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Summary and aim of the thesis 

Sphingolipids are a class of bioactive signaling molecules that regulate key cellular processes including cell 

growth, senescence and apoptosis, and have been implicated in age-related neurodegeneration. Previous 

studies have reported elevated ceramide levels in the brain of old rodents, but a systematic investigation of the 

impact of age on brain sphingolipid metabolism was still lacking. In the present study we quantified 17 key 

sphingolipid species in the hippocampus of young (3 months), middle-aged (12 months) and old (21 months) 

male and female mice. Lipids were extracted and quantified by liquid chromatography/mass spectrometry; 

transcription of enzymes involved in sphingolipid biosynthesis was evaluated by qPCR. Age-dependent changes 

of multiple sphingolipid species - including ceramide (d18:1/18:0), sphingomyelin (d34:1), hexosylceramide 

(d18:1/16:0), ceramide (d18:1/24:0) - were found in mice of both sexes. Moreover, sex-dependent changes 

were seen with hexosylceramide (d18:1/18:0), ceramide (d18:1/22:0), sphingomyelin (d36:1) and 

sphingomyelin (d42:1). Importantly, an age-dependent accumulation of sphingolipids containing nervonic acid 

(24:1) was observed in 21 month-old male (p = 0.04) and female mice (p < 0.001). Consistent with this increase, 

transcription of the nervonic acid-synthesizing enzyme, stearoyl-CoA desaturase (Scd1 and Scd2), was 

upregulated in 21 month-old female mice (Scd1 p = 0.006; Scd2 p = 0.009); a similar trend was observed in 

males (Scd1 p = 0.07). In conclusion, the results suggest that aging is associated with profound sex-dependent 

and -independent changes in hippocampal sphingolipid profile. The results also highlight the need to examine 

the contribution of sphingolipids, and particularly of those containing nervonic acid, in normal and pathological 

brain aging. 

Nevertheless, also the circulating ceramids are altered in persons affected by age-dependent pathologies such 

as metabolic syndrome, mild cognitive impairment and Alzheimer’s disease, but the potential impact of age 

and gender on plasma ceramide trajectories in healthy subjects has not been systematically examined. In this 

study we quantified a panel of circulating ceramides and dihydroceramides in a cohort of 164 healthy subjects 

(84 female, 80 male; 19-80 years of age). The results show that plasma ceramide levels are significantly lower 
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(p < 0.05) in pre-menopausal women (aged 20-54 years) compared to age-matched men (aged 19-54 years). 

This difference disappears after menopause, such that plasma ceramide levels in post-menopausal women 

(aged 47-78 years) are statistically identical to those measured in aged-matched men (aged 55-80 years). In 

women of all ages, but not in men, circulating levels of ceramide (d18:1/24:1) were negatively correlated with 

plasma estradiol levels. Finally, in vitro experiment showed that incubation with estradiol (10 nM, 24 h) lowers 

ceramide levels in the human MCF7 breast cancer cell line. Together the results suggest the existence of 

gender- and age-dependent alterations in circulating ceramide concentrations, which are dependent on 

estradiol. In addition to my previous study on rodent model, the present work introduces menopause and 

fluctuating estradiol levels as new variables to keep into account in the study of aging. 

Aging is the main risk factor for the development of neurodegenerative diseases such as Alzheimer's disease 

but also chronic diseases such as metabolic syndrome. Indeed, it is becoming increasingly evident that cellular 

and biochemical alterations observed in metabolic syndrome like, among others, alterations in lipid mediators, 

may represent a pathological bridge between age-related neurological disorders and metabolic syndrome. 

 Sphingolipids have been implicated in the pathogenesis of metabolic dysfunction, but physiological signals 

regulating their formation and deactivations in hypothalamus are unknown. Hypothalamus is an especially 

important node in central and peripheral regulation of feeding behavior. We studied the effect of high-fat diet 

(HFD) or food deprivation (FD) on sphingolipid levels and on the expression of enzymes involved in sphingolipid 

metabolism in the hypothalamus. To study the effect of HFD, mice were divided into two groups: standard diet 

(2.66 kcal/g) and HFD (5.24 kcal/g) and killed at different time points (1-3-7-14-28 days). To study the effect of 

fasting, male mice were subjected to 4 feeding conditions: 1) free feeding (FF); 2) 12h food deprivation (FD); 3) 

1h refeeding after FD; 4) 6h refeeding after FD. Hypothalamic sphingolipids were extracted and quantified by 

LC-MS/MS. Transcription of enzymes involved in sphingolipid biosynthesis was evaluated by qPCR. After 1 day 

and 14 days, mice exposed to a HFD showed lower levels of ceramide (d18:1/24:0), its precursor 

dihydroceramide (d18:0/24:0), and ceramide (d18:1/24:1) compared to mice fed standard diet. Significant 

decrease in sphingosine-1-phosphate (SO-1-P) was also observed after 7 and 14 days of HFD. Relative to FF, 
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fasting: 1) decreased SO-1-P levels; 2) increased sphingosine, the precursor of sphingosine-1-phosphate; 3) 

reduced the levels of dihydroceramide (d18:0/18:0), a product of de novo ceramide biosynthesis; 4) down-

regulated transcription of sphingosine kinases (SphK) and ceramide synthase 1 (CerS1). Our results suggest that 

hypothalamic levels of SO-1-P, its precursor sphingosine and enzymes involved in their metabolism (SphK) are 

influenced by feeding status. Feeding also regulates the de novo synthesis of sphingolipid, suggesting additional 

roles for these lipids in the control of energy balance. Finally, a single intracerebroventricular injection of an 

acid ceramidase inhibitor, ARN14974, which has been shown to imbalance the ceramide/sphingosine-1-

phosphate rheostat, was able to alter some parameters of feeding behavior such as meal size. 

The aim of my studies was to explore the complexity of sphingolipid metabolism and understand the role of 

sphingolipids as lipid-derived mediators of cell signaling in physiological or altered conditions in rodent model 

and in human. Aging and feeding states are strongly correlated since aging has been associated with 

development of obesity and metabolic disorders, which depend, in turn, on altered feeding status; on the other 

hand, hyperphagia or fasting may have respectively detrimental or beneficial effect on aging and longevity. 

Furthermore, since a variety of studies have been published on the relevance of dimorphism in the 

development of age-related disorders, I pursued my research keeping into account sex-related differences. 

Brain areas and plasma have been chosen as target tissues for my studies. My research has been focused on 

specific cerebral areas involved respectively in aging and cognition (hippocampus) and feeding control and 

energy balance (hypothalamus). To investigate the role of ceramides in human, I had access to plasma from 

healthy subjects recruited by Santa Lucia Foundation. Plasma is widely used to assess biomarkers of 

pathological states in human studies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), a unique 

technology with the requisite of specificity, sensitivity and quantitative precision capabilities, allowed me to 

qualify and quantify target sphingolipids. 
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1.1 Why to study Sphingolipids? 

Sphingolipids, the second largest class of membrane lipids, were initially considered just as structural 

components of cellular membranes, having little relevance in cellular signaling. Nowadays, however, they are 

regarded as multifunctional bioactive lipids. The term “sphingosin” was coined and first published in 1884 by 

J.L.W. Thudichum (1829–1901), the German-born physician who identified sphingolipids in brain (Hawthorne 

1975). The name for this enigmatic family of lipids was taken from the Sphynx of Greek mythology which was 

well known for its love of riddles. Through extensive research the secrets of sphingolipids have now become 

known. Over the past thirty years, research in the sphingolipid field has revealed that these molecules are 

involved in multiple regulatory functions in health and disease (Hannun and Obeid 2008). They are involved in 

the pathogenesis of cancer (Ogretmen and Hannun 2004), inflammation (Maceyka and Spiegel 2014), pain 

(Patti, Yanes et al. 2012), metabolic disorders (Chaurasia and Summers 2015), aging and senescence (Venable, 

Lee et al. 1995).  

However, Sphynx-lipids continue to keep us guessing. 
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1.2 Sphingolipids: chemical structures and biosynthesis 

Sphingolipids are essential lipids consisting of a sphingoid backbone that is N-acylated via amide bond with 

various fatty acids. Ceramides, which are considered the metabolic hub, can differ from each other by the 

chain-length, hydroxylation, or saturation of both the sphingoid base and fatty acid moieties (Fig.1). Sphingoid 

bases are of three general chemical types: sphingosine, dihydrosphingosine (also known as sphinganine) and 

phytosphingosine. Based on the nature of the sphingoid base backbone, we can distinguish three main species: 

ceramide, which contains sphingosine, has a trans-double bond at the C4–5 position in the sphingoid base 

backbone; dihydroceramide, which contains sphinganine, presents a saturated sphingoid backbone devoid of 

the 4,5-trans-double bond; phytoceramide, the yeast counterpart of the mammalian ceramide, which contains 

phytosphingosine, has an hydroxyl group at the C4 position (Hannun and Obeid 2008; Pruett, Bushnev et al. 

2008). 

 

Fig.1. The generic ‘ceramide’ is a family of >50 distinct molecular species, as ceramide may exist without the double bond 

(dihydroceramide), with the double bond (ceramide), with a 4′-hydroxy sphingoid base (phytoceramide), with a 2′-hydroxy (α-

hydroxyceramide), or both hydroxyl groups (α-hydroxy-phytoceramide). Each of these can have various N-linked acyl chains. Adapted 

from Hannun and Obeid, 2008. 

The fatty acid components of ceramides vary widely in composition, but they typically range from 14 to 26 

carbon atoms, although the most common fatty acids are palmitic (C16:0), stearic (C18:0), lignoceric (C24:0) 

and nervonic (C24:1), non-hydroxy fatty acids.  

Sphingolipid family includes ceramide (Cer), dihydroceramide (dHCer), sphinganine (SA), sphinganine-1-

phosphate (SA-1-P), sphingosine (SO), sphingosine-1-phosphate (SO-1-P) and more complex sphingolipids such 

as glucosylceramide (GluCer) and sphingomyelin (SM). Sphingolipid metabolic pathway shows a complex 
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network which results in the formation of different metabolites where ceramide occupies a central position in 

the biosynthesis and catabolism of sphingolipids.  

Multiple metabolic pathways converge upon ceramide formation which can be synthesized by de novo 

pathway, hydrolysis of complex sphingolipids or salvage pathway (Fig.2). 

In the de novo synthesis, the first step is the condensation of L-serine and palmitoyl-CoA catalyzed by the 

enzyme serine palmitoyltransferase (SPT) which leads to the formation of 3-ketosphinganine. Stereoselective 

reduction of the keton by 3-ketosphinganine reductase generates sphinganine. N-acylation by ceramide 

synthase (CerS) forms dihydroceramide which is then converted into ceramide by dihydroceramide desaturase 

(DES) that catalyzes the introduction of the trans-double bond at carbon 4-5. In mammals, six genes that 

encode ceramide synthases have been cloned and called longevity-assurance homologues (LASS1-6) or 

ceramide synthases (CerS1-6). From a biochemical point of view, each isoform has substrate preference for a 

specific chain-length fatty acyl-CoA, thus generating distinct ceramides with distinct N-linked fatty acid (for 

example, LASS1 shows significant preference for fatty acid C18:0). The de novo pathway is activated in 

response to tumor necrosis factor (TNF)-α and chemotherapeutic agents; in fact this pathway may be the 

mechanism by which several chemotherapeutics agents induce apoptosis. De novo pathway is also activated by 

free palmitoyl-CoA and this has been proposed to play a role in mediating complications of diabetes and 

obesity. The ceramide coming from the de novo synthesis is accumulated in the endoplasmatic reticulum and 

later transported to the Golgi apparatus to be used as substrate for the biosynthesis of complex sphingolipids; 

specific protein transfers, termed CERTs, are responsible for the transit of ceramide (Hanada, Kumagai et al. 

2003). In the Golgi apparatus, the primary alcohol of ceramide can undergo glycosylation forming 

glucosylceramide or can incorporate a phosphocholine head group from phosphatidylcholine, producing 

sphingomyelin.  

The hydrolysis of sphingomyelin leads to ceramide accumulation catalyzed by the sphingomyelinases (SMases). 

These enzymes are distinguished according to their optimum pH and subcellular localization, and although 

several mammalian SMases have been identified and characterized, the neutral sphingomyelinase 2 (nSMase 2, 
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SMPD3) and acid sphingomyelinase (aSMase, SMPD1) are the most extensively studied (Jenkins, Canals et al. 

2010). Acid sphingomyelinase has an optimum pH of 4.5–5.5 and it is localized in the lysosome. The neutral 

sphingomyelinase acts at neutral pH, it is stimulated by cation Mg2+ or Mn2+ and it is essentially located in the 

plasma membrane, cytosol, endoplasmatic reticulum or nuclear membrane. The sphingomyelinases (neutral 

and acid) are a class of phosphodiesterases activated by stress-signaling molecules such as the TNF-α and 

interleukin-1β and by other stress stimuli as exposure to ultraviolet (UV) light or radioactive radiation.  

Finally, the salvage pathway occurs within the lysosome and it is based on the generation of ceramide by 

catabolism of complex sphingolipids such as sphingomyelin and hexosylceramide. The common metabolic 

product, ceramide, can be further hydrolyzed by acid ceramidase to form sphingosine and free fatty acid, both 

of which are able to leave the lysosome. Sphingosine may then re-enter the pathway for synthesis of ceramide 

through reacylation or can be phosphorylated to sphingosine-1-phosphate (SO-1-P) by sphingosine kinases 

(SphK). The conversion of ceramide to SO-1-P has been termed as “sphingolipid rheostat” and it involves 

enzymes which may be potential targets to tilt the balance between these bioactive molecules, eventually 

contributing to determine cell fate (Cuvillier, Pirianov et al. 1996). In fact, ceramide generally exerts pro-

senescent and pro-apoptotic effects in both normal and tumour cells, while SO-1-P enhances cell survival and 

proliferation by activating selective G protein-coupled receptors named S1PR1-5.  

