
A UML-based Proposal for IoT System Requirements
Specification

Gianna Reggio
DIBRIS – Università di Genova, Italy

ABSTRACT

The paper presents a preliminary version of IotReq, a method for

the elicitation and specification of the requirements for an IoT-

system. The first task suggested by IotReq is the modelling of the

domain, using the UML and following the service-oriented para-

digm, then the goals of the IoT-system to build are elicited and

specified, again using the UML and extending the domain model,

producing a specification of the functional requirements. IotReq also

provides preliminary indications for specifying the technological

nonfunctional requirements.

A case study, the specification of the requirements for a system

to support the Genoa’s Science Festival is presented too.

ACM Reference Format:

Gianna Reggio. 2018. A UML-based Proposal for IoT System Requirements

Specification. InMiSE’18: MiSE’18:IEEE/ACM 10th International Workshop on

Modelling in Software Engineering , May 27, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3193954.

3193956

CCS Concepts: Software and its engineering→ Requirement analy-

sis

Keywords: IoT-system requirement specification, UML,Domainmod-

elling, Service-oriented modelling

1 INTRODUCTION

Developing a system based on the Internet of Thing (shortly IoT-

system) is a novel task, and unfortunately up to now scarcely sup-

ported by software engineering, as stated by the introduction to a

2017 issue of the IEEE Software [5] “Akin to the mania of 1849 in the

hills of California, we’re witnessing a software developer’s gold rush

around the Internet of Things (IoT). Neither research nor industry

is immune to the fever.”, and later it continues “Confronted by the

wildly diverse and unfamiliar systems of the IoT, many developers

are finding themselves unprepared for the challenge. No consolidated

set of software engineering best practices for the IoT has emerged.

Too often, the landscape resembles theWild West, with unprepared

programmers putting together IoT-systems in ad hoc fashion and

throwing them out into the market, often poorly tested.”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MiSE’18, May 27, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5735-7/18/05. . . $15.00
https://doi.org/10.1145/3193954.3193956

An IoT-system presents peculiar features that should be con-

sidered to have an effective method for eliciting and specifying

its requirements. The domain of an IoT-system, that includes the

“things”, is composed of interacting dynamic (autonomous) entities

of many different types, e.g. cars, car drivers, traffic lights, police-

men, parkings, . . . in the case of a smart system improving the traffic

in a city. It will be deployed interspersing its parts (hardware plus

software) in the domain, e.g. sensors and actuators on the inanimate

things, apps on the mobile phones of the people, servers, A very

large numbers of hardware and software technologies having quite

different characteristics may be used to build an IoT-system (e.g.

RFID, beacons, mobile phone sensors, . . .).

In this paper we consider the elicitation and specification of

the requirements for an ioT-system, a task for which an extremely

small number of proposal can be found in the literature (see Sect. 5),

whereas our experience interacting with local companies witness

unstructured textual documents without a clear distinction be-

tween functional requirements and directives about the hardware/

software IoT-related technologies to use. Sometimes, the technolo-

gies to use are considered before to have a clear view of the problem

to solve, and in some extreme cases they may obfuscate alternative

convenient solutions based on less innovative technologies.

Following the suggestion of [5] “In short, past software engi-

neering techniques can be harnessed and adapted to the challenges

of today’s IoT.”, we have worked out a preliminary proposal of a

method, IotReq, for eliciting and specifying the requirements of

an IoT-system combining in an ad hoc fashion classical software

engineering techniques, such as the preliminary modelling of the

system domain and the goal-oriented requirements [10], and the

service-oriented UML modelling method introduced in [7].

The first task suggested by IotReq is modelling the domain, using

the UML and following the service-oriented method introduced

in [7], then the goals of the IoT-system to build are elicited and

specified, again using the UML and extending the domain model,

producing a specification of the functional requirements. IotReq

provides also preliminary indications for collecting and specify the

nonfunctional requirements concerning the technologies to use.

In some sense, IotReq offers to a developer in the IoT context

something of equivalent to what it is nowadays a standard approach:

the combination of “UML conceptual modeling” plus “requirement

specification expressed using use cases, specified again with UML”.

We have applied IotReq to a realistic case study: a system sup-

porting the Genoa’s Science festival, used as a running example in

the paper, and as a result we have been able to capture and specify

its requirement without any overspecification.

Sect. 2 presents an overview of IotReq; Sect. 3 and 4 detail the

domain modelling, and the requirement specification; then the

related works are reported in Sect. 5, and Sect. 6 concludes the

paper and hints to the future work.

