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Preface

The construction of the interactions in the nuclear structure coming from the first
principles is something that from the origin of the quantum mechanics is pursuit,
but it is not an easy task to be implemented. Developing phenomenological mod-
els is important because will help to understand physical processes which can be
analyzed systematically in the experimental data available. The knowledge of the
internal degrees of freedom is crucial to understand nuclear structure features like
collectivity states, single particle states, pairing properties, etc. There are many ex-
periments and a great deal of research toward the study of the nuclei that helps
the development of the compression of the nucleus. Research on transfer reactions,
charge exchange reactions plays an essential role to improve the nuclear models.
This thesis aims to cover the essential aspects of the description of microscopic in-
teracting boson model applied to different types of problems. Such as the calculation
of spectroscopic amplitudes in transfer reactions, nuclear matrix elements of double
beta decay without neutrinos and double charge exchange reactions. The knowledge
of the nuclear structure allows us to explore and study contemporary problems in
modern physics.
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Introduction

In this thesis, for the first time, the formalism for calculating the the spectroscopic
amplitudes of the two-nucleon transfer process were calculated within the micro-
scopic IBM-2. The formalism was submitted to Physical Review C [1]. The ap-
plication of this formalism, which allows to calculate the spectroscopic amplitudes
for the nikel isotopes was published in the journal Physical Review C [2]. The ex-
perimental cross sections of the two-nucleon transfer reactions were recently mea-
sured at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud
(Italy). Our theoretical description of two-proton transfer reaction in collaboration
with J. Lubian for the reaction 116Cd to 116Sn, agrees with preliminary experimen-
tal data, and this calculation will be published in another article [3]. It was found
that the two-proton transfer cross section is three orders of magnitude smaller than
the double charge exchange cross section. Those are important results since the two
proton transfer is a competitive process in respect to the double charge exchange.
Thanks to the theoretical work on two-nucleon transfer process we became part of
the NUMEN collaboration [4]. Finally, since the goal of the NUMEN collaboration
is to arrive to extract the double charge exchange nuclear matrix elements, a simple
model of double charge exchange cross section has been developed in this thesis. In
particular, it has been demonstrated for the first time the possibility to factorize the
nuclear matrix elements from the reaction part [5]. The content of the thesis is given
as follows:

In chapter 1, the formalism for calculating the spectroscopic in IBM-2 has been
developed and it has been applied to the two proton transfer 116Cd to 118Sn, 114Cd
to 116Sn and two neutron transfer 118Sn to 116Sn , 116Cd to 114Cd and 64Ni to 66Ni.
The spectroscopic amplitudes of the two-nucleon transfer reactions are important
in the forthcoming experiments of NUMEN Collaboration, where the two transfer
reaction are competitive process of the Double charge exchange reactions. In the
second part of this chapter is presented the calculation of the spectroscopic am-
plitudes of two-neutron transfer reaction 64Ni(18O,16O)66Ni considering one- and
two-step processes, in order to check which type of mechanism is more important.

In chapter 2, we discuss the nuclear matrix elements for neutrinoless double beta
decay in the scheme of the microscopic interacting boson model. It has been red-
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2 Contents

erived the 0νββ - decay operator starting from the basic theory of the two body
transition densities. The nuclear matrix elements 0νββ - decay have been calculated
between the 76Ge and 76Se ground states, using IBM-2 and Generalized Seniority.

In chapter 3, we present a simple model of double charge exchange by using the
Eikonal approximation. It has been demonstrated for the first time the possibility to
factorize the nuclear matrix elements, in the low momentum transfer limit, from the
reaction part [5]. The charge exchange nuclear matrix elements are Double Gamow
Teller (DGT) type and they are in linear correlation with those of 0νββ [5].

The general formula to calculate the DGT matrix elements has been derived using
IBM2.



Chapter 1
Transfer reactions in Microscopic IBM-2

A better understanding of the nuclear structure and reactions will help to improve the
model calculation of nuclear reactions and decays such as single beta decay, double
beta decay with and without emission of neutrinos. The nuclear structure exhibits
features like collective and single particle states, pairing correlations, clustering and
more [6, 7]. Knowledge of relevant internal degrees of freedom is important to un-
derstand the main features of the nuclei. Such information can be extracted from
direct nuclear reactions like elastic and inelastic scattering, nucleon transfer reac-
tions etc. In particular , transfer reactions in which the projectile transfer one or
more nucleons to or from the target nucleus provide access to nuclear spectroscopic
amplitudes. F. Capuzzello [8] has been noticed that direct two neutron are important
in light nuclei like 12C (18O,16O)14C. Thus we got interested to study the collec-
tivity properties for heavier nuclei. The two nucleon transfer can be used as a test
of pairing correlations in nuclei. Reactions with heavy ions have been extensively
used to study pairing correlations in proton- rich and neutron rich nuclei to study
the nuclear matrix elements for neutrinoless double beta decay by measurements of
heavy ion reactions. In 2017, experimentalists of the NUMEN project in the INFN-
Laborati Nazionali del Sud in Catania, Italy, have studied the two neutron transfer
between 118Sn to 116Sn and 64Ni to 66Ni and two proton transfer 116Cd to 118Sn
using a 15 MeV for 20Ne, and 84 MeV 18O beams detecting 20O and 18Ne. The
Spectroscopic amplitudes for two nucleon transfer reaction is computed using the
formalism of microscopic interacting boson fermion model [2]. The nuclear struc-
ture information is contained in the spectroscopic amplitudes or intensities, which
is a measure of the overlap of the wave functions of the final and initial nucleus in
the reaction [9].

The microscopic IBM-2 is a way to calculate realistic matrix elements for
medium and heavy nuclei, that has been applied recently in neutrinoless double beta
decay [10]. We want to provide a method to compute the spectroscopic amplitudes
for two nucleon transfer reactions between even-even using the microscopic inter-
acting boson model two (IBM-2). We present the theoretical part of the calculation
of the spectroscopic amplitude of two nucleon transfer reaction.

3



4 1 Transfer reactions in Microscopic IBM-2

1.1 Microscopic Interacting Boson Model

We start our discussion about the origin of the description of the Microscopic Inter-
acting Boson Model. Let us consider states of identical n = 2N nucleons (N number
of pairs of nucleons) outside closed shells and a ground state of a nucleus with
a J = 0 and seniority ν = 0, in a pure jnconfiguration. These states may be de-
scribed with Generalized Seniority introduced by I. Talmi [11]. Historically, these
states were shown by Mottelson to be composed with 2N particles of the ground
state wave functions of the Bardeen, Cooper, and Schrieffer in the theory of super-
conductivity [12]. They were later used as variational wave functions. The structure
constants α j were taken to be variational parameter computed by Gambhir, Y. K.,
Rimini, A. and Weber [13] and later were computed differently by I. Talmi [11].

In the calculation of the nuclear operator which provides the transition between
two pairs of nucleons, we can assume that they are in different orbitals j and the
S+ operator can be used if the orbits are degenerated. All the information about
the structure of the shells should be contained in the structure coefficient; the α j
constants is a delicate point if the orbits are non-degenerate.The Seniority scheme
should consider not only operators with degenerated orbits but also non-degenerated
orbits thus we require put something to the operator which should indicate that it is
created a pair of particles over different orbits j. So the natural way to do this exten-
sion is given by generalizing the concept of Seniority including a parameter alpha
which carries this information concerned to the energetic structure of the nucleons
due to several orbits. However, this is not all the problem. Assuming an operator that
creates two fermions over all possible j orbits like S+ = ∑ j α jS+j there is something
else that we should consider, the internal manner how the of the pair of nucleons are
coupled.

One possible way is to consider pairs of nucleons are coupled to zero, or pairs
coupled to a higher momentum. Under the situation that you have this pairs of nucle-
ons over the same orbital, which corresponds to the formalism of quasi-spin where
is a limit case of the generalized seniority, the value of alphas is the unity. However,
this assumption is not physically because they the final state may be populated from
different orbitals; therefore the alphas should be different.

A more realistic situation, we required a Hamiltonian which their eigenvalues
for the ground state should be connected to the binding energies given by the ex-
periments. Igal Talmi [11] considered a Hamiltonian that contains a single particle
energy contribution and two body particle contribution. Applying the double com-
mutator between this Hamiltonian and the operator S we obtain some restrictions
allowing us determine the values of our constants. This approach is too general, but
this condition includes the parameters alphas and other parameters which can be
assumed.

Taking into account pairs of nucleons coupled to J = 0and J = 2( relevant term
due to quadrupole interaction) which is essential link this new coupling to the
quadrupole interaction, which is the work initiated in shell model and seniority
scheme by Talmi, Shalit [14], Bohr , Sorensen, and later applied to General Se-
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niority [11], Otsuka Arima [16], and then applied to IBM by Pittel[24], Duval and
Barret [25], and started by Scholten [17].

The relationship between the matrix elements of the quadrupole operator in the
generalized seniority and bosonic space is the structure parameter beta which is
the ”new alpha” but for the coupling to J = 2. Igal Talmi [18] provides this fact
and uses this condition, in this case, the relevant commutator relation is given by
[QF ,SF ] = D+, where D+ is nothing but

D+( j1 j2) =
1√

1+δ j1, j2
a+j1a+j2 (1.1)

which is the operator of creation of the pair of nucleons coupled to J = 2 and

D+ = ∑
j1≤ j2

β j1 j2D+( j1 j2) (1.2)

So we can obtain the parameters alpha and beta, and by putting single particle
energies and quadrupole interactions, however, we are missing other contributions
which are explicitly written in the Talmi Hamiltonian.

The phenomenological Hamiltonian of the Nucleon-Nucleon interaction the ma-
jor contributions are:

Table 1.1: Different extensions of the structure constants in the Generalized Seniority.

Interaction Generalized Seniority Model

Talmi(1971) Pittel (1982) Otsuka,et al (1977)

Pairing (alpha) yes yes yes

Quadrupole (beta) no yes yes

Symmetry Energy (gamma) no no no

Scholten Hamiltonian (others) no no no

The first correction to the operator of general seniority should consider the struc-
ture coefficient called gamma which is connected with the symmetry energy.(see
Iachello Pag 140 Eq. 4.43)

It is convenient develop the IBM compatible with seniority scheme in a way to
use the same formulas of matrix elements of two body matrix elements used in
seniority scheme. There are some recursion relation formulas in seniority scheme
and also some matrix elements in seniority scheme like a single particle irreducible
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tensors and two particle scalar operators and even some paring and average interac-
tion energies which were explicitly developed by de Shalit and Talmi, Feshbach and
others.1 in the late of 50s and mid of 60s.

1.1.1 Nucleon Pairing and Generalized Seniority

The seniority scheme was introduced by Racah [19] for the classification of states
in atomic spectra. The original idea was to find additional quantum numbers to
distinguish between states of an electron which have the same values of S, L, and J.
We shall consider a generalization of the formalism of jn configurations of identical
nucleons of quasi-spin by [20]. The case of several non degenerate single particle
orbits the seniority scheme can be introduced via the operators

S+( j) = 1
2
√

2 j+1(c†
j × c†

j)
0

S−( j) = 1
2
√

2 j+1(c̃ j× c̃ j)
0

(1.3)

where c†
j (c̃ j)is the creation(annhilation) operator of a single fermion on the or-

bit j and S0 =
1
2 [S+,S−] =

1
2 n̂− 2 j+1

2 where the n̂ is the fermion number operator.
Those operators above close under commutation and generates an algebra quasi-spin
SU(2) allowing to use the powerful techniques of group theory to obtain reduction
formulas of matrix elements of operators between states of nonmaximal seniority
to those of maximal seniority. The scheme introduced by Racah is based on the
idea of pairing of particles into J=0 pairs, entering the seniority quantum number
.ν (vetek in Hebrew) which is equal to the number of unpaired particles in the jn

configuration, counts the number of particles not pairwise. This configuration is
however only valid for single j- configurations. In most problems in the descrip-
tion of heavy nuclei, such transfer reactions, many single particle orbits enter. It is
known that an arbitrary system of fermions can be mapped onto a system of bosons
[21]. There are many ways to describe relevant physical quantities given initially
regarding fermionic degrees of freedom by bosons. One usually starts in the space
of fermions with a well-defined interaction, typically an effective two-body interac-
tion. The space under consideration can be the entire Hilbert space of many-fermion
states or so-called- collective subspace. The states and operators are realized in the
space of bosons. This transition from fermion space to boson space is usually called
a mapping. The basic idea is, that the mapping procedure does not change the phys-
ical quantities, what we want to describe. If this property did, one describes in both
spaces the same physics. The mapping process is no way unique and going from
fermion to boson space one has to choose among many different options. As long as

1 Just a note of history, during the times of the first papers of F. Iachello with Feshbach in 1973 in
the Politecnico di Torino was important consider the latest results of Seniority scheme making it a
key point for the construction of the Interacting Boson Model.
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the mapping is exact, it usually does not matter, which option is selected, since the
physics is not changed by the mapping procedure. In this way, one first maps basis
states. i.e. one makes a correspondence between a set of orthonormalized states in
fermion space and a set of orthonormalized states in boson space. In a second step,
one maps operators in a manner that the value of the matrix elements between cor-
responding states in fermion and boson-space are identical. This mapping of states
introduced initially by Marumori, Yamamura and Tokunaga [22] and also has been
applied for a particle pairs in the seniority coupling scheme of a single j-shell by Ot-
suka, Arima and Iachello [23] and is therefore often referred as OAI- mapping and
for non-degenerate spherical system by Pittel, Duval and Barret [24] and Gambhir
Ring and Schuck [26].

To do a mapping of the fermionic space on the bosonic space, we need to repre-
sent the fermionic states into the SD fermionic subspace. The single-particle orbitals
have are several possible pair states with λ = 0 and λ = 2 thus it is introduced a pair
creation operators S+ and D+ which by definition create the energetically lowest 0+

and 2+ pairs, respectively [11]. The pair-creation operators can be expressed con-
cerning operators that create pairs of nucleons( or nucleons holes) in specific active
orbits by

S+ = ∑
j

α jS+( j)

D+ = ∑
j≤ j′

β j, j′D+( j, j′) (1.4)

with
S+( j) =

√
Ω j
2 [c†

j × c†
j ]

0

D+( j, j′) =
√

1
1+δ j j′

[c†
j × c†

j′ ]
2

(1.5)

where α and β are structure constants that depends on the shell selected , S+ and
D+ create the energetically the lowest 0+ and 2+ paired fermion states, the creation
operators a†

j refers to valence particle outside closed shells and also to valence holes
in closed shell.

1.2 Fermionic Transfer Operator

Let us consider identical nucleons in the fermionic space, either neutrons or protons,
which are restricted to a set of non-degenerate single particle levels j.

The operator that creates an antisymmetric state of two particles coupled to an-
gular momentum λ is defined as

T ( j1, j2,λ ,M)
+ |0〉= | j1, j2,λ ,M〉 (1.6)
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and hence in second quantization may be written like2

T ( j1, j2,λ ,M)
+ = N12 ∑

m1m2

〈 j1,m1, j2,m2|λM〉c†
j2m2

c†
j1m1

=−N12 ∑
m1m2

〈 j1m1 j2m2|λM〉c†
j1m1

c†
j2m2

=−N12[c
†
j1
× c†

j2
]λM

(1.7)

where N12 =
√

1
1+δ j1, j2

the two-particle destruction operator is

T ( j1, j2,λ ,M)
− = N12 ∑

m1m2

〈 j1,m1, j2,m2|λM〉c j1m1c j2m2 (1.8)

and the tensor form of the two-particle destruction operator is

T ( j1, j2,λ ,M)
− = (−1)λ−M{T ( j1, j2,λ ,M)

+ }+
(−1)λ−MN12 ∑

m1m2

〈 j1,m1, j2,m2|λ −M〉

×c j1m1c j2m2

= N12[c̃ j1 × c̃ j2 ]
λ
M

(1.9)

1.3 Bosonic transfer operator

The two nucleon transfer calculations requires matrix elements of number non con-
serving operators. The operators will be denoted by T (L)

+ and T (L)
− . If we retain only

the one body operators
T (L)
+ = ∑

k
p(L)k b†

k

T (L)
− = ∑

k
p(L)k b̃k,

(1.10)

and introducing the s and d bosons

T (0)
+,0 = p0s† T (0)

−,0 = p0s̃

T (2)
+,µ = p2d†

µ T (2)
−,µ = p2d̃µ .

(1.11)

The two nucleon transfer operator in the microscopic interacting boson model re-
quires the computation of matrix elements between shell model states that belong to
the SD subspace. In the generalized seniority Scheme introduced by Frank and Van
Isacker [27] , we can obtain the matrix elements for given pair operators (c̃ j× c̃ j)

(0)

and (c̃ j× c̃ j′)
(2), introducing the creation and annihilation operators for single par-

ticle states c†
nl j as,

2 A short notation to the two nucleon two nucleon transfer T ( j1, j2,λ ,M)
± = T (λ )

±
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|(n1, l1, j1)(n2, l2, j2);J,M〉=
(c†

n1l1 j1
× c†

n2l2 j2
)
(J)
M√

1+(−1)Jδn1,n2

, (1.12)

the second quantizer two nucleontransfer operator T (λ ) ∼ (c†
j1
× c†

j2
)(J). In the mi-

croscopic IBM [28], the shell-model SD pair states are mapped onto sd boson states
with JP = 0+ and JP = 2+.

S†→ s†

D†→ d† (1.13)

The spectroscopic amplitudes of the two nucleon transfer reactions are calculated
by using the microscopic IBM2, which consider a mapping of the two body ma-
trix elements for non conservative operator in the generalized seniority scheme[14].
They can be computed by the commutator method introduced by Frank and van
Isacker [27] and by Lipas et al. [15] and Iachello and Barea[10]. Fermionic oper-
ators are similarly mapped into bosonic operators by Otsuka, Arima, and Iachello
(OAI) method [23]. In this method, one is assured that the matrix elements between
fermionic states in the collective subspace are identical to the matrix elements in
the bosonic space. The OAI method, when it is carried out to all orders, produces
results that are identical to the fermionic results. To investigate to what order our
calculations are reliable, we have to consider the OAI expansion to next to leading
order (NLO) .

(c†
j × c†

j)
(0) → Aρ( j)s†

ρ

(c†
j × c†

j′)
(2)
M → Bρ( j, j′)(d†

ρ)M +Cρ( j, j′)s†
ρ(s†d̃ρ)

(2)
M

+Dρ( j, j′)s†
ρ(d

†
ρ d̃ρ)

(2)
M

(1.14)

we obtain the boson image of the fermion operator for the two nucleon transfer for
λ = 0 and λ = 2

T (0)
+ρ →

√
1
2 Aρ( j)s†

ρ

T (2)
+ρ →

√
1

1+δ j, j′ [Bρ( j, j′)d†
ρ

+Cρ( j, j′)s†
ρ(s†d̃ρ)

(2)

+Dρ( j, j′)s†
ρ(d

†
ρ d̃ρ)

(2)]

(1.15)

where the coefficients Aρ ,Bρ ,Dρ ,Cρ with (ρ = ν ,π) are discussed in the Appendix
C Matrix elements involving T λ

−ρ can be converted into T λ
+ρ as

〈(n−2)νJ‖T (λ )
−ρ ‖nν ′J′〉

= (−)λ+J−J′〈nν ′J′‖T (λ )
+ρ ‖(n−2)νJ〉

(1.16)

The limit case of a degenerate orbit theory in the quasi-spin formalism for a
single j-shell may be obtained putting α j = β j, j′ = 1 in Eq. 1.15 and 1.7
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−
√

1
2 Aρ( j)s†

ρ = −
√

1
2
〈S

n
2 +1‖(c†

j×c†
j )
(0)‖S

n
2 〉

〈s
n
2 +1‖s+‖s

n
2 〉

s†
ρ

=
√

1
2

√
2Ω−n

Ω
s†

ρ

=
√

Ω−N
Ω

s†
ρ

(1.17)

The two nucleon transfer operators as the limit case of a single-j shell with λ =
0,which is in agreement with the zero order approximation to the two particle adding
operator in the Ref [23], and for the case of λ = 2 , the first order contribution we
obtain

−
√

1
2 Bρ( j, j)d†

ρ = −
√

1
2
〈DS

n
2 ‖(c†

j×c†
j )
(2)‖S

n
2 〉

〈ds
n
2 ‖d+‖s

n
2 〉

s†
ρ

=
√

(Ω−N−1)(Ω−N)
Ω(Ω−1) d†

ρ

(1.18)

which corresponds to the zero order approximation of the boson imagen of the to
particle creation operator of Otsuka, Arima and Iachello in Ref [23]. Let |[N +
1],α,J〉 to be any J+ collective state in the nucleus with 2N+2 particles (or holes),
where N is the number of bosons and α represent the remaining quantum numbers
to classify the state. The transfer intensity can be defined as [29].