The enzymes responsible to regulate the ceramide/SO-1-P axis are the ceramidases, ubiquitous amido-

hydrolases responsible for the cleavage of ceramide into sphingosine and fatty acid. Five mammalian 

ceramidases have been cloned and biochemically characterized due to the differences in substrate specificity, 

cellular localization, optimum pH, tissue distribution and expression level: acid ceramidase; neutral ceramidase; 

alkaline ceramidase 1; alkaline ceramidase 2; alkaline ceramidase 3. 
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Fig. 2. Sphingolipid metabolism: bioactive sphingolipid metabolites and key enzymes. SPT (serine palmitoyltransferase); CerS (ceramide 

synthase); CDase (ceramidase); DES (desaturase); SphK (sphingosine kinase); SPPase (sphingosine-1-phosphate phosphatase); SMS 

(sphingomyelin synthase); SMase (sphingomyelinase); GCS (glucosylceramide synthase); GCase (glucosylceramidase); GALC 

(galactosylceramidase). 
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Chapter 2 

 

2 Age-dependent changes in nervonic acid-containing 

sphingolipids in mouse hippocampus 
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2.1  Introduction 

Sphingolipids are a class of bioactive signaling molecules that regulate key cellular processes including cell 

growth, senescence and apoptosis (Venable, Lee et al. 1995; Hetz, Hunn et al. 2002; Bartke and Hannun 2009; 

Jana, Hogan et al. 2009). Ceramides occupy a central place in sphingolipid metabolism (Fig. 1): they are 

synthesized de novo from the condensation of serine and palmitoyl-coenzyme A by the action of serine 

palmitoyltransferase (SPT), from the reacylation of sphingoid long-chain bases, or from the breakdown of more 

complex sphingolipids such as sphingomyelins and hexosylceramides (Gault, Obeid et al. 2010). Moreover, 

ceramides give rise to sphingosine, which is phosphorylated by sphingosine kinases to produce the transcellular 

messenger sphingosine-1-phosphate (Hannun and Obeid 2008).  

 

Fig. 1. Schematic view of sphingolipid metabolism, highlighting metabolites and enzymes targeted by the present study. Abbreviations: 

SPT (serine palmitoyltransferase); CerS (ceramide synthase); CDase (ceramidase); DES (desaturase); GBA1 (glucosylceramidase); GALC 

(galactosylceramidase); HexT (hexosyltransferase); SMS (sphingomyelin synthase); SMase (sphingomyelinase); SK (sphingosine kinase); 

SPPase (sphingosine-1-phosphate phosphatase). 
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Evidence from animal and human studies suggests that Alzheimer’s disease (AD) and Parkinson’s disease (PD) 

are associated with abnormalities in sphingolipid metabolism (Han, D et al. 2002; Cutler, Kelly et al. 2004; 

Mielke, Haughey et al. 2010; Mielke, Maetzler et al. 2013). Aging is the primary risk factor for AD and PD 

(Collier, Kanaan et al. 2011; Niccoli and Partridge 2012). Multiple lines of evidence indicate that tissue ceramide 

profiles change during aging and in response to a variety of age-related stress factors (e.g. oxidative stress) 

(Lightle, Oakley et al. 2000; Cutler, Kelly et al. 2004; Costantini, Kolasani et al. 2005; Perez, Jurisicova et al. 

2005; Astarita, Avanesian et al. 2015). Despite this growing body of evidence, a systematic study of the impact 

of age on brain sphingolipid metabolism remains to be performed. Such a study should take into consideration 

as an independent variable sex along with age, because of the dimorphic trajectory of both healthy aging and 

neurodegenerative disorders (Fratiglioni, Launer et al. 2000; Moser and Pike 2016).  

In the present study, we used a targeted lipidomic approach to identify age- and sex-dependent alterations in 

sphingolipid metabolism in mouse hippocampus. We selected this brain region because it is one of the first to 

become damaged in AD, leading to memory loss and cognitive impairment (Lauterborn, Palmer et al. 2016). 

The results suggest that aging is accompanied by multiple, sexually dimorphic changes in hippocampal 

sphingolipid profile. Notably, we found that sphingolipid species containing the long-chain monounsaturated 

fatty acid, nervonic acid (24:1), are markedly affected by aging, pointing to these lipids as potential 

contributors to age-dependent cognitive impairment. 
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2.2 Materials and methods 

2.2.1 Animals 

Male and female C57Bl/6J mice (3, 12 and 21 months) were purchased from Charles River Laboratories (Calco, 

Lecco, Italy). Upon arrival, they were acclimatized to the vivarium and kept in a temperature (22 °C) and 

humidity controlled environment under a 12h light/12h dark cycle (lights on at 7:00 A.M.). Animals were 

housed under enriched conditions (Mattson, Duan et al. 2001; Segovia, del Arco et al. 2009) with bedding 

changes every 15 days in mice aged 3-12 months, and every 21 days in mice aged 21 months. Standard chow 

and water were available ad libitum. All procedures were performed in accordance with the Ethical Guidelines 

of the European Community Council (Directive 2010/63/EU of 22 September 2010) and accepted by the Italian 

Ministry of Health.  

2.2.2 Chemicals 

Standards such as ceramide (d18:1/16:0), ceramide (d18:1/17:0), ceramide (d18:1/18:0), ceramide 

(d18:1/20:0), ceramide (d18:1/22:0), ceramide (d18:1/24:0), ceramide (d18:1/24:1(15Z)), dihydroceramide 

(d18:0/16:0), dihydroceramide (d18:0/18:0), dihydroceramide (d18:0/24:0), dihydroceramide (d18:0/24:1), 

sphingomyelin (d34:1), sphingomyelin (d35:1), sphingomyelin (d36:1), sphingomyelin (d42:1), sphingomyelin 

(d42:2), glucosylceramide (d18:1/12:0), glucosylceramide (d18:1/16:0), glucosylceramide (d18:1/18:0), 

glucosylceramide (d18:1/24:1) were purchased from Avanti Polar Lipids (Alabaster, Alabama, USA). Fatty acid 

standards such as heptadecanoic acid (17:0), nervonic acid (24:1), palmitic acid (16:0), stearic acid (18:0), oleic 

acid (18:1), eicosaenoic acid (20:1) and erucic acid (22:1) were purchased from Sigma-Aldrich (Milan, Italy). 

LC-MS grade solvents such as acetonitrile, isopropanol, water, methanol and chloroform and other chemicals 

such as trifluoroacetic acid and formic acid were from Sigma-Aldrich (Milan, Italy).  
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2.2.3 Tissue collection 

Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. Brains were removed; 

hippocampi were dissected on an ice-cold glass plate and were immediately flash frozen in liquid N2. Samples 

were stored at -80 °C before analyses. 

2.2.4 Lipid extraction 

Lipid extractions were performed according to a modified Bligh and Dyer protocol, as previously reported 

(Basit, Piomelli et al. 2015). Briefly, frozen hippocampi (10-20 mg) were homogenized in 2 mL of a 

methanol/chloroform mixture (2:1 vol/vol) containing trifluoroacetic acid (TFA, 0.1% final concentration), and 

spiked with a mixture of internal standards consisting of the following unnatural odd-chain lipids: 200 nM 

ceramide (d18:1/17:0), 400 nM sphingomyelin (d18:1/17:0) and 500 nM heptadecanoic acid (17:0). 

Glucosylceramide (d18:1/12:0) 200 nM was added as internal standard for hexosylceramides after having 

verified the absence from hippocampal extracts. After mixing for 30 s, lipids were extracted with chloroform 

(0.6 mL) and extracts were washed with purified water (0.6 mL). Samples were centrifuged for 15 min at 

2800×g at 15 °C. After centrifugation, the organic phases were collected and transferred to a new set of glass 

vials. To increase the extraction efficiency, the aqueous fractions were subjected to a second extraction. The 

organic phases were pooled, dried under N2 and residues were dissolved in 0.2 mL of methanol/chloroform 

(9:1 vol/vol). 0.1 mL of the total extract was saved for the measurement of more polar analytes such as 

sphingomyelins and hexosylceramides. The remaining solvent was evaporated under N2. Lipid pellets were 

reconstituted in chloroform (2 mL), loaded and fractionated using small glass columns packed with Silica Gel G 

(60-Å 230–400 Mesh ASTM; Whatman, Clifton, NJ). The flow through was discarded and ceramides and fatty 

acids were eluted with 2 mL of chloroform/methanol (9:1 vol/vol). The solvent was evaporated under N2; dried 

material was resuspended in 0.1 mL of methanol/chloroform (9:1 vol/vol) and transferred to glass vials for 

liquid chromatography/mass spectrometry (LC/MS) analyses.  
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2.2.5 Sphingolipid analyses 

An Acquity® UPLC system coupled with a Xevo triple quadrupole mass spectrometer (TQ-MS) were used as 

previously described (Basit, Piomelli et al. 2015). Lipids were separated using a BEH (Ethylene Bridged Hybrid) 

C18 column (2.1×50 mm, 1.7 µm particle size) and eluted at a flow rate of 0.4 mL/min. The mobile phase 

consisted of 0.1% formic acid in acetonitrile/water (20:80 vol/vol) as solvent A and 0.1% formic acid in 

acetonitrile/isopropanol (20:80 vol/vol) as solvent B. A step gradient program was used: 0.0–1.0 min 30% B, 

1.0–2.5 min 30 to 70% B, 2.5–4.0 min 70 to 80% B, 4.0–5.0 min 80% B, 5.0–6.5 min 80 to 90% B, and 6.6–7.5 

min 100% B. The column was then reconditioned to 30% B for 1.4 min. The total run time for analysis was 9 

min and the injection volume was 3 μL. Mass spectrometric detection was done in the positive electrospray 

ionization (ESI) mode and analytes were quantified in the multiple reaction monitoring (MRM) mode. Capillary 

voltage was set at 3 kV and the cone voltage at 25 V for all transitions. The source temperature was 120 °C. 

Desolvation gas flow was set at 800 l/h and cone gas (N2) flow at 20 l/h. Desolvation temperature was 600 °C. 

Analytes were identified by comparison of their retention times and MSn fragmentation patterns with those of 

authentic standards. The following MRM transitions were used for identification and quantification: ceramide 

(d18:1/16:0) (m/z = 520.0 > 264.2); ceramide (d18:1/18:0) (m/z = 548.0 > 264.2); ceramide (d18:1/20:0) (m/z = 

576.0 > 264.2); ceramide (d18:1/22:0) (m/z = 604.3 > 264.2); ceramide (d18:1/24:0) (m/z = 632.0 > 264.2); 

ceramide (d18:1/24:1 (15Z)) (m/z = 630.0 > 264.2). Dihydroceramide (d18:0/16:0) (m/z = 540.5 > 522.5); 

dihydroceramide (d18:0/18:0) (m/z = 568.5 > 550.5); dihydroceramide (d18:0/24:0) (m/z = 652.5 > 634.5); 

dihydroceramide (d18:0/24:1) (m/z = 650.5 > 632.5). Sphingomyelin (d34:1) (m/z = 703.25 > 184.1); 

sphingomyelin (d36:1) (m/z = 731.47 > 184.1); sphingomyelin (d42:1) (m/z = 815.14 > 184.1); sphingomyelin 

(d42:2) (m/z = 813.2 > 184.1). Hexosylceramide (d18:1/16:0) (m/z = 682.2 > 264.2); hexosylceramide 

(d18:1/18:0) (m/z = 710.1 > 264.2); hexosylceramide (d18:1/24:1) (m/z = 792.1 > 264.2). Data were acquired by 

the MassLynx software and quantified using the TargetLynx software.  
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2.2.6 Fatty acid analyses 

An Acquity® UPLC system coupled with a Xevo triple quadrupole mass spectrometer were used. Lipids were 

separated using a HSS C18 column (2.1 × 100 mm, 1.8 μm particle size) and eluted at a flow rate of 0.4 mL/min. 

The mobile phase consisted of 20 mM ammonium acetate in water as solvent A and acetonitrile/isopropanol 

(50:50 vol/vol) as solvent B. A step gradient program was used: 0.0–0.5 min 50% B, 0.5–3.5 min 50 to 90% B, 

3.5–4.5 min 90% B, 4.5–5.5 min 90 to 100% B, 5.5–7 min 100% B, 7–7.5 min 100 to 50% B and 7.5–9 min 50% B. 

The total run time for analysis was 9 min and the injection volume was 5 μL. Mass spectrometric detection was 

done in the negative ESI mode and analytes were quantified in the MRM mode. Capillary voltage was set at 3 

kV and cone voltage was set at 30 V for all transitions. The source temperature was 120 °C. Desolvation gas 

flow was set at 800 l/h and cone gas (N2) flow at 20 l/h. Desolvation temperature was 450 °C. Analytes were 

identified by comparison of their retention times and matching MRM transitions with authentic standards. 

MRM transitions were: nervonic acid (24:1) (m/z = 365.30 > 365.30), palmitic acid (16:0) (m/z = 255.04 > 

255.04), stearic acid (18:0) (m/z = 283.25 > 283.25), oleic acid (18:1) (m/z = 281.22 > 281.22), eicosaenoic acid 

(20:1) (m/z = 309.22 > 309.22), erucic acid (22:1) (m/z = 337.23 > 337.23) CE set at 5 eV. Data were acquired by 

the MassLynx software and quantified using the TargetLynx software. 

2.2.7 mRNA isolation, cDNA synthesis and quantitative real-time PCR 

Total RNA was extracted from tissues using TRIzol (Life Technologies, Carlsbad, California) and the Ambion 

Purelink RNA mini-kit, as directed by the supplier (Life Technologies). Samples were rendered genomic DNA-

free by treatment with DNase (PureLink DNase, Life Technologies). Reverse transcription of purified mRNA (1 

µg) was carried out using SuperScript VILO complementary DNA (cDNA) synthesis kit according to the protocol 

(Invitrogen, Carlsbad, California). First-strand cDNA was amplified using the iTaq Universal SYBR Green 

Supermix (Biorad, Segrate, Milan, Italy) following manufacturer’s instructions. The primer sequences were: 

ceramide synthase 1 (Lass1) forward: TCTGCTGTTGCTCCTGATGGTC, reverse: CTTGGCTGTCTGAGCTTCCAGA; 

ceramide synthase 2 (Lass2) forward: CCTTCTACTGGTCCCTGCTCTT, reverse: TGGCAAACCAGGAGAAGCAGAG; 
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stearoyl-CoA desaturase 1 (Scd1) forward: GCAAGCTCTACACCTGCCTCTT, reverse: 

CGTGCCTTGTAAGTTCTGTGGC; stearoyl-CoA desaturase 2 (Scd2) forward: GTCTGACCTGAAAGCCGAGAAG, 

reverse: GCAAGAAGGTGCTAACGCACAG;  glucosylceramidase (Gba1) forward: GCCAGTTGTGACTTCTCCATCC, 

reverse: CGTGAGGACATCTTCAGGGCTT; lysosome membrane protein 2 (Scarb2) forward: 

TAGCCAACACCTCCGAAAACGC, reverse: CGAACTTCTCGTCGGCTTGGTA; prosaposin (Psap) forward: 

GTCTGATGTCCAGACTGCTGTG, reverse: CTGGACACAGACCTCGGAATAC; galactosylceramidase (Galc) forward: 

ATCTCTGGGAGCCGATTTCCTC, reverse: CCACACTGTGTAGGTTCCAGGA; elongase 1 (Elovl1) forward: 

CTGGCTCTTCATGCTTTCCAAGG, reverse: AAGCACCGAGTGGTGGAAGACA; elongase 6 (Elovl6) forward: 

CGGCATCTGATGAACAAGCGAG, reverse: GTACAGCATGTAAGCACCAGTTC. 

