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Abstract

Tuning properties of simple cells in cortical V1 can be described in terms of a “universal
shape” characterized by parameter values which hold across different species ([12], [33], [22]).
This puzzling set of findings begs for a general explanation grounded on an evolutionarily im-
portant computational function of the visual cortex. We ask here whether these properties
are predicted by the hypothesis that the goal of the ventral stream is to compute for each
image a “signature” vector which is invariant to geometric transformations as postulated in
[30] – with the the additional assumption that the mechanism for continuously learning and
maintaining invariance consists of the memory storage of a sequence of neural images of a
few objects undergoing transformations (such as translation, scale changes and rotation) via
Hebbian synapses. For V1 simple cells the simplest version of this hypothesis is the online Oja
rule which implies that the tuning of neurons converges to the eigenvectors of the covariance
of their input. Starting with a set of dendritic fields spanning a range of sizes, simulations
supported by a direct mathematical analysis show that the solution of the associated “corti-
cal equation” provides a set of Gabor-like wavelets with parameter values that are in broad
agreement with the physiology data. We show however that the simple version of the Hebbian
assumption does not predict all the physiological properties. The same theoretical framework
also provides predictions about the tuning of cells in V4 and in the face patch AL [17] which
are in qualitative agreement with physiology data.

1 Computational goal and mechanism

The original work of Hubel and Wiesel, as well as subsequent research, left open the questions of
(1) what is the function of the ventral stream in visual cortex and (2) how are the properties of its
neurons related to it. Poggio et al.’s so-called “magic” theory [29, 30] – here “M-theory” – proposes
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that the main goal of the ventral stream is to compute, at each level in the hierarchy of visual
areas, a signature that is unique for the given image, invariant under geometric transformations and
robust to small perturbations. M-theory suggests a mechanism for learning the relevant invariances
during unsupervised visual experience: storing sequences of images (called “templates”) of a few
objects transforming, for instance translating, rotating and looming. It has been claimed that
in this way invariant hierarchical architectures similar to models of the ventral stream such as
Fukushima’s Neocognitron [7] and HMAX [32, 35] – as well as deep neural network architectures
called convolutional networks [15, 14] and related models—e.g. [28, 27, 34, 1]—can be learned from
unsupervised visual experience. Here we focus on V1, making the assumption that the development
of an array of initially untuned cells with spatially localized dendritic trees of different sizes is
genetically determined, reflecting the organization of the retinal array of photoreceptors.

M-theory assumes that the templates and their transformations – corresponding to a set of “simple”
cells – are memorized from unsupervised visual experience. In a second learning step, a “complex”
cell is wired to simple cells that are activated in close temporal contiguity and thus are likely to
correspond to the same patch of image undergoing a transformation in time [5]. However, the
proposal of direct storage of sequences of images patches – seen through a Gaussian window – in a
set of V1 cells is biologically implausible. Here we examine the biologically more plausible proposal
that the neural memorization of frames (of transforming objects) is performed online via Hebbian
synapses that change as an effect of visual experience. Specifically, we assume that the distribution
of signals “seen” by a maturing simple cell is Gaussian in x, y reflecting the distribution on the
dendritic tree of synapses from the lateral geniculate nucleus. We also assume that there is a range
of Gaussian distributions with different σ (this range shifts towards larger σ as retinal eccentricity
increases). As an effect of visual experience the weights of the synapses are modified by a Hebb
rule [9]. Hebb’s original rule, which states in conceptual terms that “neurons that fire together,
wire together”, can be written as ẇ = u(v)v, where v is the input vector w is the presynaptic
weights vector, u is the postsynaptic response and ẇ = dw/dt. In order for this dynamical system
to actually converge, the weights have to be normalized. In fact, there is considerable experimental
evidence that cortex employs normalization (cf. [38] and references therein).

2 The simplest Hebbian rule: the Oja flow

Mathematically, this requires a modified Hebbian rule. We consider here only the simplest among
a large family of such rules, proposed by Oja [23]. Others (such as Independent Component
Analysis, see later and [2, 10]), including biologically more realistic plasticity rules, would also
be appropriate for our argument and possibly provide a better quantitative fit. Oja’s equation
ẇ = γu(v)[v − u(v)w] defines the change in presynaptic weights w where γ is the “learning rate”
and the “output” u is assumed to depend on the “input” v as u(v) = w

T
v. The equation fol-

lows from expanding to the first order the Hebb rule normalized to avoid divergence of the weights.
Oja’s version of Hebb’s rule has been proven to converge to the top principal component of its input
(technically to the eigenvector of the covariance of its inputs with the largest eigenvalue). Lateral
inhibitory connections can enforce convergence of different neighboring neurons to several of the
top eigenvectors ([23, 24] and see [30]). Our simulations with parameter values in the physiological
range suggest that eigenvectors above the first three are almost always in the range of the noise.
Because of this, we assume here that we can study the result of online Hebbian learning by studying
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the properties of the top three eigenvectors of the covariance of the visual inputs to a cortical cell,
seen through a Gaussian window.

