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Abstract: This article presents a method to know the position of object or moving robot in the plane while the camera
is moving dynamically. An Inverse Perspective mapping (IPM) approach has been embedded in a monocular
camera on Head of Pepper Humanoid Robot (Softbank Robotics) for real time position determination of other
object or robot in plane. While the Pepper head is moving, it is difficult to determine position or distance to
objects in front of the robot with any different degree of certainity. By applying IPM, a linear relationship
between the IPM frame and world frame becomes the key element to know the position of object while the
head is static but when the head orientation changes the IPM is modified to adapt the linear relationship
between both frames. So, the proposed method is based on the extraction of accurate bird’s-eye view. The
method includes the Image Acquistion, IPM Filtering, Detection Phase, Region of Interest Selection and Pixel
remapping.

1 INTRODUCTION

One of the core elements in field robotic research is
to implement the social robot’s algorithm, that help
robots to anticipate the desired task which results the
ease for humans. In the twentieth century, the process
took place and steps have been put forward for the
realization of fully autonomous humanoid robots (Si-
ciliano and Khatib, 2016). In this domain of robotics,
the problem of position estimation and distance de-
termination has been one of the concered domain be-
cause it can overcome the destruction in robots due to
collision (Lemaignan et al., 2017).
Collision detection systems can provide robots with
an alert prior to a collision that allows robot to take
preventive actions (Stein et al., 2017). The robot pro-
cesses can be included in the security system as men-
tioned in (Maurino et al., 2017) which immediately
stops the robot processes if an imminent object is de-
tected in surroundings nearby. In addition, determin-
ing distance within robots, could also allows the robot
to provide alert and to make cautiously comments to
the user (Rubenstein et al., 2014). Instructions may
move to prevent this problem, or create a security
setting for sudden collision (Mukhtar et al., 2015).
Many distance determination activities have been car-
ried out using functional systems such as optical cam-

Figure 1: Pepper Tracking other robot in plane

eras that contributes to greater power and intervention
in comparison with optical camera sensors (Hiremath
et al., 2014). For a very simple idea it is used: Signals
used from antenna indicate the purpose of the target
goal. Distance and tags can be calculated depending
on the length of travel and destination.
A robot should detect the relative position of another
robot, while the other robot is in the floor. A large
amount of research has been done for distance deter-
mination to an object using forward facing cameras
(Tuohy et al., 2010), sonar and laser scanners that



could not be specifically used if the height of other
robot is too low. A multi-camera setup as employed
by (Ma et al., 2014), provides depth information by
establishing feature correspondence and performing
triangulation. However, it also carries severe process-
ing and configuration overheads, which is cheaper and
is not required on power robots.
In this article, openCV tools has been used to make
a blob of color so the specific color object can be de-
tected by camera and term as a potential object. Con-
currently, two robots has been adopted Pepper Hu-
manoid robot and iRobot Roomba. The Pepper robot
has capabilities for vision which include facial and
shape recognition (in-built cameras). Secondly, the
iRobot Roomba is a unicycle mobile robot that per-
forms a wide range of task from autonomous clean-
ing and surveillance, to transportation and assistance
to the elderly. By combining both of these robots with
potential object, a solution that consists in the compo-
sition of a IPM view (bird’s eye view) of Pepper head
camera has been proposed. This view will serve as
a virtual map for the iRobot Roomba in the Pepper
Frame of view (FOV) to help the user to adequately
specify the commands to be sent to the other Roomba
under its control, as in Fig. 1 that is referred to Pep-
per Frame of view. The proposed system consists of a
single forward facing Pepper camera, capturing video
images at 30 frames per second (fps).
Section II of this paper discusses the Methodology for
distance determination that includes Inverse Perspec-
tive Mapping which allows the image perspective to
be linearised, the surface subtraction requirement for
object detection and the calibration issues. The tech-
nological platform with discussion of results are de-
scribed in section III. Future work concludes the pa-
per in section IV.

