
1 INTRODUCTION 

In order to automatically maintain position and 
heading of a vessel, Dynamic Positioning (DP) sys-
tems employ in general waterjets or azimuth thrust-
ers; in case, rudders and propellers (together with 
bow and stern thrusters) can be used too (Alessandri 
et al. 2014). Marine cycloidal propellers (Jürgens et 
al. 2002, Taniguchi 1962, Esmailian 2014), usually 
driven by diesel-electric propulsion to better handle 
the large changes in power demand (typical during 
DP operations), can represent a good alternative to 
traditional propellers since they can generate almost 
the same thrust in all directions. They are classified 
into true cycloidal, epicycloidal (e.g. Voith Schnei-
der Propeller) and trochoidal propellers on the basis 
of their eccentricity value e, namely the ratio be-
tween the distance of the steering center from the 
propeller axis and the radius of the circular orbit de-
scribed by the blade axes (the rotor radius): a true 
cycloidal propeller is characterized by e=1, while 
the conditions e<1 and e>1 distinguish epicycloidal 
and throcoidal propellers, respectively (Bose 2008). 
In the present study, the performance of an 
epicycloidal propeller is modelled within a DP pro-
pulsion simulator, already developed by some of the 
authors for a surface vessel equipped with two con-
ventional twin-screw propellers and a bow thruster. 
This kind of configuration is not very suitable for 
station-keeping and DP applications (Sørensen 1996, 
Sørensen 2011, Fossen 1996, Fossen 2002), never-

theless, a conventional propulsion configuration 
could be requested for specific operations character-
ized by limited DP capabilities. For instance, the 
mentioned simulator was developed for a patrol ves-
sel designed with a twin propeller-rudder configura-
tion and a single bow-thruster, which were requested 
to provide a certain dynamic positioning perfor-
mance at zero-speed with moderate weather condi-
tions. The main purpose of the DP simulation model 
was to validate the Force and Thrust Allocation Log-
ic (FAL, TAL, Johansen 2013), specifically de-
signed for such propulsion configuration 
(Donnarumma et al. 2015).  

In this new work, the same vessel, but supposed 
equipped with a single bow thruster and two 
epicycloidal propellers at stern, is simulated in order 
to analyze the main differences during DP opera-
tions, in terms of general performance and control 
system behavior. This kind of simulation involves a 
reliable representation of the epicycloidal propellers, 
whose manufacturers unfortunately do not publicly 
share their performance maps for confidential rea-
sons. Therefore, simplified simulation approaches, 
as possible for traditional propellers (Altosole et al. 
2012, Martelli 2015) or waterjets (Altosole et al. 
2005), are quite difficult to be developed. The pre-
sent numerical modelling is based on a mixture of 
theoretical and empirical considerations: in particu-
lar, the propeller thrust and torque evaluation is 
based on the kinematics of the blades, taking into 
account suitable correction factors in order to con-
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sider the interference phenomena among blades. The 
result is a simulation approach able to predict the 
performance of an epicycloidal propeller, avoiding 
demanding computations (e.g. CFD methods) that 
would not allow an effective simulation of the whole 
DP system. 

2 DP SIMULATION MODEL 

Figure 1 provides a sketch of the devised DP-logic 
circuit, specific for the target ship. The system block 
simulates, through the equations of motion, the pres-
ence of a Positioning Reference System (PRS), 
composed by a DGPS and a Fiber Optic Gyro 
(FOG), which picks up the instantaneous position 
and velocity of the vessel. Such measurements are 
compared with the corresponding desired quantities 
in order to compute the position and velocity errors. 
The circuit extrapolates the low-frequency (LF) 
components of the errors and send them to the regu-
lator, where the required forces and moments are 
firstly evaluated and subsequently allocated to the 
actuators. Environment action and delivered forces 
are then used within the equations of motion to ob-
tain the new position and velocity. 

 
 
Figure 1. DP simulation model. 
 
The mathematical models adopted for ship motions 
and for wind, wave, and current forces, as well as for 
the controller, are briefly illustrated below. 

2.1 Ship motions 
Setting ߟ: ൌ ሾݔ, ,ݕ ߰ሿ் א Թଷ, the array of the posi-
tion (longitudinal and lateral position and orienta-
tion) of the vessel w.r.t. the Earth-fixed frame, and 
ൌ:ߥ ሾݑ, ,ݒ ሿ்ݎ א Թଷ, the array of the components of 
velocity (linear and angular) expressed in the body-
fixed basis, the ship kinematics is described by the 
relations: 

ሶߟ ൌ ܴሺ߰ሻߥ  ,   ܴሺ߰ሻ ൌ ቌ
cos߰ – sin߰ 0
sin߰ cos߰ 0
0 0 1

ቍ   (1) 

The ship motion equations are given by: 
ሶߥܯ ൅ ߥሻߥሺܥ ൅ ߥ଴ܦ ൅ ߥሻߥሺܦ ൌ ߬஽ ൅ ߬ா     (2) 
where ܥ,ܯ and ܦ are mass-inertia and added mass, 
Coriolis and damping matrices respectively, the ar-
ray ߬: ൌ ሾܺ, ܻ, ܰሿ் א Թଷ represents the components 
of the resultant force and moment (߬஽ for delivered 
and ߬ாfor environmental forces and moments), ex-
pressed in the body-fixed basis. 