9

2018 ACM/IEEE 10th International Workshop on Modelling in Software Engineering

MiSE’18, May 27, 2018, Gothenburg, Sweden G. Reggio

Figure 1: IotReq Overview

2 OVERVIEW OF IOTREQ

IotReq is a method to support the elicitation and the specification

of the requirements for an IoT-system, denoted in what follows by

IoT-Sys, and intended as in [4, page 74].

Fig. 1 summarizes the IotReq tasks.

IoT-Sys will be built to act over a fragment of the real world to

achieve some desired effects (e.g. to improve the traffic in the city

downtown), and at the end the various (hardware and software)

components of IoT-Sys will be deployed on that fragment (e.g.

sensors detecting the passing of the cars, videocameras, and apps

on the car driver mobiles in the case of the traffic system; RFID

devices attached to the tickets or to visitor’s lapel pins, beacons,

and again apps running on mobile phones in the case of the Genoa’s

Science Festival). In this paper we name domain (of the IoT-Sys) that

fragment of the real world.

The first task of IotReq is then modelling the domain using the

UML, and following the service oriented method introduced in [7].

The domain of an IoT-system is in general quite complex, made by

dynamic entities of different types interacting among them, and

thus it is very important for the analyst to understand it before to

look for the requirements.

Later, the analyst must look for the ultimate goals of IoT-Sys,

that we name strategic goals; then they will be decomposed into op-

erative goals, that will be specified using the UML by extending the

domain model. That amounts to specifying the functional require-

ments for IoT-Sys. At the end, also the nonfunctional requirements

should be investigated, those concerning the choice of which tech-

nological means to use to realize the IoT-Sys will be expressed by

further decomposing the operative goals into technological goals.

To present IotReq we use as running example a realistic case

study: specifying the requirements for a system to support the

Genoa’s science festival (Festival della Scienza, shortly FdS).

FdS consists of a large number of events of different types that

take place in different locations in the Genoa’s downtown. Some of

the events are free, other needs to be booked in advance, further-

more events may be replicated several times at different dates and

time (e.g. guided visits and labs). It is possible to buy a ticket for

the whole festival (season ticket) or for a single day.

IoT seems a natural choice for a system supporting the working

of FdS; indeed, for example, it may make possible: – to provide

the visitors with information depending on their position inside

the festival area, – to collect the rating of the events only by who

Figure 2: FdS Domain Model: Static View

truly attended them, – to discover which paths the visitors followed

moving between the various festival locations.

3 IOTREQ: DOMAIN MODELLING

IotReq requires to model the domain of IoT-Sys (the system to be

built) following the service-oriented paradigm, and using UML

[9] as proposed by [7]. That it is achieved using a UML profile

providing concepts as service, participant that interact with other

participants by providing and using services, service architecture.

i.e. the structure of a system in terms of participants and of the

relationships between who provides and who uses the various

services.

Thus, the domain of an IoT-Sys will be modelled in terms of

participants providing and using services.

Technically, amodel of a domain consists of: – a static view, a UML

class diagram introducing the classes modelling the participants

and the objects (passive entities manipulated by the participants);

– the models of the services they provide and use; – and a service

architecture.

The complete model of the FdS domain is in [2].

Static View. The classes in the static view typing the participants

are stereotyped by �participant�. A participant class may have

ports stereotyped by�service� and typed with a service interface

(see next Paragraph “Service model”) to represent the provided

services, and ports typed by the conjugate of a service interface

(whose name is prefixed by ∼, again see Paragraph “Service model”)
to represent the used services.

Fig. 2 presents a slightly simplified version of the static view of

the FdS Domain Model. The main entities of FdS are the events of

the festival, the visitors, the festival organizer, and the ticket office

(classes stereotyped by �participant�). Fig. 2 shows that an event

10

A UML-based Proposal for IoT System Requirements Specification MiSE’18, May 27, 2018, Gothenburg, Sweden

is characterized by a unique name, a kind, a topic and a description,

and it takes place in a specific location; moreover it may require

buying a ticket or be free, it may require a booking, and it is suitable

for a specific age. Each event will be replicated at least once, and

each replica will happen on a given day and time. There are two

kinds of tickets, one valid for the whole festival (season ticket), and

another one allowing access to all events in a specific day.

The Event class provides the services for being booked, updated

and enjoyed, whereas Visitor uses the services for booking and

enjoying an event, and for buying a ticket (provided by the Ticket

Office class).