I(N→ N +1) = |[〈N +1],α,J,‖T (λ )
+ρ ‖[N],α ′,J′〉|2 (1.19)

the spectroscopic strength is defined as

S(N→ N +1) =
1

2J+1
I(N→ N +1) (1.20)

where the (2J + 1) factor is by convention associated with the heavier mass . The
spectroscopic factors are related to the expansion of the wave functions for a specific
state Φn

i with n nucleons in terms of a summation over the complete set of states
Ψ

n−1
f ′ in the final nucleus with n-1 nucleons ΦA

i = ∑ f ′l j θi f ′l j(r)Ψ n−1
f and for a final

nucleus with n-2 nucleons Ψ
A−2
f therefore:

Φ
n
i = ∑

f ′l j
∑
f l′ j′

θi f ′l j(r1)θ f f l′ j′(r2)Ψ
n−2
f (1.21)

In the reaction fo the removal of particles from state Ψi to a specific state Ψf one
requieres the overlap functions θ

〈Ψ n−2
f |Ψ n

i 〉= ∑
l, j

∑
l′, j′

θi, f ′,l, j(r1)θ f , f ′,l′, j′(r2) (1.22)

where an explicit summation over all l, l′ and j, j′ values of the two single particle
overlap function θ is made. Often the dependence on j is small in which case one
measures the sum over possible j values for a given l

Sll′ = ∑
j, j′

Sl, j,l′, j′ (1.23)
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The spectroscopic amplitude A is defined by the normalization of the overlap func-
tions

A (n→ n+2) =
∫ ∫

θl, j(r1)θl′, j′(r2)dτ1dτ2 (1.24)

and the related spectroscopic factor is

S(N→ N +1) = |A (n→ n+2)|2 (1.25)

the spectroscopic amplitudes can be written in terms of intensity as

|A |2 = 1
2J+1 I(N→ N +1)

= 1
2J+1 |[〈N +1],α,J,‖T (λ )

+ρ ‖[N],α ′,J′〉|2
(1.26)

and the spectroscopic amplitudes for the two nucleon transfer with λ = 0 between
two 0+ states and using Eq.(1.26) and Eq. (1.15 ) we obtain3

A0 = 〈N +1],α,0,‖T (0)
+ρ ‖[N],α ′,0〉

=
√

1
2 Aρ( j)〈N +1],α,0,‖s†

ρ‖[N],α ′,0〉
(1.27)

and the first contribution of two nucleon transfer with λ = 2 from Eq. (1.15 ) be-
tween 0+ and 2+ states

A2 = 1√
5
〈N +1],α,2,‖T (2)

+ρ ‖[N],α ′,0〉

=
√

1
5(1+δ j, j′)Bρ( j, j′)〈N +1],α,0,‖d†

ρ‖[N],α ′,0〉
(1.28)

1.4 Structure Constants

The mapping coefficients Aρ( j) and Bρ( j, j′) depends on the structure coefficients
αρ j, βρ j, j′ and can be estimated by diagonalizing a surface delta paring interaction
[30], which is given by

H j j′ = ε0 j + ε0 j′ −VSDI , (1.29)

in the appropriate shell model space. In the above ε0 j,ε0 j′ are the single-particle
energies of the levels j, j′ and the VSDI is the surface delta function pairing inter-
action. For S pair, we diagonalize the eq. 1.29 in the basis |( j)2J = 0〉 and use the
lowest eigenvalue of the S pair state. We do the same for the D pair using the basis.
|( j j′)2J = 2〉where j and j′ can be any of the single particle levels in the major shell
we are considering. Let us write the complete form of the matrix which we want to
diagonalize with all the quantum numbers,

〈(nala ja)(nblb jb)|H|(nclc jc)(nd ld jd)〉, (1.30)

3 The formulation of the spectroscopic amplitudes are being to publish [1].



12 1 Transfer reactions in Microscopic IBM-2

and the VSDI function may be written like

VSDI =
1
2 At(−1)na+nb+nc+nd

√
(2 ja+1)(2 jb+1)(2 jc+1)(2 jd+1)
(2J+1)2(δ ( ja, jb)+1)(δ ( jc, jd)+1)(

1− (−1)J+la+lb+T
)
(−1) jb+ jd+lb+ld〈

jb,− 1
2 , ja, 1

2 ,J,0
〉〈

jd ,− 1
2 , jc, 1

2 ,J,0
〉
−
(
(−1)T +1

)〈
jb, 1

2 , ja, 1
2 ,J,1

〉〈
jd , 1

2 , jc, 1
2 ,J,1

〉
,

(1.31)

where T is the isospin, ja, jb final angular momentum for each single orbital ,
jc, jd initial angular momentum for each single orbital, J coupled angular momen-
tum, na,nb initial radial quantum numbers, nc,nd final radial quantum numbers, At
strenght of the Surface delta interaction, la, lb initial angular momentum, lc, ldfinal
angular momentum.

1.5 Two nucleon transfer for heavy nuclei

We are going to describe the calculation of the two-nucleon transfer in the scheme
of microscopic IBM-2.

The two-nucleon transfer of 116Cd and 118Sn, for typical midshell values of the
single particle energy for protons as holes and the single particle energy for neutrons
as holes in the 50-82 shell showed in the tables 1.2 and 1.3 the structure constants α j
and β j j′ can be estimated and showed in the tables 1.4 , 1.5 1.6,1.7. We can notice
that depending on the order of the couplings single nucleons we can introduce a
relative sign in the values of the β parameter, considering the order of the states
|(J1,J2)

2J = 2〉 with J1 ≥,J2. This can be one reason why there are different signs
of the structure parameters with the Barea and Iachello [49], and Pittel and Duval
[24]. In this analysis, we present the cases where J1 ≥ J2.

The low-lying spectra of the 114,116Cd and 116,118Sn nuclei is shown in Figures
1.1 and 1.2.

The order of the basis which we considered to compute the structure constants,
starts from the lowest angular momentum j, for example, the first |0+〉 in the basis
to the S− pairs taken here |( j)2J = |0+〉 may be written like,

|0+〉 = b1|2p1/2〉
= b2|2p3/2〉
= b3|1 f 5/2〉
= b4|1g9/2〉.

(1.32)

The relation between amplitudes probabilities in the shell model and generalized
seniority was made by Duval and Barrett in Ref. [25], considering

S+ = ∑αiSi, (1.33)

where
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Fig. 1.1: Comparison between the experimental low-lying spectra for the pair of nuclei 116Sn and
118Sn [3] and the theoretical ones calculated by us.

S+i = (−1)i−ma†
ima†

i−m =

√
Ω

2
(a†

i a†
i )

(0), (1.34)

where the subindex i refers to the corresponding orbit j and

αi =
ai√

Ωi
Ω

, (1.35)
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Fig. 1.2: Comparison between the experimental low-lying spectra for the pair of nuclei 114Cd and
116Cd.[3] and the theoretical ones calculated by us.

if we consider two-non degerated j-levels,

b2
i = ∑a2

i , (1.36)

where ai are the amplitudes of probabilities obtained by the diagonalization of the
Hamiltonian in the fermionic space and bi is the subset of probabilities associated
with one of two non - degenerated levels, the generalization of this and for the exact
approach, the relation becomes [31]



1.5 Two nucleon transfer for heavy nuclei 15

b2
i = a2

i , (1.37)

therefore for each non degenerated j level it follows that

α( j,a) =

√
Ω

Ω( j)
a, (1.38)

and from the pair degeneracy ( the half of the level degeneracy)

Ω( j) = j+1/2, (1.39)

where the Ω = ∑i Ωi for example, in the shell 28-50 Ω = 11, thus the alpha values
are :

α( j,a) =

√
11

Ω( j)
a (1.40)

Table 1.2: Proton holes single particle energy for 28-50 shell calculated in this thesis.

n l j ε0 j

2 1 1
2 0.931

2 1 3
2 2.198

1 3 5
2 2.684

1 4 9
2 0.000

Table 1.3: Neutron hole single particle energy for 50-82 shell calculated in this thesis.

n l j ε0 j

3 0 1
2 0.332

2 2 3
2 0.000

2 2 5
2 1.655

1 4 7
2 2.434

1 5 11
2 0.070

The αi are weighting factors for the single-particle levels. Thus, the total pair
creation operator S+ is designed to create a coherent linear combination of paired
fermions frequently called “the correlated pair”. The structure of bosons is, in gen-
eral not given by the pair creation operator S+. The reason is due to the Pauli exclu-
sion principle. To be sure, one always makes the correspondence:

SN
+|0〉F
ηF

=
sn
+|0〉B
ηB

, (1.41)
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Table 1.4: Alpha parameter for the 28-50 shell calculated in this thesis (protons holes), with A1 =
0.264.

A1 = 0.264

J αJ

1/2 0.68934
3/2 0.40753
5/2 0.3522
9/2 -1.40145

Table 1.5: Beta parameter for the 28-50 shell calculated in this thesis (protons holes), with A1 =
0.264.

A1 = 0.264

J1 J2 βJ1,J2

3/2 1/2 0.09185
3/2 3/2 -0.04780
5/2 1/2 0.23397
5/2 3/2 0.09889
5/2 5/2 -0.05205
9/2 9/2 0.987507

Table 1.6: Alpha parameter for the 50-82 shell calculated in this thesis (neutrons holes), with
A1 = 0.163.

A1 = 0.163

J αJ
1
2 -0.999
3
2 -1.395
5
2 -0.469
7
2 -0.357

11
2 1.287

where N is the number of paired fermions and n the number of fermions, we are
going to discuss more this correspondence in the following section. Now for the
J = 2, we introduce the correlated pair creation operatorD+ which by definition
create the energetically lowest 2+ pairs. These correlated pair creation operator can
be expressed in terms of creation of fermions in specific orbits as

D+ = ∑
j≤ j′

β j j′

√
1

1+δ j j′
(a+j a+j′ )

2. (1.42)
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Table 1.7: Beta parameter for the 28-50 shell calculated in this thesis (neutrons holes), with A1 =
0.280.

A1 = 0.280

J1 J2 βJ1,J2

3/2 1/2 -0.402
3/2 3/2 0.492
5/2 1/2 -0.159
5/2 3/2 0.098
5/2 5/2 0.078
7/2 3/2 0.176
7/2 5/2 -0.037
7/2 7/2 0.065
7/2 7/2 -0.721

The weighting factors β can be calculated into different ways. Let us consider the
method used by Pittel and Duval in Ref [31], where the weighting factors β can be
determined by diagonalizing an appropriate effective interaction between identical
nucleons and looking at the J = 2 lowest state as

|Ψlowest〉= |2+1 〉= ∑
j≤ j′

β j j′Θ
2(a+j a+j′ )

2, (1.43)

where β j j′ = b j j′ , and with ∑ j≤ j′ β
2
j j′ = 1.

1.6 Spectroscopic Amplitudes

The calculation of the spectroscopic amplitudes for the two nucleon transfer reac-
tions in the scheme of IBM-2 using the OAI mapping requires two body matrix
elements given by a non conservative operator number, in the scheme the General-
ized Seniority Scheme. When the two particle transferred are pairs of nucleons with
the same orbital momentum j, in this case one pair of nucleons is added to the initial
state with angular momentum zero , the reduced matrix element may be written as,

〈S n
2+1‖(c†

j × c†
j)

0‖S n
2 〉=−〈n,0,0‖(c̃ j× c̃ j)

(0)‖n+2,0,0〉

=
( n

2+1)( n
2 !)2

ηn,0,0ηn+2,0,0

√
2J+1α j

n
2

∑
s=0

(−1)s
(

αs
jηn−2s,0,0

( n
2 − s)!

)
.

(1.44)

The sign minus appears naturally when we consider the annihilation operators in
tensorial form. The matrix elements in the generalized seniority scheme is equiva-
lent to is the commutator method introduced by Frank and van Isacker [27] and by
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Lipas et al. [15] and Iachello and Barea[10]. We have used the method by Iachello
and Barea[10] method to evaluate the matrix elements of the pair operator (c̃× c̃)(0).

When a pair of nucleons of the initial state is removed then

〈S
n−2

2 ‖(c̃ j× c̃ j)
0‖S

n
2 〉= 〈n−2,0,0‖(c̃ j× c̃ j)

(0)‖n,0,0〉. (1.45)

The character hole or particle character of the transferred particles depends on
the type of nuclei that we want to describe. During the transfer process the pair
of nucleons which are transferred can have different values of angular momentum.
Moreover they can belong to different orbitals, so they can be coupled to angular
momentum higher than zero. In this case the addition of two particles over an initial
state with J = 0 the two body matrix element is given by

〈DS
n
2 ‖(c†

j × c†
j′)

(2)‖S n
2 〉

= (−1) j+ j′〈n,0,0‖(c̃ j′ × c j)
(2)‖n+2,2,2〉

=−
√

5(1+δ j j′
η2

n+2,2,2( j j′)
ηn,0,0ηn+2,2,2

β j j′ ,

and, when two particles are removed:

〈S
n−2

2 ‖(c̃ j× c̃ j′)
(2)‖DS

n−2
2 〉= 〈n−2,0,0‖(c̃ j× c j′)

(2)‖n,2,2〉,

the nuclear wave functions depends on the number of nucleons of the shell, holes or
particles4.

The normalization coefficients are given by

η
2
n,0,0 =

(n
2

!
)2

∑

m1, . . . ,mk;

∑i mi =
n
2

{
k

∏
i=1

α
2mi
ji

(
Ω ji
mi

)}
, (1.46)

η2
n,2,2 = ∑

j≤ j′
β

2
j j′η

2
n,2,2( j, j′),

n2
n,2,2( j, j′) =

n
2−1

∑
p=0

[
( n

2 −1)!
p!

]
(−1)

n
2−1−p

η
2
2p,0,0

×
n
2−1−p

∑
q=0

α
n−2−2p−2q
j α

2q
j′ .

(1.47)

The selection of the shells is very important for the calculation of the boson
image of the operator.

4 We consider as a hole particles when the number of nucleons is smaller than the upper shell and
bigger than the middle shell.
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1.6.1 Bosonic image operator

Let us consider first the simplest case where the two transferred nucleons belongs
to the same orbital and for simplicity we start with the seniority scheme approach
and further we extend it to generalized seniority. In the SD subspace the two particle
operator is given by

T (λ )
+ =

√
1
2

(
c†

j × c†
j

)(λ )
;S+ =

√
ΩT (0)

+ , (1.48)

where Ω = j+ 1/2. Using the reduction formulas given by De Shalit[14] the two
body reduced matrix element can be written as,

〈 jn+2,ν ,α,L = 0‖T (0)
+ ‖ jn,ν ,α ′,L〉

= δν ,ν ′δn∆ n∆ ′

√
1
2 n− 1

2 ν +1
√

2Ω−n−ν

2Ω

〈 j2(S),L = 0‖T (0)
+ ‖0〉.

(1.49)

In the SD fermionic subspace, the states can be written as | jn(S
1
2 (n−ν D

1
2 ν))νdn∆ L,M〉

while in the SD bosonic subspace the bosonic states can be written as

|snsdnd νdn∆ L,M〉= 1√
ns!

S+ns |dnd νdn∆ LM〉, (1.50)

where nd = 1
2 ν ,N = 1

2 n and ns =
1
2 (n− ν). We introduce the operator in the SD

bosonic space
T (0)
+ = T+

s + s†T+
d , (1.51)

with
T+

s = p0s† + p′0s†s†s+ . . .

T+
d = q0[d†d̃](0)+∑

L
qL

0 [[d
†d†](0)[d̃d̃](0)](0)+ . . . , (1.52)

from eq. (1.49) using eqs. (1.51 )and (1.52) the bosonic operator becomes5

T (0)
+ = p0s† =

√
Ω−N−nd

Ω
〈 j2(S)L = 0‖T (0)

+ ‖0〉s† (1.53)

The mapping coefficients A( j) for the case of a single- j shell in which α j = 1 is
given by

〈s
n
2 ‖s†‖s

n
2 〉A( j) = 〈S

n
2+1‖(c†

j × c†
j)

0‖S
n
2 〉, (1.54)

5 The derivation is shown in appendix E.2
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A( j) =
〈S

n
2 +1‖(c†

j×c†
j )

0‖S
n
2 〉

〈s
n
2 ‖s†‖s

n
2 〉

= − 〈n,0,0‖(c̃ j×c̃ j)
0‖n+2,0,0〉√ n

2+1

=

√
(n+2)(2Ω j−n)

2Ω j√
n+2

2

=
√

2Ω j−n
Ω j

.

(1.55)

in which βi j = 1 by,

〈ds
n
2 ‖d†‖s

n
2 〉B( j, j′) = 〈DS

n
2 ‖(c†

j × c†
j)
(2)‖S

n
2 〉 (1.56)

B( j, j′) =
〈DS

n
2 ‖(c†

j×c†
j )

2‖S
n
2 〉

〈ds
n
2 ‖d†‖s

n
2 〉

= (−1) j+ j′ 〈n,2,2‖(c̃ j×c̃ j)
2‖n+2,2,2〉√

5

= (−1) j+ j′+1
√

(2Ω−n−2)(2Ω−n)
2Ω(Ω−1) .

(1.57)

Now we can proceed in the same way with non degenerate orbits following the pre-
vious procedure, but using the reduced matrix elements in the generalized seniority.
Therefore we get the mapping coefficients A( j) and B( j, j′),

A( j) =


〈S

n
2 +1‖(c†

j×c†
j )
(0)‖S

n
2 〉

〈s
n
2 ‖s†‖s

n
2 〉

=− 〈n,0,0‖(c̃ j×c̃ j)
(0)‖n+2,0,0〉√ n

2+1
if n

2 ≥ 0,

〈S
n
2−1‖(c̃ j×c̃ j)

(0)‖S
n
2 〉

〈s
n
2−1‖s†‖s

n
2 〉

=
〈n−2,0,0‖(c̃ j×c̃ j)

(0)‖n,0,0〉√ n
2+1

if n
2 ≥ 1,

B( j, j′) =


〈DS

n
2 ‖(c†

j×c†
j′ )

(2)‖S
n
2 〉

〈ds
n
2 ‖d†‖s

n
2 〉

= (−1) j+ j′ 〈n,2,2‖(c̃ j′×c̃ j)
(2)‖n+2,2,2〉

√
5

if n
2 ≥ 0,

〈S
n
2−1‖(c̃ j×c̃ j′ )

(2)‖DS
n
2−1〉

〈s
n
2−1‖d̃‖s

n
2 〉

=
〈n−2,2,2‖(c̃ j′×c̃ j)

(2)‖n,2,2〉
√

5
if n

2 ≥ 1,

where n is the number of active nucleons.

1.7 Two neutron and two proton transfer

We are going to discuss the calculation of the two proton and two neutron transfer
in the scheme of microscopic IBM-2. As an example of calculation, we choose the
heavy nuclei 114,118Cd 116,118Sn. The situation is depicted in Fig. 1.3.

