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DIBRIS, Università di Genova, Via Dodecaneso 35

Genova, 16146, Italy
francesca.odone@unige.it

Abstract. We show that the 2D-shearlet transform is the composition of the
affine Radon transform, a 1D-wavelet transform and a 1D-convolution.

Key words and phrases : Shearlets, Wavelets, Radon Transform

2010 AMS Mathematics Subject Classification — 42C40

1. Introduction

Many effective algorithms in signal analysis, image processing and computer
vision are based on efficient multi-scale representations. It is well known that
wavelets provide an almost optimal framework for 1D-signals, whereas for multi-
dimensional signals a huge class of representations has been introduced like direc-
tional wavelets [1], ridgelets [4], curvelets [5], wavelets with composite dilations
[19], contourlets [11], shearlets [26], reproducing groups of the symplectic group
[16], Gabor ridge functions [16] and mocklets [9] – to name a few.

Among them, shearlets emerge because of their ability to efficiently capture
anisotropic features, to provide an optimal sparse representation, to detect singu-
larities and to be stable against noise. The effectiveness of shearlets is supported
by the well-established mathematical theory of square-integrable representations
and it is tested in many applications in image processing, where many efficient
algorithms based on shearlets have been designed (see [24, 12] and also the
website http://www.shearlab.org/ for further details and references).



2 F. BARTOLUCCI AND F. DE MARI AND E. DE VITO AND F. ODONE

For these reasons, it is natural to observe that shearlets for 2D-signals behave
as wavelets for 1D-signals, so that one could try to understand if this strong
connection is a consequence of some general mathematical principle.

In the papers [3], [2] it is shown that the Radon transform is the link between
the shearlet transform and the 1D-wavelet transform since it intertwines the
shearlet representation with a suitable tensor product of two wavelet represen-
tations. Based on the properties of the Radon transform and the 1D-wavelet
transform, in this paper we provide an alternative proof that the shearlet trans-
form is able to resolve the wavefront set associated with the unit disc. Classical
proofs are given in [23], [17], [25].

The role of the Radon transform in signal analysis is an issue that has al-
ready been addressed. Indeed it is known that ridgelets are constructed via
wavelet analysis in the Radon domain [13], Gabor frames are defined as the
directionally-sensitive Radon transforms [16], discrete shearlet frames are used
to invert the Radon transform [6] and the Radon transform is at the root of the
proof that shearlets are able to detect the wavefront set of a 2D-signal [17]. Our
contribution in this circle of ideas is to clarify this relation from the point of
view of non-commutative harmonic analysis.

The paper is organised as it follows. In Section 2 we briefly recall the wavelet,
shearlet and Radon transforms. In Section 3 we state the main results, and in
Section 4 we show further results for d-dimensional signals. Section 5 contains
a sketch of the proofs and Section 6 shows how our results can be used in the
problem of characterising the wavefront set of a signal. Finally, Section 7 is left
to some concluding remarks.

2. Wavelet, shearlet and Radon transforms: an overview

We briefly introduce the notation. We set R∗ = R\{0}, regarded as multiplica-
tive group. The scalar product and the norm of Rd are denoted by ~n ·~n′ and |~n|,
respectively. We denote by Lp(Rd) the Banach space of functions f : Rd → C,
which are p-integrable with respect to the Lebesgue measure d~x and, if p = 2,
the corresponding scalar product and norm are 〈f, g〉 and ‖f‖. The Fourier
transform is denoted by F both on L2(Rd) and on L1(Rd), where it is defined
by

Ff(~ξ ) =

∫
Rd
f(x, y)e−2πi

~ξ·~xd~x, f ∈ L1(Rd).

If G is a locally compact group, L2(G) is the Hilbert space of square-integrable
functions with respect to a left Haar measure.

2.1. Wavelets. The wavelet group is W = Ro R∗ with group law

(b, a)(b′, a′) = (b+ ab′, aa′).