Detailing the static view (e.g. adding invariants, attributes, oper-

ations, associations, and definitions of the operations) it is possible

to model all the relevant aspects of the domain; for example, the

fact that only non-free events may be booked could be formalized

by an invariant constraint, whereas the multiplicity constraints on

the associations allow, e.g. to state that a booking is relative to a

specific replica and a specific ticket. The fully detailed static view

of the FdS Domain Model is reported in [2].

Service model. A model of a service consists of the interface, and

of the contract+semantics.

A service interface is a UML class stereotyped �service� and

named as the service itself. It should realize and use two UML inter-

faces, defining the in/out-messages of the service (in messages are

those sent by the service user and received by the service provider,

whereas, vice versa, the out messages are those sent by the ser-

vice provider and received by the service user), named respectively

S_IN and S_OUT, if the service is named S. The operations of the

interfaces define the various messages. The realization relationship

is represented by a dashed arrow with closed head stereotyped by

�in�, whereas the usage relationship is represented by a dashed

arrow with open head stereotyped by �out�.

The service contract+semantics is a set of sequence diagrams

having exactly two lifelines typed respectively by the interfaces

S_IN and S_OUT, and thus the sequence diagram messages are

labelled by operations of these interfaces, that, as said before, repre-

sent the service messages. The sequences of messages expressed by

the sequence diagrams define the service contract (i.e. the protocol

to follow to provide and use it), whereas the guards and the execu-

tion specifications [9, 17.2.4.4] define the semantics of the service,

that is the provided value.

A conjugate service interface is suggested as a mechanism to con-

nect the using participant and the providing participant. Each ser-

vice interface has one conjugate service interface that is named by

the name of the corresponding service interface prefixed with “∼”,
and it is defined transforming the in-messages into out-messages,

and similarly the out-messages into in-messages, i.e. the realized

interface becomes the used one and vice versa.

In the FdS DomainModel theUpdate service describes at concep-

tual level how the events may be modified, and its model is shown

in Fig. 3. Its interface consists of three in-messages modelling the

fact that replicas may be added and cancelled and that events may

be cancelled (Update_IN), whereas the out messages correspond to

the fact that an update may be done or denied (Update_OUT). The

contract+semantics states that cancellations are done in any case

Figure 3: Update service: model

also if there were booked, whereas new replicas are added only if

they do not conflict with existing ones.

The models of the other services, reported in [2], describe the

other behavioural features of the domain of FdS in a modular way:

each service cover a specific feature (e.g. booking an event).

Service architecture. The service architecture is a UML composite

structure diagram including a structured class named as the domain

to model itself. The roles for the entities composing the domain will

be represented as parts1 of the domain class typed by participant

classes, theywill have amultiplicity, and possible a name. A port of a

part typed by a service interface must be connected to another port

typed by the conjugate interface, and a port typed by the conjugate

of a service interface must be connected to a port typed by that

service interface; summarizing each provided service must be used

by at least a participant, and each used service must be provided

by another participant. The service architecture will represent the

structure (architecture) of the domain.

Fig. 4 shows the service architecture of the FdS Domain Model:

there will be exactly one organizer and one ticket office, and any

number of events and visitors. The visitors use the services Enjoy

and Book provided by the events, and the service Buy ticket pro-

vided by the ticket office; the organizer uses the upadate service

provided by the events.

4 IOTREQ: REQUIREMENT SPECIFICATION

Remind that in what follows IoT-Sys denotes the IoT system to be

built over a domain denoted by Domain.

To elicit and specify the requirements for IoT-Sys we follow the

goal paradigm: “Goals are desired system properties that have been

expressed by some stakeholder(s).” from [10]. Since an IoT-system

is embedded or better strictly interweaved with the domain (e.g.

think of an IoT-system made of hardware parts such as sensors,

videocameras, but also of apps running on the car driver mobiles,

and softwaremaking predictive analysis on the collected data sparse

1Part is the UML constructs to represent the subcomponents of a structured class.

11

MiSE’18, May 27, 2018, Gothenburg, Sweden G. Reggio

Figure 4: FdS Domain Model: service architecture

in a city downtown), it is convenient to consider the “desired system

properties” as properties of the domain that the introduction of the

system should get (e.g. “no truck should be moving or parked at

less than half km from any crowded place”). Thus a goal should

correspond to a property on the domain, that will be then specified

using the UML on the model of the domain (see Sect. 3).