Quantitative PCR was performed in 96-well PCR plates. Real-time PCR reactions were performed using ViiA™7 

Real-Time PCR detection system (Applied Biosystems by Life Technologies). Thermal cycling conditions were: 

95 °C for 10 min, followed by 40 cycles, each cycle consisting of 15 s at 95 °C and 1 min at 60 °C. The freely 

available Bestkeeper software (Pfaffl, Tichopad et al. 2004) was used to determine the expression stability and 

the geometric mean of two different housekeeping genes (glyceraldehyde 3-phosphate dehydrogenase, 

Gapdh, and hypoxanthine phosphoribosyltransferase, Hprt). The relative expression of genes of interest was 

measured by the 2-ΔΔCt method (Livak and Schmittgen 2001), where ΔCt was calculated by subtracting the cycle 

threshold (Ct) value of the geometric mean of the housekeeping genes from the Ct value of the gene of 

interest. Data for 12 and 21 month-old mice are reported as fold change relative to 3 month-old mice. 

2.2.8 Statistical analyses 

Results are presented as mean ± SEM (standard error of the mean). Comparisons of parameters between two 

groups were made by unpaired Student’s t-test. Comparisons of parameters among more than two groups 

were made by one-way ANOVA. GraphPad Prism software V5.03 (GraphPad Software, Inc., USA) was used. 

Differences between groups were considered statistically significant if p<0.05. 
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2.3 Results 

2.3.1 Age and sex-dependent changes in ceramides 

To investigate the impact of aging on brain sphingolipid metabolism we measured levels of several key 

sphingolipid species in healthy male and female mice at three different ages: young (3 months), middle aged 

(12 months) and old (21 months). Lipid extracts of hippocampal tissue were fractionated by normal phase 

open-bed chromatography, and ceramides and other sphingolipids were identified and quantified by liquid 

chromatography/mass spectrometry (LC/MS). Significant bidirectional age- and sex-dependent changes were 

seen with multiple ceramide species. Marked increases were observed in the levels of ceramide (d18:1/24:1) in 

both male and female mice at 12 and 21 months of age (Fig. 2A, C). A small but significant increase in ceramide 

(d18:1/24:0) was also noted in 21 month-old female mice (Fig. 2C). By contrast, decreases were observed with 

ceramide (d18:1/18:0) in both male and female mice at 21 months, but not 12 months of age (Fig. 2B, D). A 

decrease was also seen with ceramide (d18:1/24:0) in middle-aged and old male mice (Fig. 2A). The results 

suggest that age can differentially influence the accumulation of specific ceramides in mouse hippocampus. 

Most striking and consistent among these effects was an increase in the levels of nervonic acid-containing 

ceramide (d18:1/24:1).  
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Fig. 2. Age and sex-dependent changes in ceramide (Cer) levels in mouse hippocampus. (A) and (B) male hippocampus; (C) and (D) 

female hippocampus. Results are expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA 

followed by Tukey’s multiple comparison test. 
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2.3.2 Age and sex-dependent changes in de novo ceramide biosynthesis 

Next, we asked whether the changes reported above might be attributable to alterations in de novo ceramide 

biosynthesis (Fig. 1). We found that levels of dihydroceramide (d18:0/18:0), the precursor for ceramide 

(d18:1/18:0), were lower in middle-aged (12 months) and old (21 months) male mice compared to their 

younger counterparts (Fig. 3A). No such effect was seen, however, in female mice, in which dihydroceramide 

(d18:0/18:0) content was not affected by age (Fig. 3C). The precursors for very long-chain ceramides, 

dihydroceramide (d18:0/24:0) and (d18:0/24:1), were slightly albeit significantly increased in 21 month-old 

female mice (Fig. 3C).  

Age and sex were also associated with changes in transcription of the ceramide-synthesizing enzymes, 

ceramide synthase (CerS) 1 and 2 (encoded by the Lass1 and Lass2 genes) (Levy and Futerman 2010). 

Transcription of CerS1, which is responsible for the biosynthesis of long-chain ceramides such as ceramide 

(d18:1/18:0) (Grosch, Schiffmann et al. 2012), was significantly reduced in 21 month-old male mice, but not in 

females of the same age (Fig. 3B). Conversely, in middle-aged and old females we observed an increased 

transcription of CerS2, which is involved in the formation of very long-chain ceramides such as ceramide 

(d18:1/24:0) and (d18:1/24:1) (Fig. 3D). Transcription of CerS1 and 2 in middle-age (12 months) mice could not 

be assessed in these studies since we did not have enough tissue left to perform further analyses. Thus, aging 

appears to be associated with changes in the transcription of genes encoding for enzymes of de novo ceramide 

biosynthesis. 
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Fig. 3. Age and sex-dependent changes in dihydroceramide (dHCer) levels and Lass1 (ceramide synthase 1) and Lass2 (ceramide 

synthase 2) transcription in mouse hippocampus. (A) and (B) male hippocampus; (C) and (D) female hippocampus. Results are expressed 

as mean ± SEM (n = 5-8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test or one-way ANOVA followed by Tukey’s 

multiple comparison test. 
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2.3.3 Age and sex-dependent changes in sphingomyelin  

In alternative to de novo biosynthesis, ceramides can also be produced through sphingomyelin hydrolysis (Fig. 

1). We found that levels of sphingomyelin (d42:2) increased in an age-dependent manner in both male and 

female mice (Fig. 4A, B), as previously seen with ceramide (d18:1/24:1) (Fig. 2A, C). Sphingomyelin (d42:2) is 

likely to comprise the (d18:1/24:1) species, although others (e.g. d20:1/22:1) (Sugiura, Shimma et al. 2008) 

cannot be excluded. On the other hand, sex-dependent differences were observed for sphingomyelin (d36:1), 

which did not change with age in male mice (Fig. 4A), but showed small age-related fluctuations in females (Fig. 

4B). Thus, since sphingomyelin (d42:1) and (d42:2) showed the same age-dependent trend as their catabolites 

ceramide (d18:1/24:0) and (d18:1/24:1), and since age-dependent increase in sphingomyelinase expression has 

been reported (Sacket, Chung et al. 2009), elevated sphingomyelin hydrolysis may contribute to the observed 

change in the levels of ceramides (d18:1/24:0) and (d18:1/24:1).  

 

Fig. 4. Age and sex-dependent changes in sphingomyelin (SM) levels in mouse hippocampus. (A) and (B) male hippocampus; (C) and (D) 

female hippocampus. Results are expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA 

followed by Tukey’s multiple comparison test. 
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2.3.4 Age and sex-dependent changes in hexosylceramide  

The hexosylceramides, which contain either a glucosyl or a galactosyl sugar moiety, have been implicated in the 

pathogenesis of neurodegenerative disorders such as PD and Gaucher’s disease (Mielke, Maetzler et al. 2013; 

Farfel-Becker, Vitner et al. 2014). As aging is the main risk factor for these disorders, we measured 

hexosylceramide content in the hippocampus of male and female mice at 3, 12 and 21 months of age. Fig. 5 

illustrates our findings. Nervonic acid-containing hexosylceramide (d18:1/24:1) was elevated in 12 and 21 

month-old male and female mice compared to 3 month-old animals. Moreover, age-dependent accumulation 

was observed with hexosylceramide (d18:1/16:0) in both sexes. By contrast, aging had no effect on 

hexosylceramide (d18:1/18:0) in female mice and caused a slight accumulation of this lipid molecule in 21 

month-old males (Fig. 5).  

 

Fig. 5. Age and sex-dependent changes in hexosylceramides (HexCer) levels in mouse hippocampus. (A) male hippocampus; (B) female 

hippocampus. Results are expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA followed by 

Tukey’s multiple comparison test. 
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Glucosylceramide accumulation in Gaucher’s disease is due to impaired hydrolysis by β-glucosylceramidase 1, 

which is encoded by the GBA1 gene (Brady, Kanfer et al. 1965; Brady, Kanfer et al. 1966; Tayebi, Stubblefield et 

al. 2003). To determine whether defective degradation might contribute to the high levels of hexosylceramide 

observed in the hippocampus of 12 and 21 month-old mice, we measured transcription of Gba1 (Brady, Kanfer 

et al. 1965), lysosome membrane protein 2 (LIMP2, encoded by Scarb2), which acts as lysosomal receptor for 

glucosylceramidase (Gonzalez, Valeiras et al. 2014), and prosaposin (Psap), whose protein product is cleaved to 

generate the glucosylceramidase activators saposins A and C (Kishimoto, Hiraiwa et al. 1992). We also 

measured transcription of galactosylceramidase (Galc), which hydrolyzes the galactose ester bond of 

galactosylceramide (Nagano, Yamada et al. 1998). As shown in Fig. 6, no changes were detected in Scarb2, Psap 

and Galc expression. A small but significant downregulation of Gba1 was observed in 21 month-old male, but 

not female mice (Fig. 6A, B), suggesting that changes in Gba1 transcription only partially explain the observed 

alterations in hexosylceramide levels occurring in mice of both sexes at 12 and 21 months of age. 

 

Fig. 6. Age and sex-dependent changes in Gba1 (β-glucosylceramidase 1), Scarb2 (lysosome membrane protein 2), Psap (prosaposin), 

Galc (galactosylceramidase) transcription in mouse hippocampus. (A) male hippocampus; (B) female hippocampus. Results are 

expressed as mean ± SEM (n = 5/group). * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test 
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2.3.5 Age and sex-dependent changes in nervonic acid and its biosynthesis  

A common finding throughout our experiments was an elevation in sphingolipid species containing nervonic 

acid (24:1), which suggests that the production and the degradation of this long-chain monounsaturated fatty 

acid might be regulated by age. Consistent with this idea, we found that the content of non-esterified nervonic 

acid was higher in the hippocampus of 21 month-old male and female mice, compared to 3 month-old mice 

(Fig. 7A, D). We analyzed a broad panel of fatty acids, and then we focused on those species that are precursor 

of nervonic acid-containing sphingolipids. A similar increasing trend was seen with another monounsaturated 

fatty acid, oleic acid (18:1), in male but not female mice, whereas no change was observed in eicosaenoic acid 

(20:1) and erucic acid (22:1) (Fig. 7B, E), palmitic acid (16:0) and stearic acid (18:0) (Fig. 7C, F). Other species 

were analyzed but are not reported here since they were not significantly altered or because not directly 

involved in nervonic acid biosynthesis.  
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Fig. 7. Age and sex-dependent changes in fatty acids (FA): nervonic (24:1), oleic (18:1), eicosaenoic (20:1), erucic (22:1), palmitic (16:0) 

and stearic (18:0) acid levels in mouse hippocampus. (A), (B) and (C) male hippocampus; (D), (E) and (F) female hippocampus. Results 

are expressed as mean ± SEM (n = 5-8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test. 

The first committed step in the biosynthesis of nervonic acid is catalyzed by stearoyl-CoA desaturase (SCD) 

(Ntambi, Buhrow et al. 1988; Kaestner, Ntambi et al. 1989; Zheng, Prouty et al. 2001; Miyazaki, Jacobson et al. 

2003), which converts stearic acid (18:0) into oleic acid (18:1). Elongase enzymes (ELOVL1 and ELOVL6 in brain) 

progressively insert two-carbon units to yield nervonic acid (24:1). We used quantitative RT-PCR to examine 

whether transcription of Scd1 and Scd2, the most abundant Scd isoforms expressed in the rodent brain, might 

be elevated in old animals. Indeed, significant increases in Scd1 and Scd2 mRNA levels were observed in the 

hippocampus of 21 month-old female mice (Fig. 8C). A similar trend was seen in males, but did not reach 
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statistical significance (Fig. 8A). By contrast, transcription of Elovl1 and Elovl6 was reduced in male mice 

(Fig.8B), whereas transcription of Elovl6 was slightly increased in female mice (Fig. 8D). Together, these findings 

are suggestive of an age-dependent dysregulation in nervonic acid homeostasis in the mouse hippocampus.  

 

Fig. 8. Age and sex-dependent changes in Scd (stearoyl-CoA desaturase) and Elovl (elongase) transcription in mouse hippocampus. (A) 

and (B) male hippocampus; (C) and (D) female hippocampus. Results are expressed as mean ± SEM (n = 5/group). * p < 0.05, ** p < 0.01, 

*** p < 0.001; Student’s unpaired t-test. 
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2.4 Discussion 

The role of sphingolipids in normal aging and age-related disorders has been the object of multiple studies (for 

review see (Huang, Withers et al. 2014)). In the present work, we describe a series of previously unreported 

alterations in hippocampal sphingolipid metabolism, which are both age- and sex-dependent. As schematically 

summarized in Figure 9A, bidirectional changes in the levels of ceramide (d18:1/18:0), ceramide (d18:1/24:0), 

sphingomyelin (d34:1) and hexosylceramide (d18:1/16:0) were seen in mice of both sexes. Sex-restricted 

modifications were also observed with increased hexosylceramide (d18:1/18:0) only in males, increased 

ceramide (d18:1/22:0) and fluctuating sphingomyelin (d36:1) and (d42:1) only in females. These effects could 

be partially, but not completely, accounted for by alterations in de novo ceramide biosynthesis and 

sphingomyelin hydrolysis. However, the most striking and consistent finding in our study was the discovery of 

an age-dependent increase in sphingolipid species containing the monounsaturated fatty acid nervonic acid 

(24:1), whose levels were also heightened by aging (Fig. 9B). This increase was linked to, at least in female 

mice, transcriptional elevation of Scd1 and Scd2, the rate-limiting enzymes of nervonic acid biosynthesis.  

 

Fig. 9. Schematic overview of the main results obtained in the present study. (A) Age-dependent lipid changes observed in mice of both 

sexes. (B) Age-dependent changes in nervonic acid (24:1) and nervonic acid-containing sphingolipids found in both male (blue) and 

female (pink) mice. Symbols: =, no change;      ,         ,               , increases of varying magnitude. 
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Previous studies have documented alterations in ceramide profile in mouse cortex (Cutler, Kelly et al. 2004) 

and rat hippocampus (Costantini, Weindruch et al. 2005; Babenko and Semenova 2010; Babenko and Shakhova 

2014) at ages varying from 6 to 32 months. Furthermore, abnormally high levels of ceramides (d18:1/18:0), 

(d18:1/22:0), (d18:1/24:0) and (d18:1/24:1) have been reported in the mid-frontal cortex (Cutler, Kelly et al. 

