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Abstract 

Low friction, high wear resistance and strong adhesion in polymeric coatings—employed in a variety 

of industrial and domestic processes such as in ball bearings, water repellent surfaces, antiadhesive 

coatings, and anticorrosion systems—are of significant interest for energy saving and durability 

purposes. Even small increases in friction can have implications on energy efficiency, life time 

expectancy and performance of such coatings. Nanofillers and surface chemical treatments are two 

routes known to enhance the tribological performance of solid lubricants. This thesis presents the 

development and characterization of polymeric coatings with improved tribological and mechanical 

characteristics, with insight details and experiments from macro to nano scale. First, a mechanism is 

developed to enhance the wear resistance of superhydrophobic surfaces by an annealing process and by 

introducing a primer layer; following the tribology of these surfaces is explained. Next, the importance 

of rubber domains in a polymer matrix for dissipating mechanical energy of the system is explained. 

Then, the tribology of engineered plastics is improved by adding 2D and 3D fillers and a mechanism of 

transfer film on counterparts is proposed and proved. In continuity to the framework presented, the role 

of 2D fillers in enhancing the adhesive properties of composite coatings with different substrates is 

explained. From there, a novel route is adopted where surface modifications of water-based 

perfluorinated acrylic copolymer is achieved by changing its pH content. The enhancement in tribology 

of such short-chain polymers is explained and their adhesive/antiadhesive properties are studied. At the 

end, a study is conducted on fabrication of ultra-transparent cyanoacrylate films by controlling the 

polymerization process and their adhesion mechanism is explained after introducing the plasticizer 

effect. Finally, novel applications for fog harvesting and improvement of tribology on steel are 

discussed.  
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1. Introduction 

Evolution of materials started from around 5,000 years ago when humans turned copper and tin ore into 

metallic bronze. Next progression was observed after two thousand years when iron oxide was turned 

into iron and steel. One of the major development of synthesizing new materials started in 1907 when 

Leo H. Baekeland invented the first synthetic plastic, Bakelite
1
. Since then there has been a substantial 

advancement in the development of synthetic polymers. Synthetic polymers, large molecules composed 

of repeated subunits, are synthesized in many forms, including plastics, rubbers, fibres, oil, paints, to 

name a few and have vital significance in almost every field of life: from biomedical, food and water 

applications to energy harvesting and transportation. Synthetic polymers are classified into two major 

types, namely thermoplastics and thermoset. Thermoplastics are highly recyclable, capable of 

remolding, chemically resistant and require environment friendly manufacturing, whereas thermosets 

are more resistant to high temperatures but present issues such as poor surface finish, non-recyclability 

and are unable to reshape
2
.  

Further, thermoplastic polymers are classified into two main classes namely amorphous and 

crystalline and are characterized by their characteristic transition temperature. Over 70% of the total 

production of thermoplastic polymers are accounted for by the large volume, low cost commodity 

resins such as polyethylene (PE), polypropylene (PP), polystyrene (PS), etc. Next in performing and 

cost efficient thermoplastics are acrylics, high impact polystyrene (HIPS), acrylonitrile-butadiene-

styrene (ABS). Engineering plastics such as polyamides, polycarbonates, polyesters are manufactured 

for high performance applications and are preferred for their distinct mechanical properties. Specialty 

polymers are designed to operate under high temperature environment, some of the examples are 

polyimides, fluoropolymers,  liquid-crystal polymers and polysulfones
3
. Each branched polymer has 

distinguished thermomechanical characteristics. Depending on their unique structures, each type of 

polymer is used in suitable applications. Although there has been a tremendous revolution since the 

discovery of synthetic polymers, certain issues can still be improved, such as mechanical stability and 

biocompatibility etc. These concerns are addressed since last decade trying to exploit the exceptional 

properties of nanoparticles, with excellent results, but the constant evolution of the field of 

nanotechnology suggests that still there is plenty of room for improvement. 
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1.1 Motivation 

1.1.1 Brief history of nanocomposite polymers 

Synthetic thermoplastic polymers are a valid alternative to metals in specific applications, for their 

distinct properties, such as light weightiness, ease to manufacture, environmentally friendliness, low 

cost and easily scalability. One major drawback of synthetic polymers is their poor mechanical 

strength, that can be addressed specifically by engineering thermoplastics with reinforcing functional 

fillers, as they can provide higher stiffness, strength and impact performance for metal replacement. 

Polymer composites are mixtures of inorganic and organic additives with certain geometry (fibers, 

flakes, sphere and particulates). Additives for thermoplastic polymers are usually functional fillers that 

mostly refers to short, flakes, platelets or particulates. In general, the parameters affecting the 

properties of thermoplastics are size and shape of the fillers, their composition, interaction of 

components at the phase boundaries and the method of fabrication. In developing reinforcing fillers, the 

aim is to increase the aspect ratio of the particles and to improve their interfacial adhesion with the 

chemically dissimilar polymer matrix. Further these reinforced fillers can be chosen to improve, 

electrical, thermal properties and flame retardancy of polymers.    

Polymer nanocomposites exist in the market since decades, as carbon black, diatomite and 

pyrogenic silica were used as additives in polymers but their effect of properties induced by nanometric 

scale fillers was not fully understood. The very first investigation of nano-fillers incorporated in 

polymer matrix started in 1993 when Kojima et al.
4
 studied the properties of polyamide-6 by adding 

nanoclays, they named it hybrid material.  Since then numerous research has been conducted for 

improving the properties of thermoplastic polymers. Nowadays, the development of  polymer 

nanocomposites is one of the most active area for development of nanomaterials. Some of the 

nanofillers used in nanocomposites are nanoclays, nano-oxides, carbon nanotubes, graphene 

nanoplatelets (GNPs), metallic nanoparticles etc. Nanoscale dimensions can significantly increase 

physical interactions, physio-chemical and chemical interactions in materials and as a consequence the 

morphologies obtained for the nanocomposites and the ability to modify the interfaces are essential for 

improvements
5
.  

1.1.2 Improving mechanical and tribological performance  

In modern applications, nanocomposites has found immense utility in improving energy efficiency, 

health sector, food packaging etc. The incorporation of nanomaterials can improve a polymer’s 

properties such as its Young’s modulus, tensile strength, impact and scratch resistance, electrical and 
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thermal conductivity, tribology improvement etc. Recent advancements could usher in new 

applications where mechanical fragility is the concern for polymers. The growing interest in polymers 

will continue to emphasize the importance of attaining optimal performance by incorporating nano-

fillers.  

Insufficiencies in impact and scratch resistance of polymers and their poor adhesion primarily 

manifest themselves as a drawback, because these embody the low surface energy and short chains, 

hindering for replacement of high performance materials. Specifically when dealing with scratch 

resistance, intrinsic strength of materials along with better adhesion with the substrates play a very 

critical role.  

 

1.2 Background 

1.2.1 Nature inspired non-wettable surfaces  

Superhydrophobic non-wetting surfaces have got significant interest due to their numerous 

applications in water repellency, self-cleaning mechanism, antifouling phenomenon, flow 

enhancement and anti-corrosive properties to name a few. Usually superhydrophobicity is defined by 

two criteria; first the apparent contact angle (APCA) that should be greater than 150° and secondly, 

water must not stick to the surface, i.e. the rolling angle (RA) should be lesser than 10° 
6
. The second 

condition directly links the contact angle hysteresis ∆Ɵ which is the difference between advancing 

contact angle Ɵ(adv) and receding contact angle Ɵ(rec). To understand the concept of 

superhydrophobicity, it is necessary to discuss about nature inspired surfaces such as the wings of  

butterflies, lotus leaf, shark skin, rose petals etc. Depending on their surface morphology, they are 

classified into two categories namely non-adhesive superhydophobic surfaces and adhesive 

superhydrophobic surfaces.  

In 1997, Barthlott and Neinhuis discovered the self-cleaning properties of the lotus leaf that 

lead the inspiration of an intensive work on bio-based artificial non-wettable surfaces
7
. Lotus leaf has 

the distinct property of non-adhesive water-repellency that can be explained by looking at the micro 

and nano-structures (Figure 1.1). Electron microscopy studies revealed that the presence of protrusions 

on the surface, named papillae, with average size of tens of microns (Figure 1.1b) covered by epicular 

waxes of few hundred nanometers (Figure 1.1c) are responsible for creating superhydophobicity. 

When water droplet hits the surface of lotus leaf surface, they rest on the hydrophobic wax crystals on 

top of the papillae, resulting in minimizing the leaf/droplet contact area. Empirically water bridges 
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between adjacent papillae, leaving air pockets in between them leading to contact angle of more than 

150° and extremely low sliding angle.  

 

 

Figure 1.1. Nature inspired macro, micro and nanostructures of lotus leaf and rose petal
8
. 

Conversely, rose petals are the best example of adhesive superhydrophobic surfaces found in 

nature. This behavior can be explained by looking into the microscopic structure of rose-petal surface 

(Figure 1.1e). Although a microstructures can be observed however unlikely with lotus leaves, air 

pockets between the adjacent surfaces are not observed. Therefore a water droplet made in contact 

with the rose petal surface sinks inside the surface features with the consequent increase in water 

adhesion. The wetting behavior of the these natural systems is highly interesting in understanding the 

mechanism that superhydrophobicity is not only the consequence of surface chemistry but also it 

depends on the surface topography and surface roughness. These bioinspired superhydrophobic 

materials left the inspiration for researchers to work on it as Cassie and Baxter were the first two 

scientists who proposed the phenomenon in 1944 that hierarchical structure can trap a layer of air 

between water and the surface thus reducing the adhesion while ensuring good mobility of water 

droplets, shown by equation 

cos ƟAPCA = f cos ƟY ˗ 1 + f 

(b)

(c)

(a) Wax Crystals

PapillaeLotus Leaf

(d) (e)

Rose Petal Micro-papillae

10 µm
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Where ƟAPCA is the apparent contact angle,  ƟY demonstrates the intrinsic contact angle of the surface 

and f represents the wet area fraction. The hydrophobicity of such surfaces patterned with topography 

can be degraded either by loss of roughness or by introduction of hydrophilic contaminants that results 

in transition from Cassie Baxter state to Wenzel state.  

Concluding the discussed phenomenon, the unusual wetting characteristic of superhydrophobic 

surfaces is governed by both the chemical composition and the geometric structure. In general, smooth 

hydrophobic surfaces can have an intrinsic contact angle up to 120° but for attaining the 

superhydrophobicity, roughening of the hydrophobic surfaces with micro and/or nano-scale features is 

essential.  

 

1.2.2 Abrasion induced superhydrophobic surfaces  

The non-wettability of a superhydrophobic surface can be degraded by environmental mechanisms 

(chemical reactions with solvents and gases, UV exposure, bacterial contamination) and mechanical 

wear. In mechanical wear, major milestone is the control over mechanical fragility that damages the 

structure and results in loss of liquid repellency and increase in contact angle hysteresis. There are 

multiple factors that can affect the performance of superhydrophobic coatings including substrate 

adhesion, tangential abrasion, dynamic impact, liquid bath. A proper adhesion with the substrate has 

paramount importance as lack of strong adhesion to the substrate will cause the detachment of the 

coating in case of minor/major applied mechanical force. Similarly rubbing between two solid surfaces 

is a common phenomenon that can occur anywhere in daily life named as tangential abrasion where a 

solid abradant moves tangentially to the tested surface (exemplified in Figure 1.2). Another factor that 

can influence the surface stability is the dynamic impact of collisions when a solid, liquid or gaseous 

phase hits the sample from a controlled/uncontrolled height.  

There are numerous methods defined to identify the durability of superhydrophobic surfaces 

including linear abrasion, circular abrasion, sand abrasion, tape pealing, blade scratching, ball on disk 

sliding and water jet testing. Among all these tests, most significant test is linear abrasion test that can 

give precise reproducible results on large surface area and can produce a uniformly abraded surface. A 

linear abrasion test involves rubbing of a solid flat abrader against the surface under normal load, as 

shown in Figure 1.2. Different abrading materials are usually used to measure the wear abrasion of 

sample surfaces including textile, rubber, and sandpapers under different applied loads.  
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Figure 1.2. (a) Schematic of linear abrasion test on superhydrophobic surface. (b) Mechanism of 

trapping of air between rough asperities. (c) Damaging of surface roughness after abrasion and droplet 

pinning
9
.   

 

Many recent studies has demonstrated the usage of roughness at two length scales (micro and nano-

level) helps to ensure the stability of Cassie state after the surface is exposed to any mechanical 

damage. However still it is very challenging to develop superhydrophobic coatings with improved 

mechanical properties that can withstand severe wear abrasion.  

 

1.2.3 Tribology of nanocomposite materials  

Tribology is the study of different aspects of surface engineering, friction, wear rate and lubrication 

between interacting surfaces in relative motion. The fundamental objective is to minimize the material 

loss or damage when a counter material is brought into contact and to reduce the energy dissipation 

during the surface interactions. The tribological properties of polymers are generally improved with 

the addition of lubricating and/or reinforcing fillers. Lubricating fillers include polytetrafluoroethylene 

(PTFE), graphene and molybdenum disulfide (MoS2) whereas reinforcing fillers are glass fibers, 

carbon fibers, etc. Reinforcing fillers help to increase the mechanical strength of polymeric material 

but on the contrary increases the abrasiveness of the counterpart, leading to increase in the friction 

coefficient and third body wear of the composites, which is undesirable. Lubricating fillers are more 

beneficial for tribology processes as they create a transfer film on counter-surfaces and reduce the 

friction which prevents the material damage. Nanofillers are preferred to incorporate in matrix 

polymer chains as it improves the interfacial interaction and enhances the nucleation capability. 
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Furthermore nanofillers also helps to restrict the mobility of polymer chains in their vicinity and 

influence the rigidity. In particular, from the tribology point of view, the small size of nanoparticles 

with homogenous dispersion in the polymer matrix can conjure the performance. 

Wear damage in polymer nanocomposites is caused due to two categorized wear mechanisms 

namely cohesive and interfacial wear processes. Cohesive wear processes are mainly caused by the 

mechanical induction of the interacting bodies such as abrasive, fatigue, delamination and fretting 

wear. In contrast, the interfacial wear process involves dissipation of the frictional work and increases 

the local temperature as polymers have low melting temperature and thermal conductivity than metals 

that can lead to softening, melting, oxidation on the polymeric surface. On the other hand, interfacial 

processes include transfer wear and chemical or corrosive wear
10

.  

Although polymer nanocomposites are replacing metals for owing adequate strength, lightness, 

versatility and ease of processing but due to their viscoelastic properties, analysis of tribology on such 

surfaces is complicated. Especially in case of nanocomposites, detailed knowledge of nanofillers 

during the tribology processes, and their relationship between structures, substrates and processing is 

required. Tribology response of polymer nanocomposites, specifically on wear, scratch damage, 

mechanism of transfer film on counterparts and role of adhesion with different substrates in solid 

lubricants is relatively unexplored. 

 

1.2.4 Adhesive/antiadhesive surfaces 

Adhesion is a phenomenon where interatomic and intermolecular interactions occur at the interface of 

two surfaces. There are three primary mechanisms for adhesion namely mechanical coupling, 

thermodynamic adhesion and molecular bonding. Mechanical coupling involves mechanical 

interlocking based on the principle of hook and eye, keying into the surface of the substrate. 

Thermodynamic adhesion involves minimization of the surface free energy by orienting the surface 

into non-polar region of the adhering material and is based on the equilibrium processes at the 

interface. Molecular bonding mechanism is based on entailing intermolecular forces between adhesive 

and the substrate such as Van der Waals forces, dipole-dipole interaction, ionic, covalent and metallic 

bonding. A proper understanding of adhesion technology has significant impact as of its applications 

in aerospace, engineering, automotive and biomedical where strong adhesion or non-stick conditions 

are required. One of the best examples in nature for adhesion mechanism is geckos that seems to defy 

gravity as they can run along vertical smooth surfaces
11

. The secret of geckos adhesive capabilities lies 
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in their feet toe pads that consists of series of lamellae (Figure 1.3a), each one covered with uniform 

arrays of similarly oriented hair like bristles called setae (Figure 1.3b) and further single gecko seta 

consists of nanoscale array of hundreds of spatulae tips (Figure 1.3c). Different hypothesis were 

explained for understanding the geckos adhesion elusive mechanism that proposed that it’s due to 

micro-interlocking or due to the friction caused by the small nanoscale foot-pad setae that resists 

against the climbing surfaces and it is proved that strength of the adhesion of geckos depends largely 

on the geometry of the foot-pad setae
12

. This phenomenon of adhesion in case of geckos is well 

connected with nanoparticles that at micro and nanoscale high aspect ratio is the key for contributing 

towards exceptional properties, one of them is adhesion. 

 

Figure 1.3. (a) Feet toe pads of gecko. (b) SEM image of hair like bristles, setae. (c) Nanoscale arrays 

of spatula tips 
12

 

 

Based on the concept of molecular adhesion, it is possible to change the adhesive properties of 

surfaces by introducing chemical charges. By tuning surface chemistry, it is much possible to fabricate 

the surfaces with adhesive/antiadhesive properties.  

 

1.3 Thesis objectives and outline 

This thesis will aim to provide an understanding on tailoring and tuning the surface composition of 

polymers and their subsequent effects on abrasion, adhesion, friction and wear. A framework will be 

defined to show how nanofillers enhance the hydrophobicity of the polymer composites and how 

thermal annealing induces a significant improvement in the wear abrasion response. In this framework, 

we will elaborate the role of primer layer for better adhesion with the substrates and how it impacts the 

100 µm

1µm

(a) (b)

(c)
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performance of wear abrasion. Furthermore, a perspective will be given that wear abrasion testing with 

steel counterpart can be a possible option for future applications where superhydrophobicity and 

tribology are concerned in conjugated applications.  

Focusing further in the field of tribology, further work is also focused on the improvement of 

friction and wear rate of high-density polymers by incorporating 2D and 3D lubricating fillers. A 

mechanism is proposed that how a transfer film on counterpart material can help in reducing friction, 

hence minimizing the material damage. Further explanation is described that ow nanofillers impact in 

improvement of adhesion with substrates. In addition, an effort has been done to improve the tribology 

and adhesion of short chain polymers where surface chemistry is tuned to improve tribology and 

adhesive/antiadhesive properties of the material. Lastly, a biocompatible polymer is synthesized and its 

perspective applications are explained where improvement in tribology and adhesion is addressed. 

