibitor, cells were pre-incubated in the presence of 25 μM LY294002 for 30 min 

before the glucose uptake assay. 

 

3.4. Evaluation of adipocyte oxygen consumption 

3T3-L1 cells were cultured in the differentiation cocktail for 7 days with or without 

(control) 100 nM ABA, or were differentiated for 7 days and then incubated in 

complete DMEM for 24 h in the presence or absence of 100 nM ABA. At the end of 

differentiation process, cells were trypsinized and resuspended at 106 cells/ml in 

Hank’s balanced salt solution (HBSS). Oxygen consumption was measured in a micro-

respiratory system (Unisense A/S, Denmark). Cells were resuspended at 106/ml in 

HBBS and incubated at 37°C under stirring in a 300 µl-closed chamber, equipped with 

an oxygen micro-amperometric electrode; the linear rate of oxygen consumption was 

measured for 10 min. Protein concentration in the cell suspension was measured 

according to Bradford [Bradford MM, 1976]. 

 

3.5. Metabolic measurements in adipocytes 

 

3.5.1. Triglyceride quantification 

3T3-L1 cells were induced to differentiate as described above, in the presence or not 

of 100 nM ABA; triglycerides were measured at the end of differentiation (day 10). 

Triglycerides were also quantified in 3T3-L1 cultured in DMEM with 10% FCS, in the 

absence of the differentiating cocktail, with or without 100 nM ABA, and in 3T3-L1 

differentiated in the absence of ABA and then incubated or not with 100 nM ABA for 

24 h at the end of differentiation (day 10). Triglycerides were quantified using 
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AdipoSIGHTTM Triglyceride Assay kit (ZenBio, Research Triangle Park, NC), following 

the manufacturer’s instructions. 

 

3.5.2. Measurement of CO2 production 

3T3-L1 cells were induced to differentiate as described above and used at day 10. Cells 

were detached with trypsin and suspended in HBSS at 1.3 × 106 cells/ml. Then, 0.5 ml 

of this suspension was introduced in one of the two 3-ml chambers of a sealed glass 

vial especially designed for radioactive CO2 quantification, while in the other chamber, 

connected to the first through a short channel allowing air exchange, 0.2 ml of 2 M 

NaOH was introduced to capture the radioactive CO2 released by the cells (see Fig. 

20C). [U-14C]-D-glucose (0.5 mCi, final specific activity: 0.18 mCi/mmol), was added to 

the cell suspension, with or without 100 nM ABA or insulin, the vessel was tightly 

sealed and incubated at 37°C for 7 h. At the end of the incubation, the NaOH solution 

was counted in a Beta-Counter LS 6500 (Beckman-Coulter). The cell suspension was 

also withdrawn, washed once with 15 ml ice-cold HBSS, centrifuged at 2,000 g for 5 

min at 4°C, and the cell pellet was lysed in 0.5 ml ice-cold deionized water. The cell 

lysate was then immediately subjected to lipid extraction as described in the following 

paragraph and an aliquot of the extract was used for scintillation counting.  

 

3.5.3. Radioactive lipid synthesis/accumulation during differentiation 

3T3-L1 cells were seeded at 2×105 cells/well in 6-well plates and cultured to 

confluence. Adipogenesis was then induced with the differentiation cocktail 

described above (insulin/dexametasone/IBMX) for 3 days, followed by 100 nM insulin 

for 3 days. After 6 days, the wells were washed once with HBSS and incubated for 5 h 

with 0.5 mCi of [U-14C]-D-glucose (final specific activity: 0.09 mCi/mmol) in 1 ml HBSS 
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at 37°C in the presence of 100 nM insulin, with or without 100 nM ABA. At the end of 

the incubation, 1 ml of complete medium, without (control) or with 100 nM ABA or 

100 nM insulin was added to each well, without removing the radioactive solution, 

and cells were further cultured for 4 days. Finally, cells were washed twice with ice-

cold HBSS to remove free [14C]-D-glucose and lysed in the wells with 0.5 ml of ice-cold 

deionized water. Cell lysates were withdrawn and immediately subjected to lipid 

extraction. Ten volumes of methanol followed by 10 volumes of chloroform were 

added to the cell lysates and incubated at 25°C for 20 min under gentle shaking. The 

solution was then centrifuged at 3,000 g for 10 min to remove precipitated proteins, 

the supernatant was further supplemented with 10 volumes of chloroform followed 

by 6 volumes of 50 mM KCl and vigorously shaken. The solution was then stored at -

20°C overnight to allow phase separation. An aliquot of the organic phase from each 

sample was then withdrawn and used for scintillation counting. Experiments were 

performed in triplicate and repeated 4 times. 

 

3.5.4 Glyceraldeyde-3-phosphate dehydrogenase (GAPDH) activity 

Ten days after induction of differentiation, 3T3-L1 cells were washed twice with ice 

cold PBS, harvested in ice-coldHES buffer (20 mM Hepes, pH 7.4, 1 mM EDTA, 250 

mM sucrose and protease inhibitors) and lysed by brief sonication. The lysates were 

centrifuged at 10,000 g for 10 min at 4°C. The supernatants were assayed for GAPDH 

activity at 23°C by measuring the reduction of NAD+ in the presence of D-

glyceraldehyde-3-phosphate, pyrophosphate buffer and disodium arsenate [Allison, 

WS et al, 1964]. 
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3.6. LANCL2 silencing and overexpression 

Transient transfection of 3T3-L1-derived differentiated adipocytes with LANCL2-

specific siRNAs was performed at day 10 of differentiation using the Nucleofector 

System (Amaxa GmbH, Cologne,Germany). Adipocytes (2.5x106 cells) were 

transfected using the A033 program and the L Kit, with 2.5 µM LANCL2-targeting 

siRNA (siRNAL2, Oligo ID: SASI_Mn01_00042365) or with Mission Negative Control 

(Control, CTRL), obtained from Sigma. After transfection, cells were resuspended in 

DMEM supplemented with 10% FCS, penicillin (50 U/ml), and streptomycin (50 

µg/ml), plated in 12-well plates (350.000/well) and incubated for 48 h in 5% CO2 at 

37°C. For LANCL2 overexpression, adipocytes at day 10 of differentiation were 

transfected with pcDNA6.2/V5/GW/D-TOPO (empty, control plasmid) or with 

LANCL2-pcDNA6.2/V5/GW/D-TOPO[Sturla L et al, 2009] using the Lipofectamine 

2000 Reagent, following the manufacter’s instructions. Glucose uptake experiments 

and gene expression assays were performed 48 h after transfection. 