2004), white matter (Han, D et al. 2002) and plasma of persons with AD (Mielke, Haughey et al. 2010). 

Previous work from our laboratory has shown that the levels of non-esterified nervonic acid are substantially 

elevated in mid-frontal cortex, temporal cortex and hippocampus of AD patients, compared to age- and sex-

matched control subjects (Astarita, Jung et al. 2011). Importantly, these increases were shown to be strongly 

correlated with cognitive impairment and to be accompanied by parallel changes in the transcription of SCD1, 

SCD5a and SCD5b, three SCD isoforms that are predominantly expressed in the human brain (Astarita, Jung et 

al. 2011). Furthermore, increases in SCD activity and SCD1 expression in human frontal cortex during normal 

aging were reported by McNamara et al. (McNamara, Liu et al. 2008).  

Human studies have demonstrated a critical role for SCD in the development of obesity and metabolic 

syndrome, including insulin resistance, hyperlipidemia and abdominal adiposity (Corpeleijn, Feskens et al. 

2006; Mar-Heyming, Miyazaki et al. 2008; Paillard, Catheline et al. 2008). Experiments with genetically 

modified mice have provided mechanistic support to these observations: Scd1-deficient mice are lean and 

protected from diet-induced obesity (Miyazaki, Kim et al. 2001; Ntambi, Miyazaki et al. 2002; Jiang, Li et al. 

2005) and have increased insulin sensitivity in skeletal muscle, brown adipose tissue, liver and heart (Rahman, 

Dobrzyn et al. 2003; Rahman, Dobrzyn et al. 2005; Gutierrez-Juarez, Pocai et al. 2006; Flowers, Rabaglia et al. 

2007; Dobrzyn, Sampath et al. 2008). Because of these findings, SCD has emerged as a potential target for the 

treatment of metabolic syndrome (Cohen, Ntambi et al. 2003; Dobrzyn and Ntambi 2005). Furthermore, 

nervonic acid content in human serum was found to be associated with metabolic syndrome and peroxisomal 

dysfunction, whose frequency is increased by aging (Yamazaki, Kondo et al. 2014). The present results support 

a role for nervonic acid in normal brain aging and point to a possible connection between this lipid and age-

dependent neurodegeneration.  
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A number of studies have documented the occurrence of sphingolipid alterations in neurodegenerative 

disorders. Mielke and co-workers (Mielke, Bandaru et al. 2015) have found that the plasma concentrations of 

dihydroceramides (d18:0/20:0) and (d18:0/24:0) are elevated in men and women aged 55 years and older, 

compared to younger men and women. Moreover, transcriptional upregulation of enzymes that control de 

novo ceramide biosynthesis (LASS1 and LASS2) was reported in brain areas of subjects at the earliest stage of 

AD or with varying severity of AD and dementia (Katsel, Li et al. 2007). Together with our results, these data 

suggest a potential involvement of de novo ceramide biosynthesis in aging and age-related disorders. 

Ceramides can be produced from the breakdown of sphingomyelins and hexosylceramides (Fig. 1). Very-long 

chain sphingomyelin (d42:1) increases in the brain of 6 month-old male mice compared to 3 and 25 month-old 

animals (Cutler, Kelly et al. 2004). Hexosylceramides, which include glucosyl- and galactosylceramides, have 

been implicated in neurodegenerative diseases. For example, plasma hexosylceramides (d18:1/18:1) and 

(d18:1/24:1) were found to be elevated in people affected by dementia with Lewy Bodies (DLB) and AD (Savica, 

Murray et al. 2016). Hexosylceramides were also shown to be abnormally high in PD patients and to be highest 

among those patients who displayed cognitive impairment (Mielke, Maetzler et al. 2013).  

The observed age-associated changes in sphingolipid levels may occur in one or more of the multiple cell types 

present in the hippocampus. One limitation of the present study is that the specific cell populations in which 

such changes take place were not identified. This would be technically very challenging since the analysis of 

lipids in individual neuronal types is still in its infancy (Merrill, Basit et al. 2017). Thus, we cannot exclude the 

possibility that the changes reported here may reflect subtle modifications in the cytology of the aging 

hippocampus, which have been reported by some studies (Ball 1977; Landfield, Rose et al. 1977; Landfield, 

Braun et al. 1981; Nichols, Day et al. 1993; Ogura, Ogawa et al. 1994; West, Coleman et al. 1994; Di Stefano, 

Casoli et al. 2001; Cerbai, Lana et al. 2012; Yamada and Jinno 2014) but not others (Geinisman, Bondareff et al. 

1977; Morrison and Hof 1997; Peters, Morrison et al. 1998; Hof and Morrison 2004; Hattiangady and Shetty 

2008). For example, despite reductions in cortical thickness, unbiased stereological assessment revealed that 

overall neuronal numbers in the human brain decline <10% over the age range of 20–90 years (Pakkenberg, 
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Pelvig et al. 2003). While the hilar region of hippocampus appears to undergo mild age-related neuron loss, 

other hippocampal subregions show increased dendritic and synaptic complexity with increasing age (Flood, 

Buell et al. 1987; Flood, Guarnaccia et al. 1987). Our data illustrate the rich and significant sphingolipid 

alterations that occur in the hippocampus across the lifespan. However, the cell types to which these changes 

are localized are unknown at present and future studies are needed to address whether cytological alterations 

correlate with sphingolipids changes. 
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2.5 Conclusions 

A substantial body of prior work has documented a role for sphingolipids in aging and age-related disorders. A 

new and significant result of the present report is that nervonic acid-containing sphingolipids accumulate in the 

aging hippocampus of both male and female mice. Because of the previously described association between 

nervonic acid levels and cognitive impairment in AD (Astarita, Jung et al. 2011), it will be important to examine 

the possible functional roles of nervonic acid-containing sphingolipids in the development of age-related 

neurodegeneration. 
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3 Elevated plasma ceramide levels in post-

menopausal women 
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3.1 Introduction 

Ceramides are lipid-derived molecules that play both structural and functional roles in mammalian cells. In 

addition to contributing to the biophysical properties of membranes (van Blitterswijk, van der Luit et al. 2003; 

Castro, Prieto et al. 2014), these lipids also regulate the localization and oligomerization of membrane-

associated proteins, including hormone and neurotransmitter receptors (Salem, Litman et al. 2001; Hering, Lin 

et al. 2003; Grassme, Riethmuller et al. 2007; Schneider, Levant et al. 2017). Moreover, ceramides are thought 

to participate in many intracellular and transcellular signaling processes, including regulation of cell survival 

(Garcia-Barros, Coant et al. 2016), growth and proliferation (Saddoughi and Ogretmen 2013), differentiation 

(Bieberich 2012), senescence (Venable and Yin 2009) and apoptosis (Satoi, Tomimoto et al. 2005; Maeng, Song 

et al. 2017). It has been suggested that dysfunctions in ceramide-mediated signaling may contribute to the 

initiation and progression of a variety of disease states, including atherosclerosis (Edsfeldt, Duner et al. 2016), 

depression (Gracia-Garcia, Rao et al. 2011; Dinoff, Herrmann et al. 2017) and Alzheimer’s disease (AD) 

(Jazvinscak Jembrek, Hof et al. 2015). Human studies have demonstrated the existence of an association 

between plasma levels of ceramides and proinflammatory cytokines in persons with cardiovascular disease (de 

Mello, Lankinen et al. 2009), obesity (Majumdar and Mastrandrea 2012) and type-2 diabetes (Haus, Kashyap et 

al. 2009). Similarly, elevated serum levels of long-chain ceramides – including ceramides (d18:1/18:0), 

(d18:1/22:0), (d18:1/24:0) and (d18:1/24:1) – have been associated with increased risk of memory impairment 

(Mielke, Bandaru et al. 2010) and may be predictive of cognitive decline and hippocampal volume loss in 

persons with mild cognitive impairment (MCI) (Mielke, Haughey et al. 2010). Importantly, abnormal plasma 

ceramide levels may not only be associated with cognitive disturbances and MCI progression (Ewers, Mielke et 

al. 2010; Mielke, Haughey et al. 2010), but also with other age-related pathologies such as obesity (Hojjati, Li et 

al. 2005; Samad, Hester et al. 2006; Chaurasia and Summers 2015), type-2 diabetes (Summers 2006; Chavez 

and Summers 2012; Jiang, Hsu et al. 2013) and atherosclerosis (Ichi, Nakahara et al. 2006).  
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While many previous studies have documented changes in plasma ceramide levels in human pathological 

states, there is still limited information about how age influences such levels in healthy people. In the present 

study, we have begun to address this question by profiling six ceramide and dihydroceramide species in plasma 

of 164 healthy men and women between 19 and 80 years of age. Our results suggest that plasma ceramide 

levels are lower in pre-menopausal women than they are in men of the same age group. Importantly, this 

difference between women and men disappears after menopause, when plasma ceramide levels become 

approximately equal in the two sexes. We also found that in women, but not in men, circulating levels of the 

long-chain ceramide (d18:1/24:1) - which was previously implicated in increased risk of memory impairment, 

AD development (Mielke, Bandaru et al. 2010) and type-2 diabetes (Haus, Kashyap et al. 2009) - are negatively 

correlated with circulating estradiol levels, which is suggestive of a modulatory control by estradiol on 

ceramide mobilization.  
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3.2 Materials and Methods 

3.2.1 Study subjects 

We recruited 164 healthy Italian subjects (84 female, 80 male) from 19 to 80 years of age (Table 1). There were 

no significant differences between male and female subjects with respect to age, education and cognitive 

status, as assessed by the Mini-Mental State Examination (MMSE). Exclusion criteria were: (i) suspicion of 

cognitive impairment or dementia based on MMSE (Folstein, Folstein et al. 1975) (score ≤ 26, consistent with 

normative data collected in the Italian population) and confirmed by a detailed neuropsychological evaluation 

using the Mental Deterioration Battery (MDB) (Carlesimo, Caltagirone et al. 1996) and clinical criteria for 

Alzheimer’s dementia (McKhann, Knopman et al. 2011) or MCI (Petersen and Morris 2005); (ii) subjective 

complaints of memory difficulties or other cognitive deficits, regardless of whether or not these interfered with 

daily life; (iii) vision and hearing loss that could potentially influence testing results; (iv) major medical illnesses 

(i.e., unstable diabetes; obesity; obstructive pulmonary disease or asthma; hematological and oncological 

disorders; pernicious anemia; significant gastrointestinal, renal, hepatic, endocrine, or cardiovascular system 

diseases; recently treated hypothyroidism); (v) current or reported psychiatric disease, as assessed by the 

Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text 

Revision (DSM-IV-TR SCID) (First and Pincus 2002) or neurological disease, as assessed by clinical evaluation; 

(vi) known or suspected history of alcoholism or drug addiction; (vii) brain abnormalities or vascular lesions 

revealed by conventional FLAIR-scans; in particular, presence, severity, and location of vascular lesions were 

determined using a recently published semi-automated method (Iorio, Spalletta et al. 2013). 

Menopausal status was prospectively assessed during clinical interviews. Women were defined as post-

menopausal after 12 consecutive months of amenorrhea, for which there was no other obvious pathological or 

physiological cause (1996). Blood collection was approved and undertaken in accordance with the guidelines of 

the Santa Lucia Foundation Ethics Committee. A written consent form was signed by all participants after they 

received a full explanation of the study procedures.  
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Table 1. Sociodemographic and clinical characteristics of healthy men and women subjects. Data are expressed as mean ± SD. 

Differences between groups are considered statistically significant at p < 0.05; unpaired Student’s t-test. MMSE: Mini Mental State 

Examination. MMSE was corrected for age and education levels of the subjects. 

3.2.2 Chemicals 

Ceramide standards such as ceramide (d18:1/16:0), ceramide (d18:1/17:0), ceramide (d18:1/18:0), ceramide 

(d18:1/24:0), ceramide (d18:1/24:1(15Z)), dihydroceramide (d18:0/24:0) and dihydroceramide (d18:0/24:1) 

were from Avanti Polar Lipids (Alabaster, AL, USA). LC-MS grade solvents as acetonitrile, isopropanol, water, 

methanol and chloroform were purchased from Sigma Aldrich (Milan, Italy). The formic acid and estradiol were 

also purchased from Sigma Aldrich (Milan, Italy). 

3.2.3 Blood collection 

Blood was drawn by venipuncture in the morning after an overnight fast, and collected into 10-ml tubes 

containing spray-coated EDTA (EDTA Vacutainer, BD Biosciences, San Diego, CA, USA). Plasma was obtained by 

blood centrifugation at 400 × g at 4 °C for 15 min. The plasma divided into aliquots was stored at −80 °C until 

analyses.  
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3.2.4 Lipid extraction 

Lipids were extracted using a modified Bligh and Dyer method (Basit, Piomelli et al. 2015). Briefly, plasma 

samples (50 µL) or cell pellets were transferred to glass vials and liquid-liquid extraction was carried out using 2 

mL of a methanol/chloroform mixture (2:1 vol/vol) containing the odd-chain saturated ceramide (d18:1/17:0) 

as an internal standard. After mixing for 30 s, lipids were extracted with chloroform (0.5 mL) and extracts were 

washed with liquid chromatography (LC)-grade water (0.5 mL), mixing after each addition. The samples were 

centrifuged for 15 min at 3500 x g at room temperature. After centrifugation, the organic phases were 

collected and transferred to a new set of glass vials. To increase overall recovery, the aqueous fractions were 

extracted again with chloroform (1 mL). The two organic phases were pooled, dried under a stream of N2 and 

residues were dissolved in methanol/chloroform (9:1 vol/vol, 0.07 mL). After mixing (30 s) and centrifugation 

(10 min, 5000 x g, room temperature) the samples were transferred to glass vials for analyses. 