A goal may be, for example, – an invariant to hold (e.g. “no

more than 5 persons may be inside a room”), – a condition or some

activities in the domain must trigger some other activities (e.g. “if

a gasoline pump becomes empty, then the car owners must be

informed by a message containing the list of the nearest pumps"),

– additional features that must enrich the domain (e.g. car drivers

should be able to see if a parking is full, and to book a place in

a parking in advance), – prohibited behaviour (e.g. visitors with

luggage cannot enter in the event locations), – and even questions

to be answered on the domain and its behaviour (e.g. what is the

average of the number of events enjoyed by visitors with day/season

ticket?).

In the case of FdS sensible goals may: “Send a remind to the

visitors one hour before a booked event”, “When a visitor leaves

an event, s(he) must be asked to evaluate it” (of type triggered

behaviour), and “A visitor may get information on the buses to take

to reach an event location” (of type additional behaviour).

If the requirements elicitation starts asking the stakeholders to

list the main goals of the IoT-Sys, that are the basic reasons to build

it, you will get goals so high-level or vague that it is impossible to

express them precisely as properties of the domain, for example

“traffic jam should be reduced” (no way to precisely define what

means to reduce), “break-ins in the house should be prevented”, but

they are in general what motivate the development of IoT-Sys. We

name these goals strategic as in [10]. IotReq proposes to start the

requirement elicitation procedure looking for the ultimate reasons

that motivate the IoT-Sys’s development, also if they may be vague

or too abstract and thus not verifiable, or also not satisfiable as

a whole2; then such goals should be refined in terms of subgoals

that could be expressed as properties or features of the domain

(called operative goals): they represent the functional requirements

for IoT-Sys (the IoT-system to build).

2Clearly, they cannot be considered true requirements, since a requirement should be
satisfiable and verifiable.

Figure 5: FdS Goal View: Strategic goals

On the other hand, functional requirements should not encom-

pass implementative choices and details, for example the operative

goals should not state that somemessages are sent using SMS/email/

visualized by an app on the mobile phones, or that the number of

cars in a street section is determined by analysing of the imagines

of a camera/by sensors on the streets. The non-functional require-

ments concerning the choice of technologies to use for realizing

IoT-Sys may be expressed by further refining the operative goals

by means of goals stating which technologies to use to reach them

(technological goals). Thus, IotReq asks first to look for the strategic

goals, then to refine them into operative goals, and finally to con-

sider the technological aspects, by further refining the operative

goals into technological ones (see Fig. 1).

Summarizing, a requirement specification for an IoT-system will

consist of: – a domain model as presented in Sect. 3, – a goal view

summarizing the goals and their mutual relationships, – and the

goals’ specifications expressed using UML diagrams and constructs.

4.1 The Goal View

The goals are represented by UML use cases without actors stereo-

typed by�goal�, and are collected in a use case diagram named

goal view. Goals may be related by:

– UML dependency [9] (represented by a dashed arrow with open

head): G1 depends on G2 iff the realization of G2 is necessary to

the realization of G1;

– dependency stereotyped by�or�: G or-depends on either G1,

. . . , Gn iff the realization of either G1, . . . , or Gn is necessary to the

realization of G.

The goal name should summarize the required property, whereas

an attached optional note may add the needed details using the

natural language. Strategic goal are represented by ellipses drawn

with a thick line and no UML specification will be attached to them;

whereas operative goal or just goal are represented by ellipses

drawn with a thin line, and must be specified using the UML in

terms of the domain.

Fig. 5 shows the portion of the goal view of the FdS system

containing the strategic goals (the complete goal view is reported

in [3]), that are quite generic and not verifiable, but they are the

starting point to elicit and specify the true functional requirements.

Since the FdS events are organized by volunteers, it is important

that each event get a high attendance, because this is the only

kind of reward for them; and this is the motivation for the goal

“Maximize event participation ".

Strategic goals must be refined by decomposing them in subgoals

related by dependency/or-dependency. At the end of the refinement

task all non-strategic goals should be verifiable and realizable, and

expressible as properties of the domain: they represent the func-

tional requirement for IoT-Sys, and are called operative goals. At

12

A UML-based Proposal for IoT System Requirements Specification MiSE’18, May 27, 2018, Gothenburg, Sweden

Figure 6:Maximize event participation goal decomposition

this point each operative goal must be specified by using the UML

diagrams and constructs possibly extending the domain model.