 

3.7. qPCR analyses 

RNA extraction from 3T3-L1 cells was performed using the RNeasy Micro Kit (Qiagen, 

Milan, Italy). RNA extraction from adipose tissue was performed using QIAzol Lysis 

Reagent and TissueLyser instrument (Qiagen); the homogenates were extracted with 

chloroform and then RNA was purified using RNeasy Mini Kit (Qiagen) and quantified 

using a NanoDrop spectrophotometer (Nanodrop Technologies, Wilmington, DE). The 

cDNA was synthesized by using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, 

Milan, Italy) starting from 1 g of total RNA. PCR primers were designed through 

Beacon Designer 2.0 Software (Bio-Rad Laboratories) and are listed in Table I (mouse 

genes) and II (human genes). 
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Table I. PCR primers for mouse genes 

Target 

Mouse gene 

Accession number Sequence, 5’-3’ 

PPAR 1/2 NM_001127330 

 

NM_011146 

Forward  5’-GGAATTAGATGACAGTGACTTGGC-3’ 

Reverse  5’-GGAGCACCTTGGCGAACAG-3’ 

GLUT4 NM_009204 Forward  5’-CCAGCCTACCGCCACCATAG-3’ 

Reverse  5’-TTCCAGCAGCAGCAGAGC-3’ 

ADIPO-
NECTIN 

NM_009605 Forward  5’-GCTCTCCTGTTCCTCTTAATCC-3’ 

Reverse  5’-GCAATCTCTGCCATCACG-3’ 

LEPTIN NM_008493                Forward 5’-TGGCAGTCTATCAACAGGTC-3’ 

Reverse 5’-GTGGAGTAGAGTGAGGCTTC-3’ 

Fatty Acid 
binding 
protein (AP2) 

NM_024406 Forward  5’-AACACCGAGATTTCCTTCAAACTG-3’ 

Reverse   5’-TCACGCCTTTCATAACACATTCC-3’ 

Fatty Acid 
Synthase 
(FAS) 

NM_007988 Forward 5’-ATGGGTGTGGAAGTTCGTCAG-3’ 

Reverse 5’-AGTGTGCTCAGGTTCAGTTGG-3’    

UCP1 NM_009463                Forward 5’-GGAGGTGTGGCAGTGTTCAT-3’ 

Reverse 5’-AAGCATTGTAGGTCCCCGTG-3’    

PCG-1α BC066868 Forward 5’-CCCTGCCATTGTTAAGACC-3’ 

Reverse 5’-TGCTGCTGTTCCTGTTTTC-3’    

Cidea NM_007702                Forward 5’-TGCTCTTCTGTATCGCCCAGT-3’ 

Reverse 5’-GCCGTGTTAAGGAATCTGCTG-3’    

Tmem26 NM_177794 Forward 5’-TTCCTGTTGCATTCCCTGGTC-3’ 

Reverse 5’-GCCGGAGAAAGCCATTTGT-3’    

PRDM16 NM_027504 Forward 5’-GATGGGAGATGCTGACGGAT-3’ 

Reverse 5’-TGTCTGACACATGGCGAGG-3’    

TBX1 NM_011532 Forward 5’-CGAATGTTCCCCACGTTCCA-3’ 

Reverse 5’-GTCTACTCGGCCAGGTGTAG-3’    
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FGF12 NM_020013 Forward 5’-CGTCTGCCTCAGAAGGACTC-3’ 

Reverse 5’-TCTACCATGCTCAGGGGGTC-3’ 

Mitochon-
drial DNA  

AP014941 Forward 5’-CCGTCACCCTCCTCAAATTA-3’ 

Reverse 5’-GGGCTAGGATTAGTTCAGAGTG-3’ 

UBIQUI-TIN  

 

NM_019639 Forward  5’-GACAGGCAAGACCATCAC-3’ 

Reverse  5’-TCTGAGGCGAAGGACTAAG-3’ 

-2 MICRO-
GLOBULIN 

 

NM_009735 Forward  5’-CGGTCGCTTCAGTCGTCAG-3’ 

Reverse  5’-CAGTTCAGTATGTTCGGCTTCC-3’ 
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Table II. PCR primers for human genes 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative real-time PCR (qPCR) was performed in an iQ5 real-time PCR detection 

system (Bio-Rad Laboratories) using 2× iQ Custom Sybr Green Supermix (Bio-Rad 

Laboratories). Values were normalized on mRNA expression of murine ubiquitin and 

-2 microglobulin (reference genes for 3T3-L1) or of human -actin and HPRT (for 

ATMSC). Statistical analysis of the qPCR was performed using the iQ5 Optical System 

Software version 1.0 (Bio-Rad Laboratories) based on the 2– Ct method [Livak KJ et 

Target gene Accession 
number 

Sequence, 5’-3’ 

PPAR 1/2  NM_138712 

 NM_015869 

Forward  5’-CGAAGACATTCCATTCACAAG-3’ 

Reverse  5’-CTCCACAGACACGACATTC-3’ 

GLUT4 NM_001042 Forward   5’-AATGCTGCTGCCTCCTATG-3’ 

Reverse  5’-ATCAGAATGCCGATAACAATGG-3’ 

ADIPONECTIN NM_001177800 Forward  5’-GCCTACCACATCACAGTC-3’ 

Reverse  5’-TCAGCATAGAGTCCATTACG-3’ 

AP2  NM_001442 Forward  5’-AAGTCAAGAGCACCATAACC-3’ 

Reverse  5’-TCAATGCGAACTTCAGTCC-3’ 

FAS NM_004104 Forward  5’-TGTGGTCTTCTCCTCTGTG-3’ 

Reverse  5’-TTGGTGCTCATCGTCTCC-3’ 

Lipoprotein 

Lipase (LPL) 

NM_000237 Forward  5’- AGAGAGAACCAGACTCCAATG-3’ 

Reverse  5’-GGCTCCAAGGCTGTATCC-3’ 

ACTIN XM_005249818 Forward  5’-AATGAGCTGCGTGTGGCTCC-3’ 

Reverse  5’-CAATGGTGATGACCTGCCG-3’ 

HPRT1 NM_000194 Forward  5’-GGTCAGGCAGTATAATCCAAAG-3’ 

Reverse  5’-TTCATTATAGTCAAGGGCATATCC-3’ 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Livak%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=11846609
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al, 2001]. The dissociation curve for each amplification was analysed to confirm 

absence of unspecific PCR products.  