3.2.5 Ceramide quantification 

Ceramides were analyzed by liquid chromatography/mass spectrometry (LC/MS) using an Acquity® UPLC 

system coupled to a Xevo triple quadrupole mass spectrometer (TQ-MS) interfaced with electrospray ionization 

(ESI) (Waters, Milford, MA), as previously described (Basit, Piomelli et al. 2015). Lipids were separated on a 

Waters Acquity® BEH C18 column (2.1 × 50 mm, 1.7 μm particle size) at 60 °C and eluted at a flow rate of 0.4 

mL/min. The mobile phase consisted of 0.1% formic acid in acetonitrile/water (20:80 vol/vol) as solvent A and 

0.1% formic acid in acetonitrile/isopropanol (20:80 vol/vol) as solvent B. A gradient program was used: 0.0–1.0 

min 30% B, 1.0–2.5 min 30 to 70% B, 2.5–4.0 min 70 to 80% B, 4.0–5.0 min 80% B, 5.0–6.5 min 80 to 90% B, and 

6.6–7.5 min 100% B. The column was reconditioned to 30% B for 1.4 min. The injection volume was 3 µL. 

Detection was done in the positive ESI mode. Capillary voltage was 3.5 kV and cone voltage was 25 V. The 

source and desolvation temperatures were set at 120 °C and 600 °C respectively. Desolvation gas and cone gas 

(N2) flow were 800 L/h and 20 L/h, respectively. Plasma and cell-derived ceramides were identified by 

comparison of their LC retention times and MS/MS fragmentation patterns with those of authentic standards. 
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Extracted ion chromatograms were used to identify and quantify the following ceramides and 

dihydroceramides (d18:1/16:0) (m/z 520.3 > 264.3), (d18:1/18:0) (m/z = 548.3 > 264.3), (d18:1/24:0) (m/z = 

632.3 > 264.3), (d18:1/24:1) (m/z = 630.3 > 264.3), (d18:0/24:0) (m/z = 652.5 > 634.5) and (d18:0/24:1) (m/z = 

650.5 > 632.5). Data were acquired by the MassLynx software and quantified using the TargetLynx software 

(Waters). 

3.2.6 Estradiol quantification 

Plasma 17-β-estradiol (E2) levels were quantified using a competitive binding immunoassay kit (Human E2 

ELISA kit, Invitrogen, Italy) following manufacturer’s instructions. Briefly, plasma samples, controls and 

standard curve samples (50 µL) were incubated with E2-horseradish peroxidase conjugate (50 µL) and anti-

estradiol antibody (50 µL) in a 96-well plate for 2h, at room temperature, on a shaker set at 700 ± 100 rpm. 

Washing was carried out by completely aspirating the liquid, filling the wells with diluted wash buffer (0.4 mL) 

provided in the kit and then aspirating again. After repeating this procedure 4 times, chromogen solution (200 

µL) was added to each well; reactions were run for 15 min and stopped adding 50 µL of the stop solution 

provided in the kit. Absorbance was measured at 450 nm and estradiol concentrations were calculated by 

interpolation from the reference curve.   

3.2.7 Cell cultures and treatment 

The MCF7 human breast cancer cell line was a kind gift of Dr. Gennaro Colella (Mario Negri Institute, Milan, 

Italy). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with L-glutamine (2 

mM), fetal bovine serum (10%) and penicillin/streptomycin (100 µg/mL), in a humidified atmosphere (5% CO2, 

37 °C). Cells were seeded in 6-well plates (3 x 105 cells/well) and cultured for 24 h. Estradiol was dissolved in 

DMSO and diluted in DMEM to a final concentration of 10 nM (0.1% final DMSO concentration). After 24 h 

incubation, the media were removed, cells were washed with phosphate-buffered saline, scraped and 

centrifuged (800 x g, 4 °C, 10 min).  Protein concentrations were measured using the bicinchoninic acid assay 

(Pierce, Rockford, IL, USA) and cell pellets were stored at -80 °C until analyses. 
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3.2.8 Statistical analyses 

Results are expressed as mean ± SEM (standard error of the mean). Data were analyzed by unpaired Student's 

t-test or 2-way ANOVA followed by Bonferroni post-hoc test. Pearson’s correlation coefficient was calculated to 

evaluate pairwise correlation between estradiol and ceramide levels. Significant outliers were excluded using 

the Grubbs’ test. Differences between groups were considered statistically significant at values of p < 0.05. The 

GraphPad Prism software (GraphPad Software, Inc., USA) was used for statistical analyses. 
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3.3 Results 

3.3.1 Association between menopause and plasma ceramide levels in healthy women  

We recruited 164 healthy subjects (84 female, 80 male) aged 19 to 80 years. Their demographic and clinical 

information are provided in Table 1. Exclusion parameters are described under Materials and Methods. There 

were no significant differences between men and women with regard to age, education and cognitive status. A 

single blood draw was made in fasting subjects, and ceramides were identified and quantified by LC-MS/MS in 

lipid extracts of plasma samples, using a previously described method (Basit, Piomelli et al. 2015). The following 

panel of ceramide and dihydroceramide species was monitored: ceramides (d18:1/16:0), (d18:1/18:0), 

(d18:1/24:0) and (d18:1/24:1); dihydroceramides (d18:0/24:0) and (d18:0/24:1). Pearson’s analysis of the data 

revealed a statistically significant positive correlation between total ceramide levels and age (r = 0.378; p = 

0.0004). Because the largest accrual in plasma ceramides occurred between the age of 40 and 50 years, which 

is coincident with menopause, in a secondary analysis we grouped the data according to the subjects’ 

menopausal status. This analysis revealed a statistically detectable difference between pre-menopausal (20-54 

years) and post-menopausal (47-78 years) women (Fig. 1B). In particular, the levels of long-chain ceramide 

(d18:1/18:0), very long-chain ceramides (d18:1/24:0) and (d18:1/24:1), and dihydroceramide (d18:0/24:1) 

were higher in post-menopausal relative to pre-menopausal women (Fig. 1B). The levels of ceramide 

(d18:1/16:0) and dihydroceramide (d18:0/24:0) were unchanged.  
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Fig. 1. Scatter plot of plasma ceramide concentrations in women aged 20 to 78 years. (A) Total ceramide levels in 84 female subjects 

included in the study. Pearson’s correlation is considered statistically significant at p < 0.05. (B) Average levels of individual ceramide 

(Cer) and dihydroceramide (dHCer) species in pre-menopausal women (20-54 years, n = 44, open bars) and post-menopausal women 

(47-78 years, n = 40, closed bars). Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001; unpaired Student’s t-test. 

In contrast with these findings in women, no time-dependent changes in plasma ceramide levels were 

noticeable in men (Fig. 2A). Male subjects in the age groups 19-54 and 55-80 displayed similar levels of plasma 

ceramides (d18:1/18:0), (d18:1/24:0) and (d18:1/24:1) and dihydroceramides (d18:0/24:1). Noteworthy, 

however, levels of dihydroceramide (d18:0/24:0) were significantly lower in men >55 years, compared to 

younger men (Fig. 2B).  
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Fig. 2. . Scatter plot of plasma ceramide concentrations in men aged 19 to 80 years. (A) Total ceramide levels in 80 male subjects 

included in the study. Pearson’s correlation is considered statistically significant at p < 0.05. (B) Average levels of individual ceramide 

(Cer) and dihydroceramide (dHCer) species in men aged 19-54 years (n = 48, open bars) and 55-80 years (n = 32, closed bars). Results 

are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001; unpaired Student’s t-test.    

In an additional analysis, we compared total ceramide levels in plasma of pre- and post-menopausal women 

with those observed in age-matched men (Fig. 3). The data show that pre-menopausal women have 

significantly lower levels of circulating ceramides, relative to men of the same age (Fig. 3A). This difference 

disappeared, however, following menopause (Fig. 3A). 
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Fig. 3. Plasma ceramide and estradiol concentrations in men and women. (A) Plasma ceramide levels in, left, pre-menopausal women 

(20-54 years, n = 44) and age-matched men (19-54 years, n = 48) and, right, post-menopausal women (47-78 years, n = 40) and age-

matched men (55-80 years, n = 32). (B) Plasma estradiol levels in, left, pre-menopausal women (20-54 years, n = 44) and age-matched 

men (19-54 years, n = 48) and, right, post-menopausal women (47-78 years, n = 40) and age-matched men (55-80 years, n = 32). Results 

are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001; 2-way ANOVA followed by Bonferroni post-hoc test (women 20-54 

years versus men 19-54 years). # p < 0.05, ## p < 0.01, ### p < 0.001; 2-way ANOVA followed by Bonferroni post-hoc test (women 20-54 

years versus women 47-78 years) 

3.3.2 Plasma ceramide levels are negatively correlated with estradiol in women, but not in men 

To determine whether changes in circulating estradiol might account for the observed age-dependent 

alterations in plasma ceramides, we quantified estradiol in pre- and post-menopausal women and age-matched 

men using a competitive binding immunoassay. As expected, levels of estradiol were higher in pre-menopausal 

women (<55 years) than in men of the same age group (Fig. 3B). After menopause, estradiol levels sharply 
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decreased in both sexes (Fig 3B). Next, we explored the occurrence of a possible functional interaction 

between estradiol and ceramide. In women of all ages, Pearson’s statistical analyses revealed a significant 

negative correlation between the levels of estradiol and those of ceramide (d18:1/24:1) (p = 0.007 and r = -

0.294), a non-significant negative trend between estradiol and ceramide (d18:1/24:0) (p = 0.066 and r = -0.202) 

and no correlation between estradiol and other ceramide species (Fig. 4).  

 

Fig. 4. Pearson’s correlation analysis between estradiol and levels of various ceramide (Cer) species in plasma from 84 healthy women 

aged 20 to 78 years. (A) Ceramide (d18:1/24:1); (B) Ceramide (d18:1/24:0); (C) Ceramide (d18:1/16:0); (D) Ceramide (d18:1/18:0). 

Correlation is considered statistically significant at p < 0.05. 
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Notably, no correlation was found between estradiol and any ceramide species in male subjects (Fig. 5). These 

findings point to the existence of a gender-specific association between plasma levels of estradiol and 

ceramides in healthy female, but not male subjects. 

 

Fig. 5. Pearson’s correlation analysis between estradiol and level of various ceramide (Cer) species in plasma from 80 healthy men aged 

19 to 80 years. (A) Ceramide (d18:1/24:1); (B) Ceramide (d18:1/24:0); (C) Ceramide (d18:1/16:0); (D) Ceramide (d18:1/18:0). Correlation 

is considered statistically significant at p < 0.05. 
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3.3.3 Estradiol suppresses ceramide accumulation in vitro 

Sphingolipid-derived mediators regulate steroidogenesis (Lucki and Sewer 2010), but it is still unknown 

whether estradiol receptor activation influences sphingolipid metabolism. To gain insights into the functional 

link between plasma levels of estradiol and ceramides in healthy women, we evaluated whether exposure to 

estradiol might alter ceramide accumulation in human MCF7 breast cancer cells, which express high levels of 

estrogen receptor α (ERα) and β (ERβ) (Brooks, Locke et al. 1973; Simstein, Burow et al. 2003). The cells were 

treated with estradiol (10 nM) for 24 h and cellular ceramide levels were measured by LC-MS/MS. The results 

indicate that exposure to estradiol causes a substantial reduction in ceramides (d18:1/16:0), (d18:1/24:0) and 

(d18:1/24:1) (Table 2), which is suggestive of a modulatory role for estradiol on ceramide formation and/or 

degradation. 

 

Table 2. Effects of estradiol on ceramide levels in MCF7 human breast cancer cells. Cells were treated for 24 h with vehicle (0.1% DMSO 

in DMEM) or estradiol (10 nM in DMEM) and ceramide levels (pmol/mg protein) were measured by LC-MS/MS. Results are expressed as 

mean ± SEM of three independent experiments. Differences between groups are considered statistically significant at p < 0.05; 

unpaired Student’s t-test.  
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3.4 Discussion 

In the present study, we investigated potential age- and gender-dependent alterations in plasma ceramide 

levels of healthy subjects aged between 19 and 80 years. LC-MS/MS based analyses revealed that the levels of 

several ceramides [(d18:1/18:0), (d18:1/24:0) and (d18:1/24:1)] as well as dihydroceramide (d18:0/24:1) were 

elevated in post-menopausal relative to pre-menopausal women. In striking contrast, no such difference was 

found in age-matched men. A comparison between the circulating levels of individual ceramide species and 

those of estradiol revealed a significant negative correlation between ceramide (d18:1/24:1) and estradiol 

levels in women of all ages, but not in men. To explore the possible causal basis of such a correlation, we 

incubated human MCF breast cancer cells with estradiol (10 nM, 24 h) and measured ceramides by LC-MS/MS. 

The results show that exposure to estradiol causes a significant decrease in the content of ceramides 

(d18:1/18:0), (d18:1/24:0) and (d18:1/24:1). We interpret these findings to suggest that estradiol may regulate 

circulating ceramide levels in women. 

Several human studies have reported gender-dependent differences in circulating ceramide levels. In one study 

on 10 Caucasian volunteers (5 males aged 27-33 years and 5 females aged 26-33 years), higher ceramide (42:1) 

levels  were found in serum from female subjects, compared to males (Ishikawa, Tajima et al. 2013). In another 

study conducted on a large cohort of young Mexican Americans (1,076 individuals, 39.1% males), a strong 

positive correlation was demonstrated between age and plasma total ceramides. Moreover, an association 

between ceramides and gender was revealed after adjusting for age and body mass index (BMI): ceramide 

levels in young women were lower than in young men (25-49 years) (Weir, Wong et al. 2013). These disparities 

were mostly driven by long-chain ceramides (d18:1/22:0), (d18:1/24:0) and (d18:1/24:1). Furthermore, a 

multiethnic population sample of 366 women and 626 men aged 55-94 years enrolled in the Baltimore 

Longitudinal Study of Aging (BLSA), displayed age- and gender-dependent increases in ceramide and 

dihydroceramide blood levels, with stronger trajectory in women. In this study the female population (aged 55-

94 years) showed higher plasma ceramide concentrations than man (Mielke, Bandaru et al. 2015).  
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Here we found lower total ceramide concentrations in plasma from pre-menopausal women, compared to age-

matched men. However, no difference was observed between women aged 47 to 78 years and men of the 

same age group (55-80 years). Comparisons between different studies must take into account which 

demographic and clinical factors are included in the analysis, thus our partially contrasting results may be 

explained by the different clinical characteristics of study participants. In the selection of our subjects, we 

excluded variables that have been shown to affect plasma ceramide levels such as obesity (Samad, Hester et al. 

2006), diabetic or pre-diabetic status (Galadari, Rahman et al. 2013), oncological disorders (Kizhakkayil, 

Thayyullathil et al. 2012), renal diseases (Mitsnefes, Scherer et al. 2014), and cardiovascular system diseases 

(Alewijnse and Peters 2008), but we maintained the menopause status as an important variable. 

