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Abstract 

The aim of this work is the demonstration of a surge prevention technique for advanced gas 

turbine cycles. There is significant surge risk in dynamic operation for turbines connected with 

large volume size additional components, such as a fuel cell stack, a saturator, a solar receiver or a 

heat exchanger for external combustion. In comparison with standard gas turbines, the volume size 

generates different behaviour during dynamic operations (with significant surge risk), especially 

considering that such additional components are including important dynamic constraints. 

In order to prevent the surge events, a vibration analysis was carried out to develop 

precursors which are able to highlight the approach of this unstable operative zone. Since the sub-

synchronous content of the measured vibrations is significantly increasing approaching the surge 

line, special attention was devoted to this parameter. 

The demonstration of a surge prevention system based on the sub-synchronous vibration 

content was carried out at the Innovative Energy Systems Laboratory of the University of Genoa. In 

this laboratory, a recuperated microturbine connected with a large size vessel was used. Starting 

from the stable operation, closing a valve in the main air line or increasing the compressor inlet 

temperature produced operative conditions with significant surge risk. The increase in sub-
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Ferrari 2 

synchronous vibration content detected by the control system was used to perform an active 

operation (bleed valve opening) to avoid the approaching surge event. 

  

Keywords 

Large volume; Gas turbine; Dynamic operation; Surge prevention; Sub-synchronous vibrations. 

 

1. Introduction 

The global increase in energy demand and concerns regarding environmental conservation 

has led to the significant research in efficient power generation technologies (gas turbine aspects 

highlighted in: [1] for advanced cycles, [2] for high efficiency generation, [3] for thermoeconomic 

impact and [4] for applications in polygeneration grids) . However, remarkable efficiency increase 

is hard to achieve through further optimization of simple gas turbine cycle, since the existing 

technology is now close to its maximum improvement [5]. For this reason, advanced cycles based 

on the additional components can play a significant role to achieve the target of more efficient 

power generation [1]. Although these modified layouts are limited by cost and geometric constraints 

[6], different advanced cycles have reached the commercial level in specific fields [7]. A typical 

example includes the recuperated microturbine cycles which have acceptable efficiency in small 

size units [8]. Moreover, the significant research activities on concentrated solar power [9], micro 

Humid Air Turbine (micro-HAT) systems ([10] includes calculations on an entire micro-HAT plant 

and [11] an experimental campaign on the saturator, that is the most critical component), and fuel 

cell based hybrid plants [12] have shown a significant potential interest for gas turbines connected 

with additional components. An important aspect to be considered when additional components are 

included in the turbine cycle is the increased volume size in the zone located between the 

compressor outlet duct and the expander inlet. Although in some cases (e.g. recuperated cycle) the 

additional volume is just related to the additional ducts, several advanced configurations (e.g. the 
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mentioned hybrid systems) involve the additional volume which is more than two or three order of 

magnitudes larger than the standard machine one [13]. 

Even if the additional volume has not a significant impact on the steady-state performance, 

delayed response in the pressurization/depressurization phases during the transient operations 

results in a completely different behaviour. This aspect is critical for the plant constraints and 

control system. Thus, in order to consider this transient effect, standard controllers developed by the 

turbine manufacturers require a complete re-design activity. For instance, the standard shutdown 

phase has to be modified: implementing actions (on the fuel system or on the generator) to reduce 

the rotational speed decay and, hence, to avoid the surge conditions which are caused by the slow 

depressurization rate (in comparison with the standard machine behaviour) [14]. 

Among different kinds of risks which can be produced by the additional volume during 

transient operations, surge event is the most dangerous one for both the turbine and the connected 

components. For this reason, special attention is devoted to control techniques which are able to 

prevent such critical phenomenon [15]. Since compressor maps (when available) are not reliable to 

prevent surge [16] during all the operative conditions (e.g. in case of component degradation [17]), 

the definition of surge measurable precursors is mandatory for a wide commercialization of such 

advanced turbine-based plants. 

Although some authors ([18] shows a statistical approach based on pressure measurements 

and [19] presents a vibration analysis on a compressor) have already presented possible surge 

precursors, the novelty of this paper regards the development of a gas turbine control approach that, 

on the basis of standard accelerometer measurements, is able to prevent surge events in case of 

critical conditions. The analysis is not focused on the fluid dynamic aspects of the machine 

components, but it is devoted to the entire cycle considering specific behaviour due to the additional 

volume [20]. Although the surge prevention method shown in this work has a general target for all 

the innovative gas turbines, the experimental work of this paper regards a T100 microturbine [21]. 