The wavelet representation W acts on L2(R) as

Wb,aψ(x) = |a|−1/2ψ(
x− b
a

), x ∈ R,
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and the wavelet transform Wψ : L2(R)→ L2(W)

Wψf(b, a) = 〈f,Wb,aψ〉, (b, a) ∈W

is a (non-zero) multiple of an isometry provided that

0 <

∫
R

|Fψ(ξ)|2

|ξ|
dξ < +∞.

In this case, ψ is called an admissible wavelet [14, 10].

2.2. Shearlets. Given γ ∈ R, the shearlet group is Sγ = R2 o (R o R∗) with
group law

(~b, s, a)(~b′, s′, a′) = (~b+NsAa~b
′, s+ |a|1−γs′, aa′)

where

Aa = a

[
1 0
0 |a|γ−1

]
Ns =

[
1 −s
0 1

]
and the vectors are understood as column vectors. Parabolic shearlets, which
were introduced in [26], correspond to the choice γ = 1/2. The group Sγ acts
on L2(R2) as

Sγ~b,s,a
f (~x) = |a|−

1+γ
2 f(A−1a N−1s (~x−~b)), ~x ∈ R2,

and the shearlet transform Sγψ : L2(R2)→ L2(Sγ)

Sγψf(~b, s, a) = 〈f, Sγ~b,s,aψ〉, (~b, s, a) ∈ Sγ

is a (non-zero) multiple of an isometry provided that

0 <

∫
R2

|Fψ(ξ1, ξ2)|2

|ξ1|2
dξ1dξ2 < +∞. (1)

Classical mother shearlets [26] are of the form

Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2

(
ξ2
ξ1

)
,

where ψ1 is an admissible wavelet and Fψ2 is a bump function in the Fourier
domain [7]. An example of shearlet ψ is depicted in Fig. 1. In [22] a different
choice for the mother wavelets has been proposed to have compactly supported
shearlets in the space domain.
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Figure 1. A classical mother shearlet ψ in the space domain.
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Figure 2. The affine coordinates.

2.3. Radon transforms. The Radon transform [20] is usually defined by la-
beling the lines by pairs (θ, q) ∈ [−π, π)× R, that is

Γθ,q = {(x, y) ∈ R2 | x cos θ + y sin θ = q}.

To stress the dependency on the polar angle θ we write

Rpolf(θ, q) =

∫
x cos θ+y sin θ=q

f(x, y) d`(x, y),

where d` is the measure on the line Γθ,q. We label the normal vector to a line
by affine coordinates, see Fig. 2, writing

Γv,t = {(x, y) ∈ R2 | x+ vy = t}

where the correspondence is v = tan θ and t = q/ cos θ. With this parametri-
sation, the vertical lines, which correspond to the choice θ = ±π/2, can not
be represented, but they constitute a negligible set with respect to the natural
measure on the affine projective space P1 × R = {Γ | Γ line of R2}.
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The (affine) Radon transform of any f ∈ L1(R2) is the function Rf : R2 → C
defined by

Rf(v, t) =

∫
R

f(t− vy, y) dy, a.e. (v, t) ∈ R2

and is related to the (polar) Radon transform by

Rf(v, t) =
1√

1 + v2
Rpolf(arctan v,

t√
1 + v2

). (2)

The central Fourier slice theorem [20] shows that the Radon transform is strongly
related to the Fourier transform since for any f ∈ L1(R2) it holds that

(I ⊗F)Rf(v, ω) = Ff(ω, ωv) (v, ω) ∈ R2. (3)

As in the case of the Fourier transform, it is possible to extend R to L2(R2) as
a unitary map. However, this raises some technical issues. First, consider the
subspace

D = {g ∈ L2(R2) |
∫
R2

|ω||(I ⊗F)g(v, ω)|2dvdω < +∞},

which is a dense subset of L2(R2), and then define the self-adjoint unbounded
operator J : D → L2(R2) by

(I ⊗F)JF (v, ω) = |ω|
1
2 (I ⊗F)F (v, ω), a.e. (v, ω) ∈ R2,

which is a Fourier multiplier with respect to the second variable. Then, it is not
hard to show that for all f in the dense subspace of L2(R2)

A = {f ∈ L1(R2) ∩ L2(R2) |
∫
R2

|Ff(ξ1, ξ2)|2

|ξ1|
dξ1dξ2 < +∞},

the Radon transform Rf belongs to D and the map

f 7−→ JRf

from A to L2(R2) extends to a unitary map, denoted by Q, from L2(R2) onto
itself. We need the following generalisation of the Fourier slice theorem.