In their 2015 study, Mielke and collaborators did not consider menopause as a variable, but did suggest that 

menopause and estradiol may influence ceramide levels. Our present result confirms this prediction. 

Menopause is mainly linked to decreasing levels of estradiol, which acts not only as gonadal hormone, but also 

as neurosteroid and neuromodulator in particular in hippocampus and frontal cortex, two regions highly 

affected by neurodegeneration and enriched in estrogen receptors, ERα and ERβ (Almey, Milner et al. 2015). 

Estradiol exerts anti-inflammatory effect in the brain acting through ERα (De Marinis, Acaz-Fonseca et al. 2013; 

Zhang, Wang et al. 2014) and promoting the secretion of anti-inflammatory cytokines, such as interleukin (IL)-

10 while preventing the production of pro-inflammatory cytokines, such as IL-1β, IL-6 and tumor necrosis 

factor-α (TNFα). Estradiol has neurotrophic effects in hippocampal neurons of women treated with estrogen 

replacement therapy and enhances neural growth of glial cells (Brinton, Chen et al. 2000; Gerstner, Sifringer et 

al. 2007; Saravia, Beauquis et al. 2007). In post-menopausal women, administered estradiol also improves 

certain cognitive functions such as verbal memory and short-term memory, possibly via modulation of the 

spine sprouting of hippocampal CA1 pyramidal neurons (Wolf, Kudielka et al. 1999; Shaywitz, Naftolin et al. 

2003; Baker, Asthana et al. 2012; Velazquez-Zamora, Gonzalez-Tapia et al. 2012). Therefore, variations in 

estrogen levels may significantly affect brain functioning and might be, at least in part, behind the 

manifestation of the cognitive impairments often reported by post-menopausal women (Sullivan et al. 2001; 
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Maki et al. 2001; Kampen et al. 1994; Sherwin, 1997). Whether estrogens are able to influence sphingolipid 

signaling remains still unclarified, however the likelihood of developing pathologies as MCI and AD appears to 

be particularly strong in elderly women who show higher ceramide levels (Mielke, Haughey et al. 2010). 

Furthermore, post-menopausal women have also greater morbidity and mortality from cardiovascular disease 

(CVD), compared with pre-menopausal women: sex hormone dynamics (Karim, Hodis et al. 2008) as well as 

upregulation of circulating ceramides (Ichi, Nakahara et al. 2006) are related to subclinical atherosclerosis 

progression. 
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3.5 Conclusions 

A weakness of the present study is that we did not investigate subtle longitudinal changes in cognitive 

performances or metabolic function which may have occurred in our healthy sample in relation to variation in 

ceramide and estrogen levels. Further studies will be needed to address this important question. Despite this 

limitation, here we found for the first time that post-menopausal women, who are sensible to estrogen 

imbalance, are much more exposed to ceramide accumulation so they may be more affected by ceramide-

driven impairments. 
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Chapter 4 

 

4 Feeding regulates sphingolipid-mediated signaling 

in mouse hypothalamus 
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4.1 Introduction 

Aging is the main risk factor for the development of neurodegenerative diseases such as Alzheimer's disease 

(Fjell, McEvoy et al. 2014) but also chronic diseases such as metabolic syndrome, which is a cluster of 

pathologies as obesity, dyslipidemia, atherosclerosis, hypertension, insulin resistance and diabetes (Dominguez 

and Barbagallo 2016). Obesity results from an imbalance of food intake, basal metabolism and energy 

expenditure (Jequier 1989). Furthermore, it is widely regarded that chronic inflammation is a common link 

among all these age-related diseases (Guarner and Rubio-Ruiz 2015). Several studies have revealed a close 

relationship between nutrient excess and derangements in inflammatory mediators and this has given birth to 

the concept of meta-inflammation, which describes the chronic low-grade inflammatory response to obesity 

(Hotamisligil 2006). Importantly, obesity is not only age-related but also sex-dependent. It has been reported 

that males and females respond differently to obesity and related disorders, due to the influence of sex 

steroids (Palmer and Clegg 2015). Estrogen decline in post-menopausal women is associated with increased 

propensity to accumulate fat and development of obesity (Gambacciani, Ciaponi et al. 1997). Moreover, female 

mice gain less weight than male in response to high fat diet (HFD), a response that is lost in ovariectomized 

mice (Hamilton, Minze et al. 2016). At cerebral level this difference may be explained by the fact that glial cells 

have sexually dimorphic characteristics and responses due to the influence of sex hormones (Melcangi, 

Magnaghi et al. 2001; Acaz-Fonseca, Avila-Rodriguez et al. 2016). Indeed, sex steroids not only modulate glial 

response to HFD (Morselli, Fuente-Martin et al. 2014; Morselli, Frank et al. 2016) but they also exert 

neuroprotective effects in brain regions so that they could protect against the deleterious effects of HFD-

induced obesity on hypothalamic control of metabolism.  

The hypothalamus plays an essential role in feeding regulation (Schwartz, Woods et al. 2000) as it integrates 

neural, humoral and nutritional signals to control feeding, as well as it governs peripheral metabolic processes 

to regulate food intake and energy homeostasis. In particular, it has been demonstrated that activation of 

hypothalamic glial cells in response to HFD is involved in central inflammation, pointing to the important role 

for glia in metabolic control (Thaler, Yi et al. 2012; Buckman, Thompson et al. 2013). 
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Modulation of inflammatory responses in the central nervous system leads to alterations in the hypothalamic 

body weight-appetite-satiety set point, resulting in the initiation and development of metabolic syndrome and 

obesity. Furthermore, metabolic syndrome has been found to be a risk factor for neurological disorders such as 

stroke, depression and Alzheimer's disease (Farooqui, Farooqui et al. 2012). The molecular mechanism 

underlying the relationship between metabolic syndrome and neurological disorders is not fully understood. 

However, it is becoming increasingly evident that cellular and biochemical alterations observed in metabolic 

syndrome like, among others, alterations in lipid mediators, may represent a pathological bridge between age-

related neurological disorders and metabolic syndrome. 

A growing body of evidence indicates that sphingolipids, a major lipid class in mammalian cells, are involved in 

the control of feeding, energy balance, obesity and related metabolic disorders (Yang, Badeanlou et al. 2009; 

Bikman and Summers 2011; Choi and Snider 2015). Sphingolipids are emerging as bioactive lipids that play key 

roles in cellular signaling and regulatory function (Hannun and Obeid 2008) and they are involved in multiple 

physiological and pathological events (Bartke and Hannun 2009), in addition to their structural role in 

eukaryotic cells. In vivo experiments revealed that ICV infusion of C6-ceramide in rats resulted in increased 

ceramide (d18:1/16:0) and hypothalamic inflammation, leading to lipotoxicity and feeding-independent weight 

gain (Contreras, Gonzalez-Garcia et al. 2014). By contrast, inhibition of de novo synthesis of ceramides by 

myriocin, resulted in reduced food intake and body weight, suggesting that disruption of de novo pathway may 

have a beneficial effect (Yang, Badeanlou et al. 2009). Furthermore, carnitine palmitoyltransferase 1c (CPT1c, a 

brain-specific isoform located in the endoplasmic reticulum) is implicated in the central control of food intake 

and energy homeostasis, and regulates hypothalamic ceramide levels (Deng, Wang et al. 2011; Ramirez, 

Martins et al. 2013). Overexpression of CPT1c in the arcuate nucleus blocks the effect of leptin through the 

increase of ceramide levels. All these data suggest a role of ceramide metabolism in the hypothalamic control 

of feeding.  
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Since the balance between ceramide and its metabolites in hypothalamic cells may have an impact on the 

control of feeding, we evaluated whether the consumption of high amounts of dietary fat or an opposite 

condition of fasting can produce a sphingolipid imbalance in this brain region.  

In the present study, we measured endogenous sphingolipids and we found that short and mid-term exposures 

(1-3-7-14-28 days) to a HFD affect long-chain dihydroceramide, ceramide and its metabolite sphingosine-1-

phosphate (SO-1-P). 12 h fasting downregulates the de novo biosynthesis, which results in sphinganine and 

dihydroceramide reduction, due to genetic down-regulation of Sptlc2 (gene encoding the serine 

palmitoyltransferase enzyme) and Lass1 (gene encoding the Ceramide Synthase 1 enzyme). However, food 

deprivation does not affect ceramide levels. Similarly, also sphingosine/sphongosine-1-phosphate (SO/SO-1-P) 

balance is altered, as we observed an increase in SO after food deprivation and a concomitant decrease in SO-

1-P. Finally, we used a potent acid ceramidase inhibitor designed and synthesized by our lab, ARN14974 

(Pizzirani, Bach et al. 2015), as a pharmacological tool to investigate the possible effects of ceramide/SO/SO-1-P 

imbalance on food intake and feeding behavior. 
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4.2 Materials and methods 

4.2.1 Animals 

Male C57BL/6J mice (8 weeks) were purchased from Charles River Laboratories (Calco, Lecco, Italy). Upon 

arrival animals were acclimatized to the vivarium and kept in a temperature (22 °C) and humidity controlled 

environment under a 12h light/12h dark cycle (lights on at 7 a.m.). All procedures were performed in 

accordance with the Ethical Guidelines of the European Community Council (Directive 2010/63/EU of 22 

September 2010) and accepted by the Italian Ministry of Health. All the experiments performed at the 

University of California Irvine met the National Institute of Health guidelines for the care and use of laboratory 

animals and were approved by the Institutional Animal Care and Use Committee at University of California, 

Irvine. 

4.2.2 Diets 

Mice were fed a standard diet (SD)(2.66 kcal/g, 4RF21 GLP, Mucedola s.r.l., Settimo Milanese, MI, Italy) or high 

fat diet (HFD) (60 kcal% as fat and 7 kcal% as sucrose, 5.24 kcal/g, D12492, Research Diets Inc., New Brunswick, 

NJ, USA). 

4.2.3 Drugs and treatments   

ARN14974 was synthesized by our lab as described by Pizzirani et al. ARN 14974 (50 pmoles) was dissolved in 

DMSO for intracerebroventricular injections and administered 2h before the dark phase onset. 
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4.2.4 Experimental design  

4.2.4.1 Effects of HFD.  

Mice were single housed and randomly divided into two groups: fed ad libitum for 1, 3, 7, 14 or 28 days with 

rodent standard chow (control group) or HFD. Mice body weight and energy intake were daily monitored and 

recorded at 9 a.m. Food intake and food spillage were determined by measuring the difference between the 

weight of food given and the weight of food at the end of a 24 h period and the energy intake was calculated 

(Ellacott, Morton et al. 2010). The day of established time points, food was removed from cages two hours 

before mice were killed (Figure A). 

 

Figure A. Graphical representation of experiment workflow. Upon arrival, mice were divided into single cage and acclimatized to the 

vivarium for 7 days. At day 0 one cohort was assigned to the high fat diet (HFD), the other one to standard diet (SD) and body weight 

and food were measured. Mice were daily monitored. They were sacrificed and tissues were collected at established time points: 1 day, 

3 days, 7 days, 14 days or 28 days.  

4.2.4.2 Effects of food deprivation and refeeding.  

Mice were single housed in bottom-wired cages to prevent coprophagia during food deprivation and randomly 

assigned to the following groups: free feeding (FF), 12-h food deprivation (FD), 1-h refeeding after food 

deprivation (RF 1h) and 6-h refeeding after food deprivation (RF 6h). Water and standard chow pellets were 

provided ad libitum, except when mice were food deprived. After 4 days of habituation to the experimental 
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settings, food deprivation was conducted for 12 h during the dark phase (from 7 p.m. to 7 a.m.). The refeeding 

group was food deprived for 12 h and then provided access to the food for 1 h or 6 h before animals were 

sacrificed. During refeeding the food consumed was weighted at 1 hour-intervals and energy intake was 

calculated (Figure B). 

 

Figure B. Graphical representation of experiment workflow. Upon arrival, mice were divided into single cage and acclimatized to the 

vivarium for 7 days. After habituation to bottom-wired cages, one group of mice was allowed to have food ad libitum from 7 p.m. to 7 

a.m. (free feeding, FF) and three groups were food deprived for 12 hours (7 p.m. to 7 a.m.). Of these three groups, one was sacrificed at 

7 a.m. after 12 hours of fasting, the second group was re-exposed to standard diet for 1 hour before being sacrificed (re-feeding 1h, RF 

1h), the third group was re-exposed to standard diet for 6 hours before being sacrificed (re-feeding 6h, RF 6h). 

4.2.5 Tissues collection 

Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. Brain was removed, 

hypothalamus was dissected on an ice-cold glass plate and immediately flash frozen in liquid N2. Samples were 

stored at -80 °C until analyses. 

4.2.6 Lipid extraction 

Lipid extractions of the samples were carried out as described by Basit et al., 2015. 
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4.2.7 Sphingolipid analyses 

Lipid analyses were performed applying the same LC-MS/MS conditions previously described in this manuscript 

(Chapter 2). 

Ceramides, sphingosine, sphinganine and their phosphate metabolites sphingosine-1-phosphate and 

sphinganine-1-phosphate were identified by comparison of their retention times and MSn fragmentation 

patterns with those of authentic standards. The following MRM transitions were used for identification and 

quantification: sphingosine (m/z 300.2 > 282.2), sphingosine-1-phosphate (m/z 380.3 > 264.2), sphinganine 

(m/z 302.2 > 284.2), sphinganine-1-phosphate (m/z 382.2 > 284.2), ceramide (d18:1/18:0) (m/z 548.0 > 264.2), 

ceramide (d18:1/24:0) (m/z = 632.0 > 264.2); ceramide (d18:1/24:1 (15Z)) (m/z = 630.0 > 264.2). 

Dihydroceramide (d18:0/18:0) (m/z = 568.5 > 550.5); dihydroceramide (d18:0/24:0) (m/z = 652.5 > 634.5); 

dihydroceramide (d18:0/24:1) (m/z = 650.5 > 632.5). 

4.2.8 mRNA isolation, cDNA synthesis and quantitative real-time PCR 

qRT-PCR was performed following the protocol previously described. 

The primer sequences were: sphingosine kinase 1 (Sphk1) forward: GCTTCTGTGAACCACTATGCTGG, reverse: 

ACTGAGCACAGAATAGAGCCGC; sphingosine kinase 2 (Sphk2) forward: GGTGCCAATGATCTCTGAAGCTG, 

reverse: CTCCAGACACAGTGACAATGCC; sphingosine-1-phosphate receptor 1 (S1PR1) forward: 

CGCAGTTCTGAGAAGTCTCTGG, reverse: GGATGTCACAGGTCTTCGCCTT; Serine Palmitoyltransferase Long Chain 

Base Subunit 2 (Sptlc2) forward: CCAGACTGTCAGGAGCAACCAT, reverse: CTTCTTGTCCGAGGCTGACCAT; 

ceramide synthase 1 (Lass1) forward: TCTGCTGTTGCTCCTGATGGTC, reverse: CTTGGCTGTCTGAGCTTCCAGA. 