 

3.8. Western Blot 

LANCL2, PPAR 1/2, GLUT4, pAkt, Akt and UCP1 protein expression was determined 

by Western blot, using standard procedures. 3T3-L1 adipocytes differentiated in the 

presence or absence of 100 nM ABA and 3T3-L1 adipocytes, trasfected in parallel with 

pcDNA6.2/V5/GW/D-TOPO (empty, control plasmid) and with LANCL2-

pcDNA6.2/V5/GW/D-TOPO (LANCL2 plasmid), incubated for 24 hours at 37°C in the 

presence or absence of 100 nM ABA, were washed three times with ice-cold HES 

buffer. Next, cells were collected by scraping in HES buffer containing a protease 

inhibitor cocktail for mammalian cells (Sigma) and homogenized by passing them 

through a 22-gauge needle for 10 times. All subsequent steps were performed at 4°C. 

The homogenate was centrifuged at 16,000 g for 30 min and the resulting pellet, 

enriched in cell membranes, was resuspended in Radioimmuno precipitation assay 

(RIPA) buffer (20 mM Tris-HCl pH 7.6, 150 mM NaCl, 1 mM EDTA, 1% NP40, 1% sodium 

deoxycholate, 0.1% SDS). Total protein content in the homogenate’s pellet and 

supernatant was measured by a DC Protein Assay (Bio-Rad Laboratories). The same 

protocol was used for detection of pAkt and Akt in 3T3-L1 adipocytes transfected in 

parallel with negative control siRNA (CTRL) and with LANCL2-specific siRNAs (siRNA 

LANCL2); after 48 h from transfection, cells were starved for 4 h in serum-free 

medium and incubated for 30 min at 37°C with or without of 100 nM insulin, then 

collected and lysed as described before. SDS-PAGE was performed as mentioned in I 

chapter paragraph 3.1.6. 
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3.10. Statistical analysis 

Experimental values are expressed as mean  standard deviation of at least three 

independent experiments. All parameters were tested by t test for paired or unpaired 

data as appropriate. Values of p<0.05 were considered statistically significant. 
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4.0 Results 

 

4.1. ABA stimulates GLUT4 expression and glucose uptake in differentiated murine 

adipocytes via a phosphatidyl inositol 3-kinase (PI3K)-dependent pathway 

Treatment with ABA was previously shown to increase the plasmamembrane 

translocation of GLUT4 in murine adipocytes and to induce the concomitant 

phosphorylation of Akt [Bruzzone S et al, 2012 (a]. Here, we observed a significantly 

higher GLUT4 protein expression in membrane-enriched lysates from 3T3-L1-derived 

adipocytes differentiated for 5 days in an insulin-containing differentiation cocktail in 

the presence of 100 nM ABA compared to control cells, differentiated with the same 

cocktail but without the addition of ABA (Fig. 16A). The higher GLUT4 expression level 

in the ABA-treated adipocytes was paralleled by an approximately 2-fold increase of 

glucose uptake relative to adipocytes differentiated in the absence of added ABA (Fig. 

16B). By comparison, insulin at the same concentration as ABA (100 nM) induced an 

approximately 3-fold increase of glucose uptake compared with untreated controls 

(Fig. 16B). Pre-treatment of adipocytes with the specific inhibitor of PI3K, LY294002, 

prior to incubation with [14C]-2-deoxy-D-glucose, significantly reduced the stimulatory 

effect of both ABA and insulin on glucose uptake. This result, together with the 

previously observed ABA-induced phosphorylation of Akt in murine adipocytes 

[Bruzzone S et al, 2012 (a], suggests that ABA, similarly to insulin, activates glucose 

transport via a PI3K/Akt-dependent signaling pathway in adipocytes. 
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4.2. ABA increases O2 consumption in 3T3-L1 adipocytes. 

The effect of ABA treatment on the respiration of 3T3-L1-derived adipocytes was 

investigated in two different experimental settings: cells were either differentiated 

for 7 days with the standard differentiation cocktail, containing or not 100 nM ABA, 

or cells were first differentiated for the same time in the absence of ABA, and then 

treated or not with the hormone for 24 h in the absence of the differentiation cocktail. 

As shown in Fig. 17A, adipocytes differentiated in the presence of 100 nM ABA 

showed a significantly increased respiration compared with untreated controls (28 ± 

4 vs. 22 ± 2 nmol O2/min/mg protein, respectively); a similar increase of O2 

consumption (29 ± 4 vs. 21 ± 3 nmol O2/min/mg protein in ABA-treated vs. control 

cells) was also observed when adipocytes were exposed to ABA for 24 h only, after 

being differentiated for 7 days in the absence of the hormone (Fig. 17B). 

 

4.3. LANCL2 silencing abrogates, and LANCL2 overexpression enhances, the 

stimulation of glucose uptake induced by ABA and insulin in adipocytes 

LANCL2 has been identified as the ABA receptor in mammalian cells [Sturla et al, 2009 

and 2011]. To investigate whether LANCL2 expression modulates glucose uptake in 

adipocytes, 3T3-L1-derived adipocytes were first transfected with a LANCL2-targeting 

siRNA (siRNA LANCL2) or with a negative control siRNA (Control, CTRL). At 48 h after 

transfection, a 45% decrease of LANCL2 expression was obtained (Fig. 18A); on these 

cells, we explored whether LANCL2 silencing had a direct effect on glucose uptake, by 

measuring ABA- or insulin-dependent glucose transport. LANCL2 silencing abrogated 

the increase of glucose uptake induced by both ABA and insulin (Fig. 18B) and also 

significantly reduced insulin-stimulated Akt phosphorylation and GLUT4 protein 

expression (Fig. 18C). 
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To confirm a role for LANCL2 expression levels on adipocyte glucose uptake, parallel 

experiments were performed where LANCL2 was overexpressed. 3T3-L1-derived 

adipocytes were transfected with pcDNA6.2/V5/GW/D-TOPO (empty plasmid, used 

as a control) or with LANCL2-pcDNA6.2/V5/GW/D-TOPO (LANCL2 plasmid). 