Corollary 1 ([3], [2]). For all f ∈ L2(R2)

(I ⊗F)Qf(v, ω) = |ω|
1
2Ff(ω, ωv), a.e. (v, ω) ∈ R2. (4)

If f ∈ A, (4) is an easy consequence of (3) and the definition of J , and this
is known (see [6], Section 3.2 and [28]). For arbitrary f ∈ L2(R2) the proof is
not trivial because Q cannot be written as JR, and is based on the fact that J
is a Fourier multiplier.
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3. Main results

The next result shows that Q intertwines the shearlet representation Sγ with
the tensor product of two wavelet representations W .

Theorem 2 ([3], [2]). For all (~b, s, a) ∈ Sγ and f ∈ L2(R2)

QSγ~b,s,af =
(
Ws,|a|1−γ ⊗ I

)
W

(1,•)·~b,aQf. (5)

In (5) the action of the operator W
(1,•)·~b,a on a function F ∈ L2(R2) is

W
(1,•)·~b,aF (v, t) = |a|−

1
2F

(
v,
t− (1, v) ·~b

a

)
.

For a sketch of the proof of Theorem 2 see Section 5. We next discuss under
which conditions on the analyzing functions it is possible to write an applicable
formula for the shearlet coefficients, such as formula (8) below. Eq. (5) suggests
that a natural choice for the admissible vector ψ is of the form

Qψ = φ2 ⊗ φ1
where φ1, φ2 ∈ L2(R). As a consequence of (4),

Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2(
ξ2
ξ1

)

where

Fφ1(ω) = |ω|
1
2Fψ1(ω), φ2(v) = Fψ2(v).

The admissibility condition (1) is equivalent to requiring that ψ1 satisfies

0 <

∫
R

|Fψ1(ω)|2

|ω|
dω < +∞,

∫
R

|ω||Fψ1(ω)|2dω < +∞

and ψ2 is a nonzero function in L2(R). This means that ψ1 is a 1D-wavelet in

the (fractional) Sobolev space H
1
2 (R). Furthermore, it is possible to prove that

φ1 is an admissible wavelet, too, and that

Sγψ(f)(x, y, s, a) = |a|
γ−1
2

∫
R

Wφ1

(
Qf(v, •)

)
(x+ vy, a)φ2

(
v − s
|a|1−γ

)
dv, (6)

whereWφ1

(
Qf(v, •)

)
means that the wavelet transform is computed with respect

to the second variable. If φ2 is a bump function, the behaviour of the integral (6)

depends on the value of γ. Indeed, if a goes to zero and γ < 1, φ2

(
v−s
|a|1−γ

)
is an

approximation of the identity, whereas if γ > 1, it looks like a scale dependent
smoothing. In signal analysis usually γ = 1/2.
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Eq. (6) is not easy to implement in applications since the definition of Q
involves both a limit and the pseudo differential operator J . However, if φ2⊗φ1
is in the domain of J , we can set φ2 ⊗ χ1 = J (φ2 ⊗ φ1), i.e.

Fχ1(ω) = |ω|Fψ1(ω), (7)

so that χ1 = 1
2π Hψ′1, where ′ is the weak derivative and H is the Hilbert trans-

form. With this choice, χ1 is an admissible wavelet, too, and it holds that

Sγψf(x, y, s, a) = |a|
γ−2
2

∫
R

Wχ1

(
Rf(v, •)

)
(x+ vy, a)φ2

( v − s
|a|1−γ

)
dv (8)

for all f ∈ A. The above formula can be written in terms of the polar Radon
transform using (2) and can actually be extended to L1(R2) ∩ L2(R2) (see [3]).