The two proton transfer reaction between 116Cd and 118Sn may be computed
considering the initial nucleus, 116Cd, has 48 protons, and the final nucleus, 118Sn,
has 50 protons so there are two active protons which can be treated as holes. In the
scheme of generalized seniority, two possibilities have to be taken into account, the
transition between 0+ to 0+ and transition 0+ to 2+ states. For first one the reduced
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Fig. 1.3: Two proton transfer between 116Cd to 118Sn and 114Cd to 116Sn. and two neutron transfer
118Sn to 116Sn and 116Cd to 114Cd.

b†
ν

116
50 Sn66 ← 118

50 Sn68

bπ ↑ ↑ b̃π

114
48 Cd66 ← 116

48 Cd68

b†
ν

matrix element is given by

〈118Sn;J = 0‖c†
π × c†

π‖116Cd;J = 0〉
= 〈0,0,0‖c̃π × c̃π‖2,0,0〉,

(1.58)

which, in the Interacting Boson Model scheme, becomes

Aπ( j)〈118Sngs;(0+)‖s†
π‖116Cdgs;(0+)〉, (1.59)

where the operator of Eq (1.15) was used. For this particular reaction, we have
chosen the shell 28-50 with the active orbits j = f 7/2, 1 f 5/2, 2p3/2 ,2p1/2 and
1g9/2. For the transition 0+ to 2+ the reduced matrix element is given by

〈118Sn;J = 2‖c̃π × c̃π‖116Cd;J = 0〉
= 〈0,0,0‖c̃π × c̃π‖2,2,2〉.

The pair of proton transfer can carry different momentum for each proton, the
mapping coefficient B( j, j′) depends on two momenta j and j′, where j ≤ j′. Thus,
the spectroscopic amplitudes can be computed by

Bπ( j, j′)〈118Sn;(2+)‖d†
π‖116Cdgs;(0+)〉. (1.60)

The two neutron transfer between 118Sn and 116Sn is analogous to the previous
case. In this case, the nearest closed shell is 2d3/2, and the addition of two neutron
holes gives the two neutron transfer. The reduced matrix element for the transition
between 0+ to 0+ is given by

〈116Sn;J = 0‖c̃ν × c̃ν‖118Sn;J = 0〉
= 〈16,0,0‖c†

ν
× c†

ν
‖14,0,0〉

= 〈14,0,0‖c̃ν × c̃ν‖16,0,0〉,
(1.61)

which, in the Interacting Boson Model scheme, becomes

Aν( j)〈116Sngs;(0+)‖s†
ν‖118Sngs;(0+)〉, (1.62)
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The transition 0+ to 2+ the reduced matrix element is given by

〈116Sn;J = 2‖c̃ν × c̃ν‖118Sn;J = 0〉
= 〈14,0,0‖c̃ν × c̃ν‖16,2,2〉,

(1.63)

which, in the Interacting Boson Model scheme, becomes

Bν( j, j′)〈116Sn;(2+)‖d†
ν‖118Sn;(0+)〉, (1.64)

and for the second path corresponding to the two transfer neutron between 116Cd to
114Cd and two transfer proton between 114Cd to 116Sn are calculations are similar
like the previous one path.

The differential cross sections of the two-nucleon transfer reactions are an es-
sential ingredient the study of the heavy ion- DCX because can be compared with
the experimental DCX cross sections measured by INFN-LNS and examine if the
two-nucleon transfer reactions are or not a competitive process which is subject of
current research[1].

The spectroscopic amplitudes were computed using the operator in Eq (1.15).
The spectroscopic amplitudes computed corresponds to the Eq. (1.27) and Eq.
(1.28). The results of the numerical calculations of the spectroscopic amplitudes
are reported in the Tables 1.9- 1.14.

Preliminary results, inserting the spectroscopic amplitudes into a FRESCO code
indicate that the transfer cross section is two or three orders of magnitude smaller
than the single transfer. This significant result, which will be the subject of a future
article by the NUMEN collaboration, will help to identify the more competitive pro-
cesses in the charge exchange reactions. It was seen[2] that the two-nucleon transfer
is a dominant process over the sequential transfers between ground to ground be-
tween 64Ni and 66Ni. In the following section, we will discuss further this result.
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Table 1.8: Spectroscopic amplitudes as calculated by us in the in the microscopic interacting boson
model 2 (IBM-2) for two proton transfer, for 116Cd to 118Sn, j1, j2 are the spins of the proton
orbitals , J is the angular momentum of the two-proton system.

Initial state j1, j2 J Final state Spectr. Amp.
116Cdgs (0+) 1f5/2, 1f5/2 0 118Sngs(0+) 0.1562

2p3/2 ,2p3/2 0.1476
2p1/2, 2p1/2 0.1765
1g9/2, 1g9/2 -0.8024

116Cdgs (0+) 1f5/2, 1f5/2 2 118Sn1.23(2+) -0.0117
1f5/2 ,2p3/2 -0.0090
2p3/2, 2p1/2 0.0206
1f5/2, 2p1/2 0.0222
2p3/2, 2p3/2 -0.0107
1g9/2, 1g9/2 0.2212

116Cdgs(0+) 1f5/2, 1f5/2 0 118Sn1.758(0+) -0.0164
2p3/2, 2p3/2 -0.0155
2p1/2, 2p1/2 -0.0186
1g9/2, 1g9/2 0.0844

116Cdgs(0+) 1f5/2, 1f5/2 2 118Sn2.043(2+) 0.0027
1f5/2, 2p3/2 0.0021
1f5/2, 2p1/2 -0.0051
2p3/2, 2p3/2 0.0025
2p3/2, 2p1/2 0.0844
1g9/2, 1g9/2 -0.0511

116Cdgs(0+) 1f5/2, 1f5/2 0 118Sn2.057(0+) -0.0119
2p3/2, 2p3/2 -0.0113
2p1/2, 2p1/2 -0.0135
1g9/2, 1g9/2 0.0614
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Table 1.9: Two proton amplitudes as calculated by us for the 114Cd to 116Sn in the microscopic
interacting boson model 2 (IBM-2).

Initial state j1, j2 J Final state Spectr. Amp.
114Cdgs(0+) 1f5/2, 1f5/2 0 116Sngs(0+) -0.1504

2p3/2, 2p3/2 -0.1421
2p1/2, 2p1/2 -0.1700
1g9/2, 1g9/2 0.7727

114Cdgs (0+) 1f5/2, 1f5/2 2 116Sn1.29(2+) 0.0122
1f5/2, 2p3/2 0.0094
1f5/2, 2p1/2 -0.0231
2p3/2, 2p3/2 0.0112
2p3/2, 2p1/2 -0.0214
1g9/2, 1g9/2 -0.2306

114Cd0.558 (2+) 1f5/2, 1f5/2 2 116Sngs(0+) -0.0188
1f5/2, 2p3/2 -0.0145
1f5/2, 2p1/2 0.0357
2p3/2, 2p3/2 -0.0173
2p3/2, 2p1/2 0.0332
1g9/2, 1g9/2 0.3567

114Cd1.135(0+) 1f5/2, 1f5/2 0 116Sngs(0+) 0.0606
2p3/2,2p3/2 0.0572
2p1/2, 2p1/2 0.0684
1g9/2, 1g9/2 -0.3111

114Cd1.210(2+) 1f5/2, 1f5/2 2 116Sngs(0+) 0.0045
1f5/2, 2p3/2 0.0035
1f5/2, 2p1/2 -0.0086
2p3/2, 2p3/2 0.0041
2p3/2, 2p1/2 -0.0080
1g9/2,1g9/2 -0.0857

114Cd1.306(0+) 1f5/2, 1f5/2 0 116Sngs(0+) 0.0227
2p3/2, 2p3/2 0.0215
2p1/2, 2p1/2 0.0257
1g9/2, 1g9/2 -0.1167
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Table 1.10: Spectroscopic amplitudes as calculated by us in the in the microscopic interacting
boson model 2 (IBM-2) for two neutron transfer, for 118Sn to 116Sn j1, j2 are the spins of the
neutron orbitals J is the angular momentum of the two-neutron system.

Initial state j1, j2 J Final state Spectr. Amp.
118Sngs(0+) 1h11/2 1h11/2 0 116Sngs(0+) -1.4483

1g7/2, 1g7/2 -0.7317
2d5/2, 2d5/2 -0.7648
2d3/2, 2d3/2 -0.6662
3s1/2, 3s1/2 -0.5320

118Sn1.23(2+) 1h11/2, 1h11/2 2 116Sngs(0+) 0.0181
1g7/2, 1h11/2 0.000
1g7/2, 1g7/2 -0.0141
1g7/2, 2d5/2 0.0074
1g7/2, 2d3/2 0.0123
2d5/2, 2d5/2 -0.0142
2d5/2, 2d3/2 -0.0062
2d5/2, 3s1/2 0.0160
2d3/2, 2d3/2 -0.0095
2d3/2, 3s1/2 0.0128

118Sn1.758(0+) 1h11/2, 1h11/2 0 116Sngs(0+) -0.0199
1g7/2, 1g7/2 -0.0857
2d5/2, 2d5/2 -0.0896
2d3/2, 2d3/2 -0.0780
3s1/2, 3s1/2 -0.0623

118Sn2.043(2+) 1h11/2, 1h11/2 2 116Sngs(0+) -0.0044
1g7/2, 1h11/2 0.00
1g7/2, 1g7/2 0.0035
1g7/2, 2d5/2 -0.0018
1g7/2, 2d3/2 -0.0030
2d5/2, 2d5/2 0.0035
2d5/2, 2d3/2 0.0015
2d5/2, 3s1/2 -0.0039
2d3/2, 2d3/2 0.0023
2d3/2, 3s1/2 -0.0032

118Sn2.057(0+) 1h11/2, 1h11/2 0 116Sngs(0+) -0.0019
1g7/2, 1g7/2 -0.0262
2d5/2, 2d5/2 -0.0274
2d3/2, 2d3/2 -0.0239
3s1/2, 3s1/2 -0.0191

118Sngs(0+) 1h11/2, 1h11/2 2 116Sn1.29(2+) 0.4385
1g7/2, 1h11/2 0.000
1g7/2, 1g7/2 -0.3431
1g7/2, 2d5/2 0.1805
1g7/2, 2d3/2 0.2980
2d5/2, 2d5/2 -0.3454
2d5/2, 2d3/2 -0.1500
2d5/2, 3s1/2 0.3877
2d3/2, 2d3/2 -0.2314
2d3/2, 3s1/2 0.3119
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Table 1.11: Two neutron amplitudes as calculated by us for the 116Cd to 114Cd in the microscopic
interacting boson model 2 (IBM-2).

Initial state j1, j2 J Final state Spectr. Amp.
116Cdgs(0+) 1h11/2,, 1h11/2 0 114Cdgs(0+) -1.1672

1g7/2, 1g7/2 0.7117
2d5/2, 2d5/2 0.7438
2d3/2, 2d3/2 0.6479
3s1/2,3s1/2 0.5174

116Cdgs(0+) 1h11/2, 1h11/2 2 114Cd0.558(2+) 0.1895
1g7/2, 1h11/2 0.000
1g7/2, 1g7/2 -0.1482
1g7/2, 2d5/2 0.0780
1g7/2, 2d3/2 0.1288
2d5/2, 2d5/2 -0.1493
2d5/2, 2d3/2 -0.0648
2d5/2, 3s1/2 0.1675
2d3/2, 2d3/2 -0.1000
2d3/2, 3s1/2 0.1348

116Cdgs(0+) 1h11/2, 1h11/2 0 114Cd1.134(0+) 0.1117
1g7/2, 1g7/2 -0.0681
2d5/2, 2d5/2 -0.0712
2d3/2, 2d3/2 -0.0620
3s1/2, 3s1/2 -0.0495

116Cdgs(0+) 1h11/2, 1h11/2 2 114Cd1.210(2+) -0.0275
1g7/2, 1h11/2 0.00
1g7/2, 1g7/2 0.0215
1g7/2, 2d5/2 -0.0113
1g7/2, 2d3/2 -0.0187
2d5/2, 2d5/2 0.0216
2d5/2, 2d3/2 0.0094
2d5/2, 3s1/2 -0.0243
2d3/2, 2d3/2 0.0145
2d3/2, 3s1/2 -0.0196

116Cdgs(0+) 1h11/2, 1h11/2 0 114Cd1.305(0+) 0.0305
1g7/2, 1g7/2 -0.0186
2d5/2, 2d5/2 -0.0194
2d3/2, 2d3/2 -0.0169
3s1/2, 3s1/2 -0.0135
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1.8 Two nucleon transfer 64Ni to 66Ni

We have performed exact finite range cross section calculations using the coupled
channel Born approximation (CCBA) and coupled reaction channel (CRC) method
for the sequential and direct two-neutron transfers, respectively. The microscopic
interacting boson model (IBM-2) and interacting boson-fermion model (IBFM) has
been applied to two-neutron transfer reactions. From our results we conclude that for
two-neutron transfer to the ground state of 66Ni the direct transfer is the dominant
reaction mechanism, whereas for the transfer of the first excited state of 66Ni the
sequential process dominates. A competition between long-range and short-range
correlations is discussed.

High-quality angular distributions for the 64Ni(18O,16O)66Ni transfer reactions
at 84 MeV incident energy were measured at the INFN- Laboratori Nazionali del
Sud (Italy). Two-nucleon transfer can be used as a test of pairing correlations in
nuclei. We are interested in identifying which is the dominant process in the two
neutron transfer, it occurs in one step (direct), under the strong influence of pairing
correlations or in two steps (sequentially). If the ground state of the residual nucleus
is feed from the ground state of the target. Transfer reactions are the best ways
to explore the collectivity properties of nuclei. For the first time, we compute the
spectroscopic amplitudes of two neutron transfer reactions between 64Ni and 66Ni
by using the microscopic interacting boson model two (IBM-2) [2]. The microscopic
IBM-2 is a way to calculate realistic matrix elements for medium and heavy nuclei.
It has also been applied in neutrinoless double beta decay [10].To study the 64Ni to
66 reaction, we need to compute the spectroscopic factors and cross sections for two
neutron transfer. The nuclear wave functions of the even-even nuclei 66,64 Ni will be
constructed by using the IBM-2 with the parameters given in table 1.12.

Table 1.12: Coefficients used in the microscopic IBM-2 Calculations [2]

εd c(0)ν c(2)ν c(4)ν vln

nucleus Nν Nπ (MeV) (MeV) (MeV) (MeV) (MeV)

64Ni 4 0 1.2 0.62 -0.27 -0.274 0.0242
66Ni 5 0 1.2 0.45 0.29 0.036 0.0374

The spectra are shown in Fig 1.4, and we can see that the low-lying states of
those nuclei are in good agreement with the experimental data. These nuclei are
interesting since they are at the boundary region in which collectivity should start to
play a role, but still they can be described with the single particle degrees of freedom
(Shell Model).



28 1 Transfer reactions in Microscopic IBM-2

For the 64Ni and 66Ni it is required to considered the basic features of the effective
nucleon-nucleon interaction, that emerges from pairing, quadrupole, and symmetry
energy (IBM2) as

HB = E0 + επ n̂dπ
+ εν n̂dν

+κQ̂χ

π · Q̂
χ

ν +λ
′M̂πν +Vππ +Vνν .

A detailed description of the IBM is given in the Appendix C. We have calculated the
theoretical spectrum of the 64,66Ni nuclei coming from IBM2 which is in agreement
with the experimental data.

We will use the eigenstates of the Hamiltonian in Eq. 1.8 to calculate the nuclear
matrix elements of the two-nucleon transfer operator.

We have calculated the theoretical spectrum of the the 65Ni nucleus using the inter-
acting boson fermion model (IBFM) [33]

HIBFM = HB +HBF +HF (1.65)

where HB is given in Eq. 1.8 and HF and HBF are respectively :

HF = E0 +∑
jπ

ε jπ n̂ jπ +∑
jν

ε jν n̂ jν

VBF = ∑
jπ

A jπ(n̂dπ
n̂ jπ )+∑

jν

A jν(n̂dν
n̂ jν )

+Γπν Q̂χ

ν · q̂π ++Γνπ Q̂χ

π · q̂ν +Γνν Q̂χ

ν · q̂ν +Γππ Q̂χ

π · q̂π

+Λνπ Fπν +Λπν Fνπ

The parameters used in the Eq. 1.8 can be found in the Ref. [2]
We propose the following coupling scheme: for the two-neutron direct transfer

reaction we use microscopic IBM-2, while for sequential transfer we use IBFM.
In order to compute the spectroscopic amplitudes we need the structure constants

of the 28-50 neutron shell ( see Sec C.2 ).
The pair structure coeficients, α j and β j, j′ are reported in Table 1.13. The single

particle energies are obtained by solving the Woods-Saxon ( see the Appendix C.9)
.
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Fig. 1.4: Comparison between calculated and experimental low-lying spectra for the pair of nuclei
64Ni and 66Ni.
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Fig. 1.5: Coupling scheme for direct transfer.

Fig. 1.6: Coupling scheme for sequential transfer.

Once calculated the of the spectroscopic amplitudes of the two neutron transfer
with the operator Eq. 1.15, we insert into the FRESCO code (program for direct
reactions) in oder to obtain the cross sections ( see Fig. 1.7).

1.9 Discussion of results

For the transfer reaction to the ground state 66Ni, both two reaction mechanisms
are important. For the transfer to the ground state of 66Ni, the pairing correlation
seems to be relevant, especially at the bell shape maximum region. For the two-
neutron transfer to the first excited state of the 66Ni, the two-step processes are
dominant. For the two-neutron transfer to the first excited state of 66Ni, the results
of the sequential mode for the angular distribution are in good agreement.

We have compared the differential cross sections with by using Shell model [2]
as we see in the Fig 1.8 and gives a lower value of the angular distribution with
respect to the IBM2 calculations and experimental results.
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Table 1.13: Pair structure coefficients α j and β j j′ used in the current calculation.

Neutrons

α1/2 0.461
α3/2 2.218
α5/2 0.408
α9/2 -0.299

β1/2,3/2 -0.117
β3/2,3/2 0.986
β1/2,5/2 0.069
β5/2,5/2 -0.049
β9/2,9/2 0.045

Table 1.14: Spectroscopic amplitudes as calculated by us of the two neutron transfer reaction from
64Ni to 66Ni in the microscopic IBM2. The j1 and j2 are the spins of the neutron orbitals and J is
the angular momentum of the two-neutron system.

Initial state j1, j2 J Final state Spectr. Amp.
64Nigs(0+) 1f5/2, 1f5/2 0 66Nigs(0+) 0.9417

2p3/2, 2p3/2 0.3253
2p1/2, 2p1/2 0.5605
1g9/2, 1g9/2 -1.0463

64Nigs (0+) 1f5/2, 1f5/2 2 66Ni1.424(2+) -0.2728
1f5/2, 2p3/2 0.0256
1f5/2, 2p1/2 0.3476
2p3/2, 2p3/2 -0.0234
2p3/2, 2p1/2 -0.0396
1g9/2, 1g9/2 0.3653

64Nigs(0+) 1f5/2, 1f5/2 0 66Ni2.445(0+) -0.0005
2p3/2, 2p3/2 -0.0002
2p1/2, 2p1/2 -0.0003
1g9/2, 1g9/2 0.0006

64Nigs (0+) 1f5/2, 1f5/2 2 66Ni2.916(2+) 0.0000
1f5/2, 2p3/2 0.0000
1f5/2, 2p1/2 0.0000
2p3/2, 2p3/2 0.0000
2p3/2, 2p1/2 0.0000
1g9/2 ,1g9/2 0.0000
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Table 1.15: Continuation

Initial state j1, j2 J Final state Spectr. Amp.
64Ni1.34 (2+) 1f5/2, 1f5/2 2 66Nigs(0+) 0.1359

1f5/2, 2p3/2 -0.0961
1f5/2, 2p1/2 0.2048
2p3/2, 2p3/2 0.6084
2p3/2, 2p1/2 0.1746
1g9/2, 1g9/2 -0.0828

64Ni1.34 (2+) 1f5/2, 1f5/2 2 66Ni2.445(0+) -0.0001
1f5/2, 2p3/2 0.0001
1f5/2, 2p1/2 -0.0001
2p3/2, 2p3/2 -0.0004
2p3/2, 2p1/2 -0.0001
1g9/2 ,1g9/2 0.0001

64Ni1.34 (2+) 1f5/2, 1f5/2 2 66Ni1.42(2+) -0.1112
1f5/2, 2p3/2 0.0122
1f5/2, 2p1/2 -0.2788
2p3/2,2p3/2 -0.0123
2p3/2, 2p1/2 -0.2065
1g9/2, 1g9/2 -0.0655

64Ni1.34 (2+) 1f5/2, 1f5/2 2 66Ni2.916(2+) 0.0000
1f5/2, 2p3/2 0.0000
1f5/2, 2p1/2 0.0000
2p3/2, 2p3/2 0.0000
2p3/2, 2p1/2 0.0000
1g9/2, 1g9/2 0.0000

Concerning the first excited state of 66 Ni, the results of the sequential transfer
calculations with shell-model amplitudes are closer to the experimental data with
respect to the independent coordinate angular distribution, but not satisfactory. In-
stead, the sequential process obtained within the IBFM-2 describes well the experi-
mental data, while the direct process angular distribution is more than one order of
magnitude lower than the data. For the transition to the 0+ ground state the direct
mechanism dominates, while for the 2+ state the sequential contribution is more
important. This allows us to conclude that the pairing correlations among the two
transferred neutrons are relevant mainly for the ground state. This state has a weak
collectivity because the 66 Ni is an even-even spherical nucleus. Conversely, the 2+
state is a collective state, so that the long-range correlations between nucleons are
dominant over the short-range pairing correlations of the two neutrons.