Fig. 6 shows the refinement of the strategic goalMaximize event

participation of FdS. First, it has been decomposed in an operative

subgoal and in a strategic subgoal (noted by the thick line), that was

later decomposed in two operative subgoals. The three operative

subgoals must be specified using the UML, and such specifications

will allow to fix all the detail and to avoid any ambiguities and

undefined aspects.

4.2 Goal specification

Before to suggest which UML constructs/diagrams to use and how

to specify the meaning of a goal, we recall that the atomic activities

of the entities composing the domain (participants) are modelled

by the sending/receiving of the messages composing the interfaces

of the services that they provide and use (atomic interactions with

other participants), and by self calls of operations of their classes

without return type (atomic private activities); for example the

visitors (participants of the FdS Domain Model typed by the Visitor

class) may book an event and buy a ticket.

The first step to specify a goal is to determine which participants

and objects of the the domain are involved, or better which roles

they will play (e.g. to specify the goal of the FdS system Remind

visitors their bookings we need to refer to a generic visitor, that

is a role typed by the Visitor class). The roles of a goal will be

represented by a list of variables typed by classes appearing in the

static view of the domain model, and we will write G(x1: C1, . . . ,

xn : Cn) to express that the G goal involves the roles x1, . . . , xn .

The method proposes a list of patterns, reported in Table 1, for

the specification using the UML of a goal G(x1: C1, . . . , xn : Cn), that

obviously cover only the most frequent cases, where

– cond(x1,. . . ,xn) denotes a boolean OCL expression [6], where x1,

. . . , xn may appear as free variables;

– sd1(x1,. . . ,xn) and sd2(x1,. . . ,xn) are sequence diagrams whose life-

lines are typed by Ci and named by xi (with 1 ≤ i ≤ n and Ci
stereotyped by�participant�), whose messages are labelled by
calls of operations belonging to the interfaces of the services part

of the domain model, and whose execution specifications (see [9,

17.2.4.4]) are labelled by calls of operations without return type of

the participant classes;

– ad1(x1,. . . ,xn) and ad2(x1,. . . ,xn) are activity diagrams whose ac-

tions are calls of either operations belonging to the interfaces of

the services part of the domain model or of operations without

return type of the participant classes, and whose swimnlanes (if

any) are labelled by xi : ci (with 1 ≤ i ≤ n and Ci stereotyped by
�participant�).

• Invariant
cond(x1,. . . ,xn)

• Triggered behaviour

Trigger Effect

cond(x1,. . . ,xn) sd2(x1,. . . ,xn)

sd1(x1,. . . ,xn) sd2(x1,. . . ,xn)

cond(x1,. . . ,xn) ad2(x1,. . . ,xn)

ad1(x1,. . . ,xn) ad2(x1,. . . ,xn)

• Unwanted behaviour

sd1(x1,. . . ,xn) or ad1(x1,. . . ,xn)

• Restricted behaviour

Activity only if

sd1(x1,. . . ,xn) cond(x1,. . . ,xn)

ad1(x1,. . . ,xn) cond(x1,. . . ,xn)

• Additional behaviour

sd1(x1,. . . ,xn) or ad1(x1,. . . ,xn)

Table 1: Patterns for UML based goal specification

• Invariant A goal requiring that some static property on the do-

main (i.e. not concerning the dynamic behaviour of the participants)

should be always true.

• Triggered behaviour A goal requiring that when some static con-

dition become true/something happen in the domain (trigger), then

some specific activities must be done (effect). All operative goals in

Fig. 6 conform to this case, see for example Fig. 8.

• Unwanted behaviour A goal requiring that some specified be-

haviour should be made impossible by the IoT-system, may be

expressed by either a sequence diagram or an activity diagram.

• Restricted behaviour A goal requiring that some specific activities

may be performed only in a restricted number of cases, defined by

a condition on the goal roles.

• Additional behaviour A goal requiring that some specific new

activities may be performed, for example in the FdS case the goal

Evaluate festival is of this type.

It may happen that to specify an operative goal it is necessary

to interact with entities not included in the domain. e.g. “if an

intruder is detected in a room, then the police should be alerted”,

but the police was not part of the home domain. In these cases,

the domain should be extended, by adding further participants

with their services and objects, so that any entity needed to phrase

the operative goals with the UML is available in the domain. For

example in the FdS case we added the participant Bus company to

allow to specify that the IoT-system to be built should interact with

it to support the buying of the bus tickets.