Eq. (8) shows that for any signal f in L1(R2)∩L2(R2) the shearlet coefficients
can be computed by means of the following three classical transforms:

a) compute the Radon transform Rf(v, t);
b) apply the wavelet transform with respect to the variable t

G(v,~b, a) =Wχ1

(
Rf(v, ·)

)
(~b, a), (9)

where χ1 is given by (7);
c) convolve the result with the scale-dependent filter

Φa(v) = φ2

(
− v

|a|1−γ

)
,

where the convolution is computed with respect to the variable v,

Sγψf(x, y, s, a) = (G(•, x+ • y, a) ∗ Φa) (s). (10)

Finally, since Sγ is a square-integrable representation, there is a reconstruction
formula. Indeed

f =

∫
Sγ
Sγψf(x, y, s, a) Sγx,y,s,aψ

dxdydsda

|a|3
,

where the integral converges in the weak sense. Note that Sγψf(x, y, s, a) depends

on f only through its Radon transform Rf (see (9) and (10)). The above
equation allows to reconstruct an unknown signal f from its Radon transform
by computing the shearlet coefficients by means of (8).

4. Further extensions

The construction can be extended to the generalised shearlet groups intro-
duced in [15]. This class of groups consists of semi-direct products G = RdoH.
The homogenous group H is a closed subgroup of GL(d,R) of the form

H = {a
[
1 − t~sΛ(a)
0 B(~s) Λ(a)

]
= h~s,a | a ∈ R∗, ~s ∈ Rd−1},
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where Λ(a) is a diagonal matrix of size d− 1
|a|λ1 0 . . . 0

0 |a|λ2 . . . 0

0 . . .
. . . 0

0 . . . . . . |a|λd−1


and B(~s) is a unipotent upper triangular matrix of size d− 1

B(~s) =


1 ∗ . . . ∗
0 1 . . . ∗

0 . . .
. . . ∗

0 . . . . . . 1

 .
For example, the shearlet group for d-dimensional signals introduced in [8] cor-
responds to the choices B(~s) = Id−1 and λ1 = . . . = λd−1 = 1/d− 1. If d = 2 we
get the shearlet group introduced in Section 2.

Remark 1. The group H is the semi-direct product of the normal subgroup

S = {
[
1 − t~s
0 B(~s)

]
| ~s ∈ Rd−1}

and the abelian subgroup

D = {a
[
1 0
0 Λ(a)

]
| a ∈ R∗}.

Clearly, D is isomorphic, as a Lie group, to R∗. For classical shearlets, S is
isomorphic as a Lie group to the additive abelian group Rd−1. In the general
setting, S is diffeomorphic to Rd−1 only as a manifold. In order to stress the
symmetry between the general case and the classical shearlet group, we identify
H and Rd−1 × R∗ as a manifold and we denote the element h~s,a with the pair

(~s, a). We observe that (~s, a) = (~s, 1)(~0, a) since h~s,a = h~s,1h0,a, however in
general

(~s, 1)(~s ′, 1) 6= (~s+ ~s ′, 1).

The map ~s 7→ B(~s) has to satisfy natural algebraic conditions to ensure that
S is a subgroup of GL(d,R). Furthermore, suitable compatibility conditions
between the matrices B and the matrices Λ must be satisfied. A complete
characterisation of the maps B(·) and Λ(·) is given in [15] under the assumption
that S is abelian.

The group G acts on L2(Rd) as

π~b,~s,af(~x) = |a|−
d+λ1+...+λd−1

2 f(h−1~s,a(~x−~b)).

Eq. (5) is replaced by

Qπ~b,~s,af =
(
V~s,a ⊗ I

)
W

(1,v)·~b,aQf,
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where V is the representation of H on L2(Rd−1) defined by

V~s,aF (~v) = |a|
λ1+...+λd−1

2 F
(
Λ(a)

(
tB(~s)~v − ~s

))
.