Overexpression of the LANCL2 protein was confirmed by Western blot analysis 48 h 

after transfection (Fig. 19A). At the same time point, differentiated 3T3-L1 adipocytes, 

overexpressing or not LANCL2 protein, were treated with either 100 nM ABA or insulin 

for 1 h and glucose uptake was then measured. Basal (unstimulated) glucose 

transport was significantly enhanced in LANCL2-overexpressing cells compared with 

controls (approximately 3-fold) and incubation for 1 h with ABA or insulin (both at 100 

nM) further increased glucose transport significantly, by approximately 60% for both 

hormones (Fig. 19A). The expression levels of GLUT4 and of PPAR were also 

investigated in differentiated 3T3-L1 adipocytes overexpressing LANCL2. As revealed 

by qPCR analysis, GLUT4 and PPAR mRNA levels were higher in LANCL2-transfected 

cells relative to controls (showing an approximately 3- and 1.5-fold increase, 

respectively, Fig. 19B, C), and also the corresponding protein levels were similarly 

increased, as detected by Western blot (insets in Fig. 19B and C). In addition, 

incubation of LANCL2-overexpressing cells with 100 nM ABA or insulin further 

increased the expression levels of GLUT4 and PPAR mRNAs and proteins, as 

compared with control cells (Fig. 19B, C, D). 

These results demonstrate that the level of LANCL2 expression in adipocytes affects 

both basal and ABA or insulin-stimulated glucose uptake via GLUT4, as well as 

expression of GLUT4 and PPAR, the master regulator of adipogenesis.  
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4.4. Metabolic effects of ABA on differentiated 3T3-L1 adipocytes  

At two-days post confluence, 3T3-L1 preadipocytes were induced to differentiate 

with a cocktail containing insulin, dexametasone and IBMX (see Materials and 

Methods) for 10 days in the absence (control) or in the presence of 100 nM ABA. Upon 

staining of accumulated lipids with Oil Red O, the ABA-treated adipocytes appeared 

smaller in size compared with the untreated controls (Fig. 20A, right panel). Thus, the 

cell surface area and diameter were measured on stained cells and the results 

confirmed that ABA treatment during differentiation resulted in a smaller size of the 

adipocytes (Fig. 20A, left panel): cell area and diameter in ABA-treated adipocytes 

were 37% and 21% smaller, respectively, compared with control cells.  

In the absence of the differentiation cocktail, ABA per se was unable to induce the 

differentiation of 3T3-L1 pre-adipocytes: incubation of the cells for up to 10 days in 

the presence of ABA alone (Fig. 20B, black bars), at concentrations up to 10 µM (bar 

2), did not induce any accumulation of triglycerides (see bar 1 for comparison). When 

100 nM ABA was added to the insulin/dexametasone/IBMX cocktail during 

differentiation (Fig. 20B, white bars), the triglyceride content at 10 days-post 

induction of differentiation, expressed as mMol/mg protein, was slightly lower in the 

ABA-treated adipocytes (bar 4) compared with control, ABA-untreated cells (bar 3). 

We then measured the triglyceride content in 3T3-L1 adipocytes cultured for 10 days 

in the presence of the differentiating cocktail (pre-differentiated, grey bars), then 

washed, resuspended in complete medium without cocktail and incubated for 24 h 

without (bar 5) or with 100 nM ABA (bar 6) or insulin (bar 7) or 100 nM ABA + 100 nM 

insulin (bar 8): the amount of triglycerides was not modified in cells treated with ABA 

compared with untreated controls (bars 6 and 5, respectively); conversely, it was 

significantly increased in  adipocytes incubated with 100 nM insulin (bar 7) compared 
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with controls (bar 5). Addition of 100 nM ABA to insulin did not further increase the 

triglyceride content of differentiated cells (bar 8).  

The GAPDH activity was increased by approximately 50% in cells differentiated in the 

presence of ABA compared to untreated controls (not shown), suggesting an 

enhanced glucose metabolism through the glycolytic pathway in ABA-treated 

adipocytes.  

Finally, the effect of ABA on CO2 production, reflecting hexose monophosphate shunt 

and tricarboxylic acid cycle activities, and fatty acid synthesis from labeled glucose 

was compared with that of insulin on differentiated 3T3-L1 cells. CO2 production by 

adipocytes treated with 100 nM ABA for 7 h was increased compared with untreated 

controls, although the increase was significantly lower compared with that observed 

with insulin at the same concentration (Fig. 20C, black bars). Fatty acid synthesis from 

labelled glucose was not modified in differentiated adipocytes incubated for 4 days 

with ABA compared with untreated controls, in contrast with the significant increase 

induced by insulin (Fig. 20C, striped bars). No additive effect was observed in cells 

treated with ABA and insulin, both at 100 nM, and no further increase of CO2 release 

or lipid synthesis was observed at micromolar ABA concentrations (not shown).  

Collectively, these data indicate that ABA, unlike insulin, does not per se induce 

adipocyte differentiation; when present during the insulin-induced adipocyte 

differentiation process, ABA appears to induce a remodeling of the cells, reducing cell 

size and triglyceride content. Like insulin, ABA stimulates glucose oxidative 

metabolism (CO2 production), but lipid synthesis from glucose is less than that 

observed with insulin. 
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4.5. Transcriptional effects of ABA on 3T3-L1-derived adipocytes and on human 

ATMSC 

To further evaluate the effect of ABA on gene transcription during adipocyte 

differentiation, both 3T3-L1 and ATMSC cells were induced to differentiate, by culture 

in the respective differentiation cocktails, in the presence or absence of 100 nM ABA: 

expression of the typical adipocyte markers was explored at days 1, 3 and 8 of the 

differentiation process in 3T3-L1 cells and at days 3, 7, 10 and 16 in ATMSC. 

Adiponectin and leptin mRNAs were both significantly increased in ABA-treated 3T3-

L1 derived adipocytes compared with untreated controls (2.9- and 2.5-fold, 

respectively) as early as 24 h after induction of differentiation (Fig. 21A), and this up-

regulation persisted, although to a lower extent, also at day 3. Transcription of PPAR, 

also increased, slightly but significantly, in ABA-treated cells, both at day 1 and at day 

3 of differentiation (with a 15% and 26% increase relative to controls, respectively). 

Conversely, the fatty acid synthase (FAS) mRNA levels were slightly increased by the 

presence of ABA only at day 3 of differentiation. Finally, the transporters of free fatty 

acids (FFA) AP2 and of glucose (GLUT4), were up-regulated by ABA treatment as 

compared with control cells, showing a significant increase both at day 1 and 3, yet 

with different kinetics; these data are in agreement with the increased expression of 

GLUT4 shown in Fig. 16A. The expression levels of all genes explored were not further 

increased at the same time points when cells were incubated with 10 M instead of 

100 nM ABA. 