 We will begin in chapter 2 where details of fabrication of wear resistant superhydrophobic 

coatings on metal substrates from recycled and non-toxic polymers are explained. Further, the role of a 

primer layer and of thermal annealing on performance of wear abrasion and tribology of 

superhydrophobic coatings is investigated. In chapter 3, we will introduce the 2D and 3D fillers in high 

density polymers and their consequent effects on adhesion and tribology will be examined. The role of 

transfer film for minimizing the friction and material damage will be discussed. In chapter 4, we 

demonstrate the improvement in friction and wear of water soluble environmental friendly acrylic 

copolymer by manifesting the change in chemical composition. In addition, adhesive/antiadhesive 

properties will be related to the tuning of surface chemistry. In chapter 5, we will discuss the 

optimization of a method that allows the fabrication of a biocompatible transparent polymer, with 

special attention to the effect of plasticizer. Finally, in chapter 6, conducted research will be 

summarized and future directions will be discussed.   
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2. Analysis of wear abrasion resistance of multilayer recycled high 

impact polystyrene (HIPS) nanocomposites 

2.1 Introduction 

Plastics are one of the fastest consumed materials in daily life and their consumption is growing 

tremendously worldwide. They are the best candidates for replacement of metal components, a 

relevant example is in packaging where plastic materials are saving 14.2 million tons of oil, ultimately 

reducing 47.3 million tons of CO2 per year. Polystyrene, a member of plastic family, is among the 

most abundantly used plastic with several million tons of production per year 
13

. Although polystyrene 

is widely used for low cost products but its brittle nature hinders in implementation for different 

industrial uses 
14

.  

To address the aforementioned concern, high-impact modifier copolymers are usually grafted 

with polystyrene to form an immiscible polymer blend. Polybutadiene is generally mixed with 

polystyrene to form high impact polystyrene (HIPS) widely used in automotive industry, food 

packaging, electrical appliances and as building material due to its outstanding properties including 

good impact resistance, good dimensional stability, recyclability, ease of process and low cost 
15,16,17

. 

HIPS is previously studied in various domains as Braun et al.
18

 studied the flammability, thermal and 

thermo-oxidative properties of HIPS for building materials, Wang et al.
19

 investigated the performance 

of cement mortar made with recycled HIPS, Zhang et al.
20

 reported improvement in young’s modulus, 

tensile strength, impact strength and hardness of HIPS by incorporating TiO2. Although polystyrene is 

investigated by many researchers for superhydrophobic coatings as Qing et al.
21

 reported the 

fabrication of superhydrophobic polystyrene by adding ZnO primarily used for cotton textiles. Zhu et 

al.
22

 prepared the conductive superhydrophobic polystyrene composite corrosive films for corrosive 

environments and Xue et al.
23

 fabricated the self-healing superhydrophobic surfaces of polystyrene 

incorporated by SiO2 nanoparticles, resistive against severe abrasion. According to best of our 

knowledge, HIPS is never used before for superhydrophobic surfaces specifically for abrasion and 

tribological perspective.  

Superhydrophobic surfaces have received great attention in recent years due to their excellent 

water-repellency, self-cleaning, anti-icing, antifouling and anticorrosive properties
24,25,26,27,28

. 

Superhydrophobic coatings are generally fabricated through surface texturing (e.g., hierarchical 

texture, micro and nanoscale texture) and by chemical modification following the low solid surface 

energy. In hierarchical texture, surface roughness allows air to be trapped between liquid and the 
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structures, while the liquid is suspended on the tips of the asperities called Cassie-Baxter state. The 

Cassie-Baxter state is preferred for obtaining superhydrophobic surfaces as the air pockets reduce the 

solid to liquid contact area; hence increasing the apparent advancing and receding contact angles while 

reducing the contact angle hysteresis 
29

.  

However, one major milestone in fabricating robust superhydrophobic surfaces for commercial 

applications is good substrate-coating adhesion, better wear resistance and excellent anti-abrasion 

properties
30, 31

. Recent studies reveal that existence of rubbery phase in the coating formulations can 

impact significantly and improves resilience against abrasion-induced non-wetting texture damage 
32

. 

Since HIPS thermoplastics already contain dispersed micron-sized rubber particles, it could be a model 

polymer matrix for wear resistant non-wettable nanocomposites.  

Substrate-coating adhesion can be achieved by either mechanical adhesion (substrate 

roughness, mechanical interlocking) or bye the contribution of electrostatic forces, Van der Walls 

forces, surface energy and molecular boding. Conventionally, mechanical interlocking is achieved by 

abrading the substrate, allowing the coatings to fill pores, hovels, crevices and micro voids on the 

substrate. Another approach is to use primer layer which helps to facilitate the susceptible poor 

adhesion of superhydrophobic surfaces with substrates, providing adequate mechanical strength. In 

our case, we used perfluorinated acrylic copolymer as a primer layer and investigated the durability by 

annealing it at different variant temperatures.  

In the present work, we present that addition of silica helped to control the surface mechanics, 

hence, allowing the formation of superhydrophobic nanocomposite coatings bearing good mechanical 

and tribological properties. Mechanical and chemical properties of the resultant nanocomposite 

coatings were analyzed systematically by means of several analytical and spectral techniques. The 

recycled HIPS nanocomposite coatings exhibit better abrasion resisting properties and maintained the 

superhydrophobicity after linear abrasion cycles. Composite-substrate adhesion was improved by 

applying an environmentally friendly perfluorinated acrylic copolymer layer.  Moreover, the coatings 

display significant reduction in friction and wear rate after incorporation of silica at a judicious 

concentration. Post-annealing of composite coatings resulted in phenomenal improvement in abrasion 

resistance and hydrophobicity.  
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2.2  Materials and Methods  

HIPS polymer with rubber content of ~ 8-13 wt. % that was originating from urban recycled waste was 

purchased from Heathrow Scientific USA. The average molecular weight (Mw) of HIPS is 260,000 and 

number average molecular weight (Mn) is 150,000. Molecular weight of rubbery phase (polybutadiene) 

is 120,000  and Mn 100,000, respectively. HIPS contains approximately 35% of the rubber that is 

grafted to the polystyrene. Polystyrene beads were purchased from Sigma-Aldrich and used as 

received.  

Perfluorinated acrylic copolymer (PFAC; Capstone ST-100), a commercial aqueous solution 

was purchased from The Chemours Company, USA 
33

. Formulation was based on approximately 20 

wt.% polymer dispersed in water.  Hydrophobically modified siloxane treated fumed silica, AEROSIL
®

 

R812, with an average particle size of 7-40 nm was kindly donated by Evonik industries, Germany. 

Aluminum substrates with 5.0 cm in length, 2.5 cm in width and thickness of 1.0 mm were purchased 

from RS components. Reagent grade trifluoroacetic acid (TFA), acetone and chloroform were 

purchased from Sigma-Aldrich and used as received without any further modification.  

2.2.1 Preparation of the nanocomposites 

The commercially available water-dispersed perfluorinated acrylic copolymer (PFAC) has been 

developed for porous structures for the purpose of penetrating stain resistant sealant. Direct transfer of 

water-dispersed PFAC on smooth surfaces by spraying or roll coating does not produce smooth and 

adhesive coatings. Hence, a protocol has been developed  to be extracted from its aqueous dispersion
34

. 

In order to precipitate PFAC from the stabilized water dispersion, equal amount of volumes of as 

received aqueous dispersion and TFA were mixed using a vertex for five minutes at room temperature. 

A solid precipitated elastic rubbery polymer was obtained by pouring the supernatant, washed several 

times with distilled water, dried overnight under ambient conditions and dissolved in acetone and 10% 

by weight  solution was formed  
35,36

. Furthermore, dilution of the obtained PFAC was done again to 

get 4% w/v solution for spraying.  

For second layer formulation, weighing boat containing high impact polystyrene (HIPS) was 

dissolved in chloroform with 2wt%. Afterwards hydrophobic silica nanoparticles were mixed into the 

solution to produce polymer/nanoparticle (HIPS/SiO2) suspensions with varying nanoparticle weight 

percent with respect to the polymer (0%, 10%, 20%, 30%, 40%, 50% and 60%).For good dispersion of 

silica nanoparticles, probe sonication was performed for 2 minutes for each of HIPS/SiO2 solution and 
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was bath sonicated for 3 hours at 59 Hz. To avoid any contamination on surface, the aluminum 

substrates were cleaned by acetone prior to spray-deposition. Different formulated solutions were then 

sprayed onto aluminum substrate using an internal mix airbrush spray system (model VL-SET, 

Paasche). Spray coating was driven by high-pressure airstream at 200 kPa pressure. The distance 

between the sample and nozzle head was approximately 15 cm.  

Perfluorinated acrylic copolymer solution was first deposited onto aluminum substrates and 

were kept in ambient environment for solvent evaporation following the heat treatment on hot-plate for 

5 minutes at 180° C lately. After the deposition of first layer of perfluorinated acrylic copolymer, 

HIPS/SiO2 solution was sprayed on primer polymer layer by following the same spraying parameters. 

After spraying, the aluminum substrates were left under ambient environment for 1 hour to evaporate 

the solvent. HIPS/SiO2 composite layer was annealed by heat gun at 340° C for 2 minutes. For better 

precision of results, distance between heat gun and specimen was calculated around 5cm while 

temperature reaching the composite film was confirmed by temperature sensor and was recorded 

around 220° C. Thickness of the HIPS/SiO2  composite film was around 20-25 µm whereas thickness 

of the deposited acrylic copolymer film was around 2µm. A schematic of multilayer composition is 

shown in Figure 2.1. 

 

Figure 2.1. Graphical representation of multilayer HIPS nanocomposites. Primer layer contains 

aliphatic and fluorinated chains whereas HIPS polymer matrix contains polystyrene, polybutadiene and 

fumed silica nanoparticles. 
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2.2.2 Morphological characterization 

For analyzing the morphology of nanocomposite coatings, scanning electron microscope (SEM, JEOL 

JSM-6490AL) with 10 and 15 KV accelerating voltage was used, after the specimens were coated by a 

thin (15 nm) gold layer. For cross section SEM imaging, direct freeze fracture method was used after 

treating the samples in liquid nitrogen for 10 seconds. Whereas, energy dispersive X-ray (EDX) 

analysis was performed to see chemical compositions at 10 kV acceleration voltage, 10 mm working 

distance and 15 sweep counts. Transmission electron microscopy (TEM) was used to characterize the 

morphology of as received HIPS. Approximately 100 nm thick slices were obtained by cutting the 

HIPS sheets with an ultra-microtome. The slice was stained in OsO4 vapor for 10 h before TEM 

imaging.  Images were acquired using a JEOL JEM-1011 TEM (W filament) TEM operated at 200 kV 

accelerating voltage. 

Atomic force microscopy (AFM) images were obtained by a Park system AFM instrument (XE-

100) in non-contact tapping mode,  mounted on an anti-vibration table (Table Stable TS-150). The 

AFM was enclosed by an acoustic enclosure. Single-beam cantilevers tips (PPP-NCHR-10M) were 

used for the data acquisition with less than 10 nm nominal radius and 42 N/m elastic force constant for 

high sensitivity. The scan rate was between 0.1-0.2 Hz with scanning zoom area of 10 × 10 µm
2
. The 

resonance frequency was defined around 320 kHz. Acquired images were further processed with WS × 

M 5.1 processing software. The roughness characteristics of the surfaces were further determined by 

using a built-in grain analysis statistical algorithm. The process involves the watershed algorithm that is 

usually employed for local minima/maxima determination and image segmentation in image 

processing. AFM topography images are segmented into many zones identified with a certain average 

roughness. The mean roughness of the image is calculated by averaging the roughness values obtained 

from three different areas 
37

. 

2.2.3 Variable-angle ATR-FTIR measurements 

Variable-angle ATR-FTIR spectra of the samples were obtained with an ATR accessory (Veemax III, 

PIKE Technologies) coupled to a FTIR spectrometer (Equinox 70 FT-IR, Bruker). All spectra were 

recorded in the range from 3800 to 600 cm
-1

 with 4 cm
-1

 resolution, accumulating 128 scans. In a 

typical measurement, the films were gently deposited on the spot of the ATR accessory (ZnSe crystal) 

and slowly pressed. To ensure the reproducibility of obtained spectra three samples of each type were 

measured. 



  

25 
 

The analyzed depth, dp, of ATR-FTIR spectroscopy depends on several factors such as the 

wavelength λ, the effective angle of incidence θe, the refractive index of the ATR crystal n1, and the 

sample n2, as indicated in the following equation: 

𝑑𝑝 =
𝜆

2𝜋𝑛1√sin2 𝜃𝑒−(𝑛2 𝑛1⁄ )2
           (1) 

In our variable-angle ATR-FTIR spectrometer n1 = 2.4, n2 is assumed to be around 1.6 
38

 and θe may be 

calculated from the set angle θs, n1, and the face angle of the crystal θf: 

𝜃𝑒 = 𝜃𝑓 + sin−1 (
sin(𝜃𝑠−𝜃𝑓)

𝑛1
)           (2) 

Table 2.1 shows θe and the dp at 1000 cm
-1

 for all the set angles used in this study. 

Table 2.1. Calculated effective angles and analyzed depths for the different set angles used. 

θs (°) θf (°) θe (°) dp at 1000 cm
-1

 (m) 

35 45 40.85 8.75 

40 45 42.92 5.73 

45 45 45.00 4.37 

50 45 47.08 3.55 

55 45 49.15 2.99 

60 45 51.19 2.58 

65 45 53.19 2.26 

70 45 55.14 2.01 

75 45 57.02 1.80 

 

All spectra were normalized with respect to t dp at 1000 cm
-1

 using the “ATR correction” command 

provided for the software (Spectra Manager v2). All spectra showed were measured at 45°.  

 

2.2.4 X-Ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed using a Kratos Axis UltraDLD spectrometer with monochromatic 

Al Kα source (photon energy = 1486.6 eV) operated at 15 kV and 20 mA. The analysis area was 300 
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µm × 700 µm in lateral dimensions. Three areas were analyzed throughout sample sizes of about 1 

cm×1cm in order to obtain statistical values for atomic composition. Wide spectra (0 eV - 1200 eV) 

were acquired at pass energy of 160 eV with a step of 1 eV. The Kratos charge neutralizer system was 

used during data acquisition. Spectra were analyzed using Casa XPS software (version 2.3.16); data 

fitting was performed using Voigt profiles and Shirley-type backgrounds. High-resolution analyses 

were carried out with pass energy of 10 eV and step of 0.1 eV. Spectra were charge corrected to the 

main line of the carbon 1s spectrum set to 284.8 eV (C-C bond). 

2.2.5 Annealing temperature measurements 

HIPS nanocomposite coatings were annealed with a 2000W Bosch® heat gun. In order to precisely 

measure the temperature on the surface during hot air impact from a 15 cm distance, a Fluke VT02 

visual IR thermometer was employed. After several experimental trials the best annealing temperature 

was set to 220
o 
C.  

2.2.6 Thermogravimetric analysis 

Thermogravimetric Analysis (TGA) was performed by TGA Q500 (TA Instruments, USA) to estimate 

thermal degradation of PFAC, HIPS and HIPS/SiO2 nanocomposites. Measurements were performed 

on 3-5 mg samples in an aluminum pan. Specimens were heated from room temperature to 800°C at a 

heating rate of 10°C /min in nitrogen atmosphere.  

2.2.7 Wetting analysis  

The apparent static water contact angles (APCAs) and droplet roll-off angles (RAs) were obtained by 

OCAH 200 (Data Physics, Germany) contact angle goniometer. A droplet volume of 5 µl was 

deposited and monitored for 30 seconds for all water contact angle (WCA) measurements. For each 

coating, five measurements were taken at different areas and average values are reported. All RA 

values were measured at dosing volume 7.5 µl droplet volumes under continuous tilting angular 

velocity of 1.58°/second. All experiments were performed at 20° C temperature. As soon as a droplet 

rolled away from the surfaces tilting was stopped and the tilt angle was recorded as RA.  

2.2.8 Tribological characterization  

Tribological properties of multilayer composite coating were investigated by Micro-Combi tester 

(Anton Paar GmbH, Germany). Multi-pass scratch tests were performed with a bearing steel ball of 

radius 500 µm to evaluate the friction and wear resistance. Tip displacement rate was maintained at 

10mm/min for a reciprocating distance of 4mm under the constant load of 1N for 30 minutes, for a total 
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of 75 cycles. All the friction and wear tests were carried out at 20° C while relative humidity (RH) was 

kept at 40-50 %.  

The average values of steady-state coefficient of friction were extracted from the experimental 

data plots of friction coefficient as a function of number of cycles and sliding distance. All the data 

presented in the current work were the average of five replicate measurements for each substrate. After 

each test, the depth of the wear scar d was measured using a stylus surface profiler. Each scar was 

measured 5 times and average was calculated to use the precise depth of the specimen. Wear volume 

∆𝑉 of the specimen was calculated from geometrical considerations, by eq. (3),  

∆𝑉 =
𝐿

2
 𝑟2 (𝑐𝑜𝑠−1 (

𝑟−𝑑

𝑟
) −

√𝑟2−𝑑2

𝑟
)        (3) 

where L is the length of stroke in one cycle (mm) and r the radius of the counterpart steel ball (µm). 

Wear rate was calculated by the ASTM G-99 standard wear rate formula,  

𝐾 =
∆𝑉

𝐹×𝑁×𝐿
                                      (4) 

where F is the applied load (N), L the stroke length in one cycle (m) and N represents the total number 

of cycles, so that N×L is the total sliding length. 

2.2.9 Wear abrasion measurements 

Wear abrasion tests were performed using a linear abrader (Taber
®
 Linear Abraser/Abrader, Model 

5750) under a constant load of 17.5 kPa applied pressure, which was intentionally kept somewhat 

above the general values reported in literature (equal or less than 10 kPa) 
39,40,41

. Abrasion tests were 

performed with a CS-8 calibrase abrasion cylinder tip with stroke length of 5cm, keeping the stroke 

speed constant at 15 cycles/min. The abradant covered a distance of 5 cm/cycle by performing a back 

and forth linear periodic motion. The APCA and RAs measurements were taken after every 5 linear 

abrasion cycles. 

2.3 Results and Discussion 

2.3.1 Nanocomposite morphology and annelaing 

A representative TEM image of the as-received HIPS polymer is shown in Figure 2.2a. Similar 

morphology was also found in HIPS coatings after spraying and annealing the as-received polymer. As 

seen in Figure 2.2a, phase separation between the polystyrene and rubber appears in the form of 
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spheroids. The spheroids are not 100% rubber and are generally known as “salami-like” domains 
42

, the 

borders of which are made by the rubber phase. According to the manufacturer, the average rubber 

content is 10% by weight.  This is a classical HIPS morphology that is common in all forms of HIPS 

regardless of changes in the rubber content, production routes or post processing conditions 
15

.  

Furthermore, Figure 2.2a shows that the spheroids are well dispersed and their size distribution ranges 

from 2 µm down to 200 nm. The main purpose of rubber toughening of brittle polymers is to dissipate 

impact and stress energy via a mechanism known as matrix crazing (network of fine cracks). The 

rubbery phase prevents or delays transmission and transformation of the crazes into cracks. Note that a 

craze is different from a crack in that it cannot be felt on the surface and it can continue to support a 

load.  