The selection of T100 microturbine for experimental investigation is motivated by the interest in 
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such plants for distributed generation [22], and due to the availability of a flexible rig [23] which 

includes a T100 microturbine coupled with a large size external volume.  

The experiential demonstration shown in this paper was carried out with a flexible 

experimental facility which has been developed in previous works ([13] for a general rig 

presentation, [21] for the emulation technique based on a cyber-physical approach, [23] for the 

performance curves of the emulated system) by the Thermochemical Power Group (TPG) at the 

Innovative Energy Systems Laboratory - University of Genoa. Although this test rig was designed 

and installed for the emulation of Solid Oxide Fuel Cell (SOFC) hybrid systems [24], this plant can 

be used effectively for analysing the general impact of the volume size on the machine stability. 

The plant control system was equipped with an additional subroutine, which is able to calculate the 

sub-synchronous vibration content (the root mean square value) and to detect the significant value 

increases [25] in comparison with standard operations. Thus, producing an operative condition close 

to the surge zone ([26] and [27] show an experimental and numerical investigation related to surge 

events), the increase of this parameter was used as an indicator to perform the active operation 

(opening of the emergency bleed valve), and thus avoiding any instability risk. 

This paper shows an innovative technique for surge prevention in advanced turbine-based 

plants. This will be an important solution to enlarge the application and the flexibility of these 

plants or to solve one of the major technical issues that are delaying commercial applications. The 

mentioned systems are based on improved gas turbines for reaching the following targets: high 

efficiency (e.g. Humid Air Turbines or fuel cell based hybrid systems) and integration with 

renewable energy sources (e.g. externally fired gas turbines or machines including a solar system). 

However, considering biogas as fuel, all these advanced plant layouts will be essential for high 

efficient generation from renewable sources. 

The main innovative aspect of this paper consists in the application of the proposed surge 

prevention technique based on a vibration precursor. Following the development of control system 

devices, the paper shows the technique demonstration in a real microturbine connected to a large 
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vessel size, as in the mentioned advanced plants. So, the application of this technique to a real plant 

including such additional volume (as in high-efficiency advanced cycles) produced innovative 

experimental results, as the first worldwide demonstration of the proposed control solution. Finally, 

a further innovative aspect included in this paper regards the application of this surge prevention 

technique to the compressor inlet temperature increase test. The demonstration carried out under 

this operative condition was important not only to show the technique flexibility, but also to focus 

special attention on risk operations, which are usually neglected in surge prevention devoted works.   

 

2. Gas turbines with large volume components 

Since in the advanced gas turbine layouts additional components are included between the 

compressor outlet and the expander inlet, a significant volume increase is obtained. This aspect is 

shown in Fig.1, where the components responsible for the significant volume increase are 

underlined. Although different layouts were proposed [28], these four systems could represent the 

main advanced cycles which significantly affect the gas turbine volume. Additional volume is also 

included for the recuperated and intercooled gas turbine cycles, but its size is not large enough to 

produce significant change in the dynamic behaviour. 

 

Figure 1 

 

Layout A in Fig.1 shows a general scheme for the externally fired gas turbines [29]. 

Although additional components can also be included, this scheme represents that the pressurized 

ducts of the furnace are responsible for the volume increase. However, in this case the volume 

increase could be similar to that related to the recuperated or intercooled gas turbines. So, risks 

associated with this component during the dynamic operation can be dependent on the component 

geometry. 
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Layout B in Fig.1 is reported as a general scheme of a Concentrated Solar Power (CSP) 

hybrid gas turbine system: CSP components are included between the compressor and the turbine 

[30]. Hybrid configuration can be considered to compensate the variability of solar input. However, 

in this case, the solar receiver components are significantly increasing the volume of gas turbine 

system, depending on the selected technology and the number of components. Although Fig.1 

shows three modules, different configurations are possible with further modules including also heat 

exchangers (e.g. a recuperator). 

Layout C in Fig.1 shows a Humid Air Turbine (HAT) power plant including an intercooler, 

an after-cooler and a recuperator (further components such as an economizer for water pre-heating 

can also be installed increasing the plant complexity) [10]. Even if these components are including 

an additional volume, the device which is responsible for the largest volume increase is the saturator 

[10]. This large vessel, which is essential for improving the performance, is responsible for dynamic 

behaviour unlike the standard cycle, and thus producing significant surge risks during the transient 

operations. 