For the two-neutron transfer reactions to the ground state of the residual nucleus
66Ni, we have evidence of the short-range pairing correlations, using both nuclear
structure models. This conclusion is more evident when we use the microscopic
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Fig. 1.7: 64Ni(18O,16O)66Ni reaction: the experimental angular distribution is compared with the
theoretical calculation of this thesis, obtained by using microscopic IBM-2 and IBFM, respectively,
for the direct and sequential process.

IBM-2 and the IBFM-2. In the two-neutron transfer to the first excited state of 66
Ni, where the collectivity is known to be important, it was verified the predominance
of the two-step reaction mechanism. This confirmed the long-range predominance
in the wave function of this state. This conclusion was again independent on the
nuclear structure model used for the calcuations of the spectroscopic amplitudes of
the target overlaps.

These results allows us to conclude that the pairing correlation effects is present
in the two transferred neutrons to the ground state.

However for the 2+1 state of 66Ni, the long range correlation between nucleons
are dominant over short range paring correlations of two neutrons.

In previous experiments the forward angle oscillations were not observed be-
cause they were not able to measure the forward angles [34]. It is interesting to
observe that for the same nucleus different states prefer different transfer mecha-
nisms.
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Fig. 1.8: Comparison of the experimental angular distribution with Shell model for the
64Ni(18O,16O)66Ni reaction.



Chapter 2
Nuclear matrix elements of neutrinoless double
beta decay

A neutrino that is its own antiparticle is referred to as a Majorana neutrino, and
one that is not is referred as a Dirac neutrino. The neutrino’s nature (i.e. Dirac or
Majorana) can be explored via the very rare nuclear process in which two neutrons
in a nucleus simultaneosly undergo beta decay (double beta decay). For standard
double beta decay, if the neutrino is Dirac-type, we would expect the release of
two electrons and two anti-neutrinos. The observation of neutrinoless double-beta
decay would therefore unambiguosly prove the neutrino to be a Majorana-type parti-
cle. Neutrinoless double-beta decay is an extremely rare nuclear transition, possible
only for a few tens of isotopes [35]. The simplest mechanism enabling it to occur
relates to the rate of the decay process to the square of the so-called ’effective Ma-
jorana mass’, which is essentially a linear combination of the three neutrino masses.
In nuclear physics, double beta decay is a type of radioactive decay in which two
protons are simultaneously transformed into two neutrons, or vice versa, inside an
atomic nucleus. As in single beta decay, this process allows the atom to move closer
to the optimal ratio of protons and neutrons. As a result of this transformation, the
nucleus emits two detectable beta particles, which are electrons or positrons. There
are two types of double beta decay: ordinary double beta decay and neutrinoless
double beta decay. In ordinary double beta decay, which has been observed in sev-
eral isotopes, two electrons and two electron antineutrinos are emitted from the de-
caying nucleus. In neutrinoless double beta decay, a hypothesized process that has
never been observed (except for one controversial claim [36]), only electrons would
be emitted. Experimental half-life lower limits have been obtained for several iso-
topes: 76Ge, 82Se, 100Mo, 130Te, and 136Xe. Contemporary efforts are focused on
so-called second generation experiments (CUORE [38], SuperNEMO [39], nEXO
[40], NEXT [41], LUCIFER [42], GERDA II [43], SNO+ [44]) with the goal of
approaching the IH region at|mνν | ≤ 50meV.

Double beta decay with the emission of two neutrinos is a second order nuclear
weak process and it corresponds to the transition from a nucleus (A, Z) to its isobar
(A, Z + 2) with the emission of two electrons. The transition may occur via a Stan-
dard Model allowed process in which two electron antineutrinos are emitted along
with the electrons:

35
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(A,Z)→ (A,Z +2)+2e−+2νe.

In principle, a nucleus (A, Z) can decay by double beta decay as long as the nucleus
(A, Z + 2) is lighter. However, if the nucleus can also decay by single beta decay,
(A, Z + 1), the branching ratio for the double beta decay will be too difficult to
be observed due to the overwhelming background rate from the single beta decay.
Therefore, candidate isotopes for detecting double beta decay are even-even nuclei
that, due to the nuclear pairing force, are lighter than the odd-odd (A, Z + 1) nucleus,
making single beta decay kinematically forbidden.

If neutrinos are Majorana fermions, the process of decay is the following:

(A,Z)→ (A,Z +2)+2e−,

with no (anti)neutrinos in the final state. This decay mode is known as neutrinoless
double beta decay 0νββ . The first calculations of the rate for 0νββ was performed
by Furry [37]. The observation of neutrinoless double beta-decay would unambigu-
osly prove the neutrino to be Majorana-type particle. This would have a tremendous
impact on our vision of nature, involving discovery of new type of matter (Majo-
rana), and the so-called lepton number would no longer be a symmetry of nature.

2.1 Nuclear matrix elements of Neutrinoless double beta decay

The Nuclear matrix elements of Neutrinoless double beta decay can be determined
from the ratio of the zero- and two-neutrino decay widths. However, to extract evi-
dence on the rates of the two possible decay processes from nuclear measurements,
the nuclear many-body matrix element involved has to be known accurately. Ex-
tensive calculations of the nuclear matrix elements have been done in different
models ([45], [46],[49]) as is shown in Fig. 2.1, among them the Interacting Bo-
son Model, the Quasiparticle Random Phase Approximation (QRPA), and the Shell
Model (SM).

For medium-heavy nuclei, there is a large difference between the nuclear matrix
elements calculated with different models. Part of this discrepancy could arise from
the fact that in the shell-model calculations, for technical reasons, it is assumed that
the nuclei are very close to a spherical shape, but this is not a good approximation.
The effect of this deformation has been studied using the Nilsson model. This cal-
culation indicates that for well-deformed nuclei the double beta decay rate vanishes.
This suggests that the influence of deformation has a strong impact on the double
beta decay rate. To investigate the effects of nuclear deformation, we have therefore
repeated the calculation in the framework of the interacting boson approximation
(IBM) [47][48] . In this framework, the problem is divided into two parts: one part
is the calculation of the coefficients that appear in the boson image of the operator.
This is solely related to the microscopic structure of the two-fermion states, which
are the equivalent of the bosons. The second part is the calculation of the nuclear
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Fig. 2.1: Matrix elements of the neutrinoless double beta decay for the different approaches [46].

matrix elements (NMEs). In this thesis, the calculation of the nuclear matrix ele-
ments is done in the closure approximation.

2.2 Neutrinoless double beta decay operator

The half life time of 0νββ decay is given by the following formula, which holds for
light neutrinos [50, 35] :

[T 0ν

1/2]
−1 = G0ν(Qββ ,Z)|M0ν |2| f (mi,Uei)|2

The first term G0ν(Qββ ,Z), is a kinematical phase space factor, which is related to
the atomic physics. The second term |M0ν |2 is the nuclear matrix element. Third
term contains physics beyond the standard model through the neutrino masses mi
and mixing matrix elements Uei of neutrino species.

The standard operator for the 0νββ is given by [51] :

Ts1s2 =
1
2 ∑

n,n′
τ
+
n τ

+
n′ [Σ

s1
n ×Σ

s2
n′ ]

λ ·V (rnm′)C
λ (Ωnn′). (2.1)

where s1 and s2 can be only 0 or 1, Σ 0 = 1 and Σ 1 = σ . The operator Ts1s2 has
thee contributions: Fermi (s1 = s2 = λ = 0), Gamow-Teller (s1 = s2 = 1,λ = 0)
and Tensor (s1,s2 = 1,λ = 2) . 1 V (r) is a generic radial form that depends on the

1 The Gamow Teller contribution is multiplied by a factor of −
√

3 and the tensor part
√

2
3 ( see

[49]).
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mechanism of 0νββ and Cλ =
√

4π/(2λ +1)Y λ .
We observe that Eq. 2.1 is valid under the closure approximation, which is good for
0νββ decay since the average neutrino momentum is of the order of 100 MeV/c.

The two body transition operator between an initial J+I = 0+ and final J+F nuclear
states can be written in terms of two body matrix elements. Since it is well known
that the matrix elements of two body interactions for many particle configurations
can be reduced into spin and ordinary space parts the operator Ts1s2 can be written
in terms of the product of a spatial part and a spin part as

T̂ (λ )
i = −1

4 ∑
j1, j2,J0

∑
j1′ , j2′ ,J0′

√
1+(−1)J0δ j1, j2√

1+(−1)J0′ δ j1′ , j2′ 〈 j1, j2;J0‖T (K)
i ‖ j1′ , j2′ ;J0′〉

[A†( j1 j2;J0)⊗ Ã( j1′ j2′ ;J0′)]
(K),

(2.2)

which reduces to Eq. 2.1 for a transition between ground states. In Eq. 2.2 Ã( j1′ j2′ ;J0′)
is the annihilation operator of two neutrons and A†( j1 j2;J0) is the creation operator
of two protons. The two particle states can be written as

|(n1, l1, j1)(n2, l2, j2);J,M〉=
(c†

n1l1 j1
⊗ c†

n2l2 j2
)J

M|0〉√
1+(−1)Jδn1,n2δl1,l2δ j1, j2

. (2.3)

The two body operator, T K
i , contains the information of the 0νββ decay mecha-

nism. For the case of 0+ to 0+ the transition operator becomes [49]:

T λ
s1s2 = − 1

2 ∑j1 ∑
j1′

Gλ
s1s2 (j1, j1, j1

′, j1′;0)Aπ( j1)Aν( j1′)s+π · s̃υ

− 1
4 ∑j1j2 ∑

j1′j2′

√
δj1j2 +1

√
δj1′j2′ +1

Gλ
s1s2 (j1, j2, j1

′, j2′;2)Bπ( j1)Bν( j1′)d+
π · d̃υ ,

(2.4)

where
G(λ )

s1,s2( j1, j2, j1′ , j2′ ;J)≡ 〈 j1, j2;J||T (K)
J ‖ j1′ , j2′ ;J〉 (2.5)

are the two-body matrix elements, which can be computed by using Eq. A.5 of the
Appendix A.

2.3 76Ge→ 76Se matrix elements

For the case of the transition 76Ge→ 76Se, we obtained the nuclear matrix elements
of 0νββ decay. The different contributions to the nuclear matrix elements, Axial
Vector (AA), Vector Vector (VV), Axial Pseudo scalar (AP), Pseudo scalar Pseu-
doscalar, (PP) and Weak Magnetism, MM are listed in Table 2.1 (for more details,
see App. C.6)). Once taken into account the finite nucleon size (FNS) and the short
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Fermi Matrix elements M(0ν)
F [fm−1]

AA+VV AP PP MM Sum
-0.2845 0. 0. 0. -0.2845

Gamow-Teller Matrix elements M(0ν)
GT [fm−1]

AA+VV AP PP MM Sum
0.5418 -0.1164 0.0346 0.0362 0.4962

Tensor Matrix elements M(0ν)
T [fm−1]

AA+VV AP PP MM Sum
0. -0.0367 0.0120 -0.0061 -0.0308

M0ν =−( gV
gA
)2M(0ν)

F +M(0ν)
GT +M(0ν)

T

AA+VV AP PP MM Sum
0.7239 -0.1531 0.0466 0.0301 0.6475

Table 2.1: 76 Ge→ 76Se 0νββ matrix elements (in fm −1) in IBM-2.

range correlations (SRC) the nuclear matrix elements is M0ν =0.5376 fm−1. In order
to compare this result with the other models, it is useful to to convert this value,
expressed in fm−1, in dimensionless unity multiply by 2R ( see Tab. 2.2.

IBM-2 QRPA [52] SM [53] dim.less

M(0ν)
F M(0ν)

GT M(0ν)
T M0ν

calc M0ν

-0.2845 4.096 -0.250 5.465 4.680 2.220

Table 2.2: Comparison of the theoretical nuclear matrix elements with different models.

We have computed the nuclear matrix elements again using elements of between
76Ge and 76Se using IBM-2 with different corrections as already done in [32, 54,
55, 56].

The original value using finite nucleon size and short-range correlations give us
the value in dimensionless units of 5.46, however removing both corrections we got
6.58.

For this case, the corrections for this particular pair of nucleons makes that the
nuclear matrix element is reduced by 17%. Also, we noticed that changing the value
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of the axial coupling constant gA=1.25 to gA=1.269 the value of the nuclear matrix
element is 5.41 and 6.52 without corrections. There is a small reduction by less than
1% of the nuclear matrix element considering an increment of the coupling constant
of 1.5%.

Moreover considering only the Generalized Seniority scheme, in the SD sub-
space, the value of the nuclear matrix elements is 5.29, if we consider only the S
contribution the nuclear matrix element has the value of 8.07, therefore, the fact to
consider a bigger subspace gives a considerable reduction.

Once the new generation experiments will have enough sensitivity to access the
experimental region of interest for the detection of the 0νββ , they will not be able to
extract any physical information because of the huge theoretical uncertainties which
affect the 0νββ nuclear matrix elements (they are squared so the error increases
even more). For this reason, the Numen experiment proposes to study the heavy
ion charge exchange in order to extract the double charge exchange nuclear matrix
elements. Although the double charge exchange is a process mediated by the strong
interaction (it is due to meson exchange), and the neutrinoless double beta decay is a
process mediated by the weak interaction, nevertheless the nuclear matrix elements
involved in both processes have strong similarities. The initial and final nuclear
states of the nuclei that can be used for a double charge exchange reaction can be
chosen to be double beta decay nuclei, and, more important, the spin and isospin
operators in both processes are the same. Obviously, in the double charge exchange
the neutrino potential is not present, however there is a correlation between the
double charge exchange nuclear matrix elements and the neutrinoless double beta
nuclear matrix elements [5].



Chapter 3
Double charge exchange in the low momentum
limit

Double-charge exchange (DCE) reactions are the object of a worldwide renewed
interest, also for the information that one could extract on the nuclear matrix ele-
ments entering the expression of the life time of the double beta decay. In fact, it is
known that the nuclear matrix elements involved in the beta-decays are connected
to the charge-exchange reaction ones and consequently to the Fermi or Gamow-
Teller (GT) transition strengths. In the same way, the matrix elements involved in
the double beta decay should be connected to the DCE reactions ones. In this con-
text, heavy-ion DCE could play a precious role. An intense experimental activity
on double charge exchange reactions is planned at the LNS-Catania, according to
the NUMEM project [57]. The reaction proceed both via a direct mechanism or
a sequential one. The direct mechanism is related to the double isospin-flip direct
process, while the successive two-proton plus two-neutron transfer o vice-versa is
referred as the sequential mechanism. On the basis of the information present in
literature, a reasonably good candidate for the investigation of the double charge ex-
change nuclei is the reaction 116Sn(18O, 18Ne) 116 Cd. The heavy ion DCE transition
rate between the ground states of 18O, 18Ne is expected to be large due to the overlap
of their wave functions in rspace, being among the same super-multiplet members.
The advantage of a T=0 target is that the GT transition is concentrated only on T=2
states of the residual nucleus. Moreover the sequential transfer processes are very
mismatched and will scarcely contribute to the cross section.

In this chapter we discuss the treatment of the heavy-ion double charge exchange
reactions (DCX) within the eikonal approach at small angles and low momentum
transfer.

3.1 Microscopic DCX process

We are going to describe the DCX process as a low-momentum limit of the effective
microscopic theory proposed in Ref. [5]. In the approach propose in the [5], the
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leading order of the DCX process is given by two different microscopic process: the
two-pion exchange process and a short range interaction.

3.1.1 Two-pion exchange contribution

We are going to extend the description of single charge-exchange to double charge
exchange reactions following the approach by Bertulani [58], and we will use
the microscopic π exchange potentials. The DCX process that we are studying is
schematically shown in Fig. 3.1.

Fig. 3.1: Coordinate system used in the calculations. R is the distance between the center of masses
of the two nuclei, target (T) and projectile (P). rP1 and rP2 (rT1 and rT2) are the distances between
the nucleons involved in the DCE process and the center of the projectile (target) nucleus. The
coordinates r1,2 = R− rT1,2− rP1,2 are the relative positions of the interacting nucleons.

To introduce the idea of the calculation, we shall start from the leading-order
π exchange contribution to the DCX mechanism. In Ref. [5] is shown that, in the
non-relativistic limit, the effective potential given by the pion-exchange process

V2π(q1,q2) =
f 4
π

m4
π

(
(σP1 ·q1)(σT 1 ·q1)

m2
π +q2

1
(τP1 · τT 1)

)
×
(
(σP2 ·q2)(σT 2 ·q2)

m2
π +q2

2
(τP2 · τT 2)

)
(3.1)

in the momentum representation. Where q1 is the momentum transferred between
the first pairs of nucleons and q2 refers to the second pairs of the nucleons , and
the indices P,T refer to the Projectile and Target, respectively. The pion coupling
constant and the pion mass used in the calculations are f 2

π/4π=0.08 and mπ c2=145
MeV, respectively. The Feynman diagram which corresponds to the two pion ex-
change process is reported in Fig. 3.2.

The whole potential can be written as follows:
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Fig. 3.2: Feynman diagram for a double-charge-exchange process induced from two pion ex-
change.