 

 

Figure 2.2. (a) Transmission electron microscope (TEM) image of the as received HIPS polymer. The 

sample was stained in OsO4 vapor before microscopy. (b) SEM image of the HIPS nanocomposite with 

50 wt% SiO2 concentration (c) Foam like HIPS morphology is visible in the magnified image. (d) 

Nanocomposite surface morphology after annealing.  The foam-like features are preserved. (e) Cross 

section SEM image showing the interface between the HIPS nanocomposite and the primer PFAC layer 

over aluminum. (f) Photograph of the annealed HIPS nanocomposite shown in (e) on an aluminum 

plate.   

Loss of superhydrophobicity due to wear abrasion under pressure in polymer nanocomposites is 

generally attributed to two mechanisms, namely removal of nanoscale filler particles from the binder 

matrix and cracking and eventual chipping away of the polymer matrix 
43

. Depending on the coating 
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“robustness”, this could be reflected as smoothing out of the hydrophobic surface roughness features 

while the coating remains intact or complete coating failure due to massive material loss 
44

. Detailed 

SEM images generally reveal such changes in morphology after wear abrasion tests. Recent studies 

show that presence of rubbery phases in such non-wettable nanocomposite coatings contributes to the 

energy dissipation and preserves superhydrophobicity longer under certain abrasion conditions 
31

.   

 

Surface morphology of the HIPS/SiO2 nanocomposite top coatings was inspected by SEM as shown in 

Figure 2.2(b-e). For example, surface morphology of HIPS/SiO2 nanocomposite containing 50 wt. % 

SiO2 nanoparticles before annealing is shown in Figure 2.2b. Topographical features closely resemble 

morphology of other non-wettable polymer-SiO2 nanocomposites, with the exception that foam like 

cellular structures are visible throughout the coating (see Figure 2.2c). This is attributed to HIPS 

polymer matrix. These foamy structures are common in expanded polystyrene 
45

. Presence of these 

features could be due to solvent evaporation from the coatings in the form of small bubbles that can act 

in a similar way to blowing agents used in the manufacturing of expanded polystyrene foams 
46,

 
47

. 

Upon annealing at 220° C, the main morphology appears to remain practically unchanged as shown in 

Figure 2.2d and the cellular structures are preserved.  

 

The primer layer ensured adhesion of the HIPS nanocomposite on the metal substrate. A cross 

section SEM image displayed in Figure 2.2e clearly shows that the HIPS nanocomposite top coat forms 

a uniform and well adhered coating on the ~ 2 µm thick primer layer after annealing. Although prior to 

annealing, the interface between the primer and the HIPS nanocomposite was also relatively uniform 

(not shown for brevity); annealing creates a process known as welding of two dissimilar polymer 

interfaces 
48

. Inter-diffusion of both polymers across the interface due to annealing induces strength 

against fracture and adhesive failure at the interface 
49

. Inspection of several other SEM images similar 

to the one shown in Figure 2.2e revealed that indeed welding between HIPS and/or HIPS 

nanocomposites and PFAC occurs with a very uniform continuous and crack free interface formation.  

This is also reflected in the overall macroscopic appearance of the coating as shown in Figure 2.2f.  

Thermal annealing of polymer composites is performed in order to form “welding” between 

dissimilar polymer interfaces as well as polymer matrix-filler interfaces 
50

. A secondary outcome is the 

migration of low molecular weight polymer chains as well as nanoscale fillers towards surfaces or 

cracks within the polymer matrix. In order to form welded polymer interfaces, thermal annealing needs 

to be done in such a way that the polymers are not degraded. Figure 2.3 shows the thermogravimetric 
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measurement results to examine the thermal stability of as-received HIPS and PFAC polymer (primer 

layer). Weight loss curves are compared in Figure 2.3a and the derivatives of weight loss curves are 

given in Figure 2.3b. HIPS polymer is a thermally stable resin. No significant weight loss was observed 

for as-received HIPS before 250° C, however, there exists approximately 7% weight loss between 250
o 

C and 350
o 

C that is attributed to the loss of residual monomeric styrene as well as some impurities 

originating from recycling process 
51

. Major thermal degradation occurs around 425
o 

C (Fig. 2.3b). As 

opposed to HIPS, PFAC polymer is not thermally resilient. It starts to lose weight at much lower 

temperatures and about 10% of its total weight is lost before 200
o 

C. Close to 30% of the copolymer 

degrades at 250
o 

C and between 300
o 

C and 400
o 

C almost all the polymer thermally degrades (Figure 

2.3b). Hence, the thermal annealing conditions of the superhydrophobic coatings are dictated by the 

primer layer PFAC. Before reaching 200
o 

C, however, a much less significant weight loss is noticeable 

(~ 7%) in PFAC polymer and this is attributed to losses related to surfactant molecules that is also 

observed with FTIR measurements. Therefore, the maximum hot-plate temperature employed for 

annealing was chosen to be 180
o 

C. Note that a final annealing step at 220
o 

C for two minutes was also 

performed (near melting point of polystyrene) by using a heart gun. This way, heat was directly 

supplied to the surface of HIPS/SiO2 nanocomposite. The reason for this final step was to ensure better 

welding between the nanoparticles and the polystyrene matrix 
52,53,54

. 

 

 

Figure 2.3 (a) TGA thermal weight loss plots for pristine HIPS and PFAC polymers. (b) Derivative of 

weight loss curves detailing major weight loss temperatures for HIPS and PFAC polymers.   

Optimization of annealing also involved annealing of each coating with a different approach. For 

instance, annealing of pristine HIPS deposited on PFAC primer by suddenly placing it in an oven at 

(a) (b)
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180
o 

C or over a hot-plate creates bubbles and de-wetting zones in the coating as seen in Figure 2.4a. 

Similarly, HIPS/SiO2 nanocomposites containing SiO2 nanoparticles less than 30 wt.% annealed in the 

same way produces a network of cracks on the surface as seen in Figure 2.4b. Hence, coatings 

containing nanoparticles less than 50% by weight were annealed by gradually increasing the annealing 

temperature to its final value (i.e., 50
o 

C in every 10 minutes). However, the best performing 

superhydrophobic HIPS/SiO2 coating in terms of both tribological and non-wetting properties also 

resisted annealing by sudden exposure to 180
o 

C and secondary 220
o 

C without forming any cracks (see 

Figure 2.4c).  

 

Figure 2.4 Photographs showing effect of annealing on various coatings. All coatings are applied over 

the PFAC primer. (a) Pristine HIPS coating exposed to sudden annealing temperature of 180
o 

C. (b) 

HIPS/SiO2 nanocomposite, 20% SiO2, exposed to sudden annealing temperature of 180
o 

C. (c) 

HIPS/SiO2 nanocomposite, 50 wt.% SiO2, exposed to sudden annealing temperature of 180 
o 
C. 

 

2.3.2 Chemical characterization 

2.3.2.1 Chemical characterization of the primer layer 

The effect of the thermal annealing on the primer layer of PFAC was analyzed by ATR-FTIR and XPS, 

as illustrated in Figure 2.5. Figure 2.5A shows the infrared spectra of the pristine and annealed PFAC 

layers. Main bands for pristine PFAC were associated with –CF2– groups (asymmetric and symmetric 

CF2 stretching modes at 1238 cm
-1

 and 1143 cm
-1

, respectively) and ester functional groups (C=O 

stretching mode at 1733 cm
-1

 and C–O–C stretching mode at 1192 cm
-1

). Furthermore, a band at 1676 

cm
-1

 was observed. This absorption can be assigned to the C=O stretching mode of some non-ionic 

surfactants, such as the condensation products of ethylene oxide with fatty acids that are used in the 

original polymer water dispersion 
55

. This indicates that some of these surfactants are carried over into 

the acetone spray solutions during extraction. After thermal annealing, this band disappeared, 

indicating that surfactants were removed.  

In addition, XPS was performed to further characterize the changes in surface chemistry 

induced by the thermal annealing of the primer layer shown in Figure 2.5B. The relative atomic 

a b

c

a b
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percentage of carbon, fluorine and oxygen were determined from wide spectra. Results indicated that 

F/C ratio was increased upon annealing which is probably due to the removal of some carbon-rich 

compounds from the surface. Furthermore, C1s peaks of pristine and annealed PFAC were 

deconvoluted. Both samples showed a similar profile characterized by the presence of C-C and C-H 

groups at 284.8  0.2 eV, C-C-O groups at 285.8  0.2 eV, C-O groups at 287.0  0.2 eV, COOR 

groups at 289.1  0.2 eV, CF2 groups at 291.8 ± 0.2 eV and CF3 groups at 294.1  0.2 eV. Table S2 

summarizes the calculated peak area percentages for each component. An increment of COOR and a 

decrease of C-O and C-C/C-H groups were observed. This could be related to the removing of 

surfactants revealed by ATR-FTIR spectroscopy. Presence of surfactants in polymer melts and 

solutions forces polymer chains to form micellar structures. Therefore, it is generally quite challenging 

to coat polymer films from micellar polymer solutions 
56

. Removal of surfactants during latex film 

formation can cause rearrangement of the polymer chains allowing their assembly into a morphology 

minimizing air-polymer surface energy 
57

. This also allows better interaction of the polymer chains 

with the substrate and with other dissimilar polymer chains in the absence of surfactants.   

 

Figure 2.5. A, ATR-FTIR spectra of pristine and annealed layers of primer. Assignments of main 

vibrations are included. B, High resolution XPS spectra of C1s peak of pristine and annealed layers of 

primer. Deconvoluted peaks are included. Note that the annealed specimens are heat treated at 180°C 

on hot plate. 
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2.3.2.2 Chemical characterization of HIPS/Silica nanocomposites   

Similar ATR-FTIR and XPS measurements were also conducted for the HIPS/SiO2 nanocomposites to 

investigate the effects of thermal annealing, as shown in Figure 2.6. Figure 2.6A shows the ATR-FTIR 

spectra of pristine and annealed HIPS nanocomposites containing 50 wt. % silica nanoparticles. Bands 

ascribed to the polystyrene matrix were: C-H stretching mode of the ring in plane at 1491 cm
-1

, C-H 

deformation of CH2 groups at 1452 cm
-1

, and two C-H out-of-plane bending modes of the ring at 749 

cm
-1

 and 692 cm
-1

, respectively 
58

. The presence of silica nanoparticles was characterized by the broad 

band at 1086 cm
-1

 with a shoulder 1220 cm
-1

, indicative of amorphous silica. No chemical differences 

were detected when pristine and annealed samples were compared. However, variable angle FTIR 

measurements indicated that throughout the coating thickness, variations in the polymer to nanoparticle 

ratio were observed before and after annealing. This was indicated by the depth-dependent changes in 

the ratio between the band intensities at 1086 cm
-1

 (SiO2) and 692 cm
-1

 (HIPS) as shown in Figure 

2.6B. Clearly more nanoparticles migrate to the surface after annealing. This concentration density 

decreases significantly within the first 9 µm from the surface upon annealing. On the other hand, as-

sprayed coatings dried under ambient conditions display a more uniform nanoparticle concentration 

density within the first 9 µm from the surface. To quantify this observation further, XPS measurements 

were also performed on the surface of the coatings. Figure 2.6C shows the wide XPS spectra for non-

annealed and annealed samples where F, O, C and Si atoms were identified. The relative atomic 

percentages of these four elements are presented in Figure 2.6D. A low and constant amount of fluorine 

from the underlying PFAC layer was detected for both samples. The amounts of silicon and oxygen at 

the surface were increased upon annealing, with the consequent relative decrease of carbon atom signal 

intensity. Indeed, the Si/C ratio was increased by a factor of three upon annealing. In agreement with 

ATR-FTIR, XPS results also point out that annealed coatings have a higher concentration of silica 

nanoparticles on the surface in comparison to non-annealed ones. Formation of such nanoparticles 

density gradient in the polymer matrix induced by thermal annealing can be attributed to diffusion, 

relaxation and transport in thin polymer films 
59

. In fact, diffusion and segregation of nanoparticles in 

polymer films toward the film surface or towards the cracks within the matrix are well studied and this 

behavior was proposed as a simple means of designing self-healing systems 
60

.  
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Figure 2.6. A, ATR-FTIR spectra of pristine and annealed nanocomposite samples. B, ratio of the 

intensity of bands at 1080 cm
-1 

and 692 cm
-1

 associated with Si NPs and HIPS, respectively, for pristine 

and annealed samples as a function of the depth of analysis. C, Wide range XPS spectra of pristine and 

annealed samples. D, atomic percentage of F, C, O and Si for pristine and annealed samples. Note that 

annealed specimens are further heat treated at 220° C with heat gun. 

 

2.3.3 Wetting analysis 

As-received HIPS polymer had an apparent static water contact angle (APCA) of 82±3°. The water 

droplets did not roll away upon tilting even at 90°. Incorporation of SiO2 nanoparticles increased water 

contact angles by forming micro-nano-scale surface structures (Figure 2.7) as well as due to their 

hydrophobic surface functionalization 
61

. Changes in APCA and water droplet roll off angles (RA) as a 

function of SiO2 nanoparticle loading can be seen in Figure 2.7 along with the effect of annealing. 

Silica nanoparticle concentration of 20 wt. % results in water droplets to slide off the HIPS/SiO2 

coating surfaces, even though the APCA values are below 120
o
.  As can been seen in Figure 2.7, at 20 

wt.% SiO2 concentration, annealing induces the reduction of droplet roll off angles from ~ 45
o
 to 20

o
, 

which is a significant advantage for self-cleaning superhydrophobicity. Proper superhydrophobicity 

threshold (static contact angles exceeding 150
o
) in terms of APCA can only be obtained when SiO2 

concentration within HIPS polymer matrix reaches or exceeds 40% by weight.  Annealing still reduces 

droplet roll off angles however significance of the effect declines compared to 20 wt.% and 30 wt.% 

SiO2 concentrations. The best nanocomposite coating was achieved for SiO2 concentration of 50% by 
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weight. Note that for this nanocomposite coating significance of annealing was almost negligible in 

terms of self-cleaning superhydrophobicity; however, it considerably enhances the tribological and 

wear abrasion resistance of the coating; as will be discussed next.   

  

 

 

Figure 2.7. Apparent water contact angle (APCA) and droplet roll-off angles (RA) of HIPS 

nanocomposites with various silica concentrations. PFAC primer layer is present. Effect of annealing is 

also shown. The inset photo is taken on the coating displayed in Figure 2.2f. (Note that till 10 wt.% 

silica content, water shedding was not observed even at 90° tilting angle) 

2.3.4 Wear analysis 

Although there are many routes to measure robustness of the non-wettable surfaces such as tape peel 

tests for substrate adhesion, underwater ultrasonic processing, sand erosion damage, and abrasion 

induced wear, no appropriate methods and procedures for testing non-wettable surface robustness have 

been established yet 
62

. Hence, we first performed tribology measurements to analyze frictional 

properties and scratch resistance of the coatings followed by a more industrial testing method known as 

Taber
®
  tests to analyze the effect of repeated abrasion wear on superhydrophobicity and water droplet 

roll off angles.  
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Average surface roughness of all the coatings studied is presented in Figure 2.8a including the 

bare aluminum substrate. All the coatings were annealed. Self-cleaning superhydrophobic 

nanocomposites have approximately 1.4 µm average surface roughness. Once the SiO2 concentration 

exceeds 50 wt.% the surface roughness increases by a factor of two. Friction coefficient and wear rate 

of the nanocomposites are given in Figure 2.8b. The friction coefficient values on nanocomposites 

between 10 wt.% and 50 wt.% SiO2 concentrations are practically similar, however, at 50 wt.% SiO2 

concentration the wear rate is lowered by a factor of seven.  In general, both the friction coefficient and 

the wear rate declines when SiO2 nanoparticles are introduced in HIPS polymer. These measurements 

approve earlier reports that polymer nanocomposites filled with silica or metal oxide nanoparticles 

demonstrate lower friction coefficients and enhanced wear properties as long as the nanoparticle 

dispersion within the polymer matrix is homogeneous 
63

. Homogeneous nanoparticle dispersion in 

polymer nanocomposite coatings also creates a self-similar surface micro-scale roughness which can 

also contribute in lowering friction coefficient by minimizing solid-solid contact surface area. 

 

 

Figure 2.8. Tribological characterization results. (a) Surface roughness measurements. (b) Friction 

coefficient and wear rate of HIPS nanocomposites with different silica concentrations. In all cases 

PFAC primer layer is applied.  Wear rate was calculated by equation 4.   

 

Note that at 60 wt.% SiO2 nanoparticle concentration in HIPS, wear rate measurements could not be 

performed (immediate material removal by the steel ball) due to the fact that surface roughness was 

increased dramatically (Figure 2.8a).   

Wear track (mark) SEM images of representative nanocomposites (containing 20 wt.% and 50 

wt.% SiO2) are given in Figure 2.9. Wear is created by compression induced stresses during testing. In 

(b)(a)
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the case of 20 wt.% SiO2 concentration, for instance, the wear track (Figure 2.9a) has thin and deep 

cracks as well as wear debris (Figures 2.9b and 2.9c). Although, no complete material removal is 

present along the wear track, formation of particle-like wear debris can be attributed to a phenomenon 

known as fatigue wear. The fact that no crack formation, material removal or wear debris is visible in 

the SEM images of the 50 wt.% SiO2 in HIPS samples (magnified images in Figure 2.9 e and f) can be 

attributed to the combined effects of rubbery domains in HIPS, SiO2 nanoparticles and the primer layer 

in transferring and dissipating mechanical stresses 
64

.  It is also important to note that improvement of 

wear properties of polymer nanocomposites is generally better when the polymer matrix/nanoparticle 

interface is established either by grafting or by strong adhesion provided that a homogeneous 

nanoparticle dispersion is maintained 
65

. According to Friedrich et al. 
66

, surface nanoparticles in 

polymer nanocomposites can dissipate wear stresses by a topographic mechanism known as 

smoothening and rolling effect. It is argued that this mechanism can be evoked under certain 

nanoparticle loadings, which strongly depends on the type of the nanoparticle as well as on the 

complex polymer/nanoparticle interactions 
67

. 

 

 

 

Figure 2.9. SEM images of scratched surfaces. Images of HIPS nanocomposites with 20 wt. % SiO2 

concentration presented in the order of increasing magnification. [(a), (b) and (c)] HIPS 

nanocomposites with 50 wt. % SiO2 concentration [(d), (e) and (f)]. All coatings were thermally 

annealed applied over the primer PFAC polymer layer.  

a b c

d e f
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Linear abrasion of the coatings with a mild abradant material comprised of silicon carbide/aluminum 

oxide abrasive particles embedded in a clay binder was tested with a commercial Taber
®
 linear 

abrasion instrument.  Linear wear abrasion of two different samples are exemplified herein, namely 20 

wt.% and 50 wt.% SiO2/HIPS nanocomposites. Figure 2.10 shows representative surface morphology 

after linear abrasion experiments. In the case of 20 wt. % SiO2/HIPS nanocomposite, formation of wear 

debris and flaking are visible in the ellipsoidal zones of Figures. 2.10 (a, b). In the case of 50 wt.% 

HIPS/SiO2 nanocomposite, however, no significant debris formation is visible but only smoothing out 

of the protruding micro-bumps are visible (dashed ellipsoidal zones in Figures. 2.10(c, d)).  