In particular we consider the continuous version of the problem where images are transformed by
the locally compact group of 2D-translations. Notice that for small Gaussian apertures all motions
are effectively translations (as confirmed by our simulations for natural images seen through a
physiologically sized Gaussian). Thus, in this case, the tuning of each simple cell in V1 – given by
the vector of its synaptic weights w – is predicted to converge to one of the top few eigenfunctions
ψn(x, y) of the following equation:

∫
dξdηg(x, y)g(ξ, η)t⊛(ξ − x, η − y)ψn(ξ, η) = νnψn(x, y). (1)

where the functions g are Gaussian distributions with the same, fixed width σ and t⊛ is the au-
tocorrelation function of the input from the LGN. ψn is the eigenfunction and νn the associated
eigenvalue. Equation (1), which depends on t⊛, defines a set of eigenfunctions parameterized by
σ. We assume that the images generating the LGN signal t(x, y) are natural images, with a power
spectrum Ft⊛(x) = 1/ω2, where F is the Fourier transform [37]. In 1-D the solutions of equation 1
with this t⊛ are windowed Fourier transforms but for different σ they provide a very good approx-
imation of Gabor wavelets for n = 0, 1, 2, since λ increase roughly proportionally to σ. An analytic
solution for the specific input spectrum 1

ω2 can be derived and will be given elsewhere. In 2D
the known temporal high-pass properties of retinal processing (modeled as an imperfect high-pass,
derivative-like operation in time) are compensated in the direction of motion by a local spatial
average followed by a Difference of Gaussian (DOG) filter (see for instance [4]). Motion provides a
selection mechanism that breaks the degeneracy of the 2D spectrum in the cortical equation (see
Appendix).

3 Simulations

Our simulation pipeline consists of several filtering steps that mimic retinal processing, followed by
a Gaussian mask which corresponds to the initial cortical cell receptive field, as shown in Figure 1.
Values for the DoG filter were those suggested by [3]; the spatial lowpass filter has frequency

response: 1/
√
ω2

x + ω2
y. The temporal derivative is performed using imbalanced weights (−0.95, 1)

so that the DC components is not zero. Each cells learns by extracting the principal components
of a movie generated by a natural image patch undergoing a rigid translation. Each frame goes
through the pipeline described here and is then fed to the unsupervised learning module (computing
eigenvectors of the covariance). We used 40 natural images and 19 different Gaussian apertures for
the simulations presented in this paper.

Simulations, suggested by a direct analysis of the equations show that, independently of the pa-
rameter values of the filtering, Gabor functions with modulation in the direction of motion (e.g.
x), Gn(x, y) ∝ exp(−y2/σ2

ny − x
2/σ2

nx) sin[(2π/λn)x] are approximate solutions of the equation. If
for each σ only the first three eigenvectors are significant, then the set of solutions is well described
well by a set of Gabor wavelets, that is a set of Gabor functions in which lambda is proportional
to σx, which in turn is proportional to σy. These relations are captured in the ratio nx/ny (where
nx = σx/λ and ny = σy/λ) which was introduced to characterize tuning properties of simple cells
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Figure 1: Retinal processing pipeline used for V1 simulations. Though Gabor-like filters are obtained
irrespectively of the presence or absence of any element of the pipeline the DoG filter is important in 1D
and 2D for the emergence of actual Gabor wavelets with the correct dependence of λ on σ; the spatial
low-pass filter together with the temporal derivative are necessary in our simulation to constrain λ to be
proportional to σ.

in V1 in the macaque [33]. It turns out that simple cells show Gabor-like tuning curves which
are wavelet-like. Remarkably, the key parameter values are similar across three different species as
shown by Figure 3 which includes, in addition to Ringach’s, also Niell and Stryker’s data on mouse
V1 [22] and the original Palmer et al. experiments in cat cortex [12]. The theory of this paper,
despite using the simplest Hebbian rule, seems to predicts the data in a satisfactory way. Equation
(1) gives Gaussian eigenfunctions with no modulation, as well as with odd and even modulations,
similar to data from simple cells. The general tuning is rather robust. In particular, we expect to
find similar tuning if instead of natural images with a 1

ω2 spectrum, the input from the retina is
determined during the early stages of development by retinal waves [39].