The plant type that includes the highest additional volume is the fuel cell based hybrid 

system [31]. Although layout D in Fig.1 shows a hybrid system based on a tubular Solid Oxide Fuel 

Cell (SOFC), where the air flow is pre-heated with a recuperator and the fuel system is based on an 

anodic ejector, different configurations are possible depending on the cell type and economic 

feasibility of the plant [32]. For this reason, plants with further recirculations or different 

components are possible (e.g. a cathodic recirculation instead of the recuperator). However, in all 

such cases, the large additional volume (mainly related to the fuel cell stack) is producing a 

different dynamic behaviour (including significant surge risk), in comparison with the standard 

turbines. 

Another important notation needs to be included for gas turbines equipped with large 

volume systems to store the thermodynamic energy. In case of energy storage systems, based on the 

compressed air [33] or high temperature materials (e.g. honeycomb ceramics [34], thermo-chemical 
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reactors [35], etc.), a significant additional volume is included. In case of large vessels (e.g. thermal 

storage to compensate the variability of the solar source) the dynamic behaviour differs 

significantly from a standard machine. Due to the higher risk of surge, detection/prevention 

techniques have to be designed and implemented in the plant control system. 

 

Figure 2 

 

3. Test rig 

The experimental activities presented in this paper were carried out with a T100 

microturbine connected with external vessels, as shown in Fig.2. The nominal main properties of 

this recuperated turbine are: 100 kW electrical power, 30% electrical efficiency, and 70,000 rpm 

rotational speed. Since the turbine was modified for the external connections and the volume has 

resulted in significant temperature and pressure drop (99 K and 142 mbar, respectively), the T100 

machine cannot achieve the nominal performance [36]. Hence, the test rig is able to produce 73.5 

kW maximum net electrical power with compressor inlet temperature at 300 K and Turbine Outlet 

Temperature (TOT) at 918.15 K. The test rig, used for experiments on general advanced cycles 

presented in this paper, was originally designed for emulation of hybrid systems based on high 

temperature fuel cells [13]. For this reason, the external vessels include a modular unit for the 

cathodic side and a 0.8 m
3
 device for the anodic side (also including a recirculation system based on 

an ejector). The total size of these vessels (including the connection pipes) is about 4.1 m
3
 (0.1 m

3
 

volume size was not accounted in [13] because it was not included in the fuel cell emulator). 

However, to obtain an intermediate volume (considering the T100 size) generally representative of 

the advanced gas turbine systems, the modular vessel was arranged by removing three modules 

(Fig.3). So, the tests shown in this paper were carried out with 2.3 m
3
 of additional volume. 

Moreover, to control the compressor inlet temperature (TC1 in Fig.2) three air/water heat 
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exchangers (called "Ex" in Fig.2) were installed. So, TC1 can be decreased/increased using open 

circuit water, an absorption chiller or a co-generation heat exchanger (see [13] for more details). 

 

Figure 3 

 

The facility shown in Fig.4 includes: a check valve installed downstream of the compressor 

outlet to minimize the risk of damage in case of surge events, turbine/vessel connection valves (VM 

and VO) for managing the air flow path and an emergency bleed valve (VBE). All the valve control 

systems and the installed measurement probes (in addition to the T100 standard instrumentation) 

were connected to an acquisition/control tool implemented in LabVIEW
TM

. The location of the 

probes used in this work are reported in Fig.2, considering that more details on the measurement 

system and performance have been discussed in previous works, such as [13] for the anodic side 

and [14] for the microturbine and the modular vessel. In addition to the previously presented 

sensors [14], a tri-axial accelerometer (ACC in Fig.2) was installed on the top of the T100 generator 

case (x, y, z axes were oriented in the microturbine axial, tangential and radial direction, 

respectively) for investigating the frequency range up to 10 kHz [36]. 

 

Figure 4 
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While the LabVIEV
TM

 control software (Fig.4) is operating on the additional probes 

installed in the connection pipes, the original turbine controller was maintained to ensure safe 

machine operation. Hence, similar to the standard T100 turbines in the grid-connected mode, the 

control system changes the fuel flow rate to maintain the TOT at its set-point (918.15 K). Although 

the main acquisition time step was fixed at 1 s, this value was 0.1 s for the PRC1, MR and the 

accelerometer. While the actual ACC acquisition frequency is significantly higher, 0.1 s is the time 

step used for the signal saving and control operations. 