In ATMSC differentiated in the presence of 100 nM ABA (Fig. 21B), we observed an 

increased expression of the adiponectin, FAS, and lipoprotein lipase (LPL) genes 

compared with untreated controls, which peaked at day 7 post-induction of 

differentiation; the PPAR and GLUT4 mRNAs were increased at day 3 of 

differentiation (Fig. 21B). AP2 expression was significantly higher in ABA-treated 
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ATMSC compared with untreated controls at all time points explored. At 16 days post-

induction of differentiation, the mRNA levels of all the genes explored in 3T3-L1 and 

in ATMSC were not significantly different in ABA-treated compared with control cells. 

Finally, we tested the effect of ABA on the transcription of GAPDH, leptin, GLUT4, 

adiponectin and PPAR-γ in adipocytes terminally differentiated in the absence of ABA. 

When 3T3-L1-derived adipocytes and human adipose tissue obtained from 

abdominoplasty were exposed to 100 nM ABA, the mRNA level of all these genes was 

significantly increased over values observed in untreated cells after only 4 h 

incubation (Fig. 21C).  

 

4.6. ABA induces brown features in 3T3-L1 adipocytes 

Altogether, the results obtained from the metabolic studies indicated that ABA 

significantly stimulates glucose transport (Fig. 16B), O2 consumption (Fig. 17) and CO2 

production (Fig. 20C) in adipocytes, with a lesser increase of lipid synthesis compared 

with insulin (Fig. 20B, C). We then investigated whether ABA could induce the 

activation of adipocyte genes regulating the “browning” process which would be 

coherent with the observed increased metabolic rate and reduced triglyceride 

accumulation. To this purpose, 3T3-L1 cells were treated during the differentiation 

process either without (control) or with ABA at two different concentrations (100 nM 

and 10 M) and the mRNA levels of the brown adipocyte markers UCP1, PGC-1, 

PRDM16, CIDE-A [Barneda, D et al, 2013] and TMEM26 were compared in ABA-

treated and in control cells. mRNA levels from all genes explored were up-regulated 

in ABA-treated compared with control cells, at both concentrations tested and at all 

time points (day 2, 5 and 8 post-induction of differentiation), except for PRDM16, 

which increased over control values at days 5 and 8, but not at day 2 (Fig. 22). mRNA 

levels of UCP1 and PRDM16 progressively increased during exposure of the cells to 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Barneda%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23376222
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ABA, reaching 3-fold higher values relative to controls at day 8 (Fig. 22). The increased 

expression of UCP1 was confirmed by Western blot, showing an approximately 2- and 

4-fold increase of the protein relative to control, in cells cultured for 8 days with 100 

nM or 10 µM ABA, respectively (Fig. 22, inset to the first panel). When 100 nM ABA 

was added at the end of the differentiation process (day 10) for 24 h, a significant 

increase of mRNA levels of UCP1, PGC-1, CIDE-A and FGF21 was observed relative 

to ABA-untreated cells (3.2 ± 0.5, 2 ± 0.1, 2.9 ± 0.2, 7.5 ± 0.9 respectively n=3). 
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5.0 Discussion 

 

Altogether, these results suggest that ABA enhances glucose disposal in white 

adipocytes and induces brown fat activity in these cells. 

Indeed, ABA increases protein expression of GLUT4 and stimulates glucose uptake in 

differentiated murine 3T3-L1 adipocytes (Fig. 16A and B). The underlying signaling 

pathway requires the ABA receptor LANCL2 (Fig. 18B and 19A), and also involves the 

activation of PI3K (Fig. 16B). ABA was already shown to induce the phosphorylation 

of Akt in murine adipocytes [Bruzzone S et al,2012 (a] and LANCL2 can promote 

maximal phosphorylation of Akt in liver cells in response to mitogenic signals by 

binding and activating the Akt kinase mTORC2 [Zeng M et al, 2014]. Altogether, these 

results indicate that ABA, via LANCL2, activates both PI3K and Akt in adipocytes. 

Interestingly, even in the absence of added ABA, over-expression of LANCL2 

significantly increases GLUT4 expression (Fig. 19B) and basal, as well as insulin-

stimulated, glucose uptake in differentiated murine adipocytes (Fig. 19A). Conversely, 

silencing of LANCL2 abrogates not only the enhancing effect of ABA on glucose 

uptake, but also that of insulin; indeed, a 40% decrease of LANCL2 expression is 

sufficient to abrogate glucose uptake induced by insulin (Fig. 18B). These data suggest 

that, by modulating the level of GLUT4 expression, the ABA/LANCL2 system can 

impact on insulin action in adipocytes and thus on whole-body glycemia homeostasis. 

Indeed, ablation of GLUT4 in adipocytes results in systemic insulin resistance [Abel ED 

et al, 2001]. Conversely, an increased GLUT4 expression in adipocytes normalizes 

fasting hyperglycemia and glucose intolerance in mice lacking GLUT4 selectively in 

muscle [Carvalho E et al, 2005]. GLUT4 expression is regulated by PPAR, whose 

activation mediates the anti-diabetic effects of thiazolidinediones (TZDs) [Arner P, 
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2003; Saltiel AR et al, 1996; Smith SA, 2003]. Treatment of patients with TZDs, such as 

rosiglitazone and pioglitazone, lowers plasma glucose levels and induces remodeling 

of the adipose tissue, whereby large adipocytes are replaced with small and/or 

insulin-sensitive cells [Okuno AJ et al, 1998; de Souza CJ et al, 2001]. Pointedly, ABA 

treatment reduces adipocyte diameter and area (Fig. 20A), suggesting that adipocyte 

remodeling may be one of the effects of ABA on AT. ABA was previously shown to 

activate PPAR in 3T3-L1 pre-adipocytes in vitro, although it was significantly less 

potent than the synthetic agonist rosiglitazone [Guri AJ et al, 2007]. Here we observed 

that incubation with ABA or transfection with LANCL2 (Fig. 19C) increases mRNA 

levels and protein expression of PPAR in differentiating murine and human 

adipocytes (Fig. 21A, B) and in already differentiated murine (Fig. 19C) and human 

adipocytes (Fig. 21C). Both PPARγ isoforms appear to be upregulated by ABA and 

LANCL2 overexpression (Fig. 19C). Upregulation of PPARγ expression per se is known 

to suppress GLUT4 transcription [Armoni MJ et al, 2003], unless PPARγ is bound to co-

activators or to ligands (such as TZDs), causing its dissociation from the GLUT4 

promoter. Thus, the increased transcription of the PPARγ activator PGC-1α induced 

by ABA (Fig. 21) may be responsible for the induction of GLUT4 transcription. Indeed, 

overexpressed PGC-1α has been shown to bind PPARγ and to increase GLUT4 

expression and glucose transport in muscle cells [Michael LF et al, 2001].  