Notice that our proposal does not necessarily require visual experience for the initial tuning to
emerge during development: it is quite possible that a tuning originally discovered by evolution
was eventually compiled into the genes. The theory however predicts that the tuning is maintained
and updated by continuous visual experience (under the assumption of Hebbian plasticity). In
particular, it predicts that tuning can be modified by disrupting normal visual experience. At the
level of IT cortex, such a prediction is consistent with the rapid disruption of position and scale
invariance induced by exposure to altered visual experience [19] as shown by simulations[11].

The original theory [30] posits that local invariance is obtained in complex cells by pooling the
outputs of several simple cells in a way similar to “energy models”. The wiring between a group of
simple cells with the same orientation and a complex cell may develop according to a Hebbian trace
rule[5]. Complex cells would thus inherit several of the properties of simple cells. Notice that a
complex cell is invariant to translations in every direction even if its set of simple cells was “learned”
while being exposed to motion in a specific direction. Thus the theory predicts the emergency of
multiresolution analysis during development of V1 spanning a range of frequencies determined by a
set of Gaussian distributions of synapses on dendritic trees with a range of σ which are assumed to
be present at the beginning of visual development. More complex activity-dependent mechanisms
than Oja’s rule may automatically determine different sizes of receptive fields during development
[40, 31]: the details of the rules operating during development are of course less important than the
experimental confirmation of a key role of Hebbian rules in determining and/or maintaining the
tuning of V1 cells.

A similar set of assumptions about invariance and Hebbian synapses leads to wavelets-of-wavelets
at higher layers, representing local shifts in the 4-cube of x, y, scale, orientation learned at the level
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Figure 2: Simulation results for V1 simple cells
“learned” via PCA. Each “cell” receives as input all
frames from 40 movies, each generated by a patch
from a natural image undergoing a translation along
the horizontal axis. A Gaussian filter with small
sigma simulates the optics, a Difference of Gaus-
sians filter and a spatial lowpass filter are applied
to every frame to simulate retinal processing. Each
frame is multiplied by a Gaussian mask to model
a cell’s initial distribution of input synapses on its
dendritic tree. The weighted difference between sub-
sequent frames is fed to the learning stage, to sim-
ulate an imperfect temporal derivative (the weights
we used are (-0.95, 1.00)). Each cell “learns” its
weight vector extracting the principal components of
its input. On the left, for each row pair: the top row
shows the best Gabor fit (least squares) and the bot-
tom row shows the actual principal component vec-
tor; different columns represent different σ values
for the Gaussian mask aperture. On the right we
show 1D sections of the 2D tuning functions just
described. The blue line is the learned function,
red indicates the best least-squares fit to a Gabor
wavelet, and green shows the difference (fitting er-
ror). The processing pipeline is described in the text.
An orientation orthogonal to the direction of motion
emerges.
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Figure 3: This figure shows ny =
σy

λ
vs. nx = σx

λ

for the modulated (x) and unmodulated (y) direc-
tion of the Gabor-like wavelet. Neurophysiology
data from monkeys [33], cats [12], and mice [22]
are reported together with our simulations (for n =
0(DC), 1(SIN), and2(COS) for which the eigenvec-
tors had significant power). Notice that the range
of nx and ny is between 0.3 and 0.75 across species.
Usually ny ≥ nx – a robust finding in the theory.
Simulated cells learn their weight vector according
to the algorithm described in Figure 2. Note that
σx and σy vary significantly across species and are
not easy to obtain; Jones and Palmer [12] present
two different methods to estimate them and report
inconsistent results. Conversely nx and ny, as de-
fined above, are dimensionless and consistent across
different fitting methods. One of the predictions of
the simple Oja rule assumed here is shown to be
wrong by the data at a statistically significant level:
the average nx for the odd Gabor-like wavelets is
smaller than for the even Gabor-like wavelets.

of the simple cells in V1. Simulations show tuning that is qualitatively similar to physiology data in
V2 and V4. A prediction that should be verifiable experimentally is that the tuning of cells in V2
corresponds to Gabor wavelets with a fixed relation between λ and σ in the four-dimensional cube
of x, y, θ, s. Similar mechanisms, based on simple and complex cell modules can provide invariance
to pose in face recognition; together with the Hebbian assumption, they may explain puzzling
properties of neurons in one of the face patches recently found [6] in macaque IT [18].