Similarly, the entities already present in the domain may need to

be extended by adding new attributes, operations and provided or

used services, as well as new classes needed to type them. Again in

the FdS case we added new services, such as Notify (to abstractly

model the fact that the visitors should be notified various messages)

and Give position (to abstractly model the fact that the position

of the visitors should be detected and made available). In Fig. 7

we present a fragment (the complete one is shown in [3]) of the

extended static view with all the additions needed to specify the

subgoals of Maximize event participation, see Fig. 6.

13

MiSE’18, May 27, 2018, Gothenburg, Sweden G. Reggio

Figure 7: FdS requirement specification: fragment of the

Static view of the extended domain model

The specification of the Suggest next events goal is reported

in Fig. 8 (it is of kind triggered behaviour): any time a visitor is

near (what does it means “to be near” is left to the definition of

the operation near of class Position) one hour before the start of

an event that it is not fully booked s(he) will receive a notification.

An overkill variant of this requirement may be proposing to a

visitor only events that s(he) may like based on the-fly analysis of

which s(he) has enjoyed previously or booked and on preferences

declared when buying a ticket; but this is too much for the specific

case, where the number of the events is less than 100.

Lost messages (those with the arrow reaching a black circle

instead of a lifeline) are provided by the UML for the cases where

the target of a message in a sequence diagram is not fixed, similarly

for the found messages (those starting from a black circle). Lost and

found messages are used in the sequence diagrams representing

the trigger and the effect of a goal specification to avoid that the

specification of a goal results in determining the architecture of

the system to be built (i.e. encompassing implementative details in

the requirements). In the case in Fig. 8 using lost/found messages

we were not forced to say which hardware/software components

of the system will receive the position and which will send the

notification, but the intended meaning of the goal is clear: IoT-Sys

should make such sequence of message happen in such cases.

Fig. 9 shows instead the specification of the Ask for booking

confirmation goal, again it is of kind triggered behaviour, but now

the trigger is a condition. To specify this goal the Visitor class

provides now a new service Ask confirm (see [3]).

Figure 8: Goal Suggest next events specification

Figure 9: Goal Ask for booking confirmation specification

The specifications of the other goals of the IoT-system for FdS

can be found in [3]. Notice that also which data produced by the

FdS current edition must be collected is specified, and also which

are the required analysis (see the goal “Analyse the current edition

of the festival to make the next better”, and the specifications of its

operative subgoals).

Fig. 10 presents the updated serviced architecture.

Since none of the existing participants seems the right choice

as provider/user of some of the new services (e.g. Notify and Give

position), we should introduce new participants, but there is not

an obvious way to determine them. Leaving such providers/users

undetermined the task of specifying the goals is not hindered, and

no information relevant for the next development phases is lost.

Similarly to the lost and found mechanism for messages, IotReq

introduces the lost and found services. A lost service is a provided

service for which the users are not defined, similarly a found service

is a used service whose provider is not determined. Technically,

they are represented by ports typed by a service interface or a

conjugate of a service interface stereotyped by�undetermined�
and represented by the black box icon.

In Fig. 10 the participant Bus company with the service Buy bus

ticket has been added to specify the goal Improve visitor experience.

The four new services provided by the Visitor class are lost services

represented by the black box, as well as Record, whereas Analyse

is a found service.

An operative goal may be complemented with the usual infor-

mation associated with use case, such as stakeholders, priority and

frequency, as for the use cases, that will help in deciding in which

order the goals should be considered in the development activities.

14

A UML-based Proposal for IoT System Requirements Specification MiSE’18, May 27, 2018, Gothenburg, Sweden

Figure 10: FdS requirement specification: Service architec-

ture of the extended domain model

Figure 11: GoalMaximize event participation: Technological

goals decomposition

4.3 Nonfunctional requirements

The preliminary version of IotReq presented in this paper provides

also some hints to tackle just one kind of nonfunctional require-

ments for an IoT-system, being aware that defining all the types of

the nonfunctional requirements for IoT-systems needs a thorough

investigation, that will the subject of future work.

In the case of IoT-systems there are many different possibilities

for the choices of the technologies to use to build them, both at

the hardware level (e.g. sensors, beacons, RFID, mobile devices,

videocameras, appliances) and software (e.g. rest services, various

protocols) with very different characteristics (e.g. concerning cost,

installation, maintenance), so the “implementation requirements”

are more complex to elicit and specify than for classical software.

Furthermore, the use of the above mentioned technologies is what

characterises an IoT-system (see [4]), thus they should be explicitly

taken into account in the requirement elicitation phase. Our method

proposes to present the implementation requirements for an IoT-

system by using the technological goals, that are goals refining the

operative goals stating which technological means must be used

to realize the refined goals; obviously, the considered technologies

should be those related to the IoT.