The discovery that LANCL2 expression levels affect the sensitivity of adipocytes to 

insulin-stimulated glucose uptake and the recent demonstration of its non-canonical 

properties as a G protein-coupled receptor also capable of nuclear translocation 

[Fresia C et al, 2016] identify LANCL2 as a new target for investigations on the genetic 

background of adipocyte insulin resistance and for therapeutic interventions aimed 

at increasing adipocyte glucose uptake without increasing triglyceride deposition.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Guri%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=17000034
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In contrast to insulin and TZD PPARγ agonists (e.g. rosiglitazone), ABA does not per se 

induce adipocyte differentiation, neither in murine pre-adipocytes nor in human 

ATMSC. Moreover, the amount of triglycerides in adipocytes incubated with ABA is 

significantly lower than that measured in cells treated with insulin (Fig. 20B, C) or 

rosiglitazone (not shown). The fact that ABA induces a more limited triglyceride 

accumulation in adipocytes compared to insulin and to TZDs may prove 

advantageous, if ABA supplementation were proposed for the treatment of glucose 

intolerance [Magnone M et al, 2015]. 

In vitro, ABA upregulates the expression of various adipocyte marker genes, such as 

AP2, adiponectin, FAS and leptin during the early phase of human and murine 

adipocyte differentiation (Fig. 21A, B); however, at the end of differentiation, the 

expression level of these genes in the ABA-treated cells is not different from that 

observed in the untreated controls, with the exception of AP2 mRNA in ATSMC (Fig. 

21B). Thus, the effect of ABA on adipocyte differentiation appears to be one of 

acceleration rather than induction. Among the genes upregulated by ABA, 

adiponectin plays a crucial role in the prevention of diabetes mellitus and metabolic 

syndrome, as high adiponectin levels protect against the impairment of glucose 

metabolism [Koerner A et al, 2005; Maeda K, 2007]. Adiponectin has anti-diabetic, 

anti-inflammatory, anti-atherogenic and cardio-protective properties, and an 

increase of this adipokine could contribute to important clinical benefits in the 

development of therapies for the prevention or treatment of obesity and obesity-

related diseases. Recently Hui et al described that adiponectin enhances cold-induced 

browning of subcutaneous adipose tissue and that adiponectin KO mice are resistant 

to subcutaneous adipose browning during cold adaptation [Hui X et al, 2015]. Our 

results indicate that ABA indeed stimulates browning of white adipocytes by 

increasing the expression levels of several key proteins involved in the browning 
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process including UCP1 (Fig. 22). UCP1 is the key marker of BAT and its expression is 

regulated by several transcriptional factors. Among them, C/EBP and PPAR 

[Tontonoz P et al, 1994; Brun RP et al, 1997] are critical to initiate both white and 

brown adipogenesis, whereas PDRM16 and PPAR coactivator-1 (PCG-1) are 

essential to brown fat determination, by stimulating expression of brown-specific 

genes [Lee YH et al, 2014; Barbera MJ et al, 2001;Uldry M et al, 2006]. The increased 

expression of the beige cell marker TMEM26 [ Wu J et al, 2012] and of the brown cell 

marker CIDE-A [Barneda D et al, 2013] in the ABA-treated adipocytes suggests that 

ABA may be able to convert white into beige/brown adipocytes. The observations that 

adipocytes differentiated in the presence of ABA have a reduced size compared with 

untreated cells (Fig. 20A), accumulate less triglycerides and synthesize significantly 

less fatty acids from glucose compared with insulin-treated cells (Fig. 20B, C) are in 

line with the hypothesis that glucose-derived energy conversion into lipid synthesis is 

less efficient in ABA- than in insulin-treated cells. 

In conclusion, the fact that ABA stimulates glucose uptake and UCP-1 expression by 

BAT and induces expression of browning genes in WAT and in WAT-derived 

preadipocytes makes it an attractive hormonal therapy to improve glucose tolerance 

under conditions of insulin resistance and obesity. 
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CONCLUDING REMARKS AND PERSPECTIVES 

 

Type 2 diabetes mellitus (T2DM) is already a worldwide health emergency and its 

prevalence is steadily increasing, making new therapeutic and preventive approaches 

an urgent need. 

The results obtained in this thesis demonstrates that abscisic acid (ABA) is implicated 

in glycemic control through its receptor LANCL-2. Indeed, we demonstrate the role of 

ABA in the hormonal cross-talk between insulin and GLP-1, which lies at the heart of 

glycemia homeostasis. We observed a positive feedback mechanism between ABA 

and GLP-1, which is relevant to the physiology of glycemia regulation and may also be 

explored as a means to improve endogenous GLP-1 function in T2DM patients.  

We further demonstrate that ABA stimulates glucose uptake and UCP-1 expression 

by brown adipose tissue and induces expression of browning genes in the WAT and 

in WAT-derived preadipocytes. Finally, we observed a protective role of ABA on 

hypoxia-induced neuronal cell death.  

Altogether, these results suggest that dietary ABA may be considered as a new 

therapeutic intervention to control hyperglycemia, reduce WAT mass and improve 

neuroprotection in the diabetic or pre-diabetic subject.  

These results provide a strong rationale for testing the possibility of exploiting ABA as 

a new anti-diabetic drug, possibly in combination with GLP-1 mimetics, in the clinical 

setting for the treatment of subjects with prediabetes, diabetes and the metabolic 

syndrome. 
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FIGURES 

 

 

Fig. 6. ABA induces GLP-1 release and transcription in hNCI-H716 cells. 

A. hNCI-H716 cells were incubated for 2 h in the absence or presence of ABA (at the 

indicated concentrations), or of 200 mM glucose or 10 mM glutamine (gln). In some 

experiments, cells were pre-incubated for 10 min in the absence or presence of 20 µM 2′,3′-

Dideoxyadenosine, a specific adenylyl cyclase inhibitor (grey bar) or of 1 µM of a cell 

permeable PKA inhibitor (protein kinase A inhibitor 14-22 amide, myristoylated, black bar), 

prior to stimulation with 200 µM ABA. GLP-1 levels in the culture media were then estimated 

with an ELISA kit. Data, expressed as fold increase over values in untreated cells, are 

expressed as mean ± SD of at least 3 different experiments. *p<0.05 compared to untreated 

cells. B. hNCI-H716 cells were incubated for 2 h in the absence or presence of 200 µM ABA 

and qPCR was performed with specific primers for GLP-1 and glucagon; *p<0.05 compared 

to expression in untreated cells. 