 

 

 

Figure 2.10. SEM images of damaged surface area after linear abrasion test (a, b) showing surface 

damage on the surface of HIPS nanocomposites with 20 wt.% SiO2 concentration; whereas in (c, d), 

marked surfaces showing the cyclic abraded damages on HIPS nanocomposites with 50 wt.% SiO2 

concentration.  

This observation confirms the conclusions of Friedrich et al.
66

 that well-bound surface nanoparticle 

networks in certain polymer composites resist wear damage by smoothing out rather than fragmenting 

and cracking causing material removal. 

 

a b

c d
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Figure 2.11 displays changes in APCA and RA as a function of linear abrasion cycles including the 

effect of annealing. In the case of 20 wt.% SiO2/HIPS nanocomposites (Figure 2.11a), APCA remained 

quite stable until the 20
th

 abrasion cycle. After this, hydrophobicity of the non-annealed 

nanocomposites declined. The effect of annealing is noticeable as the changes in the droplet roll off 

angles . Non-annealed nanocomposite roll off angles increase to 90
o
 after the 10

th
 abrasion cycle and 

the droplets clear the surfaces by a very slow stick-slip sliding motion (sticky superhydrophobicity). In 

the case of annealing, roll off angle gradually increases to 60
o
 at the end of the 20

th
 cycle, a similar 

sticky droplet sliding behavior was observed. Tribologically stable 50 wt.% SiO2/HIPS nanocomposites 

were also resilient to linear abrasion under the conditions studied (Figure 2.11b). APCA values 

remained above the superhydrophobicity limit all the way to the 35
th

 cycle. However, non-annealed roll 

off angles increased after the 15
th

 cycle and approaches close to 40
o
 after the end of the experiment. 

Droplets would still slide off the surfaces but no rolling motion was observed. In the case of annealing, 

roll off angles started to increase after the 25
th

 cycle. At the end of the 35
th

 cycle, roll off angle values 

were close to 20
o
. Since self-cleaning superhydrophobicity is defined as superhydrophobic state with 

RA<10
o
 the linear abrasion experiments were terminated after the 35

th
 cycle.  

 

 

 

Figure 2.11. Effect of abrasion cycles on wetting characteristics of (a) HIPS nanocomposites with 20 

wt.% SiO2 concentration. (b) HIPS nanocomposites with 50 wt.% SiO2 concentration. All coatings 

were thermally annealed applied over the primer PFAC polymer layer. (Note that in Figure 2.11a, no 

water roll off was observed after 9 and 25  abraded cycles for non-annealed and annealed specimen 

respectively). 

Identical experiments were performed with general purpose polystyrene as matrix. Results on 

polystyrene/SiO2 (50 wt.% SiO2) nanocomposites are given in Figure 2.12. If no annealing is 

(b)(a)



  

40 
 

performed, self-cleaning superhydrophobic properties of polystyrene/SiO2 nanocomposites fail after 15 

abrasion cycles. Upon annealing, static water contact angles were preserved above 150
o
 however, still, 

after 15 abrasion cycles droplet roll off angles exceed 20
o
 indicating a stick-slip non-wettable surface.  

 

Figure 2.12. Static water droplet contact angles and water droplet roll off angles for general purpose 

polystyrene/SiO2 nanocomposite coatings with primer PFAC as a function of Taber abrasion cycles 

 

Surface morphology of the nanocomposites was further studied by AFM measurements as shown in 

Figure 2.13(a-d). AFM measurements were conducted on two different specimen, abraded and non-

abraded HIPS nanocomposites (with 50 wt.% fumed silica nanoparticles). The superhydrophobic 

coatings appear to have dual scale hierarchical topography as can be seen in Figure 2.13a. The 

calculated average roughness of non-abraded specimen was 525 ± 49 nm. Surface roughness was 

further analyzed by the water-shed grain analysis algorithm with different roughness areas marked as 

segments of different colors, shown in Figure 2.13b, clearly indicating many segments of different 

roughness profiles. Topography of the abraded surface was then analyzed (shown in Figure 2.13c). 

Abraded AFM image appears to have more smooth surface structure with low roughness calculated as 

348 ± 31 nm, confirmed by the grain water shedding analysis (shown in Figure 2.13d). Energy 

Dispersion X-ray Spectroscopy (EDX) was performed on aforementioned samples to confirm the silica 

distribution in abraded and non-abraded specimen. EDX mapping of silica distribution in non-abraded 

surface is shown in inset of SEM image in green points whereas red color mapping signals are 
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indicating the distribution of silica after abrasion. Results indicate that there was a minimal reduction of 

approximately 8 % in silica content after abrasion shown in Figure 2.13e (lower layer).  

Surface roughness of the superhydrophobic HIPS composites was reduced after abrasion but 

maintained the dual hierarchical order to ensure that Cassie-Baxter state remains same after some 

surface features are worn away. After abrasion, microscale bumps in combination with hydrophobic 

fumed silica prevented from introduction of hydrophilic pinning sites. The reported roughness after 

abrasion is sufficient for maintaining its water repellency, although it effected the water roll off 

efficiency which was increased from 2° to 20° after 35 abrasion cycles. Such a roughness profile is 

sufficient to create the self-cleaning ‘‘lotus effect’’ 
68

 when combined with a uniformly formed 

hydrophobic surface chemistry shown in Figure 2.13e.  

 

Figure 2.13. AFM topology images. (a) Non-abraded HIPS nanocomposites with 50 wt.% SiO2 

showing natural textured surface.  (b) Water grain analysis algorithm of non-abraded structure, each 

segment indicates an individual roughness area and height (roughness volume). (c) HIPS 

nanocomposites after abrasion with 50 wt.% SiO2. (d) Roughness segments of abraded surface 

generated by water grain analysis algorithm for abraded surface (e) EDX analysis of non-abraded and 

abraded surfaces respectively. Representative SEM images and EDX mapping are given as insets with 

indication of silicone as green and red maps. All HIPS specimen used herein are thermally annealed 

and applied over PFAC primer layer applied over PFAC primer layer. 

 

 

(a) (b)

(c) (d)

(e)
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2.4 Conclusions 

In conclusion, we demonstrated a simple fabrication process for superhydrophobic and wear abrasion 

resistant high impact polystyrene (HIPS) / silica nanocomposite coatings for metal surfaces. All 

coatings can be made by spray. An environmentally friendly perfluorinated acrylic polymer primer 

coating layer was needed to increase the adhesion to the metal substrate and therefore withstand 

abrasion resistance. The best nanocomposite composition was found to be 50 wt.% SiO2 nanoparticles 

with respect to HIPS. This coating had the lowest friction coefficient compared to other 

nanocomposites tested. Tribological measurements on the best performing nanocomposites indicated 

that wear tracks or marks had no debris, cracks or complete material removal. Additionally, Taber
®
 

abrasion tests under 15 kPa load confirmed tribological findings and the best nanocomposites resisted 

superhydrophobic degradation up to 35 continuous linear abrasion cycles. Nanocomposites made with 

general purpose polystyrene instead of HIPS could resist only 15 Taber
®

 abrasion cycles. The reason 

was attributed to the mechanical energy dissipation capability of rubber domains in HIPS. Thermal 

annealing of the coatings significantly enhanced the durability of the coatings against tribological wear 

towards long-lasting self-cleaning superhydrophobicity. Low-cost and non-toxic ingredients with 

industrial scale production ensure that these non-wettable coatings can be easily applied over large 

scale metal surfaces as protective waterproof treatments.  
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3. Enhancement in the tribological response of non-porous nylon 66 

based polymeric nanocomposites 

3.1   Introduction 

Solvent-suspended particles are widely used in lubrication but their applications are limited and 

hindered by incompatible substrate, unadapt environment, danger of contamination
69,70,71 

. Indeed, the 

elimination of harmful solvents is one of the objectives of Green Tribology, a growing field within the 

broader one of Green Chemistry, dedicated specifically to reduce the environmental impact of 

tribological systems 
72

. Alternative to such limitations is polymeric nanocomposite coatings, a class of 

the family of solid lubricants, primarily important for controlling friction and wear where operating 

conditions become severe and traditional fluid lubricants can never be used, or the formation of hard 

debris must be avoided in tribological applications
54

. The use of solid lubricant polymers and 

polymeric nanocomposites is growing in the field of tribology such as gears, bearings, seals, vacuum 

pumps, prosthesis and implants in medical applications etc. 
73,74

. Significance of solid lubricants lies 

where good resistance to sliding contacts, strong adhesion to the underlying substrate and surface 

coverage is involved. For instance, with coatings as paints and varnishes
75

, in microelectronic systems
76

 

or machine parts 
77

, etc.  

Among polymers, aliphatic polyamides are extensively used as sliding parts in automotive 

parts, food packaging, bearings and engineering prodcts
78,79,80

. Nylon 66 is an aliphatic polyamide, 

used in industry since decades due to its excellent physio-chemical properties, such as high melting 

point, low permeability, low melting viscosity, ductility, heat resistance, etc.
81

. Despite the good 

mechanical and tribological properties of polyamides
82

, one of the limitations is its poor adhesion to the 

substrates due to low surface energy and weak mechanical interlock mechanism
83

. Substrate-coating 

adhesion can be achieved by either mechanical adhesion (substrate roughness, mechanical interlocking) 

or by the, albeit weak, contribution of molecular bonding that includes electrostatic and Van der Walls 

forces or H-bond interactions. Conventionally, mechanical interlocking is achieved by abrading the 

substrate, allowing the coatings to fill pores, hovels, crevices and micro voids created by the abrasion. 

On the other hand, mechanical abrasion or sandblasting have limitations of operator sensitivity and are 

difficult to perform on small parts. Wet chemical etching is another technique used to create roughness 

on a substrate, but its overtreatment can damage parts and has serious hazards and disposal issues. 

Corona treatment is used for oxidizing the surfaces, however its transient nature and limited polymer 

choice restricts the applications. In addition, plasma surface treatment is widely used for substrate 
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pretreatment providing removal of surface contaminants, enhances the wettability and helps in the 

formation of functional groups, nonetheless it has very costly setup and has restriction of batch-to-

batch logistics. A novel and possible approach to the improvement of adhesion is based on the addition 

of different fillers, exploiting their stronger interaction with the substrate or the improved formation of 

anchor points for mechanical interlocking
84,85

.  

Yet the main purpose of fillers is to improve the mechanical properties of polymeric materials, 

and, among them, their tribological response. The most conventional fillers to reduce friction and wear 

include hard ceramics such as alumina, polytetrafluoroethylene (PTFE), molybdenum-disulfide (MoS2) 

and carbon based materials, often prepared in nanometric size
86,87

. However, these fillers have some 

limitations, for instance PTFE is well-known for low friction, but has poor wear resistance
88

, MoS2 

performs poorly in the presence of humidity
89,90

 and graphite has restriction of operating in dry or 

vacuum environment
91

. Compared to such conventional fillers, graphene has gained great attention in 

recent years because of its exceptional electrical
92

, mechanical, thermal, structural properties and has 

already shown promising results in tribology as a lubricant additive
93

. As an additive, graphene can 

have a strong effect on the mechanical properties of a composite material, owing to its high strength 

( 1̴30 GPa) and elastic modulus (0.5-1 TPa)
94,95

. Graphene has been employed as a filler for different 

polymers, among which Lahiri et al. incorporated graphene nanoplatelets (GNPs) as a reinforcement 

element in ultrahigh molecular weight polyethylene to improve its fracture toughness and tensile 

strength
96

, Xu et al. reported the enhancement of tensile strength and Young’s modulus by the in situ 

polymerization of graphene nylon 6 polymer
97

, Cataldi et al. studied the improvement in modulus of 

stiff and soft polymers by the addition of graphene with different thermal treatments
98

. Apart from 

effect on bulk properties of a composite material, graphene has unique characteristics of interfacial 

interaction with different substrates, such as silica, copper and nickel
99,100

. 

Despite the physical properties that make graphene a promising candidate as a solid lubricant or 

as an additive, such as its bidimensional structure, high surface energy and low permeability to 

gases
101

, its use  in the field of tribology is relatively unexplored. Graphene nanoplatelets have been 

proposed as a thin solid lubricant
102,103

 
 

and have shown high wear resistance especially at 

nanoscale
104,105

, but only in few works its performance in macroscopic solid materials has been 

investigated
106,107

. Notably, Kandanur et al. reduced the wear rate of PTFE by addition of 10 wt.% 

graphene platelets
108

. A limiting factor to the widespread use of graphene as a tribological material is 
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its friction coefficient (0.1-0.2)
109

 which is still higher than that of the best performing materials, such 

as PTFE ( < 0.05). 

Aim of this work is to study the polymeric composites containing GNPs as a solid lubricants. 

Nylon 66 was chosen as the polymer matrix for owing its wide spread usage in industry and due to the 

reason that it has good mechanical and tribological properties. Processing of nylon 66 is usually done 

by extrusion or hydraulic press to form bulk specimen. Solvents required to cast the nylon 66 films are 

usually formic and hydrochloric acids or cresol
110,111

 resulting in porous membrane with relatively poor 

mechanical properties, unsuitable for use where tough mechanical parts are needed. To produce non-

porous dense films, a new solvent based method was developed
112

. Interestingly the nylon 66 films 

produced by trifluoroacetic acid (TFA) solvents resulted in good mechanical properties as compared to 

porous nylon 66 films. Herein, by following this novel route of preparing non-porous nylon 66 

coatings, a study is conducted by incorporating PTFE and graphene nanoplatelets (GNPs) for tribology 

application. The GNPs/nylon66/PTFE composites show strong adhesion and a three-fold reduction in 

friction and wear rate, compared to the pure nylon 66. The best performance was obtained for an 

amount of GNPs of 0.5% in weight.  

3.2   Materials and Methods 

Nylon 66, polyamide (PA)66, was purchased from Sigma-Aldrich with molecular weight of 

MW=120,000. Degree of polymerization DP was around 531 with density of 1.14 g/mL. Grade Pure 

G+ Graphene nanoplatelets (GNPs), with lateral dimension of a few micrometres and a thickness of a 

few nanometers
113

, were kindly provided by Directa Plus (Lomazzo (CO) – Italy). 

Polytetrafluoroethylene (PTFE) with nominal particle size of  ̴ 1µm, aluminum oxide nanoparticles 

with nominal particle size of 13nm and Ethyl Cyanoacrylate (Permabond 105) were purchased from 

Sigma-Aldrich.  

Reagent grade solvent trifluoroacetic acid (TFA), dimethyl sulfoxide (DMSO) and acetone were 

purchased from Sigma-Aldrich and used as received.  

 

3.2.1   Sample preparation 

Composite coatings of nylon 66 were prepared using different GNPs concentrations while keeping 

constant the concentration of PTFE with respect to the nylon 66. The preparation of the nylon 66 is 

described in detail in Ref. 
112

. Briefly, nylon 66 was first dissolved in solution of TFA and acetone with 
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1:1 volume ratio to obtain 7 wt.% polymer in solution. After the nylon 66 pellets were completely 

dissolved, PTFE was added to the solution at concentration ratio of 5 wt.% with respect to nylon 66. 

GNPs were then added at different weight fractions, ranging from 0 wt.% to 3 wt.% with respect to 

nylon 66. Solutions were bath sonicated at 40 Hz for 3 hours and at 59 Hz after 24 h to get 

homogeneous dispersion of both PTFE particles and GNPs. The choice to include PTFE in all 

composites was taken after screening tests (not reported) showed significantly higher friction when it 

was not added. A complete schematic for the preparation of non-porous nylon 66 composite films is 

explained in Figure 3.1. 

Glass substrates were cut to a rectangular shape, cleaned with acetone and bath sonicated for 60 

minutes for the removal of residues. A simple dip coating method was used for the deposition: the 

substrates were dipped in the solution for 10-15 seconds and left in fume hood for the solvent to 

evaporate. All the samples prepared and their labels are presented in Table 3.1. 

Table 3.1: Labels and PTFE and GNPs concentration of the prepared samples 

 Concentration (Nylon66 to 100%) 

Sample label PTFE wt.% GNPs wt.% 

P0G0 0 0 

P5G0 5 0 

P5G0.1 5 0.1 

P5G0.2 5 0.2 

P5G0.3 5 0.3 

P5G0.4 5 0.4 

P5G0.5 5 0.5 

P5G1 5 1.0 

P5G2 5 2.0 

P5G3 5 3.0 

 

Additional samples were fabricated with the same technique substituting GNPs with alumina 

nanoparticles, as a reference for the tribological tests. Samples of Ethyl Cyanoacrylate (ECA) were also 

deposited with the same technique starting from a solution of dimethyl sulfoxide (DMSO) and acetone, 

as a reference for the adhesion tests. 
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Figure 3.1. (a) Add porous nylon 66 pellets inside TFA, Acetone solvents (b) Add PTFE and GNPs 

inside non-porous nylon 66 solution (c) Sonicate at 40Hz for 3 hours and then at 59Hz for 1 hour (d) 

Pour composite solution inside petri dish (e) Dip glass substrate inside petri (f) Solid lubricant non 

porous nylon 66 composite film 

 

3.2.2   Morphological characterization  

The morphology of the films was studied by Optical Microscopy (Leica DM 2500M) and Scanning 

Electron Microscopy (SEM, JEOL JSM-6490AL operating at 10kV and JEOL JSM 7500FA operating 

at 5 kV). Films were sputtered with a thin layer of gold or graphite before observation to improve 

conductivity.  

Grazing Incidence X-ray Diffraction (GIXRD) analysis was performed on a Rigaku Smartlab 

equipped with a 9 kW CuK rotating anode, operating at 40 kV and 150 mA. A Göbel mirror was used 

to convert the divergent X-ray beam into a parallel beam and to suppress the Cu Kβ radiation, while a 

0.5° Parallel Slit Analyzer was employed in the receiving optics. The diffraction patterns were 

collected with a fixed grazing incidence angle  of 3° and over a 2 angular range from 7° to 60°, with 

a step size of 0.05°. The specimens were placed on a zero-diffraction quartz substrate and measured at 

room temperature. GIXRD data analysis was carried out with the PDXL 2.1 software from Rigaku. 
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3.2.3   Mechanical characterization 

The Young’s modulus and hardness of the samples were characterized by nanoindentation on an Anton 

Paar UNHT equipped with a diamond Berkovich tip. Maximum load was 1 mN, loading and unloading 

time 30 s, with a dwell time at maximum load of 30 s to allow viscous relaxation. Young’s modulus E 

and hardness H were calculated from the unloading curves with the Oliver & Pharr method. At least 10 

repetitions were conducted for each material, and results are presented as average value and standard 

deviation. 