4.2.9 Microsomal protein extracts preparation  

Frozen tissues were homogenized in 500 µL of resuspension buffer (HEPES 50 mM, pH 8, and EDTA 1 mM), and 

sonicated for 10 seconds at 50% power and 50% pulsation. Homogenates were centrifuged at 2,500 x g for 2 

min. Supernatants were ultra-centrifuged at 46,000 rpm (MLA 130 rotor) for 30 min at 4 °C. Pellets were finally 
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resuspended in 500 µl of buffer (HEPES 50 mM, pH 8, and EDTA 1 mM) and protein concentrations were 

measured using the bicinchoninic acid protein assay (Pierce, Rockford, IL, USA).  

4.2.10 Ceramide synthase 1 activity assay 

Microsomal extracts (50 µg) were mixed in assay buffer (Bovine Serum Albumin (BSA)-fatty acid free 20 µM, 

HEPES 200 mM, pH 7.4, MgCl2 2 mM, DTT 0.5 mM, KCl 25 mM) in the presence of the substrates StearoylCoA 

(50 µM) and sphinganine (15 µM) to a final volume of 500 µL and incubated for 1h at 37 °C. Blank samples were 

added as controls (a sample without protein and a sample without substrate). Reactions were stopped by 

addition of a mixture of chloroform/methanol (2:1, vol/vol) containing the odd-chain ceramide (d18:1/17:0) 

(200 pmol/sample) as internal standard. Samples were centrifuged at 3000 rpm for 15 min at 4 °C.  The organic 

phases were collected, dried under nitrogen and dissolved in 100 µL MeOH. LC-MS/MS analysis of samples was 

carried out using the method for sphingolipid measurements previously described and monitoring the reaction 

product dihydroceramide (d18:0/18:0). 

4.2.11 SPT activity assay 

Microsomal extracts (200 µg) were incubated in protein assay buffer (HEPES 50 mM at pH 8, EDTA1 mM, DTT 

0.5 mM) in the presence of assay hot buffer (L-serine 0.5 mM, L-[3H] serine 500 nM, palmitoyl-CoA 100 µM, 

pyridoxal 5’-phosphate 40 µM) for 3 hours at 37 °C. Blank samples without protein extracts or without 

substrates were used as negative controls. Reactions were stopped by addition of a mixture of MeOH-

KOH:CHCl3 = 4:1 (0.5 mL).  Lipids were extracted by CHCl3 (0.5 ml) and washed with alkaline water (0.5 ml). 

Samples were centrifuged at 12,000 x g for 1 minute at room temperature. The upper phase was removed and 

the lower phase was washed twice with 1 mL of alkaline water. 400 µl of organic phase were transferred to a 

polyethylene scintillation vial, dried under nitrogen and then 3 mL of scintillation liquid cocktail were added. 

The radioactivity incorporated in the reaction product was counted by a scintillation counter. 
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4.2.12 Intracerebroventricular (icv) drug infusions 

Mice were anesthetized with a mixture of ketamine/xylazine (100 mg/kg and 10 mg/kg body weight, 

respectively) and placed in a stereotaxic frame with a mouse-adaptor. A 22-gauge guide cannula (3.1 mm in 

length, Plastics One) was stereotaxically implanted and positioned 1 mm above the right lateral ventricle at the 

following brain atlas coordinates, relative to bregma and dural surface: AP −0.2, ML −1.0, and DV −1.3 mm 

(Paxinos and Franklin, The Mouse Brain in Stereotaxic Coordinates). Animals were allowed to recover 10 days 

after surgery, during which they were single-housed and habituated to the feeding system cages. Infusions 

were made in wake animals through a 33-gauge infusion cannula (Plastics One) that extended 1 mm beyond 

the end of the guide cannula. The injector was connected to a 10-μL Hamilton syringe by PE-20 polyethylene 

tube. The syringe was driven by an automated pump (Harvard Apparatus) at a rate of 0.5 μL/min to provide a 

total infusion volume of 2 μL. Cannula placements were verified histologically. 

4.2.13 Feeding behavior  

Cannulated mice were transferred to individual test chambers to recover from surgery and to habituate to the 

new bottom-wired cages, 10 days before the test. Food intake was monitored for 24 hours as previously 

described (Fu, Gaetani et al. 2003; Gaetani, Oveisi et al. 2003; Schwartz, Fu et al. 2008), using an automated 

system (Scipro Inc., New York, NY), consisting of 24 cages equipped with baskets connected to weight sensors. 

The baskets contained standard chow pellets and were accessible to the animals through a hole in the wire lid 

of the cage. Each time food was removed from the basket the computer recorded the duration of the event, 

the amount of food retrieved, and the time at which the event occurred. Recorded data have been analyzed as 

food ingested/100g body weight/hour, and as cumulative food intake (g/100g body weight) across the test 

period. A detailed meal analysis has been performed adopting a minimum inter-response interval separating 

two meals of 10 minutes and the threshold for an eating episode was set at 0.12 g and >1 min.  

Two categories of feeding parameters can be distinguished: “first meal parameters” and “average meal 

parameters”. The “average meal parameters” included: 
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- Meal size (g/100g body weight): the amount of food consumed during each meal 

- Post-meal interval (min): the time interval between the end of one meal and the beginning of the next 

meal. 

- Satiety ratio [min / (g/100g body weight)]: the ratio between post-meal interval and meal size. 

- Meal frequency (meals/h): the ratio between total number of meals consumed within the trial period 

and trial duration. 

- Eating rate [(g/100g body weight)/min]: the ratio of the average meal size and average meal duration. 

4.2.14 Statistical analysis 

Results are presented as mean ± SEM (standard error of the mean). Unpaired Student’s t-test was used to 

compare one parameter between two groups. To compare one parameter among more than two groups one-

way ANOVA followed by Tukey’s multiple comparison post-hoc test was used.  Two-way ANOVA followed by 

Bonferroni post-hoc test was used to analyze more than one factor among groups, with feeding status 

(standard diet or high fat diet; and re-feeding or free feeding) and time, or treatment (DMSO or ARN14974) 

and time as independent factors. GraphPad Prism software V5.03 (GraphPad Software, Inc., USA) was used. 

Differences between groups were considered statistically significant if p < 0.05. 
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4.3 Results 

4.3.1 Effects of HFD on energy intake and body weight.  

We were interested in the study of the effects of a fat-enriched diet on hypothalamic cerebral area at very 

early time points, prior to a significant weight gain, and at the time point when animals become obese (Wang 

and Liao 2012). As shown in Fig. 1A, mice fed an HFD exhibited a robust peak in energy intake during the first 

four days but without a significant increase of body weight until day 14 of HFD exposure (Fig. 1B). After 14 

days, body weight differences between the two groups increased and a clear separation occurred, until became 

significant at day 28. 

 

Fig. 1. (A) Energy intake and (B) body weight of mice fed standard diet (SD) or high fat diet (HFD). Results are expressed as mean ± SEM 

(n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; two-way ANOVA followed by Bonferroni post-hoc test. 
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4.3.2 Effects of HFD on hypothalamic sphingolipids.  

Mice were fed a HFD ad libitum for 1, 3, 7, 14 or 28 days to investigate the effect of a short-term exposure to a 

fat-enriched diet (60% Kcal from fat). We used the LC-MS/MS based method previously developed by our lab 

(Basit, Piomelli et al. 2015) to characterize sphingolipid profile in tissue extracts from whole hypothalamus. As 

shown in Fig. 2A-C, when compared to mice fed a standard diet (SD), 1 day of exposure to HFD was sufficient to 

reduce levels of very long-chain ceramide (d18:1/24:0) and ceramide (d18:1/24:1), but failed to do so on the 

most abundant cerebral ceramide specie,  (d18:1/18:0). Similar results were observed after 14 days of HFD (Fig. 

2A-C). By contrast, no alterations were observed after 3, 7 or 28 days with any ceramide.  

 

Fig. 2. Effects of standard diet (SD, white bars) and high fat diet (HFD, black bars) on (A) ceramide (d18:1/24:0), (B) ceramide 

(d18:1/24:1), (C) ceramide (d18:1/18:0) in hypothalamus after 1-3-7-14-28 days. Results are expressed as mean ± SEM (n = 8/group). * p 

< 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test.  
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To determine whether the low ceramide levels at day 1 and 14 were correlated with an impaired de novo 

biosynthesis, we quantified ceramide precursors: dihydroceramide (d18:0/24:0), dihydroceramide (d18:0/24:1) 

and dihydroceramide (d18:0/18:0). Dihydroceramide (d18:0/24:0) levels (Fig. 3A) decreased after 1 and 14 days 

of HFD exposure but, surprisingly, such changes were not detected with dihydroceramide (d18:0/24:1), which 

showed a slight increase at day 3 (Fig. 3B). Even though ceramide (d18:1/18:0) levels were not changed, we 

observed small but significant fluctuations in dihydroceramide (d18:0/18:0) after 14 and 28 days of exposure to 

a HFD (Fig. 3C). 

 

Fig. 3. Effects of standard diet (SD, white bars) and high fat diet (HFD, black bars) on dihydroceramides (dHCeramide) (A) dHCeramide 

(d18:0/24:0), (B) dHCeramide (d18:0/24:1) and (C) dHCeramide (d18:0/18:0) in hypothalamus after 1-3-7-14-28 days. Results are 

expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test. 
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As shown in Fig. 4A, no differences in the ceramide breakdown product SO were found in HFD-treated mice 

when compared to SD. By contrast, we observed a significant decrease of SO-1-P after 7 and 14 days of HFD 

and a similar trend, albeit not significant, after 1 and 3 days (Fig. 4B). 

 

Fig. 4. Effects of standard diet (SD, white bars) and high fat diet (HFD, black bars) on (A) sphingosine and (B) sphingosine-1-phosphate in 

hypothalamus after 1-3-7-14-28 days. Results are expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p < 0.01, *** p < 0.001; 

Student’s unpaired t-test. 

4.3.3 Effects of HFD on de novo synthesis gene expression. 

Sptlc2 encodes the catalytic subunit 2 of serine palmitoyltransferase (SPT), which catalyzes the condensation of 

L-serine and palmitoyl-CoA. Lass1 and Lass2 encode respectively ceramide synthase 1 (CerS1) and ceramide 

synthase 2 (CerS2), which catalyze the N-acylation of dihydrosphingosine (sphinganine) to form 

dihydroceramide of different chain-lengths. As these enzymes play a key role in de novo sphingolipid 

biosynthesis, we examined their expression after 1 or 14 days of HFD, but we did not observe significant 

changes (Fig. 5). 
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Fig. 5. Effects of standard diet (SD, white bars) and high fat diet (HFD, black bars) on Sptlc2 (serine palmitoyltransferase), Lass1 

(ceramide synthase 1), Lass2 (ceramide synthase 2) transcription in hypothalamus (A) after 1 day and (B) 14 days. Results are expressed 

as mean ± SEM (n = 5/group). * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s unpaired t-test . 

4.3.4 Effects of 12h of food deprivation and refeeding on energy intake.  

To assess the effect of an opposite feeding condition on hypothalamic sphingolipid metabolism, mice were 

food deprived for 12 hours and re-exposed to standard chow diet ad libitum for 1 hour or 6 hours.  After 1 hour 

of refeeding, mice showed an intake of 2 ± 0.3 Kcal (Fig. 6), which is around 20% of their 24 h energy intake and 

is significantly higher, compared to free fed mice. After 4 h the energy intake was comparable with the control 

group and remained linear until 6 h.  
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Fig. 6. Energy intake of free-fed mice and mice re-exposed to food. Results are expressed as mean ± SEM (n = 8/group). * p < 0.05, ** p 

< 0.01, *** p < 0.001; two-way ANOVA followed by Bonferroni post-hoc test. 

4.3.5 Effects of food deprivation and refeeding on hypothalamic sphingolipids. 

Food-deprived mice showed significant alterations of de novo ceramide biosynthesis. We found that 

sphinganine (Fig. 7A) and its metabolite sphinganine-1-phosphate (Fig. 7B) were reduced following 12 h food 

deprivation. Sphinganine levels remained low also during refeeding, while sphinganine-1-phosphate partially 

recovered after refeeding. Similarly, dihydroceramide (d18:0/18:0) showed decreasing levels after 12 h food 

deprivation and partial recovery after refeeding (Fig. 7C). By contrast, hypothalamic levels of ceramide 

(d18:1/18:0) were not altered either by fasting or refeeding (Fig. 7D). This result suggests that hypothalamic de 

novo biosynthesis of ceramides may be affected by the feeding status.  

Since the balance between ceramide and SO-1-P is referred to as the “sphingolipid rheostat” (Newton, Lima et 

al. 2015), we next asked whether changes in ceramide precursors were accompanied by alterations in SO/SO-1-

P levels. As shown in Fig. 7E, food deprivation (FD), a negative energy balance state, caused a significant 

accumulation of SO levels compared to free-fed mice. Such levels were re-established after 6 h refeeding (RF 

6h). Concomitantly, fasting significantly decreased SO-1-P hypothalamic content (Fig. 7F), while RF 6h 

reinstated SO-1-P levels. These results suggest that 12 h food deprivation is sufficient to alter SO/SO-1-P 

balance (Fig. 7E-F).  
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Fig. 7. Effects of free feeding (FF), 12 h food deprivation (FD), 1 h refeeding after food deprivation (RF 1h) and 6 h refeeding after food 

deprivation (RF 6h) on (A) sphinganine, (B) sphinganine-1-phosphate, (C) dHCeramide (d18:0/18:0), (D) ceramide (d18:1/18:0), (E) 

sphingosine, and (F) sphingosine-1-phosphate in hypothalamus. Results are expressed as mean ± SEM (n = 5-10/feeding condition). 

Independent experiments yielded similar results. *p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA followed by Tukey’s multiple 

comparison test.  