V (q1,q2) = V2π(q1,q2)+Vsr = [v(q1)v(q2)(σP′ · q̂2)(σT ′ · q̂2)(σP · q̂1)(σT · q̂1)

+ w(q1)(σP ·σT )w(q2)(σP′ ·σT ′)](τP′ · τT ′)(τP · τT ) (3.2)

where the functions v(q) are defined as

v(q) =−Jπ

q2

m2
π +q2 , (3.3)

and w(q) is simple the constant

w(q) = Jπ gπ (3.4)

The parameters are used the previous functions are Jπ = f 2
π/m2

π ' 400MeV · fm3.
In the the simplest case of one pion exchange, the matrix elements between initial
and final states of the projectile and target are written in terms of radial and angular
parts and spin-isospin matrix elements. The other matrix elements can be computed
analogously. In the isospin and spin spaces we can use the next relations

τP · τT = τ0
Pτ0

T + τ
+
P τ
−
T + τ

−
P τ

+
T

σP ·σT = σ0
Pσ0

T +σ
+
P σ
−
T +σ

−
P σ

+
T

(3.5)

We can extract a simple and more compact form for the transition amplitude in the
low-momentum scattering limit, q1 = q2 = q∼ 0. In this specific limit, we get:

M DCX (q∼ 0) ∼ ∑
µλξ θ

〈φ T
f φ

P
f φ

T ′
f φ

P′
f |σP

µ τ
P
λ

σ
P′
ξ

τ
P′
θ σ

T
−µ τ

T
−λ

σ
T ′
−ξ

τ
T ′
−θ

w(q1)w(q2)|φ T
i φ P

i φ T ′
i φ P′

i 〉
(3.6)

where µ,ξ ,λ ,θ = 0,+,−.
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3.2 Low momentum limit case

At low-momentum transfer, the pion exchange contribution vanishes (Eq. 3.1), so
only the short range interaction have to be considered. In the limit case, where
q1 = q2 = 0 and the potential of the pion exchange vanish, w(q1)w(q2) becomes
a constant: A = (Jπ gπ)

2. Given this, we can factorize the transition amplitude ma-
trix elements and separate those referring to the target and projectile:

M DCX (q∼ 0) ∼ ∑
µλ ,ξ ,θ

A2〈φ P
f φ

P′
f |σP

µ σ
P′
ξ

τ
P
λ

τ
P′
θ |φ P

i φ
P′
i 〉

× 〈φ T
f φ T ′

f |σT
−µ σT ′

−ξ
τT
−λ

τT ′
−θ
|φ T

i φ T ′
i 〉

We can write the amplitude in terms of Double Gamow-Teller transition densities
for the nucleus A:

Bµξ λθ

DGT (A→ A′) = 〈Φ (A′)
f ‖σµ σξ τλ τθ‖Φ

(A)
i 〉 (3.7)

In the low momentum limit we get:

M DCX (b) ∼ A2
∑

µλξ θ

Bµξ λθ

DGT (T → T ′)B−µ−ξ−λ−θ

DGT (P→ P′)

dσ

dΩ
(q∼ 0) =

k
k′
(

µ

4π2h̄2 )
2[A]4F(θ)∣∣∣∣∣ ∑

µλξ θ

Bµξ λθ

DGT (T → T ′)B−µ−ξ−λ−θ

DGT (P→ P′)

∣∣∣∣∣
2

(3.8)

Here, F(θ) is a function which describes the scattering angular distribution.

3.3 Gamow teller matrix elements

In this section, we shall discuss the Gamow Teller matrix elements for the dou-
ble charge exchange using the Eikonal approximation (see App. D). The Double
Gamow Teller matrix elements is given by the operators σ1 ·σ2τ1τ2 over the ini-
tial nuclear states Φ (A)i to final nuclear states ΦA′

f , and the general transition of
reduced Double Gamow Teller matrix elements M (GT : A→ A′) over a particular
states, may be written as,

〈Φ (A′)
J′ ‖

1
2 ∑n,n′ [σn×σn′ ]

(0)τnτn′V (rn,n′)‖Φ
(A)
J 〉 (3.9)

In the double charge exchange, there are two Double Gamow Teller transitions, one
given by the target and another by the projectile, for each Double Gamow Teller
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transitions, there are two nucleons such as protons(neutrons) that becomes two neu-
trons(protons), for the target(projectile). Therefore the nuclear states are represented
by the direct product of the proton and neutron part.

|Φ (A)
J 〉 = [|(n1l1 j1)(n2l2 j2);J12M12〉π

×|(n1′ l1′ j1′)(n2′ l2′ j2′);J12′M12′〉ν ](J)
(3.10)

let us first consider the initial nuclear states as ground states, that for the case even-
even nuclei four our interest, can be represented by the first 0+1

Φ
(A)
J=0 = |0

+
1 〉A. (3.11)

Therefore, the general transition of the double Gamow Teller can be written in the
standard second quantized form ([14],[49])

M (GT : A→ A′) = 〈Φ (A′)
J′ |−

1
4 ∑

j1 j2
∑

j1′ j2′
∑
J
(−1)J

√
1+(−1)Jδ j1 j2

√
1+(−1)Jδ j′1 j′2

× M( j1, j2 j′1, j′2;J)(c†
n1l1 j1

× c†
n2l2 j2

)(J) · (c̃n′1l′1 j′1
× c̃n′2l′2 j′2

)(J)|Φ (A)
J=0〉

(3.12)
that for the case of DCX the raising operator creates a proton (neutron), and the
annihilation operator destroys a neutron (proton) for the projectile (target). From Eq
(3.12), the nuclear matrix elements of DCX in the scheme of Microscopic Interact-
ing Boson Model can be written as:

M (GT : A→ A′) = IBM〈Ψ (A′)
J′ |−

1
2 ∑

j1
∑
j1′

M( j1, j1 j′1, j′1;0)Aπ( j)Aν( j)s†
π · s̃ν

−1
4 ∑

j1 j2
∑

j1′ j2′

√
1+δ j1 j2

√
1+δ j′1 j′2

M( j1, j2 j′1, j′2;2)

×Bπ( j, j′)Bν( j, j′)d†
π · d̃ν |Ψ (A)

J=0〉IBM
(3.13)

where |Ψ (A)
J 〉IBM are the wave functions of the even-even nuclei that are generated

by diagonalizing the IBM-2 Hamiltonian, and and we have consider the mapping of
the operators

(c†
jπ × c†

jπ )
(0)→ Aπ( j)s†

π

(c†
jν × c†

jν )
(0)→ Aν( j)s†

ν

(c†
jπ × c†

j′π
)(2)→ Bπ( j, j′)d†

π

(c†
jν × c†

j′ν
)(2)→ Bν( j, j′)d†

ν .

(3.14)

The matrix element between two fermion states is given by



46 3 Double charge exchange in the low momentum limit

M( j1, j2, j′1, j′2;J) =
l1+l′1

∑
k1=|l1−l1′ |

l2+l′2

∑
k2=|l2−l′2|

min( j1+ j′1, j2+ j′2)

∑
k=max(| j1− j′1|,| j2− j′2|)

ik1−k2(2k1 +1)(2k2 +1)

× 〈k10k20|00〉(−1)1+k1

{
k1 1 k
1 k2 0

}
(−1) j2+ j′1+J

{
j1 j2 J
j′2 j′1 k

}

× (2k+1)
√

2 j1 +1
√

2 j′1 +1


1
2 l1 j1
1
2 l′1 j′1
1 k1 k


×
√

2 j2 +1
√

2 j′2 +1


1
2 l2 j2
1
2 l′2 j′2
1 k2 k


× 〈 1

2‖σ1‖ 1
2 〉(−1)−k1

√
2l1 +1〈l10k1|l′10〉

× 〈 1
2‖σ2‖ 1

2 〉(−1)−k2
√

2l2 +1〈l20k2|l′20〉
× R(n1, l1,n2, l2,n′1, l

′
1,n
′
2, l
′
2),

(3.15)
where σ1,(2) refers to the the first nucleon (second)that interacts in the single
gamow teller and the value of this reduced matrix for the sigma is

√
6 and the

R(n1, l1,n2, l2,n′1, l
′
1,n
′
2, l
′
2) refers to the radial integrals for central interactions in

which depend on a microscopic ponential discussed before. We are interested to
compare the different Gamow Teller contributions from DCX and 0νββ -decay ma-
trix elements. The radial integral are given as follows

R(n1, l1,n2, l2,n′1, l
′
1,n
′
2, l
′
2)

=
∫

∞

0 v(q)q2dq
∫

∞

0 Rn1l1(r1)Rn′1l′1
(r1) jk1(pr1)r2

1dr1

×
∫

∞

0 Rn2l2(r2)Rn′2l′2
(r2) jk2(pr2)r2

1dr2

(3.16)

where jk are the spherical Bessel functions, and the potential is given by the Fourier
Bessel transformation

v(q) =
2
π

∫
∞

0
V (r) jλ (qr)r2dr. (3.17)

The usual method to compute the two-body matrix elements, in this case, consists
of the Moshinsky transformation and the associated transformation brackets. Be-
sides, the radial matrix elements can be evaluated in closed form by using the Horie
method[?]:

R =
∫

∞

0
w(q)2q2dq

×
∫

∞

0
Rn1l1(r1)Rn′1l′1

(r1) jk1(pr1)r2
1dr1

×
∫

∞

0
Rn2l2(r2)Rn′2l′2

(r2) jk2(pr2)r2
1dr2

(3.18)
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where the subscript in 1,2 in the first two integrals refers to the first and second
exchanged nucleons meanwhile the last two integrals represents the overlap between
the initial and final nucleon states respectively.

We have showed a simple approximation to compute the DCX using the Eikonal
approximation. We have presented the essential ingredients that should be taken in
to account if we want to compute the double charge exchange cross section using
the Glauber approach. We have noticed that it is possible to factorize the reaction
part and the structure part under certain conditions. Moreover we stressed the rela-
tionship between the nuclear matrix elements in neutrinoless double beta decay and
double charge exchange Gamow-Teller matrix elements and also we showed that
the microscopic IBM-2 is a great model that allows us to study complex processes.





Conclusions

In this thesis has been derivated the general expressions of the spectroscopic am-
plitudes two-nucleon transfer reactions within the microscopic IBM-2. For the first
time has been calculated the spectroscopic amplitudes of the nucleon transfer pro-
cess within the microscopic IBM-2. In particular, the spectroscopic amplitudes of
the two-nucleon transfer reactions are important in the forthcoming experiments of
NUMEN Collaboration, where the two-nucleon transfer process is a competitive
process of the Double charge exchange reactions. The new formalism introduced in
this thesis has been applied to the cadmium isotopes [3]. The formalism introduced
in Chap. 1 was applied to compute the spectroscopic amplitudes of two-neutron
transfer reaction 64Ni(18O,16O)66Ni considering one- and two-step processes and
we compared with the experimental data ). The reaction part was performed us-
ing the DWBA. For the two-neutron transfer reactions to the ground state of the
residual nuclei 66Ni, we have evidence of the short-range pairing correlations. In
the two-neutron transfer to the first excited state of the residual 66Ni nucleus, were
the collectivity is known to be important, it was verified the predominance of the
two-step reaction mechanism. This confirmed the long-range predominance in the
wave function of this state. The calculations for the two-neutron transfer reaction
was done considering one- and two-step processes to check which type of mech-
anism is more important and consequently the effect of pairing correlation on this
reaction mechanism.

From our results we conclude that for two-neutron transfer to the ground state
of 66Ni, the direct transfer is the dominant reaction mechanism, whereas, for the
transfer to the first excited state of 66Ni, the sequential process dominates. It would
be interesting to measure and perform similar calculations on another system with
well not collectivity of their excitation spectrum to verify our conclusions.

The possibility to study the different one- and two-step processes that helps the
understanding of the effect of pairing correlations, as well as a competition between
long-range and short-range correlations. The spectroscopic amplitudes needed in
microscopic calculations were calculated using two structure models: the shell
model and the IBM’s. The importance of studying the nickel isotopes is that they are
in the upper limit of confident applicability of the shell model and the IBM is about
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its lower limit. In the two-neutron transfer to the first excited state of 66Ni, where the
collectivity is known to be important, it was verified the predominance of the two-
step reaction mechanism. This confirmed the long-range predominance in the wave
function of this state, which was well described within IBM framework. The results
of this research were published in Phys. Rev. C 96, 044612 (2017). The theoretical
work of two-nucleon transfer process is an important study since the two-nucleon
transfer is a competitive process in respect to the double charge exchange process.

Finally, since the goal of the NUMEN collaboration is to arrive to extract the
double charge exchange nuclear matrix elements, a simple model of double charge
exchange cross section has been developed in the present work. In particular, it
was demonstrated, for the first time, the possibility to factorize the nuclear matrix
elements in the low-momentum transfer limit [5]. The factorization is one of the
main results of this thesis.

We have been derived the neutrinoless double beta decay operator starting from
the basic theory of the two body transition densities allowing us reproduced the
results of the literature [32], following the theory of the neutrinoless double beta
decay of several previous autors such as Doi, Tomoda and Simkovic and collabora-
tors [54],[55] [56]. It was computed the nuclear matrix elements for 0νββ -decay
76Ge and 76Se and we noticed that changing the value of the axial coupling constant
gA=1.25 to gA=1.269 the nuclear matrix element decreases by less than 1%. We
compared the IBM-2 and Generalized seniority cases and in both cases decreases
the nuclear matrix elements. In addition considering the Generalized Seniority case
the fact to consider consider only the S contribution the nuclear matrix elements are
bigger than consider SD.

We presented the formalism to calculate Double Charge Exchange (DCX) cross-
sections in the eikonal approximation. In heavy-ion scattering processes, DCE reac-
tions, where two protons are replaced by two neutrons or vice versa, can take place.
The calculation of the double for heavy ion double charge exchange reactions was
done within the IBM-2 framework. This result is important since a linear correla-
tion between the double Gamow-Teller part of the 0νββ nuclear matrix elements
and the Gamow-Teller matrix elements of double charge exchange process has been
demonstrated [5]. The calculation of the total cross sections of the DCX reactions is
underway since some parameters have to be fixed to the experimental data that will
be provided in the forthcoming experiments [3].

In conclusion, because of the introduction of the microscopic description of the
operators in the IBM-2, easily should be possible deal with different problems in
nuclear structure allowing derive new operators in the scheme of microscopic IBM-
2, opening new ways to do further research in different directions in nuclear physics.



Appendix A
Two body matrix elements

The matrix elements of two-body interactions are necessary in the research of nu-
clear properties by means of the independent particle model. The calculations of
these matrix elements are usually carried out by expanding the interactions into se-
ries of Legendre polynomials [59].

For the central interaction, it is well known that this procedure is quite easy if one
applies the methods of tensor operator proposed by Racah [60]. For the non-central
interactions, the situations are somewhat complicated and the interactions have been
discussed by Talmi [61].

The method that we will use, was introduced by Horie and Sasaki [62], where the
two-body interactions can be easily expanded into series of the products of spherical
harmonics by considering Fourier transforms of the interactions, and the matrix
elements can be obtained by straightforward application of the method of tensor
operators. This procedure is proposed so far for the treatment of the non-central
interactions. Specially for the case of tensor interactions. The radial integrals which
appear in this expansion involve the variables r1 and r2, the distances of the two
particles from the origin, in separated forms in the integrands, because the Fourier
transform is considered.

The two body transition density contains two body matrix elements of the two
body interactions of many particle configurations.

Let us first decompose the tensor interaction into spin and angular parts respec-
tively,

[[Σ (s1)×Σ
(s2)](λ1)× [C(k1)

1 ×C(k2)
2 ](λ2)]

(λ )
µ (A.1)

where Cλ2
q (Ω) = [4π/(2λ2 + 1)]1/2Y λ2

q (Ω) are the unnormalized spherical har-
monics, with λ2 be positive integer and it it will be denoted as Ω the direction of the
vector r = r2− r1 and r = |r|.

The spin operators is written in terms of a tensor product operators rank s1 and
s2 coupled to λ1 and the angular is a product of a tensors of rank k1 and k2 coupled
to λ2. It is convenient recouple the s1 with k1 and s2 with k2. Thus one can relate
the operators as the states |S1S2(λ1)k1k2(λ2);λ µ〉 to |s1k1(k)s2k2(k′);λ µ〉 by the
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transformation.

|S1S2(λ1)k1k2(λ2);λ µ〉= ∑
kk′

k̂k̂′λ̂1λ̂2


s1 k1 k
s2 k2 k′

λ1 λ2 λ

 |s1k1(k)s2k2(k′);λ µ〉 (A.2)

Therefore making the basis transformation, Eq. (A.1) becomes,

[[Σ (s1)×Σ (s2)](λ1)× [C(k1)
1 ×C(k2)

2 ](λ2)]
(λ )
µ

= ∑
kk′

k̂k̂′λ̂1λ̂2


s1 k1 k
s2 k2 k′

λ1 λ2 λ

 [Σ s1 ×Ck1
1 ](k)× [Σ s2 ×Ck2

2 ](k
′)]

(λ )
µ

(A.3)

The interaction of the spatial part of which has the form V (r)C(λ2)(Ω). Consid-
ering an interaction with a spin and spatial part , it may be decomposed as

[[Σ (s1)×Σ (s2)](λ1)×V (r)C(λ2)]
(λ )
µ

= ∑
k1k2

ik1−k2+λ2
(2k1 +1)(2k2 +1)

2λ2 +1

〈k10k20λ20〉vk1,k2;λ2(r1,r2)

×[[Σ (s1)×Σ (s2)](λ1)× [C(k1)
1 ×C(k2)

2 ](λ2)]
(λ )
µ

= ∑
kk′

∑
k1k2

ik1−k2+λ2
(2k1 +1)(2k2 +1)

2λ2 +1

〈k10k20λ20〉vk1,k2;λ2(r1,r2)

k̂k̂′λ̂1λ̂2


s1 k1 k
s2 k2 k′

λ1 λ2 λ

 [Σ s1 ×Ck1
1 ](k)× [Σ s2 ×Ck2

2 ](k
′)]

(λ )
µ

(A.4)

where a simplified notation Ĵ represent
√

2J+1. This general interaction of rank
λ is a tensor product of tensor operators rank λ1 and λ2 which operate spin and
ordinary spaces, respectively. This is a generalization of the tensor interaction used
by H. Horie( see Eq. 1 in Ref. [62])

By using the Eq (A.4) the reduced two body matrix elements of this operator may
be computed as:
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〈 j1, j2,J‖[[Σ (s1)×Σ (s2)](λ1)×V (r)C(λ2)](λ )‖ j′1, j′2J′〉

= ∑
kk′

∑
k1k2

ik1−k2+λ2
(2k1 +1)(2k2 +1)

2λ2 +1

〈k10k20λ20〉vk1,k2;λ2(r1,r2)

k̂k̂′λ̂1λ̂2


s1 k1 k
s2 k2 k′

λ1 λ2 λ

 Ĵλ̂ Ĵ′


j1 j2 J
j′1 j′2 J′

k k′ λ


ĵ1k̂ ĵ′1


1
2 l1 j1
1
2 l′1 j′1
s1 k1 k

〈 1
2‖Σ

(s1)‖ 1
2 〉(−1)−k1 l̂1〈l10k1|′10〉

ĵ2k̂′ ĵ′2


1
2 l2 j2
1
2 l′2 j′2
s2 k2 k

〈 1
2‖Σ

(s2)‖ 1
2 〉(−1)−k2 l̂2〈l20k2|′20〉

R(k1k2λ2)(n1, l1,n2, l2,n′1, l
′
1,n
′
2, l
′
2)

(A.5)

where the radial part is given by

R(k1k2λ2) =
∫

∞

0
Vλ2(p)p2d p

∫
∞

0
Rn1l1(r1)Rn′1l′1

(r1) jk1(pr1)r2
1dr1

∫
∞

0
Rn2l2(r2)Rn′2l′2

(r2) jk2(pr2)r2
2dr2

(A.6)
The allowed quantum numbers should satisfy the following conditions

|l1− l′1| ≤ k1 ≤ l1 + l′1
|l2− l′2| ≤ k2 ≤ l2 + l′2
| j1− j′1| ≤ k ≤ j1 + j′1
| j2− j′2| ≤ k ≤ j2 + j′2
|k1− k2| ≤ λ2 ≤ k1 + k2

|k− k′| ≤ λ ≤ k+ k′

|J− J′| ≤ λ ≤ J+ J′

(A.7)

The Eq. (A.5) is a generalized version of the two body matrix elements of the 0νββ ,
which can be used to compute 0νββ two body matrix elements also for excited
states. This formula in Eq. (A.5) can be used to compute 0νββ , matrix elements
between 0+ to 0+ in shell model calculations and in the Interacting Boson Model.





Appendix B
Two body transition densities

The nuclear Matrix element of the generalized operator in the Appendix A is com-
puted in the tensor coupled form. The advantage of the tensorial form allows sim-
plifying the calculations. The two body transition operator in tensorial form.