 



81 
 

 

 

Fig. 7. ABA induces the increase of the [cAMP]i in hNCI-H716 cells 

A. hNCI-H716 cells were incubated for the indicated time in the absence or presence of 200 

µM ABA (squares), or of 10 mM glutamine (rhombi); [cAMP]i was then measured on cell 

extracts. Data are mean ± SD of at least 3 different experiments; *p<0.05 compared with 

untreated cells; #p<0.05 compared to glutamine-treated cells (for the same time). B. hNCI-

H716 cells were transfected with an empty plasmid (control) or with a LANCL2-containing 

plasmid (LANCL2). After 48 h from transfection, cells were lysed and a Western blot analysis 

was performed using an anti-LANCL2 monoclonal antibody [Vigliarolo T et al, 2015]; a 

representative blot is shown, confirming LANCL2 overexpression after transfection. LANCL2 

expression was normalized on vinculin levels. C. After 48 h from transfection, cells were 

stimulated for 2.5 min in the absence or presence of 200 µM ABA. [cAMP]i was measured 

on cell extracts and data, expressed as fold increase over values in unstimulated cells, are 

expressed as mean ± SD of at least 3 different experiments; basal cAMP values were not 
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significantly different upon transfection. *p<0.05 compared to control. D. After 48 h from 

transfection, cells were incubated for 2 h in the absence or presence of 200 µM ABA. GLP-1 

levels in the culture media were then estimated with an ELISA kit. Data, expressed as fold 

increase over values in unstimulated cells, are expressed as mean ± SD of at least 3 different 

experiments. *p<0.05 compared to untreated cells. 
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Fig. 8. Effect of oral ABA on plasma GLP-1, insulin and glucose levels in rats.  

ABA (50 mg/Kg, black squares) or vehicle alone (open squares) were orally administered to 

rats pre-treated with Sitagliptin (6 animals per experimental group) and blood samples were 

collected at 0, 20, 40 and 60 min to evaluate plasma GLP-1 (A), insulin (C) and glucose (E). 

The AUC corresponding to the curves of GLP-1 (B), insulin (D) and glycemia (F) were 

calculated. Inset to panel A: blood samples were collected from the portal vein of rats not 

pre-treated with Sitagliptin, 10 min after ABA or vehicle administration and GLP-1 levels 

were evaluated (n=5 rats per group). *p<0.05 and **p<0.01 compared with the 

corresponding value in vehicle-treated animals; #p<0.05 and ##p<0.01 compared with time 

zero. 
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Fig. 9. ABA stimulates insulin release from perfused pancreas. 

Rat pancreas were perfused for 10 min with 10 µM and 100 µM ABA in high glucose buffer 

(10 mmol/L glucose), when indicated. A. Insulin levels were normalized to the basal level in 

each trace. B, C. The area under the curve was calculated during the first 10 min (baseline) 

or during the 10 min infusion with ABA. Data are expressed as mean ± SD (n=5). Statistical 

analyses were calculated with the paired t-test: *p=0,05. 
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Fig. 10. GLP-1 stimulates the release of both insulin and ABA from pancreas. 

Rat pancreas were perfused with 1 nM GLP-1 in high glucose buffer (7 mmol/L glucose). 

Insulin (A) and ABA (B) were measured in the effluent samples. Data are mean values ± SD 

(n=6). Statistical analysis was conducted by t-test:*p<0,018; **p< 0,027 compared to basal 

level at min 9, prior to GLP-1 infusion. 
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Fig. 11. Vascular, but not luminal, ABA stimulates GLP-1 secretion from perfused rat 

proximal small intestine.  

Rat proximal small intestine were perfused with ABA, as indicated on the trace. A. Total GLP-

1 levels were determined; data are shown as mean values ± SEM (n=5). B,C The area under 

the curve was calculated during the first 10 min (baseline) or during the 10 min perfusion 

with ABA. Data are shown as mean values ± SD. Statistical analyses were calculated by paired 

t-test; *p<0.048. 
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Fig. 12. Luminally administered ABA is absorbed by the intestine. 

ABA (200 μM) was perfused in rat proximal small intestine. ABA levels in the venous effluent 

were determined. Data are shown as mean values ± SD (n=5). All points after 2 min of 

infusion were statistical significant compared to the baseline (9min). 
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Fig. 13. ABA stimulates NO release by N2a cells. 

N2a cells were stimulated (or not) with 10 µM ABA for 5, 10, 20 min of treatment and NO 

release was measured. Value are mean ± SD of 3 different determinations. *p<0,05. 
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Fig. 14. ABA improves survival of N2a cells to hypoxia via NO. 

Hypoxia conditions were created as described in the Materials and Methods section, in the 

presence or absence of 10 μM ABA, with or without L-NAME (as indicated). After 6h, cell 

mortality was evaluated by cell counting and Trypan blue exclusion. *p<0.02; **p<0.01. 

Results represent mean ± SD of 3 differentdeterminations. 
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Fig. 15. ABA induces up-regulation of p-ERK in N2a cells under hypoxia.  

Western blot analyses were performed to detect the levels of p-ERK. A, B. Protein expression 

was analysed after 1h and 6h of hypoxic stress. One representative result is shown. C, D 

Levels of p-ERK were normalized to vinculin levels (mean ± SD of 3 different determinations) 

*p<0,05 

  



91 
 

 

 

Fig. 16. ABA stimulates GLUT4 expression and function in murine adipocytes via a PI3K-

dependent pathway. 

A, Western Blot analysis of GLUT4 in 3T3L1 cells differentiated for 5 days in the presence or 

absence (NT) of 100 nM ABA. Data are mean ± SD of four different experiments. The inset 

shows a representative Western blot. #p<0.01 ABA relative to NT. B, glucose uptake, as 

measured by the use of [14C]-2-deoxy-D-glucose, in adipocytes incubated in the absence (NT) 

or in the presence of 100 nM ABA or insulin, without (black columns) or with (dotted 

columns) the PI3K-specific inhibitor LY294002. Data are mean ± SD of three different 

experiments.  #p<0.01 INS relative to ABA and ABA relative to NT. 
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Fig. 17. ABA increases O2 consumption in 3T3-L1 adipocytes. 