2 METHODOLOGY

The workflow for the process of calculating object po-
sition in moving Pepper Head mainly includes three
parts: IPM Filtering: (Image Acquisition, Grayscale
conversion and Camera Parameter definition), Detec-
tion Phase:(ROI selection and Pixel Remap) and Cal-
culation steps.
The transformation of the coordination system can be
done in a mathematical way using the inverse per-
spective mapping (IPM) that converts picture coor-
dinates from one point to another (Jeong and Kim,
2016). The final homogeneous distribution of the
two-dimensional image (input) information in the
pixels changes mainly through the IPM-based re-
moval perspective effect.

Objectively, IPM transformation requires a special ac-
quisition conditions (i.e:camera location, orientation,
optics, etc.) (Laganiere, 2000) (Lin and Wang, 2012)
and some of the assumptions in which the image is
presented(here defined as a priori knowledge). There-
fore, the IPM transform can be used in a structural en-
vironment in which, for example, the camera is placed
in a static position or in situations where the caliber
system and caliber can be obtained from another type
of sensor (Yenikaya et al., 2013) (Guo et al., 2014)
(Civera et al., 2008).
In this case, we use the IPM to get a Pepper robot
top-down view from the camera. This change thus
eliminates the non-linearity of the distances between
the frame and the object in the world. Using IPM, the
aim is to map pixel points (u,v) to world coordinate
points (Xw,Yw,Zw), as in Eq. 1. The requirement of a
rotation about θ, a translation along the cameras opti-
cal axis, and a scaling by the camera parameter matrix
(Oliveira et al., 2015), can be expressed as:

(u,v,1)T = KT R(x,y,z,1)T (1)

R =

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 (2)

T =


1 0 0 0
0 1 0 0

0 0 1 − h
sinθ

0 0 0 1

 (3)

The intrinsic parameters of the camera are represented
by the following matrix:

K =

 f ∗ ku s u0 0
0 f ∗ kv v0 0
0 0 1 0

 (4)

where h is the height of camera, f correspond to the
focal length measured in horizontal and vertical pixel
units ku and kv respectively. The positions u0,v0 are
the principal points where the optical axis fixes the
image plane.
The camera makes a projection of the 3D view point
in the world with a picture located on a retina plane.
By using a homogeneous coordinate, the projective
connection between 3D light and its image points can
be changed as:

 ui
(vi)
1

=

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34




Xw[
Yw
Zw

]
1

 (5)



The 3 * 4 matrix Mi, j is the transformation matrix in
Eq. 5. It relates world points to image points accord-
ing to the camera location with respect to the refer-
ence frame, represented by a camera matrix K Eq. 4,
rotation matrix R Eq. 2 and a translation vector T Eq.
3. If the structure under observation is a plane, it may
be simpler to create because the global coordination
system can be anywhere, it can be conveniently lo-
cated on the plane so it has zero coordinate line Z.
This choice would reduce the projection matrix to:

 ui
(vi)
1

=

M11 M12 M13
M21 M22 M23
M31 M32 M33

 Xw
(Yw)

1

 (6)

The updated change focuses on a plane of the world
into the points of the image as well as a source image
may be rewritten as:

dst(u,v) = src(
M11XW +M12YW +M13

M31XW +M32YW +M33
,

M21XW +M22YW +M23

M31XW +M32YW +M33
)

(7)

The sampling rate in X direction at this point is simply
the number of source image pixels between (X ,Y,1)T

and the point (X + (δX ,Y,1)T ) divided by the dis-
tance between these two points. The transformation
depends upon the Eq. 6 and can be warped to its dst
coordinates as mentioned in Eq. 7 .
In detection phase, there are conventional techniques
that needs the prior knowledge of the object for de-
tecting it with a camera (Wang, 2013). However, a
more effective approach is used to adopt an algorithm
for Surface Subtraction (SS). The object to be de-
tected is green in color and wheeled robot has a small
green object on top, and thus the surface subtraction
algorithm starts from the detection of green object.
Considering the scene in Fig. 2, the object we must
detect is deemed to be the nearest part of the object
in image that is in surface and directly in front of the
Pepper. Therefore the easiest way to accurately detect
the object is by accurately setting the BGR points of
potential object, as stated in steps below:

1. Green channel is separated to its constituent in the
BGR image.

2. Taking Green channel into account, the algorithm
calculates the average pixel values in x and y axes
in the captured Pepper image.