T λ
µ =

1
4 ∑

kα kβ kγ kδ

∑
mα mβ mγ mδ

〈kα mα kβ mβ |T λ
µ |kγ mγ kδ mδ 〉a†

kα mα
a†

kβ mβ
akδ mδ

akγ mγ

(B.1)

T λ
µ =

1
4 ∑

kα kβ kγ kδ

∑
mα mβ mγ mδ

〈J0M0| jα mα jβ mβ 〉〈J′0M′0| jγ mγ jδ mδ 〉a†
kα mα

a†
kβ mβ

akδ mδ
akγ mγ

(B.2)

T λ
µ =

1
4 ∑

kα kβ kγ kδ

∑
J0M0J′0M′0

√
1+δkα kβ

δkγ kδ
〈kα kβ J0M0|T λ

µ |kγ kδ J′0M′0〉

× ∑
mα mβ mγ mδ

〈J0M0| jα mα jβ mβ 〉〈J′0M′0| jγ mγ jδ mδ 〉a†
kα mα

a†
kβ mβ

akδ mδ
akγ mγ

(B.3)

T λ
µ =

1
4 ∑

kα kβ kγ kδ

∑
J0M0J′0M′0

(1+δkα kβ
)(1+δkγ kδ

)A†(kα ,kα J0M0)A(kγ ,kδ J0′M0′)

(B.4)

T λ
µ =

1
4 ∑

kα kβ kγ kδ

∑
J0J′0

〈kα kβ‖T λ‖kγ kδ 〉(1+δkα kβ
)(1+δkγ kδ

)
[A†(kα ,kα J0M0)⊗A(kγ ,kδ J0′M0′)]

λ
µ√

2λ +1
(B.5)
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Appendix C
Interacting Boson Model

It is reviewed the essential ingredients of the interacting boson-fermion model. We
are interested to cover the fundamental concepts of this model to introduce , single
and double beta decay, single and double charge exchange.

The Interacting Boson Model model was proposed in 1974 by Iachello and Arima
[63], inspired by previous works by Feshbach and Iachello [64] [65] and Jasen et al.
[66]. Which attempts to describe the collective nuclear excitations with an algebraic
formulation. This model have provided a bridge between individual and collective
nuclear behavior based on the approximation of the bosonic nature of identical nu-
cleons that dominate the valence dynamics of nucleons and that arises from nu-
clear forces. This is similar to the BCS theory of semiconductors that have electron
coupling with Cooper pairs of zero spin which leads to behaviors collectives and
superconductivity.

The collectivity degrees of freedom can be associated with the coupling of pairs
of particles. The collective character is a consequence of the degrees of freedom
possessed by the nuclei 1. This allows us to classify these nuclei by the number
of protons and neutrons. This classification allows us to develop different nuclear
models with fascinating properties. Collective excitations of nuclei are described by
bosons. The active pairs of protons and neutrons can be associated with bosons. The
number of n-pairs of nucleons corresponds to the number of bosons. Low-lying col-
lective states of nuclei can be described in terms of monopole bosons with angular
momentum and parity 0+ represented by s, and quadrupole bosons 2+ represented
by d. The conceptual basis of IBM has led to the unified description of the collective
properties of a medium and of developed pair-pair heavy cores. In this formulation,
they belong to the regions of transitions of several dynamic symmetries [67].

The microscopic Interacting Boson Model its the origin from the generalization
of the seniority scheme [11],[68], where is inspired from the works of Mottelson
and Bardeen, Cooper and Schierieffer [69] [12] at the end of the 50ths.

1 Strictly speaking the degree of collective freedom are the degrees of freedom of movement of the
quadrupoles that are formed in the nucleus.
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The relationship between Generalized Seniority and the Interacting Boson Model
was developed by Otsuka, Arima, Talmi, and Iachello in 1978. [16]. The manner to
connect different nuclear matrix elements between different spaces, like fermionic
and bosonic spaces are the way to connect the microscopic description to a phe-
nomenological bosonic description of the nucleus [23], [13].

A manner to relate the bosons of the IBM to the underlying fermion space
for nondegenerate j shells is given by the method of of Otsuka and Arima and
Iachello[23] who used the so called ”number-operator approximation (NOA )”

In the microscopic IBM-2 calculations used in this thesis, we did not used this
method, since it ”averages” over the subshell effects in which we are interested and
has not been tested in the midshell region. We will followed the empirical IBM pa-
rameters by allowing the valence nucleons to occupy many nondegenerate j shells.
Duval, Barret and Pittel have developed an exact formalism for calculating low-
generalized-seniority matrix elements [25], [24]. In this formalism, no approxima-
tions are made in the treatment of sub-shell effects.

This generalization allows us to construct the microscopic Interacting Boson
Model. The method to calculate two-body matrix elements in the SD subspace may
be computed using the commutator technique by A. Frank P. Van Isacker and Li-
pas et al [27], [15], this allows us to construct a generalized operator in the scheme
of the Interacting boson Model which helps to study more complex problems with
great accuracy.

On the other hand the nuclei with odd masses may be studied, incorporating the
degrees of freedom of a fermion [70]. In 1980, Iachello suggested the simultaneous
description of even-numbered and odd-numbered nuclei through the introduction of
superalgebras with energy levels in both nuclei that belong to the same supermulti-
plet [71]. The concept of nuclear supersymmetry was extended in 1985 to include
the degree of freedom of the neutron-proton [72]. This new formulation allows the
supermultiplet to have even-odd, proton-odd, neutron-odd and odd-odd nuclei.

Table C.1: Different models of IBM where the total number of bosons is given by N = ∑i b†
i bi and

total number of fermions M = ∑µ a†
µ aµ

Model Year Generator Invariant Symmetry
IBM 1975 b†

i b j N U(6)
IBFM 1979 b†

i b j , a†
kal N, M U(6)⊗U(m)

SUSY 1980 b†
i b j , a†

kal , b†
i ak , a†

kbi N = N +M U(6/m)

Spectroscopic studies of heavy cores odd-odd numbers are challenging because
of the high density of states. However, after 15 years of the prediction of odd-odd
cores in the nuclear supersymmetry, in 1999 has been experimentally preserved the
spectrum of the 196Au, which is according to the theory [73]. However now with the
microscopic interacting boson model, it is possible to go beyond and improve mi-
croscopic description of the odd-odd and odd-even wave functions that is a work in
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progress with J. Barea and J. Kotila. In this way, one body and two body transitions
densities becomes a reliable test for the nuclear wave functions and go further to the
study the intercorrelation fo weak interactions and strong interactions in a nuclear
matter.

C.1 The model

The interacting boson-fermion model is a straightforward extension of the interact-
ing boson model where collective excitations of nuclei are described by bosons, in
which an additional single-particle degree of freedom is introduced and coupled to
the system of s- and d-bosons. The operators in this model are written in second
quantization formalism, the boson creation( and annihilation) operators of multi-
polarity l and z-component m are represented by b†

l,m(bl,m) and the creation (anni-

hilation) operator for a nucleon by a†
jm (a jm) in one of the valence single-particle

spherically symmetric orbitals.
The boson operators satisfy Bose commutation relations,

[bl,m,b
†
l′,m′ ] = δll′δmm′ ,

[bl,m,bl′,m′ ] = [b†
l,m,b

†
l′,m′ ] = 0 (C.1)

The fermion operators satisfy Fermi anticommutation relations,

[a j,m,a
†
j′,m′ ] = δ j j′δmm′ ,

[a j,m,a j′,m′ ] = [a†
j,m,a

†
j′,m′ ] = 0 (C.2)

Spherical tensors can be constructed from the creation and annihilation operators
in the usual way. The creation operators already transform in the appropriate way.
The annihilation operators do not but one can introduce the operators for fermions

ã j,m = (−) j−ma j,−m, (C.3)

and for bosons
b̃l,m = (−)l−mbl,−m. (C.4)

The determination of the properties of a quantal system of N interacting particles
among them bosons and fermions, considering the particle number conservation,
requires the solution of the eigenvalue equation associated with the Hamiltonian

H = HB +HF +VBF , (C.5)

where
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HB = E0 +∑
αβ

εαβ b†
α bβ + ∑

αα ′

1
2

uα,α ′,β ,β ′b
†
α b†

α ′bα bβ + . . . (C.6)

HF = ε0 +∑
ik

ηi,ka†
i ak + ∑

ii′kk′

1
2

vi,i′,k,k′a
†
i a†

i′aiak + . . . (C.7)

VBF = ∑
αiβk

wα,i,β ,kb†
α a†

i bα ak + . . . (C.8)

and containing one body terms εα,β , ηi,k, two-body interactions uα,α ′,β ,β ′ ,vi,i′,k,k′ ,
wα,i,β ,k and so on; higher order interaction can be included in the expansion if is
needed, HB is the Hamiltonian for even-even core, HF the single-particle Hamilto-
nian for odd-nucleon, and VBF the coupling between these degrees of freedom.

This Hamiltonian can be rewritten in such a way that its invariance under rotation
becomes evident.

HB = E0 +∑
l

εl
√

2l +1[b†
l × b̃l ]

(0)
0 + ∑

LB,l,l′,l′′,l′′′
u(LB)

ll′l′′l′′′ [[b
†
l ×b†

l′ ]
(LB)]

(0)
0 + · · · ,(C.9)

HF = ε0 +∑
j

η j
√

2 j+1[a†
j × ã j]

(0)
0 + ∑

LF , j, j′, j′′, j′′′
u(LF )

j j′ j′′ j′′′ [[a
†
j′′ ×a†

j′′′ ]
(LF )]

(0)
0 + · · · ,(C.10)

VBF = ∑
J,l, jl′ j′

wl jl′ j′
√

2J+1[[b†
l × ã j]

(J)× [b̃l× ã j′ ]
(J)]

(0)
0 + · · · , (C.11)

the coefficients wl jl′ j′ are the boson-fermion interaction matrix elements wl jl′ j′ =
〈bla j;J|VBF |bl′a j′ ;J〉.

There are other parametrizations of the boson-fermion interactions, referred as
multipole expansions,

VBF = ∑
L,ll′ j j′

w′ll′ j j′(−)
L√2L+1[[b†

l × b̃l′ ]
(L)× [a†

j × ã j′ ]
(L)]

(0)
0 + · · · ,(C.12)

w′ll′ j j′ = −∑
J
(−) j+l′+J(2J′+1)

{
l j J
j′ l′ L

}
w(J)

l jl′ j′ (C.13)

or exchange expansion.

VBF = ∑
J,l, jl′ j′

w′′l jl′ j′(−)
J√2J+1 : [[b†

l × ã j]
(J)× [b̃l′ ×a†

j′ ]
(J)]

(0)
0 : + · · · ,(C.14)

w′′l jl′ j′ = ∑
J′
(2J′+1)

{
l j′ J′

l′ j J

}
w(J′)

l j′l′ j (C.15)

where the colons (: · :) means the normal ordering. Normal ordering implies that a†
j′

should stand on the left of ã j with a minus sign.
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The form of the Hamiltonian in eq (C.8) is general, now written up to two body
terms of bosons bl with angular momentum l = 0,2 and an extra nucleon in one of
the valence single-particle spherically symmetric orbitals with energy ε j we obtain
the fermion interaction as [74]

HF = ∑
j,m

ε ja
†
j,ma jm, (C.16)

with the boson interaction

HB = E0 + εs(s† · s̃)+ εd(d† · d̃)+ ∑
L=,0,2,4

1
2

cL[[d†×d†](L)× [d̃× d̃](L)](0)0(C.17)

+
1√
2

v2[[d†×d†](2)× [d̃× s̃](2)+[d†× s†](2)× [d̃× d̃](2)](0)0 (C.18)

+
1
2

v0[[d†×d†](0)× [s̃× s̃](0)+[s†× s†](2)× [d̃× d̃](0)](0)0 (C.19)

+ u2[[d†× s†](2)× [d̃× s̃](0)](0)0 +
1
2

u0[[s†× s†](0)× [s̃× s̃](0)](0)0 (C.20)

and the boson-fermion interaction

VBF = ∑ j u j[(s†s)(0)(a†
j ã j)

(0)]
(0)
0 +∑ j j′ v j j′

{
[(d†s)(2)(a†

j ã j′)
(2)]

(0)
0 +h.c.

}
+∑ j j′k wk

j j′ [(d
†d̃)(k)(a†

j ã j′)
(k)]

(0)
0 ,

(C.21)
where ã jm = (−1) j−ma j−m.

C.1.1 Algebras in IBFM

The General linear group GL(n,C) of complex matrices of degree n is the most
significant linear matrix group, The other groups listed below are subgroups of this
groups. The order of the GL(n,C) is given by the twice the number, n2 of matrix
elements. On the other hand, the GL(n,R) is the order n2.

In addition to the collective degrees of freedom, in IBMF one wants to describe
the single-particle degrees of freedom. In nuclei, the single particles are protons and
neutrons. These are fermions. The angular momentum and parity of these particles
depend on the allowed orbits.

The generators of U(n) is a coupled tensor notation

g : A(λ )
µ ( j, j′) = [a†

j × ã j′ ]
(λ )
µ (C.22)

and they satisfy commutation relations
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[A(λ )
µ ( j, j′),A(λ ′)

µ ′ ( j′′, j′′′)] = − ∑
λ ′′µ ′′

√
(2λ +1)(2λ ′+1〈λ µλ

′
µ
′|λ ′′µ ′′〉

×[(−)λ ′′+ j+ j′′
{

λ λ ′ λ ′′

j′′′ j j′′

}
δ j′ j′′A

(λ ′′)
µ ′′ ( j, j′′′)

− (−)λ ′+λ ′+ j′+ j′′
{

λ λ ′ λ ′′

j′′ j′ j

}
δ j j′′′A

(λ ′′)
µ ′′ ( j′′, j′′)]

(C.23)
Considering a single orbit j, the value of n is

n = 2 j+1 (C.24)

The operators with odd λ form a closed algebra. They generates a compact algebra
Sp(n,C) This algebra has n(n+1)

2 generators. Considering the algebra of rotation
around the z-axis, O(2), generated by the operator C.22, with j′ = j and Λ = 1 and
µ = 0, the chain of algebras is

U(2 j+1)⊃ SU(2 j+1)⊃ Sp(2 j+1)⊃ SU(2)⊃ O(2) (C.25)

therefore for the case of j = 1
2 there are 22 = 4 generators, which yield to

U(2)⊃ Sp(2)⊃ O(2) (C.26)

for example,
A(1)

µ ( 1
2 ,

1
2 ) = [a†

1
2
× ã 1

2
]
(1)
µ

A(1)
µ ( 1

2 ,
1
2 ) = [a†

1
2
× ã 1

2
]
(0)
µ

(C.27)

where the first equation makes 3 generators and the second 1 generator obtaining in
total 4 generators. In similar way for the case of j = 3/2 there are 42 = 16 operators
generating the Lie algebra U(4)

U(4)⊃ SU(4)⊃ Sp(4)⊃ Sp(2)⊃ O(2) (C.28)

and for j = 5/2 62 = 36 generators with

U(6)⊃ SU(6)⊃ Sp(6)⊃ SU(2)⊃ O(2) (C.29)

C.1.2 Diagonalization

The hamiltonian (C.5) can be diagonalized in the full

U (ν)(5)⊗U (π)(5)⊗U (F)(m), (C.30)

where m = ∑ j(2 j+1) spherical basis.



C.2 Effective Interacting Boson-Fermion model 63

It is clear that both (C.16) and (C.21) are conveniently expressed in a coupled
notation since they should be angular momentum scalars; however, H includes, in
general, a large number of parameters, especially when many orbits are essential.
There are many ways to treat this Hamiltonian, and one is given by the reduction
of the unitary group which comes from productU(6)×U(m) for proper orbits. The
basic group structure associated to IBFM Hamiltonian of a particular nucleus whose
valence shell contains the sp orbits j = 1/2, j = 3/2 and j = 5/2 are U (B) and
U (F)(∑ j(2 j + 1) = U (F)(12), where U (B)(6) is the usual boson group describing
the collective excitations and U (F)(12) is the fermionic group associated to the sp
degrees of freedom. The eigenvalue problem for the Hamiltonian of eq (C.5) can be
in general be solved numerically on a basis carrying the irreducible representations
of the group

U (B)(6)×U (F)(12) (C.31)

The mixing of the boson and fermion degrees can be solved analytically, for exam-
ple, considering the sp orbits j = 1/2,3/2 and 5/2 as arising from the combination
of pseudo-orbital parts l = 0,2 and pseudo-spin part with s = 1/2. That corresponds
to the reduction

U (F)(12)⊃U (B)(6)×SU (F)(2) (C.32)

This scheme can be extended, by embedding the direct product group into a larger
group, the Hamiltonian with this larger symmetry will be mapped onto a graded
space of bosons and fermions and consequently can be treated with supergroups.
In our case U(6/12) with different subgroups chains that were well studied in the
literature [75].

An alternative way to solve the equation by considering restricted Hamiltonians
with only a few terms, dictated by microscopic considerations [17] that we will
consider in the next section.

C.2 Effective Interacting Boson-Fermion model

There are several other equivalent ways of writing the Hamiltonian. One form often
used is write the Hamiltonian in terms of elements of multipole expansions. It is
convenient to write a Hamiltonian within a space of the fixed number of bosons NB,
the number of independent terms is reduced. For example let us consider consider
first component the bosonic situation , since the total number of bosons NB is the
the the sum of number of s-bosons and d-bosons denoted by ns and nd therefore the
term εs(s† · s̃) is equal to

εsn̂s = εs(N̂− n̂d) = εsN̂− εs(d† · d̃) (C.33)

so following this idea we can use a parametrizations given by
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n̂d = (d† · d̃),
L̂ =

√
10[d†× d̃](1)

Q̂χ = [d†× s̃+ s†× d̃](2)+χ[d†× d̃](2)

Û = [d†×d̃ ](3)

V̂ = [d× d̃](4)

(C.34)

therefore the bosonic Hamiltonian can be written as

HB = E ′0 + ε n̂d + c1(L̂ · L̂)+ c2(Q̂χ · Q̂χ)+ c3(Û ·Û)+ c4(V̂ ·V̂ ) (C.35)

and the transition operators initially can be introduced for the bosonic part is given
by

T (E0) = γ ′0 +β ′′0 n̂d

T (M1) = g′L̂
T (M2) = α2Q̂χ

T (M3) = β3Û
T (E4) = β4V̂

(C.36)

and the transfer operators for the only bosonic case if one retains only the one-
body operators can be written

PL
B+ = ∑

α

pα b†
α

PL
B− = ∑

α

pα bα

(C.37)

For practical applications like computation of transitions of beta-decay , EC or even
more complex situations, the operators (C.36) and (C.37) are the main ingredients
that will be extended in real situations where is needed the fermion degrees of free-
dom and more complex interactions coming from microscopic theories.

We can introduce the quasi-particles formalism to deal the extra fermions cou-
pled to the bosons which can be associated with states of single particles in the shell
model. The fact that the bosons in the interacting boson model can be regarded as a
collective fermion pair states, a natural link between IBM and the shell model can
be established through the Generalized Seniority scheme (GS). A generalization of
the seniority scheme to the case of non-degenerate orbits it is introduced a pair of
creation operators

S† = ∑α jS
†
j (C.38)

where
S†

j =
1
2

√
2 j+1(c†

jc
†
j)
(0). (C.39)

where this operator creates a collective pair with J = 0, where its Hermitian conju-
gate S− their commutator S0 are the generators of a SU(2) lie algebra, making the
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seniority scheme easy to apply since reduction formulas for matrix elements can be
performed.

A state with generalized seniority ν = 0 and n = 2N particles can be expressed
as

|n,J = 0,ν = 0〉= (S†)N |0〉 (C.40)

and to describe an excited 2+ state one introduces the operator

D† = ∑
j, j′

1
2

β j, j′

√
1+δ j j′(c

†
jc

†
j′)

(2) (C.41)

which creates a collective state with J = 2 and ν = 2, where the state with n = 2N
particles and J = 2 can be constructed by operating with (C.41)

|n,J = 1,ν = 1〉= D†(S†)N−1|0〉 (C.42)

where the structure coefficients α j and βi j of collective pairs can be obtained by
diagonalizing the shell model interaction in the space of all seniority ν = 2 states.