 

4. Surge prevention technique 

Considering the trend of the RMS amplitude for the sub-synchronous vibration content (as 

shown in [36]), a surge prevention technique was developed and demonstrated with the T100 

machine connected to the 2.3 m
3
 vessel. This approach is simply based on a threshold calculation 

from the average RMS amplitude during operations far from surge and operation for surge 

avoidance in case exceeding the amplitude values. While a simple bleed valve opening was used in 

the tests to avoid surge, other operations (e.g. opening of bypass valves or smoothing transient 

operations with electrical batteries in case of fuel cell based plants) with similar effects can be 

considered in advanced systems. 

In order to consider the influence of different operating conditions (e.g. the rotational speed 

change), instead of using a fixed value, the threshold was calculated as the average vibration RMS 

amplitude at normal operating conditions (far from the surge line) multiplied by 1.6. This 

multiplication factor was obtained from the previous experiments [36] and to maintain a good surge 

margin (Kp>1.1 considering the definition of Eq.1) during all operations. This margin was 

considered representative of advanced cycles where, in some cases, a surge event can be extremely 

dangerous for the components (e.g. for a fuel cell). In case of different volume sizes connected to 

the machine (as shown in [36] for this T100 microturbine), the same approach can be used even if 
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the average vibration RMS amplitude at normal operating conditions is different; the threshold 

value can be calculated by applying the same multiplication factor to a different reference value. 

sl

sl

m

m
Kp

×

×
=
b

b
           (1) 

 

5. Experimental demonstration 

Two different tests are presented to demonstrate this surge prevention technique. While the 

initial case is based on the surge approaching operation presented in [36] (increase of pressure 

losses in the pressurised zone), the demonstration is completed with the technique application to 

face possible risks due to compressor inlet temperature increase (TC1). Both tests were started with 

the T100 machine operating in grid-connected mode at net electrical power of 40 kW. The 

additional vessel was included in the loop (VO fully open and VM fully closed) and pre-heated up 

to the steady-state conditions. 

 

5.1. Increase of pressure losses 

For the test related to the increase of pressure losses the VO valve was gradually closed to 

generate an operating condition that was moving towards the surge line. This operation was similar 

to what has been reported in [36], where all the data were provided for both the steady-state and the 

surge approaching conditions. The compressor inlet temperature was maintained at 300 K, with 

cold water operating in the open loop condition. 

 

Figure 5 

 

The threshold crossing for the RMS amplitude value (calculated in real-time mode for the 5-

800 Hz band) produced a change in the VBE control signal from "False" to "True", generating the 

opening step operation shown in Fig.5 (at time zero). Unlike the work presented in [36], where the 
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frequency range of 2-900 Hz was considered, in this work the band was reduced down to the 5-800 

Hz to better highlight the property variation. Thanks to this bleed opening operation, the surge event 

was prevented and the vibration amplitude was reduced. Then, the surge cause was removed (at 

time 190 s in Fig.5) through re-opening the VO valve. While it is a simple solution for this 

demonstration activity, it represents different possible operations which can be carried out for 

advanced cycles, such as load change smoothing (with batteries or the electrical grid), bypass valve 

opening, generator motoring rates for the start-up/shutdown phases, etc. As soon as the surge cause 

was considered removed, the VBE was closed with a step (performed after 296 s from the surge risk 

detection) and a new steady-state condition was reached. 

 

Figure 6 

 

Figure 7 

 

Further details related to this test are shown in Figs.6-8: the trends of recuperator inlet 

pressure (PRC1), rotational speed and net electrical power produced by the T100 turbine. As shown 

in [36], the VO closing generated significant pressure loss increase and, as a consequence, an 

increase in the PRC1 value. However, the increase in PRC1 (shown in Fig.6 before the VBE 

opening) is also significantly affected by the T100 rotational speed increase (Fig.7). This is 

managed by the T100 control system to pursue the load set-point that was fixed at 40 kW during the 

entire test. Since the VO closing direct effect decreased the generated net power (more power 

consumed by the compressor due to the increase in outlet pressure), the T100 control system 

managed the machine to increase the rotational speed and to align the turbine with its load set-point. 

This trend is also visible in the net power line reported in Fig.8. The VBE opening generated a 

significant decay of PRC1, thus preventing surge conditions. Moreover, Figs.7-8 show a decrease 

also in the rotational speed and the net electrical power. This is due to a threshold in the T100 
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power conditioning component: a constraint related to the voltage of the direct current bar that is 

implemented in the T100 control system. Hence, the air discharge due to the VBE opening 

produced an unbalanced condition reaching this voltage threshold. This resulted in net electrical 

power significantly lower than its set-point. Then, closing the VBE enabled to restore the requested 

net power condition. 