3.2.4   Tribological characterization 

Multi-pass scratch tests were performed on a Micro-combi tester (Anton Paar Gmbh, Germany), to 

evaluate friction and wear resistance. A bearing steel ball of 500 µm radius was used as a counterpart 

for rubbing. The tip displacement rate was 10 mm/min for a reciprocating distance of 4 mm, 

corresponding to a frequency f= 0.042 Hz, under the constant load of 1 N, corresponding to a Hertzian 

pressure 𝑝~90 𝑀𝑃𝑎, for 75 cycles, corresponding to 30 minutes. All the friction and wear tests were 

carried out at laboratory conditions (21±1°C, 50±5%RH). 

The average values of steady coefficient of friction, following the running-in phase, were 

extracted from the experimental data plots of friction coefficient. A typical friction trace is reported in 

Figure 3.2. All the data here are the average of five replicate measurements for each material.  

 

Figure 3.2. friction trace for selected cycles of P5G0.5 sample. Friction is averaged from the signal 

within a chosen range to avoid artifacts caused by surface features, indicated between the red lines. 
 

After each test, the depth of the wear scar d was measured using a stylus surface profiler (DektakXT, 

Bruker). Each scar was measured 5 times and the average was calculated. The wear volume, ∆𝑉, of the 

specimen was calculated from geometrical considerations, with Equation (1):  
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∆𝑉 =
𝐿

2
 𝑟2 (𝑐𝑜𝑠−1 (

𝑟−𝑑

𝑟
) −

√𝑟2−𝑑2

𝑟
)  (1) 

where L is the length of the stroke in one cycle and r is the radius of the counterpart steel ball. The 

wear rate was calculated by the ASTM G-99 standard wear rate formula:  

𝐾 =
∆𝑉

𝐹×𝑁×𝐿
                                (2) 

where F is the applied load (N), L the stroke length in one cycle (m) and N represents the total number 

of cycles, so that NL is the total sliding length
34

. 

Moreover, the adhesion of coatings deposited on the glass substrates was evaluated by a progressive 

scratch test, during which the load was increased linearly from 0.03 (Hertzian pressure 𝑝~60 𝑀𝑃𝑎) to 

10 N (𝑝~190 𝑀𝑃𝑎) over a scratch length of 2 mm, with a sliding rate of 1 mm/min and acquisition rate 

of 30Hz. After each test, optical images were acquired to examine the damage mechanisms and to 

evaluate the failure critical load, corresponding to the load at which the glass substrate is exposed. In 

order to evaluate the significance of the measured values, additional tests were performed on Ethyl 

Cyanoacrylate (ECA). Such polymer is specifically designed as an instant adhesive, it was therefore 

taken as a positive control. 

3.2.5   Chemical  characterization 

μRaman spectra were collected at ambient conditions using a Horiba Jobin Yvon LabRAM HR800 

spectrometer, equipped with a microscope. A 632.8 nm excitation line, in backscattering geometry 

through a 50× objective lens, was used to excite the specimens, at the low power of ~0.25 mW. The 

experimental set-up consists of a grating 600 lines/mm with spectral resolution of approximately 1 cm
-

1
.
  

Raman spectra were collected from the pristine surface, as well as from the scratch, after the wear 

test and from the steel ball used as rubbing counterpart.  

3.3   Results and discussion 

3.3.1   Films morphology and structure 

Uniform composite films were obtained through the dipping method, with thickness varying among 

samples between 10 and 20 µm. Roughness of the films was measured on a stylus optical profiler 

(DektakXT, Bruker), yielding values in the range of 765-780nm. Figure 3.3(a-d) shows the optical 
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images of the surface of selected samples. The nylon 66 matrix appears dense and non-porous. GNPs 

are clearly visible in loaded samples, owing in part to the transparency of nylon 66 to visible light.  

 

 

Figure 3.3. Optical images of the studied nanocomposites: a) P5G0, b) P5G0.5, c) P5G1, d) P5G3. 

Higher magnification is shown for each material in the inset. Scale bars are 50 m in the main images, 

10 m in the insets.  

GNPs distribution is fairly homogeneous in all samples, with tendency towards slightly larger clusters 

as the GNPs concentration is increased. These observation were confirmed by SEM images on selected 

samples, reported in Figure 3.4(a-b). As the amount of GNPs is increased, nanoplatelets tend to form 

slightly large clusters. PTFE particles can also be seen in both samples. 
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Figure 3.4. SEM cross-sections of selected samples, scale bars 50 m: a) P5G0.5 and b) P5G3; GNPs 

are indicated by white arrows, PTFE microparticles by red arrows. . A relatively large GNPs cluster is 

visible at the surface of P5G3 

X-ray diffraction spectra were acquired on selected samples and are shown in Figure 3.5a. The main 

peaks are ascribed to the triclinic  phase of nylon 66, at 20°, corresponding to the (100) plane, and at 

24°, corresponding to the (010)/(110) doublet. Morphology-wise, the former is associated with the 

intra-sheet, the latter to inter-sheet diffraction. A broad amorphous halo is also evident, centered at 

around 22°
114

. Considering the intensities of the crystalline peaks and the amorphous halo, no 

appreciable differences in the crystallinity are evident. On the other hand, the ratio between the (100) 

and the (010)/(110) peaks, shown in Figure 3.5b, is slightly modified for GNPs concentration larger 

than 0.5%, going from 0.76 (P5G0 and P5G0.5 samples) to 0.52 (P5G1) and to 0.48 (P5G3). Such 

phenomenon was observed already, and is associated to the GNPs intervening in the crystallization 

from solution, with the effect of weakening the intrasheet bonding between crystalline sheets 
112

. 

Interestingly, the addition of a small amount of graphene, up to 0.5 wt.%, does not modify the ratio, 

suggesting that the platelets thickness is low enough to not affect the structure, i.e. dispersion is good 

and aggregation minimal. 

 

 
Figure 3.5. a) GIXRD spectra on P5G0, P5G0.5, P5G1 and P5G3 samples; b) evolution of the 

I(100)/I(010)/(110) peaks ratio as a function of graphene content. 

3.3.2   Mechanical and tribological properties 

Nanoindentation results are shown in Figure 3.6a. Young’s modulus is weakly affected by variations in 

GNPs concentration. The only value significantly higher than the rest is that of P5G0.5 samples 

(p<0.01 as calculated through ANOVA). Such increment is in line with our previous findings in a 

similar system
98

 and suggests good dispersion of the fillers as compared to the other compositions. 

a b
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Interestingly, hardness increases only slightly and with little statistical significance as the GNPs 

concentration is augmented. Overall, the mechanical properties can be considered weakly affected by 

the composition, therefore any variation observed in the tribological response cannot be explained only 

as a consequence of such properties. 

The friction coefficient and wear rate of the materials as a function of GNPs concentration are 

presented in Figures 3.6b and 3.6c, respectively. It can be observed that the pure PA66 film has a 

coefficient of friction of ca. 0.19, whereas addition of PTFE fillers results in a significant reduction of 

the friction coefficient to ca. 0.12. The addition of GNPs results in a further decrease of the coefficient 

of friction: increasing the GNPs concentration from 0.1%-0.5% results in a large decrease in coefficient 

of friction, with the lowest value, 0.06, obtained for the P5G0.5 samples. As the GNPs concentration 

increases further, from 1.0% to 3.0%, the beneficial effect of the GNPs is reduced, and the values of the 

friction coefficient increase up to ca. 0.13. The specific effect of GNPs in combination with PTFE can 

be better appreciated if compared with similar composite coatings in which GNP is replaced with 

another effective low-friction additive, such as aluminium oxide. Direct comparison, reported in Figure 

3.7a, shows values of friction in the same order, but not as low as our best results, obtained with GNPs. 

 

Figure 3.6. (a) Mechanical properties, (b) coefficient of friction and (c) wear rate of nylon/PTFE 

composite at different GNPs concentrations  

 

A similar behavior can be seen in the wear rate measurements: the increment of the GNPs 

concentration improves the wear resistance, which exhibits a minimum at 0.5% GNPs concentration. 

As shown in Figure 3.6c, the wear rate drops  from 16.21×10
-4 

mm
3
/Nm for the P5G0 sample, down to 

5.98×10
-4 

mm
3
/Nm for the P5G0.5 sample. Similar to the friction coefficient case, our results compare 

favorably to those obtained on materials reinforced with aluminum oxide (Figure 3.7b). It is worth 

noting that it was not possible to measure wear rate of the pure nylon film due to its poor adhesion with 

a b c
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the glass substrate. It was however possible to obtain reliable values of the friction coefficient, which is 

a less stressful test for the material, only by attaching the films to the substrate with thin double side 

tape.  

 
Figure 3.7. Comparison of the Coefficient of friction and wear rate of selected samples, with 

equivalent samples  prepared with Al2O3 (nominal size 13 nm) instead of GNPs, as in Table S1  

 

Figures 3.8(a-c) show the SEM images of the scratched surface of the P5G0, P5G0.5 and P5G3 

samples. All present fairly smooth surfaces, which suggests that the wear mechanism is the adiabatic 

formation of a transfer film, typical for semi-crystalline polymers. Only the P5G3 sample presents few 

debris at the sliding path edges. P5G0, on the other hand, exhibits numerous longitudinal cracks (Figure 

3.8a), probably due to plastic deformation which nucleates below the contact area
115

 and, when the 

stress imposed by the steel ball is released, maintains the deformation, so that a tensile stress is 

generated on the layer of material above, deformed elastically, leading to fracture. In the presence of 

GNPs, damage has the form of transverse, rather than longitudinal, cracks, with just a few occurrences 

in the P5G0.5 samples (Figure 3.8b) and a larger number in the P5G3 samples (Figure 3.8c). 

Transverse cracks are attributed to decohesion at the Nylon 66/GNPs interface, which is typical in 

composites based on layered nanofillers
116

 and leads to the formation of debris in the case of P5G3 

samples. 
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Figure 3.8. (a-c) SEM images scratched surfaces from selected samples, scale bars are 50 m, red 

arrows indicate the testing direction: in P5G0 (a) arrows indicate longitudinal cracks; in P5G0.5 (b) 

only a few transverse cracks are visible, whereas in P5G3 (c) they are more frequent. 

The improvement can be attributed to the formation of a transfer film between the coating and the 

rubbing counterpart: a thin layer of material is transferred to the steel ball, and spread along the 

scratching area, so the low-friction material is present in both sliding surfaces. PTFE is, indeed, well 

known for creating a transfer film upon sliding contacts, which reduces substantially the friction of 

material
117

. On the other hand, the presence of a transfer film by itself does not guarantee low wear rate 

as well: PTFE, with its poor performance when used as a bulk material, well exemplifies this 

counterintuitive behavior, while the addition of fillers, especially alumina, improves this aspect by 

several orders of magnitude
118,119

. 

 In PTFE, fillers bear part of the load and arrest crack propagation and hinder large-scale 

fragmentation, so that material removal is lower, and in some cases induce chemical bonding of the 

formed film to the sliding surfaces
120

.  

 

Figure 3.9. a) Raman spectra of P5G0 and P5G0.5 samples, on pristine and scratched surfaces; b) 

IG/ICH3 peaks ratio as a function of graphene concentration, on pristine and scratched surfaces  

b ca
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In order to highlight the mechanisms of formation of transfer films and possible chemical interactions, 

Raman studies were performed on the pristine surface of the samples, as well as on the scratch formed 

on the surface after the wear test. In Figure 3.9a the Raman spectra of the P5G0 and P5G0.5 films are 

shown. The spectra taken from the pristine surface are those typical of the nylon 66 spectra prepared 

with the TFA-acetone solvent
112

. Briefly, the peak at 1636 cm
-1

 is assigned to the amide I group, while 

the peak at 1296 cm
-1

 is assigned to CH2 twisting mode, the peak at 1445 cm
-1 

and the band centered at 

approximately 2908 cm
-1

 are assigned to CH2 bending and stretching modes, respectively. Finally, the 

N–H stretching of the amide A is observed at 3300 cm
-1

. In the same figure, the Raman spectra of the 

nylon 66/graphene samples is depicted for the 0.5% graphene concentration, where the G peak of 

graphene is located at 1580 cm
-1

. Increasing the graphene concentration results in a higher intensity of 

G peak and the appearance of the other characteristic peaks of graphene, such as the D peak (~1345 

cm
-1

) and the 2D peak (~2700 cm
-1

) (spectra not shown here). The intensities of the G peak, normalized 

by the intensity of methylene twisting peak at 1445 cm
-1

, are shown for the pristine surface and the 

scratch in Figure 3.9b. As expected, the normalized G peak increases with increasing graphene 

concentration for the pristine surface. Considering the spectrum acquired on the steel counterpart, the 

formation of a transfer film is confirmed by the presence of graphene.  

From the spectra acquired on the scratched lines, Fig. 3.9b, no chemical interactions of GNPs 

with either PTFE or the nylon 66 matrix are visible; we attribute to the high surface energy of GNPs 

the improvement of the physical adhesion to both surfaces, while their bidimensional structure 

facilitates plains sliding, much like the effect of well-disperse modified nanoclay added to nylon 6
116

. 

On the other hand, the variation of the G peak as a function of GNPs concentration suggests that the 

formation of a graphene transfer film does not follow the same behavior in all composites: the amount 

of graphene on the scratch imprint is higher than that on the untested surface in the case of low 

graphene concentration, up to 0.5 wt. %, and is lower for concentration of 1.0 wt. % and above, as 

shown in Figure 3.9b. In the former case GNPs are exposed during the first sliding cycles until a robust 

film is formed. In the latter case, instead, we attribute the lower amount of GNPs to low distance in 

between neighboring GNPs, so that the elastic mismatch with the matrix leads to mechanical removal 

of small platelet clusters which can induce third-body abrasion on the soft polymer, as shown by 

Khedkar et al.
118

. A similar influence of the platelets size, in a broader range of size, can be seen 

comparing graphene and graphite as fillers: the difference in wear rate can be as high as an order of 

magnitude, for a given concentration
108

. The fact that the Young’s modulus is not increased with the 
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GNPs content confirms, indeed, that the dispersion is not optimal beyond a threshold value. A scheme 

of this mechanism for the formation of transfer film and its dependency on the amount of GNPs is 

shown in Figure 3.10.  

 

Figure 3.10. Proposed mechanism of transfer film formation for different GNPs loading: in (a) in the 

absence of GNPs, PTFE forms a transfer film with low friction but poor wear resistance; (b) with the 

addition of 0.3-0.5wt. % GNPs, the transfer film is continuous and reduces dramatically the wear rate; 

(c) larger amounts of GNPs induce the formation of clusters, which are removed by the sliding ball, 

hindering the formation of an effective transfer film. 

This mechanism is compatible with the observations of the scratched areas (Fig. 3.8a-c): in the absence 

of graphene the visible longitudinal cracks indicate plastic deformation below the surface, similar to 

ductile plowing. The addition of graphene by reducing the friction hinders the tip penetration, so that 

overall damage is lower and consists only of few cracks, in locations probably weaker from the 

production process.  
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The role of PTFE in enhancing the tribological response of the material is quantitatively more 

difficult to define, as its presence was not detectable by Raman spectroscopy. Phenomenologically, its 

presence together with graphene reduces the friction coefficient to lower values than those of 

composites with the same amount of GNPs but without PTFE. It is thought, therefore, that the presence 

of GNPs has the dual effect of participating in the formation of the low-friction transfer film and of 

reinforcing the PTFE, thus reducing the wear rate, due to its rigidity and strength. 

Overall, this mechanism is supported by the running-in evolution of friction coefficient: in the 

absence of graphene (sample P5G0), after a few cycles at low friction (≈0.09) a progressive increment 

indicates the removal of the transfer film; for low amounts of graphene (P5G0.5 and P5G1) friction 

decreases rapidly and remains stable, whereas for higher amount (P5G3), friction does not show a 

reduction as large. 

3.3.3   Adhesion  

To evaluate the adhesion between the composite films and the glass substrate, progressive scratch tests 

were performed on films deposited on glass slides. The critical load for failure was then optically 

defined using the built-in microscope and the results are presented in Figure 3.11a. The choice of glass 

as a substrate was dictated by the experimental need to univocally identify the onset of damage, which 

would be unreliable on metallic materials. Although extrapolation of our results would be speculative, 

the improvement granted by GNPs can be evaluated considering its intrinsic adhesion force: few-layers 

graphene has been shown both experimentally
121

 and theoretically
99

 that its adhesion to silica and 

copper is similar, which suggests that the adhesion improvement from graphene as a filler might be 

generalized. As expected, the pure nylon 66 films (P0G0 samples) did not adhere on the glass substrate 

due to the low surface energy of both materials. Similarly, the P5G0 sample showed very low adhesion, 

with visible damage starting at 3 N. Addition of GNPs, on the other hand, increased the adhesion 

gradually, with maximum values for the P5G0.3, P5G0.4, P5G0.5 samples. Further addition of 

graphene is detrimental for adhesion, although the values of critical load are still higher than those of 

the samples without GNPs.  

In order to overcome the limitations of the testing technique to provide absolute values of 

adhesion, and thus estimate the significance of our materials, we conducted tests on a material 

specifically designed as a bonding agent, ethyl cyanoacrylate. The critical load in this case was indeed 

higher, as expected, but only by a factor of 2 over our best-performing materials. We consider this 



  

58 
 

comparison an indirect confirmation of the effectiveness of GNPs to facilitate the application of nylon 

66 as a robust coating.   

 

Figure 3.11. (a) Progressive scratch test critical load of nylon 66/PTFE/GNP composites and ECA as 

reference; Optical images of P5G0 (b), P5G0.3 (c) and P5G0.5 (d). Scale bar is 500 µm. In the absence 

of graphene (panel b) two damage mechanisms are present: delamination (red arrow) and substrate 

decohesion (white arrow). With the addition of GNPs, both mechanisms are hindered, first 

delamination (panel c), then substrate decohesion (panel d). 

Observation of the damaged samples using the built-in optical microscope indicates two damage 

mechanisms, namely delamination and shear-driven material removal. The former is visible in the 

absence of graphene and is characterized by uplift of an area around the scratch mark (red arrow in 

Figure 3.11b). The latter can be identified by the removal of the film and the exposure of the glass 

substrate and appears at low load, ca. 3 N, in the P5G0 samples, while it was not measurable in the 

unfilled polymer, as mentioned above. With the addition of GNPs, the critical load increases fairly 

linearly, reaching the maximum for the P5G0.5 sample, which in most cases did not show either 

damage mechanism (Figure 3.11d). For higher GNPs concentration, values are slightly progressively 

lower. 