The description of the odd- mass nuclei can be realized by introducing explic-
itly single particle degrees of freedom, in order to construct an orthogonal basis ,
however should be introduced the odd nucleon operator a†

j as generalized seniority
raising operators,

a†
j |s

N〉= | jsN〉 ↔ |n = 2N +1,J = j,ν = 1〉, (C.43)

and,
(a†

jd
†)(J)|sN−1〉= |( jd)(J)sN−1〉 ↔ |n = 2N +1,J,ν = 3〉 (C.44)

Since the odd-particle operator a†
j is defined as a seniority raising operator, its

matrix elements will, in general, be different from those of a shell-model single
nucleon creation operator c†

j .
Let us introduce the pseudoparticle creation operators [76] and the number oper-

ator approximation (NOA). The pseudo particle operator č†
j is defined as the equiv-

alent of the single-particle operator c†
j in the shell model space. The pseudo particle

operator č†
j should be distinguished from the odd nucleon operator a†

j in sense that
the latter, should be regarded as a seniority step operator. In order to obtain an ex-
pression for the pseudo particle operator , matrix elements have to be calculated
in the shell-model space for stares with generalized seniority ν 6 3. In the NOA,
the coefficients α j which enter in the definition of S pair operator of the scheme of
generalized seniority are normalized such

n̂ = ∑
j

α
2
∑
m

c†
jmc jm = ∑

j
α

2
j n̂ j (C.45)

, therefore in this approximation the matrix element of the number operator is simple
twice of the number of pairs ,



66 C Interacting Boson Model

〈SN |n̂|SN〉= 2N (C.46)

In this approximation the algebra for GS operators becomes equal to that of con-
ventional seniority therefore a normalization constants can be derived [77] for S
states,

η2
N,0 = 〈0|SNS†N |0〉 ≈ N! Γ (Ωe+1)

Γ (Ωe−N+1)

η2
N,1 = 〈 j|SNS†N | j〉 ≈ η2

N,0(1−
Nα2

j
Ωe

)
(C.47)

where the effective degeneracy for the major shell is defined

Ωe = ∑
j

α
2
j Ω j (C.48)

It is convenient to introduce the occupation probabilities

v2 ≡
n j

2 j+1
(C.49)

where
n j = 〈SN |n̂ j|SN〉 ≈ 2Nα

2
j Ω j/Ωe (C.50)

the spherical shell model occupancies can be related to the structure coefficients
of the S- pair state α j as

v2
j = α

2
j N/Ωe (C.51)

Since the spherical shell-model occupation probabilities v2
jhave s simpler physical

interpretation in the subsequent formulas all factors α j are replaced by v j and u j =

(1− v2
j)

1/2.
Therefore we can make a relationship between matrix elements of the shell model

creation operators c†
j and IBFM operators a†

j between states with seniority ν 6 1 as,

〈SN j′‖c†
j‖SN〉 = − ĵu jδ j j′ = u j〈sN j′‖a†

j‖sN〉

〈SN‖c†
j‖SN j′〉 = ĵv jδ j j′ = v j〈sN‖(a†

j ã j)
( j)‖sN−1 j′〉/

√
N

(C.52)

Similar expression can be also obtained if ν 6 3 states [78] like,

〈D†SN−1 j′‖č†
j‖D†SN−1〉 = u j〈d†sN−1 j′‖a†

j‖d†sN−1〉
− ∑ j′

v j√
N

√
10

2 j+1 β j′ j(
1

ηβ
)〈d†sN−1 j′‖s†(d̃a†

j)
(J)‖d†sN−1〉

+
v j√
N
〈d†sN−1 j′‖(s†ã j)

( j)‖d†sN−1〉

+ ∑ j′ u j

√
10

2 j+1 β j j′(
1

ηβ
)〈d†sN−1 j′‖(d†ã j′)

( j)‖d†sN−1〉
(C.53)

with
η

2
β
= ∑

j j′
β

2
j j′ (C.54)
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where the coefficients β j j′ define the microscopic two particle structure of d-boson
coming from eqn. (C.41).

The coefficients α j and β j j′ can, in principle, be obtained from microscopic cal-
culations.

Assuming that D-pair state exhausts the full E2 sum rule strength, D† ∼ [Q,S†]
in which case it cab be shown that

β j j′ = (u jv j′ + v ju j′)Q j j′ , (C.55)

where the Q j j′ are the single particle matrix elements of the quadrupole operator. In
most of the applications in nuclear structure, is convenient takes the radial matrix
elements equal to the quadruple operator,

Q j j′ = 〈l
1
2

j‖Y ()2‖l 1
2

j′〉 (C.56)

Returning to the description of the boson-fermion Hamiltonian it is convenient to
write it regarding monopole, quadrupole, and exchange interactions, the monopole
interaction

VBF =V mon
BF +V quad

BF +V exc
BF , (C.57)

the monopole interaction has the effect of changing the d-boson energy given by

V mon
BF = ∑

j
A jn̂d n̂ j, (C.58)

the product of the boson quadrupole operator with the pure fermion part gives rise
the boson-fermion quadrupole interaction given by,

V quad
BF = ∑

j j′
Γj j′ [a

†
j ã j′ ]

(2) (C.59)

where
Γj j′ = Γ0(u ju j′ − v jv j′)Qi j (C.60)

Retaining only term up to second order in the d-boson operators

Q(2)
BF = Q(2)

B +Q2
F (C.61)

where
Q(2)

B = (s†d̃ +d†s)(2)+χ(d†d̃)(2) (C.62)

and

Q(2)
F = ∑ j j′Q j j′(u ju j′ − v jv j′)(a

†
j ã j′)

(2)

−
√

10
N ∑

j j′ j′′
Q j j′(u jv j′ + v ju j′)β j′′ j[(d

†ã j′′)
( j)(sa†

j′)
( j′)](2)

1
ĵηβ

(C.63)

where χ gives the nuclear shape given by
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χ =−10
1

η3
β

√
2N ∑

j j′
β j′′ jβ j′ j′′Q j j′

{
2 2 2
j j′ j′′

}
(v jv j′ −u ju j′) (C.64)

the mixed term in the quadrupole arises from the fact that the bosons are built up
from fermions occupying the same orbits as the odd fermion to raise the exchange
term. It appears from the action of the Pauli principle between the bosons and the
odd fermion and therefore is referred to as the exchange interaction up to

V exc
BF = ∑

j j′ j′′
Λ

j′′

j j′ : [[d†ã j]
( j′′)× (d̃a†

j′)
( j′′)]

(0)
0 : / ĵ′′ (C.65)

where
Λ

j′′

j j′ =−2
√

5Λ0β j j′′β j′ j′′ (C.66)

C.3 Interacting boson-fermion model with two types of fermion

In the interacting boson model with two types of fermion, collective excitations of
nuclei are described by bosons and two fermions. Second quantization provides an
appropriate formalism to describe this kind of system. One thus introduces boson
creation(and annihilation) operators for protons and neutrons b†

ρ,l,m and bρ,l,m, with
ρ = π,ν and l = 0,2, with−l 6 m 6 l. fermion creation(and annihilation) operators
for the fermions a†

ρ, j,m and aρ, j,m, with ρ = π,ν and j = j1, j2, . . . , jn, with m =

± 1
2 ,±

3
2 , . . . ,± j .

As in the odd-even nucleus, the boson operators satisfy the bose commutation
relations and the fermion operators satisfy Fermi anticommutation relations. The
single particle levels here are denoted by nl j with n being the principal quantum
number, l, the orbital angular momentum and j the total angular momentum j =
l± 1

2 . The approximation what we will consider is a truncation assuming that the
closed shells are inert and second by considering parity JP+ = 0+ and JP+ = 2+. In
odd-even nuclei at least one particle remains unpaired, this particle could be proton
on neutron.

The basis states are written in terms of the fermion and boson operators, the
angular momentum couplings are chosen in such a way that bosons and fermions
are first coupled among themselves, followed by the final coupling,

[[[a†
π, j×a†

π, j′ ×·· · ]
(Jπ )× [a†

ν , j×a†
ν , j′ ×·· · ]

(Jν )](LF )

×[b†
π,l×b†

π,l′ ×·· · ]
(Lπ )× [b†

ν ,l×b†
ν ,l′ ×·· · ]

(Lν )](LB)|0〉
(C.67)

The Hamiltonian (C.5) can be extended considering the two types of fermions,

HB = HπB +HνB +VπνB

HF = HπF +HνF +VπνF

VBF = VππBF +VπνBF +VνπBF +VννBF

(C.68)



C.3 Interacting boson-fermion model with two types of fermion 69

The bosons and fermion Hamiltonians that we are going to consider contains the
basic features of the effective nucleon-nucleon interaction, that emerge from pairing,
quadrupole and symmetry energy.

HB = E0 + επ n̂dπ
+ εν n̂dν

+κQ̂χ

π · Q̂
χ

ν +λ ′M̂πν +Vππ +Vνν

HF = E0 +∑
jπ

ε jπ n̂ jπ +∑
jν

ε jν n̂ jν

VBF = ∑
jπ

A jπ(n̂dπ
n̂ jπ )+∑

jν

A jν(n̂dν
n̂ jν )

+Γπν Q̂χ

ν · q̂π ++Γνπ Q̂χ

π · q̂ν +Γνν Q̂χ

ν · q̂ν +Γππ Q̂χ

π · q̂π

+Λνπ Fπν +Λπν Fνπ

(C.69)

where

n̂dρ
= ∑µ d†

ρ,µ dρ,µ

Q̂χ

ρ,µ = [s†
ρ × d̃ρ +d†

ρ × s̃ρ ]
(2)
µ +χρ [d

†
ρ × d̃ρ ]

(2)
µ

M̂πν = [s†
ν × d†

π − s†
π ×d†

ν ]
(2) · [s̃ν × d̃π − s̃π × d̃ν ]

(2)

−2 ∑
k=1,3

ξk[d†
ν ×d†

π ]
(k) · [d̃ν × d̃π ]

(k)

Vρρ = ∑
L=0,2,4

1
2

c(ρ)L [d†
ρ ×d†

ρ ]
(L) · [d̃ρ × d̃ρ ]

(L)

+ 1
2 vρ

0

[(
(d†

ρ d†
ρ)

(0)(sρ sρ)
(0)
)(0)

+h.c
]

+
√

5
2 vρ

2

[(
(d†

ρ d†
ρ)

(2)(d̃ρ sρ)
(2)
)(0)

+h.c
]

n̂ jρ = ∑
mρ

a†
ρ, jρ ,mρ

aρ, jρ ,mρ

q̂ρ = ∑
k,k′

(u jk v jk′ + v jk u jk′ )Q jk jk′ [a
†
jk
× ã jk′ ]

(2)
µ

Fρ,ρ ′ = −Q̂χ

ρ · {∑kk′k′′Q jk jk′ (u jk v jk′ + v jk u jk′ )β jk′′ jk√
10

N
ρ ′ (2 jk+1 : [(dρ ′ ã jk′′ )

( jk)(a†
jk′

sρ ′)
( jk′ )](2) : +h.c.}

(C.70)

where the coefficients v jk are the occupation probabilities of the single- particle

orbit jk and u jk =
√

1− v2
jk

. The coefficients Q jk jk′ are related to the single particle

element of the quadrupole operator 〈nklk 1
2 jk‖r2Y (2)‖nk′ lk′ 1

2 jk′〉, which we choose

Q jk jk′ = 〈 jk‖Y
(2)‖ jk′〉. (C.71)

As we discussed in the previous section the coefficients β jk jk′ can be related to the
microscopic structure of the d-boson. Under the assumption that the |D〉 state ab-
sorbs the full E2-strenght , based upon a completely degenerate single particle level
scheme, β jk jk′ = (u jk v jk′ + v jk u jk′ )Q jk jk′ , however the effect of the non-degenerate
single particle orbits can be taken into account by an energy
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β jk jk′ =
1

E jk +E jk′ −w
(u jk v jk′ + v jk u jk′ )Q jk jk′ (C.72)

where the w denotes the energy of the |D〉 state relative to the |S〉 state and can be ob-
tained from the excitation energy of the 2+1 state in a semi magic nucleus. The quasi
energies occupancies v jk and u jk can be computed using the BCS approximation,

E jk = [(ε jk−λ )2)+42]
1
2

Vjk = [ 1
2 (1−

ε jk−λ

E jk
)]

1
2

u jk = [1− v2
jk ]

1
2

(C.73)

The full Hamiltonian (C.5) is diagonalized in the truncated basis

|(αcLc, j)JM〉. (C.74)

By construction HB and HF are diagonal in the basis (C.109). The matrix elements
of the boson-fermion interaction

VBF = ∑
λ

∑
ik

v(λ )ik B(λ )
i ·F

(λ )
k (C.75)

can be separated into a boson and a fermion part

〈(αc,Lc, j)JM|VBF |(α ′c,L′c, j′)JM〉

= ∑
λ

∑
i,k

v(λ )i j (−1) j+J+L′c

{
Lc j, J
j′ L′c λ

}
×〈(αc,Lc)‖B(λ )i‖(α

′
c,L
′
c)〉〈( j‖F(λ )

k ‖ j′〉

(C.76)

The boson matrix elements 〈(αc,Lc)‖B(λ )i‖(α
′
c,L
′
c)〉 only depend on the eigen-

vectors of the core Hamiltonian and therefore can be computed separately.

C.4 Effective Operators

In order study the nuclear properties and transitions like electromagnetic transitions,
beta decay, double beta decay with or without neutrino, electron capture, transfer
reactions, charge exchange reactions, double charge exchange, up to weakly inter-
acting massive particles scattering in our nuclear algebraic model we require first
at all, have a realistic wave function that is obtained by the diagonalization of the
Hamiltonian in the Eq. (C.5), and later we need take as starting point the operators
(C.36) and (C.37) and rewriting them to our basis that we are considering. There
are some standard procedures that provide some hints about how we should com-
pute those observables that we are interested in predicting and comparing with the
experimental data. For example, if we are dealing with even-even nuclei, sometimes
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is enough only work with the bosonic part of the Hamiltonian and also for the oper-
ators, however, there are situations that are needed deal with the fermionic degrees
of freedom and we require the fermionic and bosonic-fermionic interaction. In ad-
dition, if we want to be more precisely for certain types of transitions is not enough
only include microscopic information about the nuclear interactions also is needed
includes more elemental information about the interactions such as weak interac-
tions, or even more complex interactions where are needed include effective poten-
tials, that can be obtained for example by effective field models to include more
explicitly this microscopic dependence in the construction of the operators of the
interactions. To begin our discussion about the effective operators in the interacting
boson-fermion model let us consider first the transition operators.

C.4.1 Electromagnetic Transitions

The transition operator can be described in terms of proton and neutron bosons and
fermions,

T (L)
µ = T (L)

πB,µ +T (L)
νB,µ +T (L)

πF,µ +T (L)
νF,µ (C.77)

where boson terms are given by the equation (C.36) and the fermion terms, to the
lowest order can be written as:

T (L)
πFµ

= f (0)
π,0δL,0 + ∑

jπ j′π

f (L)jπ j′π
[a†

jπ × ã j′π ]
(L)
µ

T (L)
νFµ

= f (0)
ν ,0δL,0 + ∑

jν j′ν

f (L)jν j′ν
[a†

jν × ã j′ν ]
(L)
µ

(C.78)

We can separate the dependence on the angular momenta jπ and jν from the
coefficients that determine the strengths of the transitions. For that reason it is intro-
duced an effective charge and moments, for the E2 transition,

f (2)jρ j′ρ
=−eF

ρ 〈nρ , lρ |r2|n′ρ , l′ρ〉〈lρ ,
1
2
, jρ‖Y (2)‖l′ρ ,

1
2
, j′ρ〉, (C.79)

where eF
ρ are the fermion effective charges. The units given in electron charge, of

eB
ρ are different from eF

ρ since the radial integral is already included in (C.79). The
boson effective charge eB

ρ have units of e f m2,

e′Fρ = eF
ρ 〈nρ , lρ |r2|n′ρ , l′ρ〉 (C.80)

and for M1 transitions, the fermion part of the operators is written in the form,

f (1)jρ j′ρ
=−

√
3

4π
〈lρ ,

1
2
, jρ‖gF

l,ρ l+gF
s,ρ s‖l′ρ ,

1
2
, j′ρ〉δlρ l

ρ ′
/
√

3 (C.81)
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the gF
l,π , gF

l,ν , gF
s,π , gF

s,ν , are single-particle g-factors.The free values are gF
l,π = 1,

gF
l,ν = 0 gF

s,ν = 5.58, gF
s,ν = −3.82 units of nuclear magnetons µN . Therefore sum-

marizing the general one-body E2 electromagnetic operator written more compactly
is given by

T (E2) = eν [αν(s
†
ν d̃ν +d†sν)

(2)+χ
(2)
ν (d†

ν d̃ν)
(2)]+

+eπ [απ(s
†
ν d̃π +d†sπ)

(2)+χ
(2)
π (d†

π d̃π)
(2)]

+e(2)sp ∑
k6k′

e(2)(Nkk′)[(a
†
jk

ã j′k
)+h.c]

(C.82)

with Nkk′ =
1
2 k′(k′− 1)+ k,k 6 k′ and for multipolarities E0, M1, M3 and M4 the

operator is given by

T (λ ) = χ
(λ )
ν (d†d̃ν)

(λ )+χ
(λ )
π (d†d̃π)

(λ )

+e(λ )sp ∑
k6k′

e(λ )(Nkk′)[(a
†
jk

ã j′k
)+h.c] (C.83)

with λ = 0,1,3,4 where the bososn effective charges eν and eπ can be taken from
a study of absolute B(EMλ ) in the core nucleus. The coefficients e(λ )(Nkk′) are the
single particle matrix elements of the transition operators, and for the E2 case given
by

e(2)(Nkk′) =−
1√
5
(u jk v jk′ − v jk u jk′ )〈lk,

1
2
, jk‖Y (2)‖l′k,

1
2
, j′k〉 (C.84)

and for M1 transitions by

e(1)(Nkk′) =−
1√
3
(u jk v jk′ + v jk u jk′ )〈lk,

1
2
, jk‖gF

l,kl+gF
s,ks‖l′k,

1
2
, j′k〉 (C.85)

C.4.2 Transfer operators

There are two types of one-nucleon transfer operators, those that change the boson
number by unit and those that do not. The transfer operators of the first kind can be
expanded in terms of creation an annhihilation operators,

P+
jρ = θ jρ [s

†
ρ × ã jρ ]

( jρ )+∑
j′ρ

q
jρ j′ρ
ρ ′ [d

ρ† × ã jρ ′ ]+ ... (C.86)

this kind of operators the number of bosons ins conserved (Nρ ,Nρ , j ↔ Nρ +
1,Nσ ,ρ 6= σ ) and the reactions where the number of bosons is conserved (Nν ,Nπ ↔
Nν ,Nπ , j)
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P+
jρ = ξ jρ a†

jρ +∑
j′ρ

ξ jρ j′ρ [[s
†× d̃ jρ ]

(2)×a j′ρ ]
( jρ )

+ ∑
j′ρ

ξ
′
jρ j′ρ

[[s†× d̃ jρ ]
(2)×a j′ρ ]

( jρ )

+ ∑
j′ρ k

ξ
′′
jρ j′ρ k[[d

†
jρ × d̃ jρ ]

(k)×a j′ρ ]
( jρ )+ . . .

(C.87)

and for practical computations between even-even and odd even nuclei as a first
order we take only the first and second summation, in this case, we can related the
coefficients θ and ξ in eqs. (C.86) and (C.87) to the occupation probabilities of the
single particle orbits like

ξ j = u jb1

ξ j j′ = v jβ j j′
√

10
Nρ (2 j+1 b2

θ ′j =
v j√
Nρ+1

b1

θ j j′ = u jβ j′ j

√
10

2 j+1 b2

(C.88)

in the eq. (C.88) we have assumed that the odd-even nucleus is described as particle
coupled to an even-even core nucleus. For a hole coupled to the core the coefficients
are given by

ξ j = v jb1

ξ j j′ = −u jβ j′ j

√
10

Nρ (2 j+1 b2

θ ′j =
u j√
Nρ+1

b1

θ j j′ = v jβ j′ j

√
10

2 j+1 b2

(C.89)

the coefficientes b1 and b2 can in principle be determined from a the semi-microscopic
derivation, the ratio of b2 and b1 given by b2

b1
= 1

Kβ
with Kβ = (∑ j j′ β

2
j j′)

(1/2) and in
addition the remaining coefficient b1 can be used to satisfy the sum rules for and for
particle-coupling

∑odd〈odd,N = Nν +Nπ |P+
j |even,N = Nν +Npi〉2 = (2 j+1)u2

j

∑odd〈even,N = Nν +Nπ |P+
j |odd,N = Nν +Npi〉2 = (2 j+1)v2

j
(C.90)

and for hole coupling

∑odd〈odd,N = Nν +Nπ |P+
j |even,N = Nν +Npi〉2 = (2 j+1)v2

j

∑odd〈even,N = Nν +Nπ |P+
j |odd,N = Nν +Npi〉2 = (2 j+1)u2

j
(C.91)
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C.4.3 Beta decay operators

In the beta decay a proton is transformed into a neutron (or viceversa) with emsion
of an electron and an antineutrino. In the ground state of an even-even nucleus where
all particles are paired, one must break a pair to have a beta-decay process.