 

Figure 8 

 

Figure 9 

 

To complete the test description, Fig.9 shows the operating line on the compressor map. 

While the initial and final points are almost superimposed, the VBE opening effect is significantly 

visible. After the initial path towards the surge line, the prevention technique was able to generate a 

trend almost parallel to this stability limit. This effect is also visible in the surge margin plot 

(Fig.10) calculated with Eq.1. While this parameter was decreasing before the VBE opening 

operation, the surge prevention technique was able to maintain a good margin (Kp>1.1), and thus 

avoiding any instability risk. 

 

Figure 10 

 

5.2. Compressor inlet temperature increase 

For this test, the VO valve was maintained fixed at the 36% of its FO to operate in a region 

with a good surge margin, but affected with possible risks in case of further property changes. Then, 

the cooling water flow (for the TC1) was stopped leaving the TC1 to increase up to its uncooled 

conditions. The most significant part of this transient operation is shown in Figs.11 and 12: Figure 

11 is mainly devoted to the vibration trend generated by the surge margin decrease due to the TC1 
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increase and Fig.12 shows the FO values of the involved valves. The vibration line is, in this case, 

the difference between the RMS value of the sub-synchronous content (5-800 Hz band) and the 

mentioned threshold. As soon as, the vibration values reached the threshold (zero in the right 

vertical axis of Fig.11), the control system activated the opening of the VBE valve (the dotted line 

in Fig.12) due to the mentioned control signal changed from "False" to "True". Also in this case the 

zero value of the time axis was fixed at the VBE valve opening. 

 

Figure 11 

 

Figure 12 

 

Further details related to this test are shown in Figs.13-15: the trends of rotational speed, net 

electrical power produced by the T100 turbine and recuperator inlet pressure (PRC1). The 

compressor inlet temperature increase produced a significant decrease in the rotational speed and 

electrical power. As mentioned in the previous section, this is due to the threshold in the T100 

power conditioning component: a constraint related to the voltage of the direct current bar that is 

implemented in the T100 control system. Moreover, the air discharge due to the VBE opening 

produced an unbalanced condition that generated a further rotational speed and power decrease. 

This resulted in a very low net electrical power (about 4.5 kW) at 150 s after the VBE opening. A 

similar trend due to both the rotational speed decrease and the air bleeding (after the VBE opening) 

is shown by the PRC1 plot (Fig.15). 

 

Figure 13 

 

Figure 14 
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Figure 15 

 

To complete the test description, Fig.16 shows the operating line on the compressor map. In 

this case the rotational speed decrease generated a slight approaching trend towards the surge line. 

This produced the activation of the surge prevention technique and the consequent VBE opening. 

This technique was able to generate a slight trend modification avoiding any risk due to the TC1 

increase. This effect is also visible in the surge margin plot (Fig.17 shows a detail related to the 

prevention technique activation) calculated with Eq.1. While this parameter was decreasing before 

the VBE opening operation, the surge prevention technique was able to maintain a good margin 

(Kp>1.1), and thus avoiding any instability risk also for this case (TC1 increase). 

 

Figure 16 

 

Figure 17 

 

6. Details on possible real applications 

The obvious application of this demonstrated surge prevention technique is related to gas 

turbines connected to large volume components. So, the implementation of this approach is a 

promising solution to enlarge the operative field of these systems, such as fuel cell based plants, 

micro Humid Air Turbine (micro-HAT) systems, and externally fired microturbines (including CSP 

applications). The main impact will regard mainly flexibility, efficiency increase in part-load 

operations and gas turbines fed by renewable sources (CSP or biogas) [37]. Moreover, important 

benefits will involve also systems under research or improvement (i.e. SOFC-based hybrid systems 

[38]), enlarging the market penetration opportunities. Moreover, since this technique is based on 
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standard low cost components, the application in commercial systems will not affect significantly 

the energy price [39]. 

Although the paper results were obtained with a microturbine (due to the interest in such 

plants for distributed generation), the technique is a general approach available also for large size 

machines with standard components (if necessary for the related application). As shown by the 

results presented in this paper, vibration measurement during standard operative conditions will be 

enough for setting the algorithm. However, different multiplication factors can be applied (e.g. a 

scheduling table taking into account different operative conditions could be included) depending on 

the specific surge margin value that is considered acceptable for the application. 