3T3-L1 cells were differentiated for 7 days with the differentiation cocktail, in the absence 

(CTRL) or presence of 100 nM ABA (A), or cells were differentiated for 7 days and then 

incubated in the absence of the differentiation cocktail for 24 h, without (CTRL) or with 100 

nM ABA at 37°C (B). Adipocyte oxygen consumption was measured at 37°C with a micro-

amperometric electrode as described in the Methods section. Representative traces from 

each experimental setting are shown. Each inset shows the mean O2 consumption from four 

different experiments, normalized on protein content. *p<0.05 
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Fig. 18. siRNA-mediated downregulation of LANCL2 expression abrogates the ABA- or 

insulin-induced glucose uptake in 3T3-L1-derived adipocytes and downregulates Akt 

phosphorylation after insulin treatment. 

3T3-L1-derived adipocytes were transfected with a specific siRNA to downregulate LANCL2 

expression (siRNA L2) or with a negative control (CTRL): A, Western Blot analysis of cell 

lysates, revealing downregulation of LANCL2 expression. Inset: a representative experiment. 

*p<0.05 siRNA LANCL2 relative to CTRL. B, glucose uptake, as measured by the use of [14C]-

2-deoxy-D-glucose, in CTRL (black columns) or siRNA cells (white columns), incubated (or 

not) in the presence of 100 nM ABA or insulin. *p<0.05 ABA relative to CTRL #p<0.01 INS 

relative to ABA. Data are mean ± SD of at least n=3 different experiments.C, Western Blot 

analysis of pAkt and GLUT4 in terminally differentiated 3T3-L1 derived adipocytes, silenced 

for LANCL2 expression and incubated with 100 nM insulin for 30 min. 
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Fig. 19. LANCL2 overexpression stimulates glucose uptake and expression of GLUT4 and 

PPARγ in 3T3-L1-derived adipocytes.  

3T3L1-derived adipocytes were transfected with an empty plasmid (CTRL) or with a LANCL2 

plasmid (LANCL2). At 48 h post-transfection, the following assays were performed: A, 

Uptake of [14C]-2-deoxy-D-glucose was measured in CTRL and in LANCL2 cells, incubated for 

20 min at 37°C without or with 100 nM ABA or insulin. Inset: a representative Western blot 

analysis of LANCL2 in lysates from CTRL or LANCL2-transfected cells, showing the 
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overexpressed, V5-tagged, LANCL2 with a slightly higher molecular mass compared with the 

native protein. *p<0.05 CTRL+ABA relative to CTRL, #p<0.01 CTRL+INS relative to CTRL+ABA 

or to CTRL and LANCL2 relative to CTRL, **p<0.01 LANCL2+ABA and LANCL2+INS relative to 

LANCL2.B, C, Western Blot (inset) and qPCR analysis of GLUT4 (B) and PPAR 1/2 (C) in CTRL 

or LANCL2-transfected cells, incubated for 24 h without or with 100 nM ABA. (B) *p<0.05 

CTRL+ABA relative to CTRL, #p<0.01 LANCL2 relative to CTRL and LANCL2+ABA relative to 

CTRL+ABA; (C) *p<0.05 CTRL+ABA relative to CTRL, LANCL2 relative to CTRL and 

LANCL2+ABA relative to CTRL+ABA. Data are mean ± SD of at least three different 

experiments. D, Western Blot analysis of GLUT4 and PPAR 1/2 in CTRL or LANCL2-

transfected cells, incubated for 24 h  with 100 nM insulin. 
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Fig. 20. Effect of ABA on adipocyte size and triglycerides, CO2 and glucose-derived lipid 

production. 

A, 3T3-L1 pre-adipocytes were cultured for 10 days with an insulin, dexametasone and 

IBMX-containing differentiating cocktail, without (NT) or with 100 nM ABA. Lipids 

accumulated were stained with Oil Red O. Right panel: a representative light microscopy 

phase contrast image. Area and diameter of adipocytes were measured with Image J (≥150 

cells for each condition), § p< 0.005 relative to NT.B, Triglycerides accumulated in 3T3-L1 

cells were measured with an enzymatic assay in the following experimental settings: cells 

cultured for 10 days in complete medium, without the differentiating cocktail (no DC, black 
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bars), without (bar 1) or with (bar 2) 10 µM ABA; cells cultured for 10 days in the 

differentiating cocktail (+ DC, white bars), without (bar 3) or with 100 nM ABA (bar 4); cells 

cultured for 10 days in the differentiating cocktail, then washed and cultured for further 24 

h in complete medium (pre-differentiated, grey bars), without (bar 5), or with 100 nM ABA 

(bar 6) or insulin (bar 7), or ABA and insulin together (bar 8), each at 100 nM. *p<0.05, INS 

relative to ABA.  

C, Production of [14C]-CO2 (black bars) was measured on 3T3-L1 differentiated for 10 days 

with the differentiating cocktail, then cultured for 7 h with [U14C]-glucose in a customized 

glass vial (right panel), in the absence (NT) or in the presence of 100 nM ABA or insulin (INS) 

(black bars). Synthesis of [14C]-fatty acids (striped bars) was measured on cells differentiated 

for 6 days, then for further 4 days in the presence of [U14C]-glucose, without (NT) or with 

100 nM ABA or insulin (INS). *p<0.05 ABA relative to NT; #p<0.01 INS relative to ABA. All 

data are the mean ± SD of at least four different experiments. 
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Fig. 21. Transcriptional effects of ABA on adipocytes. 

3T3-L1 cells (A), or ATMSC (B) were differentiated to adipocytes in the absence (control) or 

presence of 100 nM ABA: at the indicated time points, the mRNA levels of the indicated 

genes were evaluated by qPCR. Results shown are the mean ± SD from at least four 

experiments. C, 3T3-L1-derived adipocytes, differentiated in the absence of ABA, or human 

AT biopsies were incubated without (control) or with 100 nM ABA for 4 h. The mRNA levels 
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of the indicated genes were evaluated by qPCR. Data are mean ± SD of at least four different 

experiments. #p<0.01 and *p<0.05 ABA, relative to control. 
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Fig. 22. Browning effect of ABA on 3T3-L1-derived adipocytes. 3T3-L1-derived adipocytes 

were treated during differentiation without (control) or with 100 nM (black bars) or 10 M 

(grey bars) ABA. The expression levels of the indicated genes were measured by qPCR. Data 

are mean ± SD of at least n=3 different experiments. The inset shows a representative 

Western blot of UCP1 in 100 µg lysate of 3T3-L1 cells differentiated without (NT) or with 

ABA. For comparison, the Western blot of UCP1 in 10 µg lysate of murine BAT is shown in 

the right line. *p<0.05 **p<0.01 ABA relative to control. 
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