Operators connecting even-even and odd-odd nuclei are a bit more complex. The
most straightforward case when the decay of odd-even nuclei through the conversion
of the unpaired particle from proton to a neutron or from neutron to proton. The two
main contributions of this process are given by the Fermi decay with no change of
angular momentum and Gamow-Teller decay with a change of one unit of angular
momentum. For the case of β− decay, the operators as a first approach has the form

ÔF = ∑ jπ j jν ηF
jπ j jν

[P+
jπ × P̃jν ]

(0)

ÔGT = ∑ jπ j jν ηGT
jπ j jν

[P+
jπ × P̃jν ]

(1)
µ

(C.92)

where the coefficients ηF
jπ j jν

and ηGT
jπ j jν

depend on the form of the beta-decay oper-
ator. If the beta decay takes place between proton and neutron orbits with the same
orbital quantum number, the lowest order term of the decay operator are given by

ηF
jπ j jν

=−
√

2 jπ +1δ jπ jν

ηGT
jπ j jν

= (−1)lπ+ jπ− 3
2

√
(2 jπ +1)(2 jν +1)

2

{
1/2 1/2 1
jπ jν lpi

}
(C.93)

in the lowest order transitions between orbits with different orbital quantum num-
bers (lπ 6= lν) are forbidden, in the case non-zero beta decay from higher order
terms involves radial integrals which contains microscopic information about the
interaction.

C.5 Interacting boson-fermion-fermion with two types of
fermions

The Hamiltonian of the extension of the IBFM to consider odd-odd nuclei may be
written like

H = HB +HF
π +V BF

π +HF
ν +V BF

ν +VRES, (C.94)

the boson and fermion Hamiltonian parameter are those given in the previous sec-
tions. The last term is the residual interaction between the odd proton and odd neu-
tron and is given by [79]

HRES = Hδ +Hσσδ +Hσσ +HT +HMM (C.95)
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where the including terms contains strengths of the delta interaction( Vδ ), the spin-
spin interaction (Vσσ ), the spin-spin-delta interaction (Vσσδ ), and tensor interaction
(VT ) are determined from a fit to the experimental levels,

Hδ = 4πVδ δ (rπ − rν)δ (rπ −R0)δ (rν −R0),

Hσσδ = 4πVσσδ δ (rπ − rν)σπ ·σν δ (rπ −R0)δ (rν −R0),

Hσσ =−
√

3Vσσ σπ ·σν ,

HT =VT [3(σπ · rπν)(σν · rπν)
1

r2
πν

−σπ ·σν ],

HMM = 4π
δ (rπ−rν )

rπ rν
∑km VkY ∗km(π)Ykm(ν)

(C.96)

where rπν = rπ − rν and R0 = 1.2A1/3fm,
This residual interaction can be diagonalized in the quasi-particle scheme basis,
where
the state ( j̃π , j̃ν) jπν , with quasiproton jπ and quasineutron jν coupled to the

angular momentum jπν ; |ndνI〉 dtenotes the standard IBM basis states with nd d-
bosons coupled to angular momentum I, here ν are the additional quantum numbers
needed to specify the sate, and ns = N−nd s-bosons; the angular momenta jπν and
I are coupled to the total angular momentum J, the odd-odd wavefunctions can be
expressed in the form

|Jk〉= ∑ξ( jπ jν ) jπν ndνI( j̃π , j̃ν) jπν ,ndνI;J〉 (C.97)

where
|( j̃π , j̃ν) jπν ,ndνI;J〉 (C.98)

is the quasi-proton-quasi-neutron -boson basis and k represents here the k-th state
of the angular momentum J. The relationship between two particles with two quasi-
particles matrix elements are given by

〈 j′ν j′π ;J|VRES| j′ν j′π ;J〉qs = (u j′ν u j′π u jν u jπ + v j′ν v j′π v jν v jπ )〈 j′ν j′π ;J|VRES| jν jπ ;J〉

−(u j′ν v j′π u jν v jπ + v j′ν u j′π v jν u jπ )∑
J′
(2J′+1)

{
j′ν jπ J′

jν j′π J

}
〈 j′ν j′π ;J|VRES| jν jπ ;J〉

(C.99)
The electromagnetic transition E2 operator for odd-odd nuclei can be written like

T (E2) = eB
π QB

π + eB
ν QB

ν − ∑
ρ=π,ν

1√
5 ∑

j j′
(u j′u j− v j′v j)〈 j′‖eeff,ρ r2Y (2)‖ j〉[a†

j′ × ã j]
(2)

(C.100)
and the M1 transitions
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T (M1) =
√

3
4π

(
gB

π LB
π +gB

ν LB
ν − ∑

ρ=π,ν

1√
3 ∑

j, j′
(u j′u j + v j′v j)〈 j′‖gl,ρ l+gs,ρ s‖ j〉[a†

j′ × ã j]
(1)

)
,

(C.101)
where LB

ρ is the boson angular momentum, l is the fermion orbital angular momen-
tum, and s is the fermion spin.

The effective coefficients are taken from the Ref [80]:

Coefficient Value
eB

π 0.13eb
eB

ν 0.13eb
eeff,π 0.405e
eeff,ν 0.135e
gB

π 1.3µN

gB
ν −023µN

gl,π 1.0µN

gs,π 3.910µN

gl,ν 0µN

gs,ν −2.678µN

where the g- have been quanched bya factor of 0.7.
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C.6 High Order Contributions and corrections

The partial nuclear matrix elements in neutrinoless double beta decay, VV, MM,
AA, PP, PP have their origin from the vector, the weak-magnetism, the axial, the
pseudoscalar coupling and the interference of the axial-vector and pseudoscalar
coupling, respectively. They can be expressed in relative coordinates by using the
second quantization [81]

hF(p) = hF
VV (p)

hGT (p) = hGT
AA (p)+hGT

AP (p)+hGT
PP (p)+hGT

MM(p)
hT (p) = hT

AP(p)+hT
PP(p)+hT

MM(p)
(C.102)

The finite nucleon size (FNS) correction

gv(p2) = gv
1

(1+ p2

M2v
)2

gA(p2) = gA
1

(1+ p2

M2v
)2

(C.103)

fixed by the electromagnetic form factor of the proton

M2
v = 0.71(GeV/c2)2

MA = 1.09GeV/c2 (C.104)

The short-range correlations are usually taken into account by multiplying the po-
tential H(r) by Jastrow function squared,

f (r) = 1− e−ar2
(1−br2)

a = 1.1. f m−2 and b = 0.68 f m−2 (C.105)

C.7 Transition Densities

The transition operator of this work applied to odd-even nuclei include the bosonic
and fermionic operator part. The development of the transition operator comes from
the generalized seniority scheme which we perform the mapping of the single par-
ticle operator in the space of boson-fermion.

The one body transition operator in the m scheme may be written

T̂ (λ )
µ = ∑

αβ

〈α|T (λ )
µ |β 〉c†

α cβ (C.106)

the tensor coupled form for this operator
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T̂ (λ )
µ = ∑

mα mβ

(−1) jα−mα

(
jα λ jβ
−mα µ mβ

)
c†

α cβ

∑kα kβ
〈kα‖T (λ )‖kα〉

[c†
kα
×c̃k

β
]
(λ )
µ

2λ+1

(C.107)

where α stands for nα , lα , jα , mα , the one nucleon creation operator (proton or
neutron) in the shell kα with single particle level quantum numbers nα lα 1/2
and jα . The annihilation operator with good tensor character is given by c̃ jαmα

=
(−1) jα−mα c jα−mα

The reduced matrix element for the n-particle wave function can
be written as a product over one-body transition densities (OBTD) times reduced
single-particle matrix elements

〈Ψf ‖T̂ (λ )‖Ψi〉= ∑
kα kβ

〈nwJ‖[c†
kα
× c̃kβ

]λ‖nw′ j′〉
√

2λ +1
(C.108)

C.8 Diagonalization IBFM

The full Hamiltonian is diagonalized in the truncated basis

|(αcLc, j)JM〉. (C.109)

By construction HB and HF are diagonal in the basis (C.109). The matrix elements
of the boson-fermion interaction

VBF = ∑
λ

∑
ik

v(λ )ik B(λ )
i ·F

(λ )
k (C.110)

can be separated into a boson and a fermion part

〈(αc,Lc, j)JM|VBF |(α ′c,L′c, j′)JM〉

= ∑
λ

∑
i,k

v(λ )i j (−1) j+J+L′c

{
Lc j, J
j′ L′c λ

}
×〈(αc,Lc)‖B(λ )i‖(α

′
c,L
′
c)〉〈( j‖F(λ )

k ‖ j′〉

(C.111)

C.9 Woods-Saxon potential

The WS is based upon the sum of a spin-independent central potential, a spin-orbit
potential, and the Coulomb potential,

V (r) =V0(r)+Vso(r)l · s+Vc(r), (C.112)



C.9 Woods-Saxon potential 79

where Vo(r) is the spin-independent central potential:

Vo(r) =Vo fo(r) (C.113)

with a fermi shape

fo(r) =
1

1+[exp(r−R0)/a0]
, (C.114)

Vso(r) is the spin-orbit potential:

Vso(r) =Vso
1
r

d fso(r)
dr

, (C.115)

with
fso(r) =

1
1+[exp(r−Rso)/a0]

, (C.116)

Vc(r) is the Coulomb potential for protons based upon the Coulomb potential for a
sphere of radius Rc:

Vc(r) =
Ze2

r
for r > Rc (C.117)

and

Vc(r) =
Ze2

Rc

[
3
2
− r2

2R2
c

]
for r 6 Rc. (C.118)

The radii R0,Rso and Rc are usually expressed as:

Ri = riA1/3 (C.119)





Appendix D
Eikonal Scattering

In the eikonal approximation, we assume the projectile follows a straight-line tra-
jectory. For a plane wave along the beam direction, chosen as ẑ and decomposing
the vector q into the component of the direction perpendicular qt and the parallel to
the collision axis ẑ we have q = qt +Qzẑ. Making a decomposing the position vector
R into a component in the direction of the incident beam n̂ and another perpendicu-
lar to it as R = zn̂+b, and typically for forwarding angle scattering,Q� k. Follows
that Q · n̂≈ 0, for small energy transfers, the momentum transfer Q is predominantly
transverse making an easy way to perform the numerical calculations.

We are assuming that at high enough energies the trajectory of the scattered
particle is a straight line and there is a very small momentum transfer along the
collision. This means that the momentum distribution of the scattering wave func-
tion is sharply peaked at the incident momentum. For an incident wave along the
z-axis, with a wave vector k = kẑ if 4kz � kz and 4kt � kz, where 4kz and
4kt denote respectively the widths of the momentum distributions along longi-
tudinal and transversal directions. These conditions for enough energies makes
E � |V | → kz � 4kz and small scattering angles means tanθ = kt/kz � 1. To
describe the eikonal approximation, we use the cylindrical coordinates r ≡ (z,b,φ).
We can write r = zẑ+b, where z extends from −∞ to ∞, and the impact parameter
vector b subtends the azimuthal angle φ with the range (0,2π). Accordingly the
volume element is

d3r = bdbdzdφ (D.1)

Considering the scattering factorized wave function

Ψ
(+)(k,r) =

eikz

(2π)3/2Ψ̂
(+)(z,b) (D.2)

Inserting the factorized wave function into the Schrodinger equation[
2ik

∂

∂ z
− 2µ

h̄2 U(z,b)
]

Ψ̂
(+)(z,b) =52

Ψ̂
(+)(z,b) (D.3)

81
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and since th eikonal wave function is assumed to be a sharp wave packet in mo-
mentum space , with Ψ̂ (+) giving the dispersion around kẑ we can assume that the
relevant Fourier components of Ψ̂ (+) have negligible momentum, as compared with
its incident value. This leads to the relation 52Ψ̂ (+)(z,b)� 2q∂Ψ̂ (+)/∂ z making
52Ψ̂ (+)(z,b)very small, therefore neglecting this contribution[

2ik
∂

∂ z
− 2µ

h̄2 U(z,b)
]

Ψ̂
(+)(z,b) = 0 (D.4)

gives

Ψ̂
(+)(z,b) = exp[− i

h̄v

∫ z

−∞

dz′U(z′,b)] (D.5)

where v is the velocity along the z-axis , which within thee eikonal appoximation
has a constant value. We can introduce the eikonal phase is given by

χ(b) =− k
2Ek

∫
∞

−∞

U(z′,b)dz′ (D.6)

or simply

χ(b) =− 1
h̄v

∫
∞

−∞

U(z′,b)dz′ (D.7)

where U(z′,b) is the optical potential which includes the coulomb phase. However
if the projectile is composed system of n particles the eikonal phase should be gener-
alized nevertheless in principle if we consider in the DCX procedure one interacting
nucleon per exchange,



Appendix E
Elastic Scattering

Let us now obtain explicitly the scattering amplitude, in case the projectile is not
composed system, following the standard procedure [82]. The scattering amplitude
within the eikonal approximation

f (Q) =− µ

2π h̄2

∫
d2be−iQ·b

∫
∞

−∞

dzU(z,b)Ψ̂ (+)(z,b) (E.1)

whe have used the approximation

Q · r = zQz +Qt · r'Qt · r = Q ·b

which corresponds to neglecting the longitudinal momentum transfer, using Eq.
(E.1) and Eq. (D.5), we obtain

f (Q) =− µ

2π h̄2

∫
d2be−iQ·b

∫
∞

−∞

dzU(z,b)exp[−i
k

2Ek

∫ z

−∞

dz′U(z′,b)] (E.2)

and changing the variable

z→ w =−i
k

Ek

∫ z

−∞

dz′U(z′,b) (E.3)

with this transformation,

dz = i
2Ek

kU(z,b)
dw (E.4)

z =−∞→ w = 0 (E.5)
z = ∞→ w = iχ(b) (E.6)

therefore Eq. (E.2) becomes

f (Q) =− ik
2π

∫
d2be−iQ·b

∫ iχ(b)

0
dwew (E.7)
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and performing the integration over w and using the limits of Eq. (E.6) we arrives
to the standard expression of the elastic scattering amplitude

f (Q) =− ik
2π

∫
d2be−iQ·b[eiχ(b)−1] (E.8)

for practical calculations it is convenient to express the above integrals over b in
terms of its modulus b and azimuthal angle φb

d2b = bdbdφb (E.9)
−Q ·b = bQcos(φ −φb) (E.10)

where φ is the azimuthal angle associated with −Q. φ is also the angle between the
scattering plane and the plane x-z. So changing the variable

φ → ϕ = φ −φQ (E.11)

and therefore

f (Q) =− ik
2π

∫
bdb

∫ 2π

0
dϕeiQbcos(ϕ)[eiχ(b)−1] (E.12)

when the eikonal phase has axial symmetry we can makes the the square brackets
even independent of ϕ and we obtain

f (Q) =−ik
∫

bdbeiQbcos(ϕ)[eiχ(b)−1]
(

1
2π

∫ 2π

0
dϕeiQbcos(ϕ)

)
(E.13)

it is convenient express the integral into a one dimensional integral over cylindri-
cal Bessel function, therefore the round brackets can be written in terms of Bessel
function order zero where

J0(Qb) =
1

2π

∫ 2π

0
eQbcosϕ dϕ (E.14)

therefore
f (Q) =−ik

∫
bdbJ0(Qb)[eiχ(b)−1] (E.15)

it is convenient express the scattering amplitude in terms of θ , so taking taking
Q = 2ksin(θ/2) we arrives to well known formula [83]

f (θ) =−ik
∫

bdbJ0(2kbsin(θ/2))[eiχ(b)−1] (E.16)

E.1 Elastic cross section

The elastic scattering cross section is
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dσel

dΩ
= | f (θ)|2 (E.17)

For numerical purposes, it is convenient to make use of the analytical formula
the Coulomb scattering amplitude in the with the Eikonal approximation [84]

fC(θ) =
ZPZT e2

2µv2sin( θ

2 )
exp{−iη ln[sin2(θ/2)]+ iπ +2iφ0} (E.18)

where
φ0 = argΓ (1+ i

η

2
) (E.19)

but can be used

φ0 =−ηC+
∞

∑
j=0

(
η

j+1
− arctan

η

j+1

)
(E.20)

where C = 0.05772156... is the Euler constant, and η = ZpZT e2/h̄v and ZP,ZT are
the charges of projectile and target and v is their relative velocity. It is convenient
for the numerical calculations since the elastic scattering amplitude can be with
a separate contribution of the Coulomb scattering amplitude. The problem of the
integration of Eq. (E.16) is that the Coulomb part of the optical potential diverges.
Including the both Coulomb and nuclear interactions

V (r)≡VN(r)+VC(r) (E.21)

One solves this by using

χ = χN +χC (E.22)

where the χN is given by Eq. (D.7) without the Coulomb potential, and writing the
Coulomb eikonal phase, χC as

χC(b) = 2η ln(kb) (E.23)

where k is the wavenumber in the center of mass of the system. . This Coulomb
phase of the above equation diverges at b = 0, however there the scattering at small
impact parameters there is strong absorption suppress. In order to evaluate the inte-
gral (E.16), we can adds and subtracts the Coulomb amplitude fC(θ) in Eq. (E.16),
therefore we obtain ,

f (θ) = fC(θ)+ ik
∫

∞

0
dbJ0(2ksin(θ/2)b)exp[iχC(b)]{1− exp[iχN(b)]} (E.24)

The advantage in using this formula is that the term 1− exp[iχN(b)] becomes zero
for impact parameters larger than the sum of the nuclear radii, thus the integral needs
to be performed only within a small range.
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E.2 Derivation of the first order term of the bosonic operator

From Eq. (1.49) using Eqs. (1.51 )and (1.52)

〈 jn+2(S
1
2 n− 1

2 ν+1D
1
2 ν),νd ,n∆ ,L = 0‖T (0)

+ ‖
jn(S

1
2 n− 1

2 ν D
1
2 ν),νd ,n∆ ,L = 0〉

= 〈s 1
2 n− 1

2 ν+1d
1
2 ν‖p0s† + p′0s†s†s+ . . .q0s†[d†d̃](0)

+∑
L

qL
0s†[[d†d†](0)[d̃d̃](0)](0)+ . . .‖s

1
2 n− 1

2 ν d
1
2 ν〉

= q0〈s
1
2 n− 1

2 ν+1d
1
2 ν‖s†‖s 1

2 n− 1
2 ν d

1
2 ν〉

+〈s 1
2 n− 1

2 ν+1d
1
2 ν‖s†[d†d̃](0)‖s 1

2 n− 1
2 ν d

1
2 ν〉+ · · ·

=
√

1
2 n− 1

2 ν +1
√

2Ω−n−ν

2Ω
〈 j2(S),L = 0‖T (0)

+ ‖0〉,

(E.25)

due to the reduced matrix element

〈sns‖s‖sns+1〉=
√

ns +1 =
√

1
2 n− 1

2 ν +1

and using the relations √
2Ω−n−ν

2Ω
=
√

Ω−N−nd
Ω

the as a first approximation

p0 =

√
Ω −N−nd

Ω
〈 j2(S)L = 0‖T (0)

+ ‖0〉 (E.26)
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