5. Sketch of the proof

We give an idea of the proof of Theorem 2. By continuity it is enough to
show (5) assuming that f ∈ A, so that Q = JR.

The following covariance properties of the Radon transform are an easy con-

sequence of the appropriate changes of variables. For any translation ~b ∈ R2 it
holds

R
(
f(· −~b)

)
(v, t) = R[f ](v, t− (1, v) ·~b);

for any invertible diagonal matrix

A =

[
a1 0
0 a2

]
, a1, a2 ∈ R∗ (11)

it holds
R
(
f(A−1·)

)
(v, t) = |a2|Rf(

a2
a1
v, a1t),

and for any shearing matrix

N =

[
1 −s
0 1

]
, s ∈ R

it holds
R
(
f(N−1·)

)
(v, t) = R[f ](v − s, t).

Moreover the operator J clearly commutes with translations and shearings,
whereas, if A is as in (11),

J
(
F (A−1·)

)
(v, ω) = |a2|

1
2JF (a−11 v, a2ω).

The final step is to observe that, if f ∈ A, then

QSγ~b,s,af = JRSγ~b,0,1S
γ
0,s,1S

γ
0,0,af

and apply three times the above covariance relations.

6. Wavefront set resolution

Among the huge class of directional multiscale representations, shearlets have
gained considerable attention for their capability to resolve the wavefront set of
distributions, providing both the location and the geometry of the singularity
set. In [23] the authors show that the decay rate of the shearlet coefficients of
a temperate distribution f with respect to suitable shearlets characterises the
wavefront set of f . Later this result has been generalised in [17], in which it is
shown that the same result can be verified under much weaker assumptions on
the continuous shearlets by means of a new approach based on the affine Radon
transform. Further results in this line of research are given in [18, 25, 21]. In
this section we show that our result can provide some geometric insight on the
ability of the shearlet transform to resolve the wavefront set.
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We recall that, given a distribution f , a point ~x ∈ R2 is a regular point of
f , if there exists a function φ ∈ C∞0 (U~x), where U~x is a neighborhood of ~x and
φ(~x) 6= 0, such that φf ∈ C∞0 (R2), which is equivalent to F(φf) being rapidly
decreasing. The complement of the set of regular points of f is called the singular
support of f . Furthermore a point (~x, ~n) ∈ R2 × R2, ~n 6= 0 is a regular directed
point, if there exist a neighborhood U~x of ~x and a conic neighborhood V~n of ~n
as well as a function φ ∈ C∞0 (R2) satisfying φ|U~x

≡ 1 such that, for each N > 0,

there exists a constant CN with

|F(φf)(~ξ)| ≤ CN (1 + |~ξ|)−N (12)

for all ~ξ ∈ R2 such that ~ξ ∈ V~n. The complement of the regular directed points of
f is called the wavefront set of f and is denoted by WF (f). It is worth observing
that the projection WF (f) 3 (~x, ~n) 7→ ~x ∈ R2 gives the singular support of f .
Therefore, through the notion of wavefront set we describe not only where the
singular support of f is located but also how it is distributed.

Formula (8) gives an alternative way to show that the shearlet transform
is able to resolve the wavefront set of distributions. Our approach is based
on geometric observations and on the fact that the Fourier slice theorem (3)
indicates that the Radon transform is a useful tool in microlocal analysis. To
give an idea of how it works, we present the example of the characteristic function
of the unit disc, namely

f(x, y) =

{
1
2 x2 + y2 ≤ 1

0 x2 + y2 > 1
,

depicted in Fig. 3 (the factor 1/2 is introduced to simplify subsequent compu-
tations).

−1 1

1

−1

Figure 3. Characteristic function on the unit disc.