The technological goals will be represented by dashed ellipses,

and should be summarized in a goal view containing also the oper-

ative goals. We suggest to consider different options when looking

for the supporting technologies, and to represent them by using

the or-dependency among goals, then it will be possible to perform

an analysis of the various possibilities helping the analyst to select

a coherent set of technologies.

Fig. 11 presents the technological goals corresponding to the

strategic goalMaximize event participation, whereas all the others

are listed in [3]. Notice that also a non-IoT technology is considered

(i.e. email), allowing to reach also visitors that decide to not use the

Festival’s app. A different choice, based on lapel pins equipped with

RFID to be obtained after buying a ticket and on beacons distributed

in all the festival locations was ruled out for the costs, too high for

the FdS budget.

4.4 The Genoa’s Science Festival Case Study

The Genoa’s Science Festival case study was prompted by a student

project requiring to build “a Mobile Cloud Computing system for

monitoring, analysing and visualizing the data about the FdS visi-

tors” proposed in a course on IoT-technologies and development

tools. We tried to specify the requirements for such system using

IotReq, and the result was satisfactory, indeed all relevant aspect

of the domain were modelled, and any relevant requirement was

specified. The resulting model and specification are quite easy to

produce for a typical UML user, since IotReq provide strict guide-

lines on which UML constructs to use and how. Moreover, they

are also quite easy to understand again for a typical UML user, for

example the goal specifications produced following the suggested

pattern are easy to grasp.

Furthermore, the service-orientation provides a nice modular-

ization means for the interactions among the entities composing

the domain, helping to build and maintain the various models,

and again understand them. Consider Fig. 4, it summarizes the be-

havioural aspects of the domain, then the various service models

add the details. Assume that the event updating is no more relevant,

it is very simple to modify the model: just drop a participant and a

service. Using other UML constructs to represent the behavioural

aspects of a domain, for example associating a state machine with

each participant class, will result in much more complex models

and surely less modular (to drop updating in this case means to

examine a state machine looking for the part related with updating

and then eliminate it).

Using IotReq the focus of the system has been better understood,

making it more suitable to provide value to the festival organizer,

since onewas lead to think to the functions of the system abstracting

from the available technological solutions. For example, monitoring

was found irrelevant, and the data analysis were required to be

performed off line at the end of the festival (as a consequence, the

system should be simpler to implement). In the student project

one of the main features was to track the movement of the visitors

inside the festival area, but analysing such paths cannot provide

a big help to the organizers, e.g. to know that people once reach

15

MiSE’18, May 27, 2018, Gothenburg, Sweden G. Reggio

a location then attend all event taking place there cannot help to

better organize the next edition of the festival (thus the priority

of the corresponding goal is very low). Instead, some of the most

useful analysis can be done collecting data on the ticket owners

and recording the events attended using the tickets, allowing to

understand the typology of the visitors, the most/least attended

events, and the relationships between the visitor and the events

characteristics. Such results may be useful to select the events for

the next edition, and to better advertise the festival.

5 RELATEDWORK

Requirement engineering for IoT-systems, and in general software

engineering for such systems, is a very recent field, indeed one

of the most valuable reference is the first issue of the 2017 of the

IEEE Software journal [11]. One of the included papers [12] is the

most interesting, since it tackles the topic of requirements for IoT-

systems. This paper proposes a conceptual framework for capturing

and presenting the requirements. First it is required to find the

actors in the system (global and local managers, and users), and

then to look for the associated policies (corresponding to our goal of

kind invariants), goals (corresponding to our goals of kind triggered

behaviour) and functions defined by “Functions define the sensing,

computing, or actuating capabilities of individual things or a group of

things, or specific resources that are to be made available. Functions

are typically accessible as services” [12]. In our proposal their role

is played by the services provided by the domain participants. At

conceptual level our current proposal is simpler, considering only

non-further classified participants providing and using services, and

non-further classified goals. As a future work we plan to investigate

whether a similar or a different classification may better support

the requirement elicitation and specification. However, [12] does

not tackle the requirement specification issue.