4 Discussion

In summary, we study whether “universal” properties of simple cells in cortical V1 can be predicted
from the hypothesis that the computational goal of the ventral stream is to learn via Hebbian
synapses how objects transform – during and after development – in order to later compute for each
image a “signature” vector which is invariant to geometric transformations. Taking into account
the statistics of natural images, we derive that the solutions of an associated “cortical equation”
are Gabor-like wavelets with parameter values that agree with the physiology data across different
species. However, the data show that the prediction of a difference between odd and even wavelet-
like tuning is incorrect. It is unclear at this point whether more realistic Hebbian rule than Oja’s
could overcome this disagreement with the data. Hebbian plasticity predicts the tuning of cells in
V2, V4 and in the face patch AL, qualitatively in agreement with physiology data [6, 16]. It is im-
portant to notice that the emergence and maintenance of the tuning of simple cells is one of several
predictions of the theory, whose goal is invariant recognition. The main result of the theory is the
characterization of a class of systems for visual recognition that account for the architecture of the
ventral stream and for several tuning and invariance properties of the neurons in different areas.
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Figure 4: At the next higher cortical level, simi-
lar Hebbian learning on the V1 output representa-
tion generates 4-dimensional wavelets (in x, y, θ, s,
where s is scale). Here we computed the 3-
dimensional wavelets – corresponding possibly to
simple cells in V2 or V4 – that emerge if scale is
kept constant. We show the responses of two model
complex cells pooling such 3D wavelets (top) and
of two real V4 cells [8] (bottom) to various stimuli
used by Gallant [8]. Red/orange indicates a high
response and blue/green indicates a low response.
Note that we have not attempted to match particu-
lar model cells to real cells. We note that by varying
only the orientation of a 3D higher-order wavelet,
we are able to obtain a wide variety of selectivity
patterns.

Related architectures have been shown to perform well in computer vision recognition tasks and to
mimic human performance in rapid categorization [35, 21, 13]. The results here are indirectly sup-
ported by Stevens’ [36] symmetry argument showing that preserving shape invariance to rotation,
translation and scale changes requires simple cells in V1 to perform a wavelet transform (Stevens
also realized the significance of the Palmer and Ringach data and their “universality”). Similar
indirect support can be found in Mallat’s elegant mathematical theory of a scattering transform
[20]. Independent Component Analysis(ICA) [2, 10], Sparse Coding (SC) [25] and similar unsuper-
vised mechanisms [34, 40, 31, 26] describe plasticity rules similar to the basic Hebbian rule used in
this paper. They can generate Gabor-like receptive fields and they do not need the assumption of
different sizes of Gaussian distributions of LGN synapses; however, the required biophysical mech-
anisms and circuitry can be rather complex and, more importantly, their motivation depends on
sparsity, whose computational and evolutionary significance is unclear – unlike our assumption of
invariant recognition. It is interesting that in this theory a high level computational goal – invariant
recognition – determines rather directly low-level properties of sensory cortical neurons.

5 Appendix: symmetry breaking by motion

In 2D the cortical equation has degenerate solutions if the sequence of images is a random sequence.
Typically an orientation will emerge at random for the eigenvector with n=1 with the orthogonal
orientation being associated with n=2. However if the sequence portrays an images continuously
shifted in one direction, then the eigenvectors as in Figure 1 with the same orientation, orthogonal to
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the direction of motion. The mechanism through which motion breaks symmetry can be explained
as follows. Consider a 2D image moving through time t , I(x(t), y(t)) = I(x(t)) filtered, as in
pipeline of Fig. 1, by a spatial low-pass filter and a band-pass filter and call the output f(x(t)).
Suppose now a temporal filter is done by a high-pass impulse response h(t). For example, let
h(t) ∼ d

dt
. We consider the effect of the time derivative over the translated signal, x(t) = x − vt

where v ∈ R
2 is the velocity vector

d f(x(t))

d t
= ∇f(x(t)) · v. (2)

If, for instance, the direction of motion is along the x axis with constant velocity, v = (vx,0), then
eq. (2) become

d f(x(t))

d t
=
∂f(x(t))

∂x
vx,

or, in Fourier domain of spatial and temporal frequencies:

f̂(iωt) = ivxωxf̂ . (3)

Consider now an image I with a symmetric spectrum 1/(
√
ω2

x + ω2
y). Equation (3) shows that

the effect of the time derivative is to break the radial symmetry of the spectrum in the direction
of motion (depending on the value of vx). Intuitively, spatial frequencies in the x direction are
enhanced. Thus motion effectively selects a specific orientation since it enhances the frequencies
orthogonal to the direction of motion in Equation (1).

Thus the theory suggests that motion effectively “selects” the direction of the Gabor-like function
(see previous section) during the emergence and maintenance of a simple cell tuning. It turns
out that in addition to orientation other features of the eigenvectors are shaped by motion during
learning. This is shown by an equivalent simulation but in which the order of frames was scrambled
before the time derivative stage. The receptive fields are still Gabor-like functions but lack the
important property of having σx ∝ λ.
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