A simple calculation shows that the wavefront set of f is

WF (f) = {
(

cos θ, sin θ, λ cos θ, λ sin θ
)
| θ ∈ (−π, π], λ ∈ R∗}. (13)

The affine Radon transform of f is

Rf(v, t) =

{√
1+v2−t2
1+v2

t2 − v2 ≤ 1

0 t2 − v2 > 1.
(14)
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As a consequence of the rotational invariance of f , it holds that

Rf(v, t) =
1

4
√

1 + v2
(W0,

√
1+v2ϕ)(t), (15)

where

ϕ(t) =

{√
1− t2 |t| ≤ 1

0 |t| > 1
,

which is depicted in Fig. 4.

−1 1

1

Figure 4. Rf(0, t) = ϕ(t).

By formula (8) and (15) and by the fact that the wavelet transform commutes
with dilations, we obtain

Wχ1

(
Rf(v, •)

)
(b, a) =

1
4
√

1 + v2
(Wχ1ϕ) (

b√
1 + v2

,
a√

1 + v2
). (16)

The wavelet transform of ϕ is depicted in Fig. 5
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Figure 5. The wavelet coefficients at different scales.

and, as expected, the wavelet coefficients Wχ1ϕ(b, a) of ϕ slowly decrease if
and only if b = ±1 when a goes to zero. Recall that, if χ1 has compact support
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equal to [−1, 1], the singularities in t = ±1 create cones of influence in the
scale-space plane defined by

|b∓ 1| ≤ a,
to which the high amplitude wavelet coefficients belong, i.e. the wavelet co-
efficients which do not exhibit rapid asymptotic decay at b = ±1, as a → 0.
The cones of influence created by the singular points t = ±1 are clearly visible
in Fig. 5 (see Chapter 6 in [27] for further details). We now show that this
behaviour implies the ability of the shearlet transform to correctly detect the
wavefront set of the distribution f .

As we did for the Radon transform, we now parametrise the direction ~n by
using affine coordinates, so that (13) reads

WF (f)0 = {(cos θ, sin θ, tan θ) | θ ∈ (−π, π], θ 6= ±π
2
}.

Here WF (f)0 is the wavefront set of f whose singular support does not intersect
the vertical axis, i.e. the points (0,±1, 0, λ) and, with slight abuse of notation,
each s ∈ R denotes the set of directions {~n = λ(1, s) | λ ∈ R∗}.

We start by considering a point (~x, s) /∈ WF (f)0, i.e a regular directed
point. So, by definition, there exist neighborhoods U~x of ~x and Vs of s as well
as a function φ ∈ C∞0 (R2) satisfying φ|U~x

≡ 1 such that (12) is satisfied for any

N > 0 and for all ~ξ = (ξ1, ξ2) ∈ R2 with ξ2/ξ1 ∈ Vs. We want to prove that
the shearlet coefficients Sψf(x, y, s, a) have rapid asymptotic decay, as a → 0,
where we have parametrised ~x = (x, y). From now on, we consider only the
case a > 0, the case a < 0 is analogous. We require that the mother shearlet
ψ is a rapidly decreasing function, so we can assume, without loss of generality,
that f is localised around ~x. If we suppose that χ1 has infinitely many vanishing
moments and Fχ1 ∈ L1(R), by formula (8), we prove that the wavelet coefficients

Wχ1

(
Rf(v, •)

)
(x+ vy, a) (17)

have rapid asymptotic decay at fine scales uniformly over Vs and U~x. Since φ2 is
a bump function, we can suppose that supp φ2 ⊆ [−1, 1] and the integral in (8)
reduces to those v such that v ∈ [s− a1−γ , s+ a1−γ ], so that, for a→ 0, formula
(8) becomes:

Sγψf(x, y, s, a) = a
γ−2
2

∫
Vs

Wχ1

(
Rf(v, •)

)
(x+ vy, a)φ2

(v − s
a1−γ

)
dv (18)

For reasons that will be clear below we suppose φ2(v) = 1 if v ∈ [−1/2, 1/2].
Therefore, from (18) and (17), we obtain the decay estimate