3. The algorithm makes a rectangle over the green
object and place a red dot at the bottom center
of the rectangle to calculate the exact pixel value
which is near to the Pepper.

4. The algorithm repeats steps 2 and 3.

From the above mentioned steps the adaptation is easy
under various brightness and surface conditions. By
using the OpenCV morphology tool we get the green
object found under different conditions in light, be-
cause the BGR channel range can be solved manually.
Therefore, under the conditions of light, the result will
remain similar to the presence of a green color due to
the upper and lower limits of the BGR morphological
tool. It can help identify potential objects by recog-
nizing their colors in varying sizes so that there will
be no disruptions under various lighting conditions.
Before we calculate the distance between object and
Pepper, we need to calculate the height of the pixel
object from below the image, as done in Fig. 2. From
the bottom of the binary image in each RGB color
space, we calculate the average pixel intensity on each
pixel line in the image. From this we find out how
high the object lies in the world frame. The ground
just before Pepper is considered. This is to minimize
the ease of knowing the wrong positives caused by
other things within the Pepper frame.
In previous steps, the pixel points of the potential ob-
ject measured by the image are known, but to cal-
culate it according to the global framework, the cal-
ibration tool should be a reasonable unit of measure-
ment (i.e there is a lot of calibration methods, such as
(Boyle et al., 2000) (Munaro et al., 2016).
The methods like chessboard calibration and marking
points calibration discussed in (Miraldo and Araujo,
2013), (Moreno and Taubin, 2012) can be used as well
but in this case, the proposed system would be imple-
mented with a Pepper camera in a fixed or moving
position. The placement of a green, blue or red color
box with known distance (i.e: known x and y axes
distance) in the FOV of the camera, along a flat sur-
face, would allow for the measurement of the number
of pixels equivalent to distance. Using this value, the
number of pixels in the image could be converted to a
real world value in meters.

3 RESULTS AND DISCUSSION

The algorithm presented here is implemented to Pep-
per Robot in real time to know the position of other
object in plane. For this purpose, the Python lan-
guage, complemented by the OpenCV library of func-
tions was chosen for implementation that allows the
rapid development of image processing algorithms
without the need to develop complex algorithms by
using its open source library of functions (Van der
Walt et al., 2014).



With Pepper robot, a database of video samples was
captured at 30 frames per second (fps), at a resolution
of 320*240 pixels. Considering that the change in dis-
tance of potential objects is relatively slow compared
to the full frame rate of the system, a slower frame
rate was considered for the purposes of calculating
distance and computing position. Using a sampling
rate of every 10 frames produced smooth and reliable
results. A frame rate of 10 per second was chosen as it
provides a good trade-off between computation time
and number of calculations per second.
The first experiment has been done by putting a green
object at one point in the Frame of view (FOV) of
Pepper Head camera. First it is placed at 0.3m on Xaxis
and 1.8m on Yaxis, then the data have been recorded
for 300 samples. Then the Pepper head changes its
orientation in different Yaw and Pitch as shown in Fig.
2. The same acquisition has been performed to other
different points, it can be seen from Figs. 5, 6 that
is actual calculation of one point along x and y axis.
The deviation at different Pitch and Yaw angles are
presented in same figure.
It can be seen in bird’s-view image, Fig. 2, that the
relationship between the potential object and its dis-
tance from the camera is linear in nature. However,
the change in the position of the pixel of object will
proportionally reflect this difference in distance. In
order to determine the position of potential object in
bird eye view, the calibration with different distance
on pixels is considered and sum up in a formula as in
Eq. 8 and average error in Eq. 9. It goes something
like: we first calibrate the world points in Bird eye
view frame with a known distance of object. Then the
object is being placed at some distance from Pepper
camera and by measuring at the same time the pixel
(in bird’s-view) corresponding to the object detection.
The apparent pixels is measured corresponding to the
detected object.

in+1 = o+ pn + in +noise (8)

where i is frame point, o is the offset, p is the
pixel.

|ek|=
√

(xodometry− xIPM)2 +(yodometry− yIPM)2

(9)
where xodometry, yodometry are the reference odometry
points in world frame and xIPM,yIPM are the achieved
points. The average error and standard deviation of
average error are calculated and denoted by av|ek| and
std |ek|.
The image has been taken with different angles of
Pitch and Yaw by putting the object at one static po-
sition. The clearity of IPM view can be seen in Fig.