4.3.6 Effects of food deprivation and refeeding on Sptlc2 and Lass1 gene expression.  

Quantitative RT-PCR analysis showed that fasting significantly reduced Sptlc2 and Lass1 mRNA levels compared 

to free feeding control (Fig. 8A-B). Sptlc2 gene transcription remained low through the whole refeeding interval 

(Fig. 8A), while Lass1 gene expression was restored after 6 h refeeding (Fig. 8B). These results were consistent 

with the decreased levels of sphinganine and dihydroceramide during fasting. 
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Fig. 8. Effects of free feeding (FF), 12 h food deprivation (FD), 1 h refeeding after food deprivation (RF 1h) and 6 h refeeding after food 

deprivation (RF 6h) on (A) Sptlc2 (serine palmitoyltransferase), (B) Lass1 (ceramide synthase 1). Results are expressed as mean ± SEM (n 

= 5-8/feeding condition). Two independent experiments yielded similar results. *p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA 

followed by Tukey’s multiple comparison test. 

4.3.7 Effects of food deprivation and refeeding on SPT and CerS enzymatic activity. 

To further investigate the involvement of de novo ceramide biosynthesis in this fasting model, serine 

palmitoyltransferase (SPT) and ceramide synthase 1 (CerS) enzymatic activity were assayed. As shown in Fig. 9 

enzymatic activity was not affected by feeding status, even though we observed changes in mRNA expression 

of Sptlc2 and Lass1. 

 

Fig. 9. Effects of free feeding (FF), 12 h food deprivation (FD), 1 h refeeding after food deprivation (RF 1h) and 6 h refeeding after food 

deprivation (RF 6h) on enzymatic activity of (A) SPT (serine palmitoyltransferase) and (B) CerS1 (ceramide synthase 1) in hypothalamus. 

Results are expressed as mean ± SEM (n = 5/feeding condition). *p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA followed by 

Tukey’s multiple comparison test.  
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4.3.8 Effects of food deprivation and refeeding on SphK1, SphK2 and S1PR1 gene expression. 

Sphingosine kinase (SphK) catalyzes the synthesis of bioactive lipid SO-1-P, which in turn activates a family of 

five G-coupled receptors named sphingosine-1-phosphate receptor 1-5 (S1PR 1-5) (Maceyka, Sankala et al. 

2005; Pyne, McNaughton et al. 2015). Two distinct isoforms of SphK are expressed in brain areas, SphK1 and 

SphK2 (Bryan, Kordula et al. 2008). As shown in Fig. 10A-B, 12 h fasting significantly decreased SphK2 mRNA 

expression and slightly affected SphK1. After 6 h refeeding, SphK2 was restored to baseline levels (Fig. 10B). SO-

1-P/S1PR1 axis has an important role in the control of food consumption and energy homeostasis (Silva, 

Micheletti et al. 2014). We further confirmed this finding analyzing S1PR1 gene expression by qRT-PCR and we 

observed that 12 h food deprivation transcriptionally downregulates S1PR1 levels, an effect that is completely 

reversed by 6 h of refeeding (Fig. 10C). 

 

Fig. 10. Effects of free feeding (FF), 12 h food deprivation (FD), 1 h refeeding after food deprivation (RF 1h) and 6 h refeeding after food 

deprivation (RF 6h) on SphK1 (Sphingosine kinase 1) (A), SphK2 (Sphingosine kinase 2) (B), S1PR1 (sphingosine-1-phosphate receptor 1) 

(C) transcription in hypothalamus. Results are expressed as mean ± SEM (n = 5-8/feeding condition). Two independent experiments 

yielded similar results. *p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA followed by Tukey’s multiple comparison test.  
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4.3.9 Effect of acid ceramidase inhibitor ARN14974 on feeding behavior. 

Mice that received lateral ventricle injections of ARN14974 (50pmol/2µL, icv) did not show significant changes 

in the total amount of food intake or in cumulative food intake within the 24 hours of monitoring when 

compared to the vehicle group (Fig. 11).  

 

Fig. 11. Effects of ARN14974 (50 pmol, icv) on (A) total food intake and (B) cumulative food intake in free-fed mice after 24 h test period. 

Results are expressed as mean ± SEM (n = 8/group). * p < 0.05; Student’s unpaired t-test was used for total food intake (A); two-way 

ANOVA followed by Bonferroni post-hoc test was used for cumulative food intake (B). 

However, we explored the behavioral basis of ARN14974 action and we examined the effects of the acid 

ceramidase inhibitor on meal pattern during a 24 h period starting from the onset of dark phase. As shown in 

Fig. 12, ARN14974 altered various average-meal parameters. These included an increase of meal size (Fig. 12A) 

and post-meal interval (Fig. 12B), with a concomitant reduction of number of meals (Fig. 12C) and meal 

frequency (Fig. 12D). The parallel increase in post-meal interval and meal size caused the average satiety ratio 

to remain unchanged (Fig. 12E). Furthermore, there was no effect on meal duration (Fig. 12F) and average rate 

(Fig. 12G) at which mice consumed their meals.  
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Fig. 12. Effects of ARN14974 (50 pmol, icv) on (A) meal size, (B) post-meal interval, (C) number of meals, (D) meal frequency, (E) satiety 

ratio, (F) meal duration, (G) eating rate in free-fed mice after 24 h test period. Results are expressed as mean ± SEM (n = 8/group). *p < 

0.05, **p < 0.01, ***p < 0.001; Student’s unpaired t-test.  
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4.4 Discussion 

The roles of sphingolipids in obesity and co-morbidities such as diabetes (Summers 2006) and cardiovascular 

disease (Bismuth, Lin et al. 2008) have been widely investigated in recent years (Bikman and Summers 2011). 

Evidence suggests that ceramide is one of the most toxic lipids that can accumulate in obese rodent models 

and human patients and numerous studies indicate that ceramide and its metabolites have profound effects on 

cellular metabolism (Guenther and Edinger 2009). Previous works reported that hypothalamic ceramide levels 

are increased in mice after 12 weeks of HFD consumption (Borg, Omran et al. 2012), in streptozotocin-induced 

diabetic rats (Car, Zendzian-Piotrowska et al. 2012) and in obese Zucker rats (Contreras, Gonzalez-Garcia et al. 

2014). However, despite these evidences, a systematic investigation of endogenous ceramide levels in 

hypothalamus after an acute and mid-term exposure to HFD has not been performed. In the present study, we 

described previously unreported alterations in hypothalamic sphingolipid metabolism in young mice exposed 

to a HDF for 1-3-7-14-28 days. Body weight and energy intake were monitored throughout the whole period of 

HFD exposure and compared to SD, in order to have readout of endogenous sphingolipid changes. Surprisingly, 

we found that young mice exposed to a fat-enriched diet for 24 h show a significantly high increase in energy 

intake paralleled by a reduction of the levels of ceramide (d18:1/24:0), its precursor dihydroceramide 

(d18:0/24:0), and ceramide (d18:1/24:1), whereas no changes were detected in ceramide (18:1/18:0). Changes 

in very long-chain ceramides are of particular interest since they have been involved also in aging and age-

related disorders (Mielke, Haughey et al. 2010; Huang, Withers et al. 2014). Activation of astrocytes occurs as 

early as 1 day after HFD (Thaler, Yi et al. 2012; Buckman, Thompson et al. 2013) and this could initially function 

as a neuroprotective response and an attempt to maintain homeostasis. Similarly, a reduction in ceramide 

content may be considered as a defensive response to the high caloric load. However, the drawback of this 

defensive activation occurs when it is sustained over time, because inflammatory and neurotoxic factors can 

cause neuronal damage. We observed reduced levels of ceramide (d18:1/24:0), its precursor dihydroceramide 

(d18:0/24:0), ceramide (d18:1/24:1) and dihydroceramide (d18:0/18:0) up to day 14 of HFD exposure. After 14 

days the energy intake of animals fed HFD was comparable to control animals, but a separation in body weight, 
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although still not significant, occurred. 14 days may be considered as the cut-off point between a putative 

protective role of ceramide and the induction of cerebral lipotoxicity. Molecular mechanisms underlying 

hypothalamic lipotoxicity may include inflammation, development of leptin and insulin resistance and ceramide 

overproduction. Contreras et al. suggested that ceramide-induced lipotoxicity was a key mechanism 

modulating energy balance (Contreras, Gonzalez-Garcia et al. 2014). Consistent with this hypothesis, we 

observed a significant increase of body weight in mice exposed to HFD for 28 days, that was accompanied by 

an increase in ceramide precursor dihydroceramide (d18:0/18:0) and increasing trend in dihydroceramide 

(d18:0/24:0), although no differences were detected in ceramides. De novo biosynthesis plays a key role in the 

pathogenesis of obesity and metabolic syndrome since it has been demonstrated that its inhibition in obese 

mice resulted in decreased body weight, without alterations in food intake (Yang, Badeanlou et al. 2009), 

indicating a shift in total energy balance toward enhanced metabolism and energy expenditure. By contrast, 

increased de novo synthesis of ceramides in hippocampus has been demonstrated to be responsible for 

decreased parasympathetic nervous activity and locomotor activity leading to increased body weight gain in 

rodents (Picard, Rouch et al. 2014). We then analyzed ceramide breakdown product SO-1-P, and we observed a 

significant decrease of this metabolite after 7 and 14 days of HFD exposure. SO-1-P has attracted great 

attention for his double pro-inflammatory or anti-inflammatory roles (Maceyka and Spiegel 2014). Circulating 

SO-1-P has been found to be elevated in obesity (Kowalski, Carey et al. 2013), and the work published by Silva 

et al. finally establishes the role of SO-1-P and SO-1-P/S1PR1 axis in the control of hypothalamic anorexigenic 

signals, food consumption and energy expenditure in hyperphagia and anorexia (Silva, Micheletti et al. 2014). 

These investigators found reduced S1PR1 protein and gene expression in hypothalamus of rats and mice fed 

HFD. They also observed a significant reduction of food intake when animals were treated by single injection of 

SO-1-P in the third ventricle. 

Consumption of HFD and obesity development may have detrimental effects on hypothalamic control of 

energy balance. By contrast, it has been investigated and widely accepted that fasting, intermittent fasting 

(alternate day fasting or twice weekly fasting) or periodic fasting, may provide effective strategies to delay 
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aging and optimize health. Fasting for 24 hours twice weekly throughout adult life resulted in a significant 

increase in lifespan of black-hooded rats (Kendrick 1973). Furthermore, starvation may increase neuronal 

activity in brain regions involved in cognition, resulting in production of BDNF, enhanced synaptic plasticity and 

improved stress tolerance (Rothman, Griffioen et al. 2012). In the present study we used fasting and refeeding 

as a strong stimulus to stress the transition from a negative energy balance (12h food deprivation) to acute 

food intake (1h refeeding) and we examined sphingolipid metabolism activation in hypothalamus. We showed 

for the first time that food deprivation causes simultaneous acute changes of sphingolipid metabolites at 

different key points of sphingolipid metabolic pathway. De novo ceramide synthesis is affected by 12 h of food 

deprivation as we found a significant downregulation of sphinganine, its metabolite sphinganine-1-phosphate, 

and dihydroceramide (d18:0/18:0), but no differences were observed with ceramide (d18:0/18:0). These 

effects on ceramide biosynthesis could be accounted for by concomitant downregulation of Sptlc2 and Lass1 

transcription but not SPT and CerS1 enzymatic activity. 6 h refeeding reinstated the energy intake to basal 

levels but was not sufficient to completely re-establish basal levels of lipids. The sphingolipid mediators 

sphingosine (SO) and SO-1-P were also quantified and found altered, with significant accumulation of SO and 

reduction of SO-1-P after 12 h of fasting. These results were supported by qRT-PCR experiments which showed 

downregulation of the sphingosine-metabolizing enzyme sphingosine kinase 2. The isoenzyme sphingosine 

kinase 1 displayed a similar decreasing trend, albeit not significant. Although highly similar in amino acid 

sequence, and although they use the same substrate and produce the same product, SphK1 and SphK2 have 

opposite roles with SphK1 enhancing proliferation and growth and the isoenzyme 2 enhancing apoptosis and 

suppressing growth (Maceyka, Sankala et al. 2005). It is possible that SO-1-P formed by SphK1 or SphK2 has 

distinct functions and responses to stimuli. SO-1-P/S1PR1 axis has been involved in the control of food 

consumption and energy expenditure also in food-deprived rodents. It has been shown that 12h fasting 

reduced S1PR1 protein level in hypothalamic neurons and 6 h refeeding was sufficient to reinstate it. We 

confirmed this observation analyzing the S1PR1 transcription in hypothalamus of 12 h food deprived mice and 

re-fed mice.  
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Acid ceramidase metabolizes ceramide into SO which is, in turn, phosphorylated to SO-1-P by SphK1 or SphK2. 

Ceramide breakdown into SO and SO-1-P has been termed “sphingolipid rheostat” as it involves enzymes which 

may be potential targets to tilt the balance between these bioactive molecules and determine cell fate. 

ARN14974 has been identified and characterized as a potent covalent acid ceramidase inhibitor (Pizzirani, Bach 

et al. 2015). When administered in standard chow free-fed mice by injection into the third ventricle, it 

promoted alterations in feeding behavior parameters. Even though the total food intake after 24 h of test was 

not affected in treated mice, the behavioral parameters changed. Of particular interest was the meal size, 

which was increased in ARN14974-treated mice compared to control. The acid ceramidase inhibitor causes an 

accumulation of ceramide and a reduction of SO and SO-1-P, which presumably results in increased meal size. 

Since also the post-meal interval was elevated, the satiety ratio, calculated by the ratio between those two 

parameters did not change. This means that treated animals eat bigger meals but they reach the same satiety 

as control group. The limit of this study is that only acute injections were performed but chronic treatments are 

required to better understand the role of long-term ceramide accumulation in free-fed mice. As previously 

mentioned, dysregulated ceramide metabolism may lead to lipotoxicity with consequences in energy intake 

regulation and the way animals approach to food. 
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4.5 Conclusions 

In our study we quantified for the first time a broad panel of endogenous sphingolipids in hypothalamus, in 

distinct conditions of abnormal feeding such as consumption of a fat-enriched diet or fasting.  

Our results revealed that de novo ceramide biosynthesis may have a critical role in hypothalamic regulation of 

feeding behavior and energy balance in response to drastic diet changes such as a high fat diet or food 

deprivation. Furthermore, we confirmed the importance of SO-1-P/SO1PR axis in the regulation of energy 

balance, showing that hypothalamic levels of SO-1-P, its precursor SO and enzymes involved in their conversion 

(sphingosine kinases) are influenced by feeding status. Since obesity and fasting may have respectively a 

detrimental or beneficial effect on aging, it will be important to establish the functional role of altered 

hypothalamic sphingolipid metabolism as it may represent a potential target for the treatment of altered 

feeding conditions.  
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