Sψf(x, y, v, a) = O(aN ), a→ 0

for all N > 0, uniformly over Vs and U~x. So, we have proved that for any
regular directed point (~x, s) of f the shearlet coefficients, with respect to any
shearlet with building block χ1 with infinitely many vanishing moments, have
rapid asymptotic decay at fine scales uniformly around ~x and s.
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Now, take a point in the wavefront set (cos θs, sin θs, s), with s = tan θs. From
(16), we obtain

|Sψf(cos θs, sin θs, s, a)|= |a
γ−2
2

s+a1−γ∫
s−a1−γ

Wχ1ϕ(cos (θs − θv),
a√

1 + v2
)φ2

(v − s
a1−γ

) dv
4
√

1 + v2
|,

(19)
where θv = arctan v. By the mean value theorem, there is v ∈ [s−a1−γ , s+a1−γ ]
such that equation (19) can be continued with the string of inequalities

2a
γ−1
2 | 1

4
√

1 + v2
Wχ1ϕ(cos (θs − θv),

a√
1 + v2

)φ2

(
v − s
a1−γ

)
| ≥ (20)

≥ | 1
4
√

1 + v2
Wχ1ϕ(cos (θs − θv),

a√
1 + v2

)φ2

(
v − s
a1−γ

)
|,

where we assume γ < 1 and a ≤ 1. The last assumption is not restrictive since
we are interested in the behaviour of (20) when a goes to zero. Observe that
cos (θs − θv) → 1 as a → 0 and that t = 1 belongs to the singular support of
ϕ. For this reason, what we should prove, in order to fall within the cone of
influence of the singular point t = 1, is that the inequality

| cos (θs − θv)− 1| ≤ a√
1 + v2

(21)

holds when a goes to zero, with v ∈ [s− a1−γ , s+ a1−γ ]. If γ < 1
2 , by analysing

the decay rate as a→ 0 of the right hand side and the left hand side in (21), we
can easily conclude that such inequality is satisfied at fine scales. If γ = 1/2 the
following argument can be used:

| cos (θs − θv)− 1|
√

1 + v2 ≤ 1

2
|θs − θv|2

√
1 + v2

≤ 1

2
|s− v|2

√
1 + v2

1 + s2

≤ |s− v|2 ≤ a,
where the second inequality is proved applying the Taylor’s formula with the
remainder in the Lagrange form to the function t 7→ | arctan s − arctan t| and
the third inequality is true when a is in a neighborhood of 0. It is worth observing
that with this approach the role of γ shows up clearly. Indeed, in order to have
inequality (21), the cone created by the bump function φ2 has to be included
in the cone of influence associated with the singularity and the parameter γ
precisely controls the amplitude of the first cone. Finally, if 1/2 < γ < 1, the
situation is still unclear.

This example shows that the ability of the shearlet transform to resolve the
wavefront set is a direct consequence of the fact that the wavelet transform is
able to describe smoothness of univariate functions. This is seen via formula (8),
in which the Radon transform plays a crucial role.
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This kind of arguments can be generalised to arbitrary distributions since it is
known that there is a geometric construction that relates WF (Rf) and WF (f),
based on the Legendre transform (see [29] and also the online lectures https://
www.icts.res.in/sites/default/files/Jan_Boman_Lecture_Notes_0.pdf).

It is an ongoing project to obtain a new proof of the resolution of the wavefront
set for general distributions by means of (8).

This could lead to a new approach based on the affine Radon transform to in-
vestigate if a directional multiscale representation is able to resolve the wavefront
set of distributions in more general cases.

7. Conclusions

In this paper we show that the shearlet transform of a 2D-signal can be realised
by applying first the affine Radon transform, then by computing a 1D-wavelet
transform and, finally, by performing a 1D-convolution. This result has been
extended to higher dimensional shearlet transforms both in the classical case
and for generalised shearlet dilation groups [3]. This relation can give rise to a
new algorithm to compute the shearlet coefficients based on the efficient codes
available both for the Radon and for the wavelet transforms. Furthermore, it
opens the possibility to recover a signal from its Radon transform by using the
shearlet inversion formula. The application of these findings to image processing
tasks is currently under investigation.
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