Figure 2: Fixed object IPM view with different Pepper Head
Orientation (i.e: (yaw,pitch) = (36,0),(36,-10),(36,10),(36,-
20),(36,20))

2 that due to proposed method the object always im-
plies the same position in IPM view while the camera
is moving. The linear straight red line in Fig. 2 shows
that the head moving has no impact on the position of
object in IPM frame, so it can be converted next to its
respective world frame value.
So, for covering the whole plane region of 3.6*3.6 m
area, in order to know the object position a total num-
ber of 36 points with 0.6m apart in both axis has been
considered. The red star point in Fig. 3 is the actual
point of the floor and the blue dot is the average er-
ror of all points. The standard deviation of average
error is expressed by error bar of x and y. The num-
ber below each red dot is the number of acquisitions
performed with different values of pitch and yaw.
Specifically the next test is being done by putting the
object 0.6m apart in Xaxis and Yaxis direction to check
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Figure 3: IPM Frame of floor (average |av| and std|av|)

the effective of algorithm in far points. The results of
all points are shown in Fig. 3. The data recording of
each camera angle is being done in Pitch= 36 to 15
and Yaw= -20 to 20 with 5 intervals each that in to-
tal becomes 45 values for calculating one point in the
best case. The more the object is closer to the centre
of the area, the more will be the number of recording,
since the object will be always in the FOV of the cam-
era, with all different values of pitch and yaw. On the
other side, when the object is closer to the border of
the considered area, it will be detected by the camera
only with a limited set of pitch-yaw values, thus hav-
ing a greater number of recording gives less the error
deviation. The region in between 1.2m to 3m in Yaxis
(i.e: Pitch Movement) has got almost maximum num-
ber of camera view points which gives the less error
rate. The values which are far away from 3m, they
give more deviation because the far the object goes
the Monocular camera becomes blur which becomes
hard to detect the potential object, but still it is detect-
ing with low number of Camera point values of Yaw
and Pitch. In a similar manner, the deviation in Xaxis is
increasing if it rotate Head more than -1.2m to 1.2m
in Yaw Orientation. Apparently, the total calculated
area of the floor in a grid form has the capability to

tell the position of object in the plan with a deviation
of 0.02m to 0.1m.

While the potential object was placed at different
points in plane then the corresponding IPM frame
value is being calculated by changing the orientation
of Pepper Head in Yaw and Pitch. In Figs. 5 and 6 it
can clearly be seen that by changing head orientaion
the actual point is 0.3m in Xaxis and 1.8m in Yaxis as
per world frame but the average error in both figure is
almost very near to actual values. The average error
is due to the camera lens, but it is almost negligible.

The WR has been considered that adopts the path
following algorithm as mentioned in (Morro et al.,
2011). Fig. 4, validates the Pepper camera and IPM
view that shows while the robot is moving in a circular
path, the WR position is being calculated depending
upon the potential objected tracked that is mounted on
the top of roomba.

The Pepper IPM view response while tracking the
odometry of Roomba is shown in Fig. 7, further
Eq. 9 is used to calculate the average error, that is
av|e|= 0.102m.



Figure 4: Moving robot in Pepper Monocular camera view and IPM Birdeye-view making a circular path
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Figure 5: Xaxis-IPM view with different Pepper Head Ori-
entation
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4 CONCLUSION

This article presents an efficient collaboration method
in real-time for Pepper Humanoid robot to know the
position of other moving robot or object in the plane.
It is mainly based on visual matching and IPM which
gives the linear relationship between IPM frame and
world frame. So, the experimental results prove that
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the position of other potential object is known while
the Pepper robot head orientation is static or moving.
It is shown in the results and discussion section that
the more the number of recording pairs (i.e: Yaw,
Pitch) for each point, gives more accurate calcula-
tions. The results validates that it can work efficiently
for the autonomous diverse environment too. In the
future, more detailed plane information and more spe-
cific collision strategies will be worked out to provide
a more practical system.
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