The results obtained for the compressor inlet temperature increase (representative of critical 

operations of both microturbines and large size machines) highlight the importance of considering 

the influence of ambient conditions. So, the application of this flexible surge prevention technique 

will be essential also for avoiding risks due to these operations. 

 

7. Conclusions 

This paper shows the experimental results obtained from a facility based on a recuperated 

microturbine, to demonstrate a surge prevention technique for the turbine-based advanced power 

plants. This research activity is a significant improvement for advanced plants affected by the surge 

risks (especially during transient operations) due to a large volume size installed between the 

compressor outlet and the turbine inlet. The main conclusions derived from this work are 

summarized in the following points: 

· identification of the vibration root-mean-square amplitude in a sub-synchronous band (5-800 

Hz) as a real-time parameter, that is able to show the approaching of surge events; 

· implementation of the prevention/recovery technique on the basis of a vibration threshold, 

which is evaluated from the average value during the standard conditions; 
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· threshold calculation able to compensate the variation of operative conditions (e.g. the 

rotational speed); 

· demonstration of the surge prevention technique (with the control system operating on the 

emergency bleed valve) maintaining a good surge margin (higher than 1.1) during two 

different tests (increase in pressure losses and compressor inlet temperature). 

· especially the test related to the compressor inlet temperature increase demonstrated a good 

flexibility of the surge prevention technique also for operations different from what is 

usually investigated (surge risk is usually analysed in case of pressure increase between the 

compressor and the turbine, while other operations linked with such similar risk are not 

usually fully considered). 

Although the positive results obtained in this work, ongoing activities are under 

development by the Thermochemical Power Group to consider further surge precursor parameters 

and their application in the turbine control systems. 
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Nomenclature  

Variables 

FO  Fractional Opening [%] 

Kp  surge margin [-] 

m  mass flow rate [kg/s] 
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N  rotational speed [rpm] 

TOT  Turbine Outlet Temperature [K] 

b   pressure ratio [-] 

 

Subscripts 

0  design 

sl  surge limit on compressor map 

 

Acronyms 

CSP  Concentrated Solar Power 

E. grid  Electrical grid 

Ex  heat Exchanger 

HAT  Humid Air Turbine 

REC  RECuperator 

RMS  Root Mean Square 

SOFC  Solid Oxide Fuel Cell 

TPG  Thermochemical Power Group 
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Figures 

 

Figure 1. Main gas turbine advanced layouts. 

 

 

 

Figure 2. Test rig layout. 
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Figure 3. Test rig picture. 

 

 

Figure 4. Test rig details: (1) T100 power module, (2) tri-axial accelerometer location, (3) 

LabVIEV
TM

 control software (front panel). 
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Figure 5. Experimental demonstration for the increase of pressure losses: valve FO values and RMS 

amplitude value for the 5-800 Hz band. 
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Figure 6. Experimental demonstration for the increase of pressure losses: valve FO values and 

recuperator inlet pressure. 

 

 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Ferrari 25 

61000

62000

63000

64000

65000

66000

0

20

40

60

80

100

-100 0 100 200 300 400

N
 [

rp
m

]

F
O

 [
%

]

Time [s]

VO VBE N

 

Figure 7. Experimental demonstration for the increase of pressure losses: valve FO values and T100 

rotational speed. 
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Figure 8. Experimental demonstration for the increase of pressure losses: valve FO values and T100 

net electrical power. 
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Figure 9. Experimental demonstration for the increase of pressure losses: the test on the compressor 

map. 
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Figure 10. Experimental demonstration for the increase of pressure losses: surge margin. 
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Figure 11. Experimental demonstration for the compressor inlet temperature increase: TC1 and 

vibration values (difference between the RMS amplitude value for the 5-800 Hz band and the 

threshold). 
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Figure 12. Experimental demonstration for the compressor inlet temperature increase: TC1 and 

valve fractional opening values. 
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Figure 13. Experimental demonstration for the compressor inlet temperature increase: TC1 and 

rotational speed. 
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Figure 14. Experimental demonstration for the compressor inlet temperature increase: TC1 and net 

electrical power. 
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Figure 15. Experimental demonstration for the compressor inlet temperature increase: TC1 and 

recuperator inlet pressure. 

 

 

 

 

 

Figure 16. Experimental demonstration for the compressor inlet temperature increase: the test on the 

compressor map. 
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Figure 17. Experimental demonstration for the compressor inlet temperature increase: detail of the 

surge margin trend. 