Overall, the improvement follows the same trend as the wear tests, with the best performance 

from the P5G0.5 sample. The enhancement provided by graphene is attributed to its high interfacial 

energy. At higher GNPs concentration, similarly to the tribological results, the formation of small 

clusters of GNPs induces the formation of defects at interface, causing the earlier onset of film 

detachment. 
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3.4   Conclusions 

We have developed a composite coating based on solvent-cast nylon 66 with the addition of PTFE and 

graphene nanoplatelets in several concentrations. We have found that the friction coefficient, wear rate 

and adhesion to the glass substrate are greatly improved by the addition of both fillers, provided that 

the graphene nanoplatelets achieve good dispersion and do not modify the inter-crystallites structure of 

nylon 66. If this condition is fulfilled, graphene creates a robust transfer film that optimizes the 

tribological response and increases the interfacial energy. Such optimal condition was found at 0.5 

wt.% GNPs, whereas further addition of graphene leads to flakes agglomerates easy to remove upon 

scratching. 
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4. Tuning the tribological properties of perflourinated acrylic co-

polymer coatings by pH control 

4.1 Introduction  

Lubrication plays a critical role in our daily lives for energy saving and controlling the CO2 emission by 

enhancing the efficiency of fuel and by increasing the machine service life. With the advancement of 

the field of material science, different novel materials are developed, carrying better surface coating 

properties that provides more efficient lubrication
122

. Low friction and anti-wear surfaces are the targets 

of the field of tribology and surface engineering. Liquid lubricants are well known to provide the low 

coefficient of friction but there are many practical situation where fluid lubricant is not a viable option 

due to certain limitations including high vacuum, high temperatures, radiations, corrosive gases, high 

pressure, high loads and in fretting wear and corrosion environment. However these limitations 

provoked the scientists to work in the field of tribology especially on solid lubricants, the most suitable 

candidate for the situations where fluid lubricants are not suitable
108

. Applications of solid lubricant 

where liquid lubricants are undesirable includes space vehicles, aircrafts, automobiles, textile 

equipment, dental implants, space vehicles, agricultural and mining equipment 
123

.  

Surfactants perform a wide range of functions in tribology as they possess basic lubrication 

functionality. Examples of surfactants with lubricating properties that can be modified include 

emulsification/demulsification, oxidation resistance, and corrosion/rust prevention. In surfactants, 

studies revealed that fluorinated ionic liquids show a low friction coefficient and wear by forming a 

reactive film on the sliding contact but all these observations are done in liquid phase lubrication. 

Tribology of surfactants in solid lubricants is relatively unexplored.  

Among surfactants, perfluorinated acylic copolymers are particularly interesting materials since they 

own unique surface properties, such as remarkably low surface energy, low friction coefficient, 

repellency to both water and oil
124,125,126,127

. In addition, perfluorinated acrylics with C6 chemistry have 

been approved by the United States environmental protection agency (EPA) for industrial use because 

of their environmental friendliness
61

. These polymers are vastly utilized in textile or construction 

industry to obtain hydrophobic and oleophobic surfaces
128

. One of the perfluorinated aclyic copolymer 

named as Capstone ST-100 is widely used in industry as a penetrating sealant for porous surfaces and 

as a surfactant and repellent for owning the aforementioned characteristics. Herein, a brief 

understanding of perfluorinated acylic copolymer as a solid lubricant is conducted.  
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One of the drawback of perfluorinated acrylic copolymers is that it contains short chains, hence limits 

its implication in applications of sliding contact due to poor tribological properties of such materials, in 

terms of either friction coefficient or wear rate. Typical solutions to overcome these limitations include 

the tailoring or modifying the surface composition. Tailoring of short chain polymers is possible by 

addition of hard particles to the polymeric matrix and surface modification can be done by chemically 

modifying the surfaces. One of the example of surface modification is polytetrafluorethylene (PTFE)-

aluminum oxide composites as previously it was considered that the surface chemistry is not an 

important factor in the formation of transfer film and that the effect of counter surface on low wear is 

purely a mechanical phenomenon, but recent studies have shown that the carboxylate polymer chains 

form a transfer films that increases the wear resistance dramatically in polymeric solid lubricants
120

. 

Herein we show the tuning of tribological properties of a polymeric coating, achieved just by 

pH modulation. To prove the mechanism, samples of a perflourinated acrylic copolymer were produced 

by spray-coating starting from aqueous dispersions with pH values ranging from 2.6 to 9.1, by addition 

of either HCl or NaOH. In order to explore the use of the perflourinated acrylic copolymer in contact 

sealing applications, and to validate the general character of the lubrication mechanism, scratch tests 

were performed with steel and rubber ball counter parts. In addition, adhesion tests were performed to 

analyze the effect of pH variation on adhesive/antiadhesive properties. The antiadhesive properties of 

spray-coatings against vulcanizing rubber can be controlled by formation of polyelectrolyte 

fluoroacylates  as well as by generation of chemical charges. Influence of these chemical charges and 

polyelectrolyte is systematically explained by analyzing the tribological and anti-adhesive results.  

 

4.2 Materials and Methods 

Perfluorinated acrylic copolymer (Capstone ST-100) was purchased from DuPont USA. Capstone ST-

100 is a 20 wt.% water dispersion of fluorinated acylic latex developed as a penetrating sealer for 

porous surface. According to Schutzius et.al.
129

 the prepared formulated dispersion meets the goals of 

US Environmental Protection Agency (EPA) stewardship program which means that the product is 

environmental friendly as it contains C6 chemistry, a general schematic of  the chemical structure is 

presented in Scheme 4.1. NaOH pellets and HCL solutions were obtained from Sigma Aldrich and used 

as received. Aluminum substrates were purchased from RS components.    
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Scheme 4.1. Chemical structure of Capstone ST-100 

Different formulations were prepared by diluting perfluorinated acrylic copolymer dispersion 

(Capstone ST-100) with water to 1 wt.% and then mixing with different volumes of aqueous basic 

solutions (NaOH, 1.0 mol/L) or acidic solutions (HCL, 1.1 mol/L). Complete detail of formulations is 

explained in Table 4.1. These formulations were vortex mixed for several minutes and airbrush spray 

coated on aluminum substrate after washing the substrates with acetone to remove any contaminants.  

Table 4.1. Details of water based formulations and their measured pH modulated values  

Sample # NaOH 

1.0 mol/L (mL) 

HCl 

1.1 mol/L (mL) 

pH 

1 - 0.25 2.6 

2 - 1.10 3.4 

3 - - 3.8 

4 0.10 - 4.6 

5 0.20 - 4.9 

6 0.30 - 5.3 

7 0.40 - 6.1 

8 0.50 - 9.1 
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Spraying distance was set to 20 cm with a 2 bar gauge air pressure. During spraying, aluminum 

substrates were heat treated at 130° C for evaporation of solvents and to obtain a uniform coverage of 

coating. After spraying all the specimen were left at conditions for one hour to cool down under 

ambient temperature.  Thickness of the coatings is calculated between 1-2 µm. 

4.2.1 Infrared Spectroscopy 

Infrared spectra of the samples were obtained with an Attenuated Total Reflectance (ATR) accessory 

(MIRacle ATR, PIKE Technologies) coupled to Fourier Transform Infrared (FTIR) spectrometer 

(Equinox  70 FTIR, Bruker). All spectra were recorded in the range of 600 cm
-1

 to 4000 cm
-1

 with a 

resolution of 4 cm
-1

, accumulating 128 scans. For accuracy, three measurements of each sample were 

recorded. 

4.2.2 Tribology Characterization  

In order to characterize the tribological behavior of the material, multi-pass scratch tests were 

performed on a Micro-combi tester (CSM-Instruments, Switzerland) on samples by evaluating friction 

and wear resistance. A bearing steel ball of 500 µm in radius was used as a counterpart for rubbing. 

Additionally, a rubber counter ball experiment was run to validate the results from different counter-

part materials. Tip displacement rate was maintained at 10mm/min for a reciprocating distance of 4mm 

under the constant load of 1N for 30 minutes, for a total of 75 cycles (Figure 4.1). All the friction and 

wear tests were carried out at 20-25°C and relative humidity (RH) of 40-50%.  

 

Figure 4.2. Scheme of scratch test measurements 
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The average values of steady-state coefficient of friction were extracted from the experimental data 

plots of friction coefficient as a function of number of cycles and sliding distance. All the data 

presented in the current work were the average of five replicate measurements for each substrate. 

After each test, the depth of the wear scar d was measured using a stylus surface profiler. Each scar was 

measured 5 times and average was calculated to use the precise depth of the specimen. Wear volume 

∆𝑉 of the specimen was calculated from geometrical considerations, by eq. (1),  

∆𝑉 =
𝐿

2
 𝑟2 (cos−1 (

𝑟−𝑑

𝑟
) −

√𝑟2−𝑑2

𝑟
)  (1) 

Where L is the length of stroke in one cycle (mm) and r the radius of the counterpart steel ball (µm). 

Wear rate was calculated by the ASTM G-99 standard wear rate formula,  

𝐾 =
∆𝑉

𝐹×𝑁×𝐿
     (2) 

Where F is the applied load (N), L the stroke length in one cycle (m) and N represents the total number 

of cycles, so that N*L is the total sliding length.  

 

 

4.2.3 Adhesion strength experiment for vulcanizing butyl rubber 

An ad hoc experiment was designed to measure the antiadhesive properties of perfluorinated acrylic 

copolymer in rubber tire vulcanization process and to measure the consequent effects of pH on 

adhesion strength. The fundamental step of experiments are explained in Figure 4.2. After spray 

coating the perfluorinated acrylic copolymer on aluminum substrates, surface was overlaid with the 

sheet of uncured butyl rubber. Alumina plate without any coating was attached on uncured rubber on 

the uncovered face and was hot pressed for 30 minutes at 150° C. The adhesion strength was measured 

needed to separate the butyl rubber from coated material substrate. For this purpose, an ad hoc 

configuration of instrument (Instron 3365 Dual Column) was implemented. The top non-coated 

aluminum substrate was connected to the moving arm of the Instron by steel wires and mechanical arm 

was moved vertically at a speed of 3 mm/min. The force required for the movement was recorded until 

the top non-coated aluminum substrate detaches from the coated aluminum substrate.  
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Figure 4.2. Schematic of the fundamental sets of experiment designed to measure adhesion strength of 

perfluorinated acrylic copolymer sprayed on aluminum substrate and a process of volcanizing rubber 

tire, one side attached with the polymer coating and other side attached with aluminum. Last section 

photograph indicating the mechanism of designed experiment.  

4.3 Achieved Results 

4.3.1 Chemical Analysis 

Chemical characterization was performed by ATR-FTIR to analyze the spectral changes occurred by 

chemical interactions. Figure 4.3 A shows the IR spectra in the region between 1800-600 cm
-1

 of 

samples with different pH values including 9.1, 3.8 and 2.7 respectively. Main bands for pristine 

Capstone ST-100, pH 3.8, were associated with –CF2– groups (asymmetric and symmetric CF2 

stretching modes at 1238 cm
-1

 and 1143 cm
-1

, respectively) and ester functional groups (C=O stretching 

mode at 1733 cm
-1

 and C–O–C stretching mode at 1192 cm
-1

), methylene (CH2 scissoring bend at 1465 

cm−1 and CH2 rocking bend at 728 cm−1) groups are observed. When acid is added to the aqueous 

solution, pH 2.7, there is no chemical spectral change observed in the system. On the other hand after 

adding base, pH 9.1, two new vibrations are observed and ascribed as carboxylate functional groups 

(asymmetric and symmetric COO− stretch at 1560 and1411 cm−1, respectively). Ratios between 

intensities of bands at 1560 cm
-1 

(carboxylate stretching) and 1732 cm
-1 

(carbonyl stretching) are 

calculated to show how exponentially or gradually the ratio increases or decreases after addition of acid 

or base (Figure 4.3 B). Results revealed that for the as prepared and acidic samples, ratio is zero but 

after addition of base, in the range of pH 3.8 to 6.1, the ratio exponentially increases and later on from 

6.1 to 9.1 ratio is more gradual.  
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Based on this increment in ratio after adding base, we presume that a reaction of saponification 

occurred between the ester groups of the perfluorinated acrylic co-polymer and the NaOH molecules 

resulting in the production of sodium carboxylates and alcohol residues (Figure 4.3B inset). A model is 

drawn to further explain the mechanism, shown in Figure 4.3C for the reactivity of the generic 

perfluorinated acrylic co-polymer with acid and base. Chemical charges (carboxylate anions and 

sodium cations) are formed along with production of sodium carboxylate groups and nominated as 

fluoroacrylic polyelectrolyte polymer.  

 

Figure 4.3. A) ATR-FTIR spectra of sprayed perfluorinated acrylic copolymer coating with variant pH 

conditions. B) Variation of the ratio of intensities of carboxylate and ester groups at different pH 

conditions. C) Schematic representation of chemical reactivity with NaOH and HCl. 

 

4.3.2 Tribology and adhesion results 

Tribological tests were performed on unmodified perflourinated acrylic copolymer coatings and by 

varying the pH content in the polymer dispersion. As discussed previously, improvement of such short 

chain polymers contains significant importance due to their versatile use in industry. Improvement in 
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the tribology and adhesion is analyzed systematically by measuring friction, wear and adhesion. The 

friction coefficient and wear rate of perfluorinated acrylic copolymer coatings on aluminum substrate 

as a function of pH are presented in Figure 4.4 and 4.5, respectively. It can be seen that addition of HCl 

(pH < 3.8) does not modify the tribological properties of the material whereas on contrary, addition of 

NaOH (pH > 3.8) resulted in exceptional improvement in friction coefficient and wear resistance. In 

detail, increasing the base (NaOH) resulted in a large decrease in coefficient of friction; the lowest 

average friction measured was ca. 0.116, obtained for pH 5.3, while the highest value was ca. 0.338, for 

pH 3.8. The rise in pH significantly reduced the friction coefficient of the coating, leading to 3 times 

lower frictional coefficient, shown in Figure 4.4. Similarly while using rubber ball for counterpart, 

friction values decreased from ca. 0.53 to ca. 0.32 at pH 5.3 showing that friction was reduced not only 

for steel counterparts but also for rubber counterparts.  

 

Figure 4.4. Friction coefficient results for steel and rubber counterparts conducted on the 

perfluorinated acrylic copolymer coatings with variable pH concentrations. 

A similar behavior can be seen in Figure 4.5  for the wear rate measurements: the increment of pH to 

fluoropolymer improved the wear resistance, with a minimum at pH 5.3. Significant decrease in wear 

rate was observed which is quite evident, with 48.14×10
-3 

mm
3
/N-m wear rate at pH 3.8 which is 

improved to 0.73×10
-3 

 mm
3
/N-m at pH 5.3 reporting over 65 times reduction in wear rate. 
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Figure 4.5. Average values of wear rate measured on perfluorinated acrylic copolymer coatings with 

function of pH modulation. 

The adhesion results are explained in Figure 4.6 showing the variation of measured rubber/aluminum 

adhesion force, as the function of pH of the perfluorinated acrylic copolymer dispersions. These 

experiments were performed using an ad hoc system designed to simulate the rubber tire vulcanization 

process and to measure the consequent adhesion force required to detach coated substrate from butyl 

rubber (Figure 4.2). As can be seen in Figure 4.6, aluminum substrates coated with non-modified 

perfluorinated acrylic copolymer dispersions, pH 3.8, are strongly bonded to the vulcanized rubber and 

force required to detach it from the coated substrate is close to 80 N. Adhesion force does not change 

appreciably when pH is reduced with HCl (pH < 3.8) showing no significant improvement for the anti-

adhesive perspective. On the other hand increasing pH with NaOH (pH > 3.8) shows a remarkable 

improvement in releasing capacity of the coating. In particular, a minimum adhesion force with 6 N 

was observed for the case when pH was maintained at 4.7 that is ten times less than the actual adhesion 

force of non-modified perflourinated acrylic copolymer. Stable adhesion force between 6 N to 14 N 

was observed in the range of pH (4.7 - 5.5) and interestingly it’s the same region where we observed 

the low coefficient of friction and improved wear rate signifying the appropriate pH range where 

carboxylate functional groups were formed that are thought to be responsible for such improvement.  
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Figure 4.6. Adhesion force between rubber and aluminum spray coated with perfluorinated acrylic 

copolymer dispersions with different pH conditions. 

The improvement in the tribological properties (reduction in friction coefficient and wear rate) and 

release capability of the surfaces (anti-adhesive properties) due to solution’s pH adjustment (close to 

pH 5) can be attributed to lowering of surface energy that can lead to reduction of Van der Waals 

interactions between bodies
130

. Carboxylate groups are thought to be responsible for lowering the wear 

rate as previously it is proved that metal carboxylates can create a transfer film upon sliding contact, 

which can substantially reduce the friction coefficient and material damage with numerous contribution 

in lubricants, used as additives
131,132

. Specifically for NaOH, the improvement can be referred to 

chemical modifications occurred after formation of sodium carboxylates.  

4.4 Conclusions 

Tribological tests were systematically investigated, experimental results show that fluoropolymer with 

1% concentration of water, with addition of 300µl NaOH, leading to pH 5.3, yielded significant 

decrease in friction coefficient and high wear resistance as compared to other formulations. Friction 

coefficient was decreased 3 times and wear rate was reduced from 48.14×10
-3 

mm
3
/N.m to 0.73×10

-3 
 

mm
3
/N.m reporting over 65 times reduction in wear rate. Thus the friction and wear properties of 

fluoropolymer can be enhanced significantly by tuning its pH. Furthermore, adhesion results revealed 

that adhesion force for base-modified formulations changed significantly to 6 N from 80 N (for non-

modified configurations).  
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5. Environmentally benign ultra-transparent PECA coatings with 

multifunctional applications 

5.1 Introduction 

Cyanoacrylates have been used since decades in adhesives, forensic sciences and medical 

applications
133

  for its non-toxicity, biodegradability and  non-immunogenic behavior
134

. However 

usage of cyanoacrylate is limited by its intrinsic brittleness, high reactivity and extremely rapid anionic 

polymerization
135

. These limitations can be tuned by appropriate solvents, chemically modify the alkyl 

chains with moieties or by physically blending with other components such as plasticizers or 

thermoplastic elastomers, allows to tailor their mechanical and chemical properties
136

.  

Poly ethyl 2-cyanoacrylate (PECA), a member of cyanoacrylate family, contains short chains 

with less toxicity as compared to methyl structured cyanoacrylate 
137

. Among other properties of 

PECA, control of polymerization and transparency has paramount importance due to their increasing 

use in fabrication of superhydrophobic surfaces
138,139

, drug delivery nanoparticles
140,141

 and in flexible 

lithium ion batteries 
126,142

 to name a few. The main challenge of fabricating PECA coatings is that 

cyanoacrylate monomers are high reactivity under ambient conditions as well as their instability under 

elevated temperatures. Previously lot of research has been conducted to control the rapid 

polymerization of alkyl cyanoacrylates. For instance Mele et al.
143

 controlled the polymerization of 

PECA by adding dimethyl sulfoxide (DMSO) and acetone to fabricate zwitterion nanofibers coatings. 