In the literature there are various proposal for using the UML,

or better UML profiles, for supporting the development of IoT-

systems, e.g. [8], but only the design and implementation phases

are considered not the requirement one. Instead, [1] suggests to

use a profile of SysML (that in turn is a UML profile) for modelling

IoT-systems, and proposes a development methodology, covering

not only the design phase, indeed the authors suggest to specify

both the requirements for the IoT-app (not clear if it is the whole

IoT-system or a part of it) as a black box, and for the used devices. [1]

differs from our method since does not require an explicit domain

model, consider the IoT-system as a black-box and not interspersed

on the domain, and the requirements are textually specified.

6 CONCLUSIONS AND FUTUREWORK

We have presented a preliminary version of a method, IotReq,

that combines “service-oriented” UML modeling, and simple well-

known software engineering practices, to support the elicitation

and the specification of the requirements for an IoT-system. The

analyst first must understand and model using the UML the do-

main of the IoT-system to build, then s(he) is driven to look for the

ultimate (strategic) goals of the system, later to decompose them

into operative goals, that can be quite precisely specified to avoid

ambiguities and incompleteness, again using the UML. Finally, s(he)

should look for the nonfunctional technological goals.

The method has been applied to a realistic case study: FdS (the

Genoa’s Science Festival), showing that it allows to precisely specify

its requirements, separating the functional ones from those con-

cerning the technologies to use. And the resulting specification is

quite readable. However, we are currently working on two other

case studies, with quite different characteristics, provided by local

companies, to further validate IotReq.

The current version of IotReq is quite simple, and thus can for

example taught in few hours to someone familiar with the UML

and the service paradigm, and it just allows to precisely specify the

requirements for an IoT-system. It may, and will, extended:

– as it has been done in [7], we plan to precisely define the form of

the UML models used for the domain and the requirement specifi-

cation by means of constraints to help avoid common mistakes, and

guarantee by construction a certain level of quality of the produced

models, and a tool based on model transformations may check that

are satisfied;

– using again model transformations the requirement specification

may be transformed in inputs for goals’ analysis tool, e.g. to auto-

matically guarantee the absence of conflicts among the goals;

– other “classical” software engineering practices may be incorpo-

rated, e.g. to derive tests from the requirements.

Providing classification schemas for participants, services and

goals (e.g. internal/external, i.e. out of the control of the developer as

the Bus company of FdS, list of all the possible technological goals)

are obviously useful, we plan to add them after some empirical

investigations on the current practice in IoT-development.

ACKNOWLEDGMENTS

I would like to thank the reviewers for their carefully reading and

useful suggestions.

REFERENCES
[1] B. Costa, P. F. Pires, and F. C. Delicato. 2016. Modeling IoT Applications with

SysML4IoT. In 2016 42th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). 157–164. https://doi.org/10.1109/SEAA.2016.19

[2] G. Reggio. 2018. Genoa’s Science Festival Domain Model. (2018). Available at
sepl.dibris.unige.it/2017-GenovaScienceFestivalCaseStudy.php.

[3] G. Reggio. 2018. Genoa’s Science Festival Re-
quirement Specification. (2018). Available at
sepl.dibris.unige.it/2017-GenovaScienceFestivalCaseStudy.php.

[4] IEEE Internet Initiative. 2015. Towards a definition of the Internet of Things (IoT).
(2015). Available at iot.ieee.org/images/files/pdf/IEEE_IoT_Towards
_Definition_Internet_of_Things_Revision1_27MAY15.pdf.

[5] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja. 2017. Software Engineering
for the Internet of Things. IEEE Software 34, 1 (2017), 24–28. https://doi.org/doi.
ieeecomputersociety.org/10.1109/MS.2017.28

[6] OMG. 2003. UML 2.0 OCL Specification.
[7] G. Reggio, M. Leotta, D. Clerissi, and F. Ricca. 2017. Service-oriented domain

and business process modelling. In Proceedings of the Symposium on Applied
Computing, SAC 2017., Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and
Xin Peng (Eds.). ACM, 751–758. https://doi.org/10.1145/3019612.3019621

[8] Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4IoT – A UML-
based Approach to Exploit IoT in Cyber-physical Manufacturing Systems. Com-
put. Ind. 82, C (2016), 259–272.

[9] UML Revision Task Force. 2015. OMG UML, V2.5.
[10] Various. 2007. A KAOS Tutorial. Available at

www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf.
[11] Various. 2017. Software Engineering for the Internet of Things. IEEE Software

34, 1 (2017).
[12] F. Zambonelli. 2017. Key Abstractions for IoT-Oriented Software Engineering.

IEEE Software 34, 1 (2017), 38–45. https://doi.org/10.1109/MS.2017.3

16