Similarly Han et al. 
144

 controlled the degradation of PECA by copolymerizing poly methyl 

methacrylate (PMMA) with free radical bulk polymerization. Nevertheless very few studies have been 

conducted on transparency of PECA coatings.  

Control on transparency of cyanoacrylates is an intricate phenomenon and is strongly related to 

solvent dependence and evaporation rate. The solubility parameters of cyanoacrylate monomers in 

various common solvents have been reported
145

. Cyanoacrylate allows good solubility in polar solvents 

such as dimethyl formamide, acetone, dimethyl sulfoxide (DMSO). Few of the polar solvents start 

exothermic reaction with the cyanoacrylate monomers, like DMSO can initiate the zwitterion 

polymerization instantly
146

. Although these solvents contribute in initialization of polymerization but to 

obtain transparent coatings from such solvents is difficult. The ketones can be considered moderately 

polar aprotic solvents
147

. Cyclopentanone, cyclic ketone, is used in numerous industrial applications as 

a green solvent with high boiling point of 130°C and is recently added in the GSK green solvents 
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guide
148

. For the very first time, cyclopentanone has been used for solubility of ECA monomers and for 

fabrication of PECA coatings. High boiling point of cyclopentanone makes it more suitable for 

controlled polymerization of ECA. To overcome the brittleness, benzyl alcohol was added along with 

ECA monomers at different v/v ratios. Interestingly there was no phase separation observed during 

polymerization and a negligible reduction in transparency was observed. In addition, role of benzyl 

alcohol is also to inhibit the anionic polymerization of ethyl cyanoacrylate. 

Herein, we report a simple inexpensive method for fabrication of  highly transparent poly ethyl-

2-cyanoacrylate (PECA) coatings. The process is a single-step solution casting from a common solvent, 

cyclopentanone, of ethyl-2-cyanoacrylate monomers. The prepared coatings and free standing films 

demonstrate remarkable transparency (higher than 92%) with first report to achieve it. The 

morphology, thermo-physical properties of the PECA coatings are characterized. By taking advantage 

of its low contact angle hysteresis, developed material is proposed for the fog harvesting application 

and significant results are achieved. Furthermore, tribological properties of steel are improved by 

decreasing the friction more than 6 times and wear rate was improved more than 9 folds by self-

assembling graphene nanoplatelets in ECA solution.  

5.2 Materials and Methods 

Ethyl 2-cyanoacrylate (ECA, Permabond 105, Sigma Aldrich), cyclopentanone, benzyl alcohol, 

glycerol, diiodomethane, dimethyl sulfoxide (DMSO) were purchased commercially. Grade pure G+ 

graphene nanoplatelets (GNPs) with lateral dimensions of few micrometer and a thickness of few 

nanometer were kindly provided by Directa Plus (Lomazzo (CO)-Italy). All the chemicals were used as 

received without any further purification. 

Ethyl 2-cyanoacrylate (4.48 ml), highly active monomer, was homogeneously mixed in 50 ml 

cyclopentanone. Benzyl alcohol was added in accordance with v/v ratio of ECA ranging from 10-50%. 

Solutions were drop casted on microscopic glass slides after cleaning with acetone and bath sonicated 

for 60 min. Drop casted solutions were covered by aluminum foil cups after making small holes on the 

surface to obtain uniform coatings and left in aspiration hood for 24 hour. Obtained coatings were 

named according to concentration ratios between ECA/benzyl alcohol including PECA [100:0], PECA 

[90:10], PECA [80:20], PECA [70:30], PECA [60:40] and PECA [50:50] respectively.  
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5.2.1 Optical and Thermal Characterization 

UV-vis spectra was performed to investigate the transparency of all fabricated samples. Square shaped 

specimens (2 × 2 cm
2
) were cut from glass deposited coatings and free-standing films. The UV 

absorbance measurements were carried out  by Varian CARY 300 Scan UV-visible spectrometer in the 

wavelength range of 200-800 nm. The transmittance percentage values were calculated using following 

equation.  

𝑇(%) =  (
1

10𝐴
) × 100 

Where, T and A are transmission and absorbance values of the experimented material, respectively.  

The materials degradation temperature was evaluated by thermogravimetric analysis (TGA). Samples 

were scanned from 30° C to 600° C at a heating rate of 5° C/min under nitrogen atmosphere set as a 

flow rate of 50 mL/min. TGA data were analyzed in the form of mass loss and rate of mass loss 

derivative with respect to temperature.  

5.2.3 Chemical and Morphological Characterization  

μRaman spectra were collected at ambient conditions using a μRaman spectroscopy (Renishaw Invia, 

United Kingdom), equipped with a microscope. A 514 nm laser excitation line, in backscattering 

geometry through a 100x objective lens, was used to excite the specimens with numerical aperture of 

0.75 at low power of 0.4 mW. Raman spectra were collected from the pristine surface, as well as from 

the scratch, after the wear test. Chemical changes in the structure were further studied by attenuated 

total reflectance-fourier transform infrared (ATR-FTIR) spectrometer (Equinox 70 FT-IR) equipped 

with an ATR accessory (MIRacle ATR, PIKE Technologies). All spectra were acquired in the range 

from 4000 cm
-1

 to 600 cm
-1

 with 4 cm
-1

 resolution, accumulating 128 scans.  

The morphology of the coatings was observed by scanning electron microscopy (SEM, JEOL 

JSM-6490AL operating at 10 KV) after sputtering 10 nm gold coating prior to imaging.  

5.2.4 Mechanical and Tribological Characterization 

The Young’s modulus and hardness of the coatings were characterized by nanoindentation on an Anton 

Paar UNHT equipped with a diamond Berkovich tip. Maximum load was 1mN whereas loading and 

unloading time was 30 s, with a dwell time at maximum load of 30 s to allow viscous relaxation. 
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Young’s modulus E and hardness H of the materials were calculated by the Oliver & Phar method with 

at least 10 repetitions for each material.   

Multi-pass scratch tests were performed on a Micro-combi tester (Anton Paar Gmbh, Germany), 

to evaluate friction and wear resistance. A bearing steel ball of 500 µm radius was used as a counterpart 

for rubbing. The tip displacement rate was 20 mm/min for a reciprocating distance of 4 mm, 

corresponding to a frequency f= 0.042 Hz, under the constant load of 5 N, for 300 cycles, 

corresponding to 30 minutes. All the friction and wear tests were carried out at laboratory conditions 

(21 ± 1°C, 50 ± 5%RH). 

The average values of steady coefficient of friction, following the running-in phase, were extracted 

from the experimental data plots of friction coefficient. All the data here are the average of five 

replicate measurements for each material. After each test, the depth of the wear scar d was measured 

using a stylus surface profiler (DektakXT, Bruker). Each scar was measured 5 times and the average 

was calculated. The wear volume, ∆𝑉, of the specimen was calculated from geometrical considerations, 

with Equation (1):  

∆𝑉 =
𝐿

2
 𝑟2 (𝑐𝑜𝑠−1 (

𝑟−𝑑

𝑟
) −

√𝑟2−𝑑2

𝑟
)  (1) 

where L is the length of the stroke in one cycle and r is the radius of the counterpart steel ball. The 

wear rate was calculated by the ASTM G-99 standard wear rate formula:  

𝐾 =
∆𝑉

𝐹×𝑁×𝐿
                                (2) 

where F is the applied load (N), L the stroke length in one cycle (m) and N represents the total number 

of cycles, so that NL is the total sliding length 
34

. 

Moreover, the adhesion of coatings deposited on the glass substrates was evaluated by a progressive 

scratch test, during which the load was increased linearly from 0.03N (Hertzian pressure 𝑝~60 𝑀𝑃𝑎) 

to 10 N (𝑝~190 𝑀𝑃𝑎) over a scratch length of 2 mm, with a sliding rate of 1 mm/min and acquisition 

rate of 30Hz.     
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5.3 Results and Discussion 

5.3.1 Surface Morphology and Transparency  

Figure 5.1(a-c) demonstrates the PECA coatings with different solvents including acetone, 

DMSO/acetone and cyclopentanone. It can be seen that both of the films deposited in acetone and 

DMSO appeared to be opaque whereas with cyclopentanone PECA coatings were ultra-transparent. 

Reason for such transparency can be attributed to slow evaporation of solvent that let the monomers 

react in a controlled way with moisture in the air. Two factors that can significantly impact on 

transparency of cyanoacrylate are selection of high-boiling point solvent and controlled environmentfor 

evaporation. Both of these factors were acknowledged, as cyclopentanone has high boiling point ≈ 130° 

C and controlled environemnet was provided by covering the drop casted samples with aluminum foil 

with controlled hole size in it. SEM analysis was performed on different prepared coatings for 

analyzing the surface morpohology. SEM images (Figure 5.1d, 5.1e) revealed that PECA coatings 

prepared in DMSO and DMSO/acetone solvents contain some defects on the surface, visible throught 

the images. Whereas PECA coatings prepared with cyclopentanone are more smooth and uniform as 

shown in Figure 5.1e. Roughness of the PECA coatings prepared with cyclopentanone was less than 20 

nm.   

 

Figure 5.1. (a-c) Photographs of PECA coatings, prepared in different solvents. (a) PECA film 

prepared in acetone solvent. (b) PECA film prepared in DMSO/acetone. (c) Drop casted PECA coating 

processed in cyclopentanone (d-e) SEM images of PECA in different solvents (h) UV-vis  spectra of 

PECA coatings and free standing film, inset shows the glass substrate coated with PECA flexible 

transparent PECA film 

a

b

c

1cm

d

e

f
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UV-vis spectra measurements were performed to determine the transparency of PECA coatings. The 

produced PECA coatings were highly transparent to visible light, with transmission spectra showing 

99.9% transparency when coated on glass substrates as shown in Figure 5.2. Transmittance reduced to 

98.5 percent after 1:1 v/v ratio addition of benzyl alcohol. It is worth noting that these measurements 

were performed with reference to glass substrate. Similarly transparency tests were conducted for free 

standing PECA films for a good comparison to other transparent materials. PECA [100:0] exhibited 

more transparency as compared to glass and many other commercially available transparent films. For 

microscopic glass, transparency was recorded around 91.4% (shown in green dotted lines, Figure 5.2) 

whereas for PECA [100:0] transmittance was approximately 92.5%. Interestingly our fabricated PECA 

coatings are more transparent than poly methyl methacrylate (PMMA) allowing 92% transmittance
149

. 

 

Figure 5.2. UV-vis spectra results for PECA with variant concentrations of benzyl alcohol and pristine 

glass 

5.3.2 Chemical characterization and TGA results 

ECA polymerizes rapidly with the atmospheric moisture, called the anionic polymerization, where a 

nucleophile attacks its β-unsaturated carbon to form a carbanion. The resulting carbanion attacks 

another monomers and cascades the polymerization reaction. Responsible elements for higher rate 

anionic polymerization of ECA are electron withdrawing groups,–CN and –COO– bonded to its α-C, 

stabilizes the resultant carbanion
150

. The polymerization mechanism of ECA is explained in Figure 5.3. 

It has been reported previously that polar solvents can initiate the zwitterion polymerization of n-alkyl 

2 cyanoacrylates 
143

. According to this model we can state that the polymerization of ECA monomers 
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started in the solvent, cyclopentanone (weak O-H bonding at CH3 terminus) following the anionic 

polymerization that mainly occurred due to moisture in the air leading to chain propagation. Compared 

to the frequently used free radical polymerization mechanism, the anionic polymerization has the 

advantages of tolerance of oxygen and moisture, lower polymerization activation energy, and long 

living active centers. Tolerance of oxygen and moisture allows its polymerization occurred inside the 

solvent and under air environment whereas low activation energy and long living active centers permit 

its polymerization under ambient temperatures, resulting in high molecular weight polymer. Herein, 

role of benzyl alcohol is to inhibit the rapid polymerization and can act as a terminator for the 

polymerization as the protons and hydroxide can terminate the process that can be transferred from 

either from benzyl alcohol or from water molecules. 

 

Figure 5.3. Proposed scheme of the reactions occurring for the polymerization of ECA (initiation, 

propagation and termination). 

The reaction occurring and polymerization confirmation was done by comparing the Fourier transform 

infrared spectroscopy (FTIR) spectra of the PECA coatings with benzyl alcohol concentrations. Several 

bands assigned to the functional groups of the polymerized ethyl 2-cyanoacrylate molecule can be 

identified in Figure 5.4a. A strong absorption band at 2991 (–CH2, asymmetrical stretching vibration), 

the conjugated C=O stretching at 1742 cm
-1

, the C=C stretching at 1614 cm
-1

, and C–O stretching 

vibration at 1248 cm
-1 151,152,153

. The disappearance of peaks at 3127 cm
-1

 (=CH2, stretching vibration) 

and 1665 cm
-1

 (–C=C–, stretching vibration) in PECA confirmed that the polymerization reaction was 

completed. The peaks due to C ≡ N stretching for PECA is seen at 2250 cm
-1

 (shown in inset of Figure 
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5.4a). In the ECA monomers, –CN stretching is observed at 2239 cm
-1 154

. This shift in wavenumber is 

due to the significant stabilization of the carbanion formed by delocalization of the negative charge, or 

an effect of inter- and intramolecular hydrogen bonding
155

. The presented IR spectrum consists of the 

typical vibrations of PECA without contribution of cyclopentanone solvent. However a very broad 

peak of O–H stretching appeared for PECA [70:30] and PECA [50:50] at 3335 cm
-1

 mainly due to 

benzyl alcohol. PECA was found to interact with benzyl alcohol via hydrogen bonding. 

 

Figure 5.4. (a) FTIR spectra of PECA with different concentrations of benzyl alcohol. (b)  

Figure 5.4 (b & c) showing the shift of peaks occurred at conjugated C=O stretching,1742 cm
-1

, with a 

shift of 4 cm
-1

 wavenumber. Whereas a shift of 28 cm
-1

 wavenumber is observed at CH3 bending, 1467 

cm
-1

. Please note that these shift in wavenumbers were observed after addition of benzyl alcohol in the 

monomer content.  

Thermal degradation mechanism of the prepared PECA and PECA/benzyl alcohol coatings was 

investigated by thermogravimetric analysis (TGA) as shown in Figure 5.5. PECA typically degrades in 

two primary steps. First degradation starts at ≈160 °C corresponds to first step, which is the 

degradation of hard segments in cyanoacrylate and the formation of isocyanates and alcohols, primary 

or secondary amines, olefins, and carbon dioxide. The second step degradation is associated with soft 

segment degradation (160 °C – 250 °C), leading to remaining thermal decomposition that is in 

agreement with the literature
156

,
157

. There is no residue remaining beyond 390 °C. Benzyl alcohol, 

however hindered the polymerization of PECA and caused it to degrade earlier at around 225°C. Inset 

of Figure 5.5 shows first weight derivatives for pristine PECA and PECA with benzyl alcohol at 

(a) (b)

(c)
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different volume fractions. Pristine PECA [100:0] demonstrates a sharp derivative peak at 240 °C, 

however, when mixed with benzyl alcohol, two small peaks appear at 241 °C and 220 °C. Further 

addition of benzyl alcohol resulted a complete transition to sharp peak at relatively lower temperature 

ca. 210 °C. This transition of first weight derivative for PECA and benzyl alcohol endorse a strong 

chemical interaction between benzyl alcohol and cyanoacrylate groups as seen in the  FTIR spectra.     

 

Figure 5.5. Thermogravimetric analysis (TGA) of pristine PECA and PECA with benzyl alcohol. Inset 

showing derivative weight percentage loss of PECA with and without BnOH. 

 

5.3.3 Annealing effect on adhesion of PECA coatings 

To evaluate the adhesion between PECA coatings and the glass substrate, progressive scratch tests 

were performed on films deposited on glass slides. The critical load for failure was then investigated by 

SEM. Figure 5.6 (a-d) presents the residual scratch patterns after progressive load scratch test with the 

diamond indenter. Coatings containing benzyl alcohol, Figure 5.6 (a-c), exhibited several fractures. 

These kind of fractures can be ascribed to the tensile cracking mechanism where the indenter advances 

along the scratch direction while compressing the material ahead and the material behind is stretched 

158
. Such fractures are generated when external load overcomes the ultimate strength of the coated 

material 
159

. Another aspect for such formulations of cracks is that benzyl alcohol hindered the 

polymerization of ECA that can cause result of short chain polymerization, not sufficient to bear the 

critical load of diamond counterpart and resulted in cracks formulation.  
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To evaluate the deformation caused by compression in progressive scratch test, compression 

zone area was calculated in accordance with applied load. According to statistics, scratched width 

becomes narrower after addition of benzyl alcohol (Figure 5.6f) that is predominantly due to decrease 

in plasticity of the material. Figure 5.6e is the SEM image of PECA coatings without annealing 

whereas annealing at 130°C for 10 minutes made a detrimental effect and enhanced the scratch 

resistance (Figure 5.6d). It is presumed that there were still the solvent residues inside the coating that 

weakens the adhesion between PECA coatings and the glass substrate.   

 

Figure 5.6. Progressive scratch test SEM images and scratched width analysis (a-d) SEM images of 

annealed PECA coatings with variant benzyl alcohol concentrations; PECA 50:50, PECA 70:30, PECA 

90:10 and PECA 100,0 respectively (e) SEM image of PECA 100:0 without annealing (f) Comparison 

of scratched width at compression zone in different applied force regions. 

5.4 Applications 

5.4.1 Fog Harvesting 

Water shortage has been a major problem in arid and humid environments. One of the solution is 

collecting water from foggy wind inspired by darkling beetles of the Nambia desert and biomimetic 

approaches 
160

. Although much research has been conducted on creating contrast surfaces i-e, both 

hydrophobic and hydrophilic structures for good efficiency of water collection but these surfaces are 

hard to fabricate and are applicable only in laboratory environment 
161

. Hurdle of creating these 

structures at micro and macro level demands a new material with ease of processing that contains 

a b c

d e f
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hydrophilic characteristics while exhibiting low contact angle hysteresis. For the first time, 

cyanoacrylate has been experimented for the application of fog harvesting. Its hydrophilic nature (best 

for pinning the micro and nano-droplets initially) and low contact angle hysteresis (ideal for 

coalescence and water sliding) makes it an ideal candidate for water collection applications.  

An experimental setup (Figure 5.7a) established recently by Davis et al.,
162

 was used for 

estimating the water collection ability of fabricated transparent cyanoacrylate coatings. The designed 

experiment allows for the recording of the total amount of water collected during the entire test, the 

time and weight of each collection episode, eventually providing more accurate and reliable results. An 

absolute comparison with other reported materials from literature is problematic, as the results are 

strongly dependent on testing conditions and fog accumulation sources. To address the concern, a 

direct comparison has been performed by choosing superhydrophilic, hydrophobic and 

superomniphobic materials as a control specimens. Four different materials were selected for water 

collection efficiency comparison including glass slides, polytetrafluoroethylene (PTFE),  

superomniphobic (SO) surface with poly dimethylsiloxane (PDMS) islands on the surface
162

 and PECA 

coatings with different concentrations of benzyl alcohol. 

The mechanism of fog collection, composed by the phases of pinning, coarsening and sliding, is 

explained in Figure 5.7b. Water condensation was observed after few minutes of fog exposure followed 

by coalescence, droplets sliding  and water dripping from the substrate. Interestingly water 

condensation started very early on the surface after 15 minutes, which is attributed to the hydrophilic 

nature of the material. These tiny condensed pinned droplets converted into relatively big droplets after 

few more minutes of fog exposure. Coalescence was observed after 40minutes leading to water sliding 

after 50minutes and eventually the first droplet dripped down on the balance scale at approximately 60 

minutes. 

Water collection was calculated by weight scale and a comparison is shown in Figure 5.8a. In 

case of SO surfaces fabricated by Devis et.al., total amount of water collected was 142 mg. For glass 

surface total amount of water collected was 53mg and only one droplet fell down the surface at 80 

minutes and remaining droplets started puddling on the bottom edge of the substrate. For PTFE, total 

water collected was 62.3 mg but it took 102 minutes to collect the only droplet as hydrophobic surfaces 

take much longer time for condensation. Water collection for PECA coatings was significantly much 

higher as PECA [100:0], PECA [70:30] and PECA [50:50] collected 138 mg, 146 mg and 156.8 mg of 
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water respectively in total time span of 120 minutes with three droplets accounted on the balance for 

each coating. Efficiency of PECA [50:50] coatings is comparatively higher than other cyanoacrylate 

coatings. Reason is attributed to reduction in surface tension after introduction of benzyl alcohol in 

cyanoacrylate coatings 
163

 allowing water droplets to coalescence faster than pristine PECA coatings.   

In general, the liquid water on superhydrophilic surfaces flows down vertically due to 

gravitational force but pins at the bottom edge of the substrate and forms a liquid puddle. Similar trend 

was observed on glass substrates and elaboration of liquid puddling is exemplified in Figure 5.8b. 

Whereas there was no such trend observed in case of PECA coatings as contact angle hysteresis was 

minimal and water droplet started sliding and eventually dropped off the substrate. Figure 5.8b 

elaborates the droplet puddling and sliding mechanism on the bottom edge of substrate while changings 

are explained with reference to time. 

 

Figure 5.7. a) Photograph of the water collection setup b) Images of PECA surface showing the 

patterns of water coallescence  

Furthermore, contact angle hysteresis and surface tension experiments were performed to validate the 

acquired results of fog harvesting and are discussed in Figure 5.8c. There are many factors influencing 

the contact angle hysteresis including surface roughness, chemical heterogeneities, surface 

deformation, liquid adsorption/desorption, molecular rearrangements etc.
164

. PECA is already reported 

for its self-cleaning property with low contact angle hysteresis (∆Ɵ)
143

 where contact angle hysteresis 

∆Ɵ was calculated approximately 24°. Please note that this contact angle hysteresis was measured on a 

surface of electro-spun fibers which is structurally different from our fabricated surfaces. As a 

consequence contact angle hysteresis is reduced to ca. 18° for PECA [100:0] whereas it further reduced 

0 min 10 min 20 min

40 min 43 min 45 min

50 min 60 min 65 min

a

Glass Substrate 

Puddle 

Time 

PECA Substrate 

Sliding 

b

dc e



  

82 
 

to ca. 14° for PECA [50:50]. Surface tension of cyanoacrylate coatings was estimated by different 

liquids (diiodomethane, diethylene glycerol, dimethylsulfoxide (DMSO), ethylene glycerol, 

formamide) and mixtures of water and ethanol. The interpreted solid surface energy of PECA [100:0] 

coatings is calculated as 33.17 mN/m whereas for PECA [50:50] it reduced to 29.5 mN/m. Water 

contact angle for the PECA coatings was calculated around 72°. Reduction in surface tension induces a 

critical role in minimizing the resisting force due to hysteresis, as can be calculated by given formula, 

fp= wσ (cosƟR-cosƟA)        
165

  

In this equation, w is the width of the droplet and σ is the surface tension, ƟR is the receding contact 

angle and ƟA is the advancing contact angle. 

 

Figure 5.8. a) Comulative mass of water collected after 120 minutes for different surfaces b) 

Phenomenon of water puddling and water sliding c) Plots of contact angle hysteresis and surface 

tension of PECA coatings with benzyl alcohol concentrations. 

5.4.2 Self-assembly of GNPs on steel substrates 

Graphene is well known for performing as a solid lubricant where reduction in friction and minimal 

material damage is required
166

. There are different methods commonly used to deposit large area 

graphene polymer coatings for tribological studies in macroscale contact, including chemical vapor 

deposition (CVD), physical vapor deposition (PVD) etc., to name a few
103

. Although these techniques 

of graphene deposition are producing low friction coatings, high cost and difficult preparation process 

hurdle practical applications. One of the possible method to uniformly deposit graphene on macroscale 

is self-assembly of nanoplatelets either by covalent bonding of graphene with substrates
167

, by 

Marangoni effect
168

 or by introducing a polymer matrix in solution processing, behaving as an adhesive 

agent between graphene nanoplatelets and substrate.  

PECA as a solid lubricant was previously investigated
143

 and results show that it can be used as 

a solid lubricant. Although very small friction coefficient was reported, short chain polymers are 
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usually bad for sliding contacts, which can intrude high wear rate of such materials. Herein, a method is 

proposed where monomers of ethyl 2-cyanoacrylate (ECA) are drop casted along with GNPs.  ECA is 

known for its anionic polymerization which can rapidly start its polymerization with the help of weak 

basis and moister in air. As PECA is a short chain polymer which allowed GNPs to assemble itself on 

top of the substrates. A schematic is presented in Figure 5.9 (a-d) for explaining the mechanism. Figure 

5.9(a, b) representing self-assembly of platelets on the steel substrates that were placed in glass petri-

dish prior to depositing the material. After one day of solvent evaporation (Figure 5.9c), glass petri-dish 

was heat treated at 140°C for five hour to completely evaporate the cyclopentanone solvent and 

reformation of PECA that was used for improvement in the boding strength between graphene platelets 

and steel substrates. Degradation temperature for PECA is approximately 155°C which is marginally 

closed to the heat-treated temperature, so we can presume that melting occurred on the surface. After 

five hours of heat treatment, a very uniform surface was obtained (Figure 5.9d). It has been reported 

that cyanoacrylate polymers undergo an unzipping process where polymer chain ends deprotonates, 

resulting in rapid DE polymerization of the polymer backbone, followed by rapid re-polymerization of 

liberated monomers resulting in daughter polymer backbones of much lower molecular weight
169

. 

Similar phenomenon is expected to happen in our experimented protocol as excessive heat stimulates 

the unzipping process in PECA.  

µRaman was performed to analyze the spectra of PECA/GNPs coatings with emphasis on 0.2 

wt.% GNPs (best obtained percentage for tribological results), shown in Figure 5.9e. According to the 

Raman spectra, stacking of graphene nanoplatelets resulted in multilayer graphene platelets. Graphene 

fingerprint peaks are present at 1345 cm
-1

 (D peak), 1585 cm
-1

 (G peak) and 2701 cm
-1

 (2D peak). Inset 

on 2D peak showing the D1, D2 peaks on the valley. SEM image (inset of Figure 5.9e) showing the 

segregated GNPs on the surface. Furthermore, in order to investigate the sliding induced disorder and 

bonding state of C-network, Raman spectroscopy was employed to examine the effects after the 

friction and wear test. The sliding process resulted in an increase of D-peak intensity (line 2, 

ID/IG=0.812 compared to ID/IG =0.22 of the initial coated surface), Figure 5.9f, suggesting that the 

surface became defective and disordered after linear scratch test with 5N applied load and 300 cycles. 

To understand the mechanism of defects produced by induced force, applied load was increased to 

10N. Raman spectra signal was weak and the D peak intensity also increased (line 3, ID/IG =2.704), 

indicating the surface was badly worn out but still some graphene platelets left in the wear track. 

Despite the high load of 10N, the friction coefficient was still less than 0.2, after complete wear cycles.  
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Figure 3.9. (a-d) Mechanism of self-assembly of GNPs on steel substrates (e) µRaman studies of GNPs 

with 0.2% addition (f) Raman spectra of corresponding areas on steel substrate and (f) tribology results 

of steel substrate and GNPs fillers with variant concentrations. 

Tribological measurements were performed by varying different concentrations of GNPs in accordance 

with ECA monomers from 0.1-0.5%. The friction coefficient and wear rate of the materials as a 

function of GNPs and steel are presented in Figure 5.9g. It can be observed that the steel substrate has a 

coefficient of friction of ca. 0.445 after 300 cycles, whereas after self-assembling GNPs in PECA 

matrix, a significant reduction in friction was observed specifically for 0.2 wt.% GNPs matrix to ca. 

0.0732. Further increase in GNPs concentration from 0.2% to 0.5% resulted in increase of friction up to 

ca. 0.188, which can be mainly due to agglomeration of graphene platelets. A similar behavior can be 

seen in the wear rate measurements: the addition of the GNPs resulted in improvement of the wear 

resistance, which exhibits a minimum at 0.2% GNPs concentration. As shown in Figure 5.9(g), the 

wear rate for steel substrate is 15.5 × 10
-5

 mm
3
/Nm, which is reduced down to 1.7× 10

-5
 mm

3
/Nm after 

0.2% addition of GNPs in PECA matrix. It is worth noting that it was not possible to measure wear rate 

of pristine PECA as it could not withstand the complete number of cycles for wear rate measurements.  

Furthermore, to investigate the surface morphology of PECA/GNPs coatings, scanning electron 

microscopy (SEM) was employed and SEM images are presented. Figure 5.10 (a, b) show the surface 

morphology of PECA with segregation of GNPs at 0.2% and 0.5%. Figure 5.10 (c) represents the SEM 

a b c d

(Heat treated at 150°C)

e f g



  

85 
 

images of the scratched surface of GNPs 0.2% with fairly smooth surface, which suggests the adiabatic 

formation of a transfer film. Whereas specimen containing 0.5% GNPs exhibited poor wear resistance, 

transversal cracks and debris are visible on the surface. Transversal cracks are attributed to decohesion 

at the PECA/GNPs interface, which is very usual in composites based on layered nanofillers
116

  and 

leads to formation of debris in our case. Figure 5.10 (e) show the surface morphology of steel after 

cyclic load, wear debris are evident on complete wear track.  

 

Figure 5.10. SEM images of (a) PECA with 0.2wt.% GNPs (b) PECA with 0.5 wt.% GNPs (c) surface 

morphology of 0.2wt.% GNPs after 300 wear cycles (d) wear track image with 0.5wt.% GNPs after 

300 cycles, transversal cracks are visible (e) Wear track on steel substrate, wear debris are clearly 

visible. 

5.5 Conclusions 

We report a simple inexpensive method of fabricating highly transparent poly ethyl 2-cyanoacrylate 

(PECA) coatings. The process is a single-step solution casting from a common solvent, 

cyclopentanone, of ethyl cyanoacrylate monomers. The prepared coatings and free standing films 

demonstrate remarkable transparency (higher than 92%) with first report to achieve it. By taking 

advantage of its low contact angle hysteresis, developed material is proposed for the fog harvesting 

application and significant results are achieved. Furthermore, tribological properties of steel are 

a b

c d e
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improved by decreasing the friction more than 6 times and wear rate was improved more than 9 folds 

by self-assembling graphene nanoplatelets in ECA solution. 
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6. Closing Remarks 

6.1 Thesis Summary 

The goal of this thesis is to uncover the mechanism of surface engineering of polymer composites, 

which is known since the end of 20
th

 century. Despite of the decades of research in this area in the past, 

it is still challenging to fabricate polymeric coatings with enhanced wear resistance and improved 

adhesion strength. However, significant advances in understanding these mechanisms at nano-regime 

have gotten us closer to full understanding. In this thesis we have tackled the problems of durability of 

both short and long chain polymeric coatings by first developing an understanding of thermodynamics, 

surface chemistry and transfer film formation and then connecting that to macroscopic behavior. In 

essence, the framework of the proposed models, based on relevant physics, surface chemistry and size 

scales of nanofillers, is verified via appropriate experiments.  

 At the nanoscale level, we developed a framework to enhance the wear abrasion of water-

repellent styrene-based polymer by incorporating silica nanoparticles and by explaining the 

mechanism of inducing thermodynamic effect on the structures by heat treatment. Significance 

of rubber domains in polymer matrix is manifested for releasing the mechanical energy 

dissipation. Furthermore, the role of primer layer is justified for enhancement in adhesion of 

polymeric coatings, resulting in the improvement of wear-abrasion resistance. These 

phenomenon’s give us the ability to predict how rubbery domains in polymer matrix, and the 

addition of a primer layer would affect interfacial properties of superhydrophobic surfaces, as a 

function of abrasion cycles.  

 In engineered thermoplastics, which are highly desirable in industrial applications, 

improvement in tribology and adhesion strength imparts a significant interest.  While dealing 

with metallic counterparts these thermoplastics can be detrimental, because they introduce wear 

debris on the surface when scratched, that can lead to fracture and fatigue, ultimately 

deteriorating the coatings. But, with lubricating nanofillers we could begin to dissect the 

material damage. We examined the friction and wear, working upon previous literature of  

different nanofillers including aluminum oxide nanoparticles, PTFE microparticles, graphene 

nanoplatelets. We recognized the effectiveness of using graphene nanoplatelets in polymer 

matrix owing to its significant mechanical strength, its 2D structure (ideal for solid lubricants), 
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increased surface energy (for better adhesion with substrates) and its film formation with 

counterparts, helping to reduce the friction and wear rate for a long number of cycles.  

 

 Recognizing the significance of water based perfluorinated acrylic copolymers in industrial 

usage as a penetrating sealant for porous surfaces, as a surfactant and for owing the properties 

of water and oil repellency, we discovered that improvement in tribology of such materials is 

possible by inducing the pH modulation in the polymer content. Applied potential can modify 

the surface properties in terms of its adhesion strength towards rubber, aluminum and steel 

counter-materials. The achieved results gives us insight that by modifying the surface 

chemistry, it is possible to tune the tribological properties of short-chain polymers.  

 

 At the end, a framework is proposed for controlling the polymerization of cyanoacrylate 

polymers where a novel strategy is adopted by using non-polar dry solvent to control the 

polymerization. The effect of benzyl alcohol as an additive is studied, as a way to improve its 

brittleness and introducing the flexibility by retaining its ultra-transparency. Applications are 

proposed, experiments are performed for the proposed ideas and it is proved that cyanoacrylate 

could be an ideal matrix for assembling graphene platelets on any substrates for its short chains, 

allowing graphene to deposit on the substrate, exploiting the strong adhesion of cyanoacrylate, 

as it is used commercially as a super glue. Another application is proposed that fabricated 

coatings could be a potential material for fog harvesting for owning very smooth surfaces with 

relatively low surface tension, low contact angle hysteresis and its hydrophilic nature for better 

condensation of tiny water droplets harvested from dense fog.  

6.2 Future work 

While many future directions could be taken from this work, we will discuss four in particular that 

would be valuable for surface engineering science and industry. First, our observation about heat-

treatment of polymer nanocomposites especially for superhydrophobic surfaces where overcoming the 

wear abrasion is a major concern. Migration of nanoparticles towards the surface after 

thermodynamically rearranging the polymer chains could be of significant interest for the applications 

where surface roughness should be maintained against wear abrasion cycles. Such treatment can 

influence the surface mechanics, hence improving the overall performance of system. It will be 

interesting to replace nanoparticles with silica and to see the annealing effect on the migration of 

nanoparticles that how they behave in the polymer matrix. In addition, introduction of rubbery domains 
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in polymer matrix can result in improvement for mechanical energy dissipation. Another factor that can 

be crucially important is better adhesion with the substrate and primer layer can critically enhance the 

wear abrasion. These polymeric primer layers can melt with dissimilar polymers containing different 

glass transmission temperatures.  

 Second, the choice of fillers can play a role for improvement in the tribological properties of 

engineered polymers. Specifically for the solid lubricants, nanofillers that can create transfer film on 

counterpart material can drastically impact on performance on friction and wear. Such formation of 

transfer films can help to sustain the friction coefficient in a stable regime and helps to avoid material 

removal. 

 Third, utilizing the surface chemistry of water based perfluorinated acrylics, it is possible to 

change the adhesion strength, friction and wear as proved in chapter 4. It will be interesting to add 

electron accepting nanoparticles like Al2O3, TiO2 nanoparticles in perfluorinated acrylic copolymer 

matrix to observe the behavior of metal carboxylates that tends to adhere with metal counterparts, 

creating a transfer film as is previously studied with polytetrafluoroethylene polymers. A combination 

of both mechanisms, modulation of pH and addition of aluminum oxide nanoparticles, could lead to an 

improvement with advantages of ease of applications and low impact of capstone for owing its 

environmental friendly nature. In the best case scenario, wear rate could be further reduced.   

 Finally, as cyanoacrylate is a biocompatible and biodegradable polymer. It will be interesting to 

find its perspective in medical instruments for the protection purposes. In some medical devices, blood 

tends to stick on the medical instruments; fabricated transparent coatings (explained in chapter 5) could 

be a solution for medical devices to prevent from blood clotting. Further, a detailed study of long-term 

performance and robustness of cyanoacrylate polymers could be of particular interest especially under 

harsh conditions for example, humid environment, large applied tangential forces etc.  
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Appendix  

Publications 

 Masood, M. T., Papadopoulou, L, Evie., Heredia-Guerrero, J. A., Palazon, F., Bayer, I. S., 

Athanassiou, A., & Ceseracciu, L. (2017). Graphene and polytetrafluoroethylene synergistically 

improve the tribological properties and adhesion of nylon 66 coatings. Carbon, (122). 

 Masood, M. T., Heredia-Guerrero, J. A., Ceseracciu, L., Palazon, F., Athanassiou, A., & Bayer, I. 

S. (2017). Superhydrophobic High Impact Polystyrene (HIPS) Nanocomposites with Wear 

Abrasion Resistance. Chemical Engineering Journal. 

 Radaelli, G., Heredia‐Guerrero, J. A., Masood, M. T., Ceseracciu, L., Davis, A., Carzino, R., ... & 

Athanassiou, A. (2016). Highly Effective Antiadhesive Coatings from pH‐Modified Water‐

Dispersed Perfluorinated Acrylic Copolymers: The Case of Vulcanizing Rubber. Advanced 

Materials Interfaces, 3(13). 

 Masood, M. T., Ceseracciu, L., Athanassiou, A., & Bayer, I. S. (2017)  Environmentally benign 

ultra-transparent PECA coatings for multipurpose applications. (In communication) 
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EAMC 2016, Stockholm Sweden (Oral Presentation) 
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L., "Enhancement in the tribological response of non-porous nylon 66-based nanocomposites" 

TriboUK 2017, Imperial College London (Oral Presentation) 
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