2.2 Environmental forces and moments 
Environmental disturbances are evaluated as the sum 
of forces and moments due to wind, current and 
wave respectively. Forces and moments are ex-
pressed making use of the well-known resistance 
form, depending on non-dimensional coefficients 
CX, CY, and CN, related respectively to the longitudi-
nal force, the lateral force and the moment. In order 
to consider the occurring worst condition, all envi-
ronmental disturbances are supposed to be aligned in 
the same incoming direction. The current and the 
wind speeds are assumed constant and wave drift 
forces are modelled as proportional to the square of 
the significant height ܪ௦. Collecting all the (body-
fixed basis) components of the force and moment in 
a unique 3-dimensional array ߬, we have:  
߬E ൌ ߬ୡ୳୰୰ୣ୬୲ ൅ ߬୵ୟ୴ୣୱ ൅ ߬୵୧୬ୢ                         (3) 

2.3 Controller 
The controller consists of a PD (proportional and de-
rivative controller), a wind forces reconstruction, a 
sea force estimation and a block for allocation logic 
(Figure 2). 
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Figure 2. Controller Layout. 
 
The controller law is given by: 
߬R ൌ ෥ ߟ௉ܭ ൅ ෤ሶߟ஽ܭ ൅ ߬ҧ௉஽ െ ߬ௐ           (4) 
where the output ߬R represents the required force 
and moment; in Eq. (4), ܭ௉ and ܭ஽ are constant ma-
trices, ߬ҧ௉஽ and ߬ௐ are contributions which compen-
sate the environmental disturbances (Donnarumma 
et al. in press) and the quantities ߟ ෥ ؔ ߟ െ   ௗ andߟ
෤ሶߟ ؔ ሶߟ െ  ሶௗߟ ௗ andߟ ,ሶௗ are controller input errorsߟ
denoting the desired position and velocity respec-
tively. 

2.4 Allocation 
The adopted thrust allocation logic (TAL) is based 
on a constrained minimum problem. The idea is to 
minimize a cost function of the seven variables  
ݔ ൌ ൣ ௣ܶ௧, ௦ܶ௕, ௕ܶ௢௪, ܺ௣௧, ௣ܻ௧, ܺ௦௕, ௦ܻ௕൧ א Թ଻   (5) 
subjected to some suitable constraints. In particular, 
denoting by ௣ܶ௧ and ௦ܶ௕ the portside and starboard 
thrusts respectively, ௕ܶ௢௪ the thrust of the bow 
thruster, ൫ܺ௣௧, ௣ܻ௧൯ and ሺܺ௦௕, ௦ܻ௕ሻ the components of 
the portside and starboard thrust forces in the body-
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3.4 Validation and thrust generation 
The main features and the validation of the simulator 
based on the mathematical model illustrated above 
have been presented in Altosole at al. (2017). For 
sake of shortness, we only recall that the interference 
among the blades is taken into account by means of 
three correction factors validated with the open wa-
ter diagram of an existing propeller: shielding cor-
rection, referring to the shielding of the blades that 
are in the half circumference not directly exposed to 
the incoming flow (in the model, the correction fac-
tor, depending on driving pitch values, reduces the 
right velocity of the incoming water flow); interfer-
ence correction, modeled by reducing the attack an-
gle of the incoming flow with respect to the chord of 
the blade section (the correction depends on the ad-
vance coefficient and pitch values); reverse thrust 
correction, representing the reduction of the reverse 
thrust (comparing butterfly diagrams found in open 
source with those obtained by simulation, we found 
out that for advance coefficient more than 0.4 there 
was a reduction of the thrust when the steering pitch 
 we introduced this :2/ߨand 3 2/ߨ was  between ߚ
coefficient to take into account this further phe-
nomenon). 

As we have illustrated in the description of the 
epicycloidal propeller model, there are two different 
pitches (ݏ and ߚ) that control the magnitude and the 
direction of the thrust, together with the choice of a 
suitable rpm. In this case study, simulations have 
been made by keeping rpm constant, so modifying 
the thrusts only by means of the two geometric 
pitches. When the simulator runs, the required 
thrusts are translated in terms of corresponding con-
trol pitches and thus the delivered thrusts are gener-
ated: the steering pitch β is strictly linked to direc-
tion of the required thrust (aligned along the unit 
vector ݁ଵ, see Figure 3), while the other pitch s is 
uniquely determined by a matching algorithm that 
combines a given required thrust (at fixed rpm) to a 
predetermined geometric pitch. 

4 SIMULATION RESULTS 

In this section, some simulation results concerning 
the vessel equipped with epicycloidal propellers are 
presented and compared with those obtained by pre-
vious simulations of the same vessel, equipped with 
a conventional twin screw propulsion system. 
The environmental disturbances have been modeled 
as detailed in Alessandri et al. (2014) and briefly re-
called in Subsection 2.2. In order to consider the 
worst environmental condition, the disturbances 
(sea, wind and current) are considered aligned and 
coming from the same direction. For this work we 
maintained Mediterranean SS 4 (significant wave 
height of 1.8 m, wave period of 8.8s) and a constant 

current speed of 1 kn as for the DP capability plots 
presented in (Donnarumma et al., in press), where a 
static analysis of the ship performance has been pre-
sented.  

We show the simulation results in the presence of 
environmental disturbances coming from an angle of 
30° with respect to the desired heading, in two dis-
tinct cases: 10 kn and 30 kn wind speed. Consistent-
ly with what proposed in Donnarumma et al. (in 
press), the evaluation of the environmental disturb-
ances mean components ߬ҧ௉஽ and ߬ௐ requires some 
minutes of transient that are not relevant for the sta-
tion keeping performances evaluation. For such a 
reason, first few minutes of simulation have been 
neglected. In Figures 5, 6 and 7 the variations of the 
ship position and heading are shown in the two dif-
ferent environmental conditions. As we can see, for 
a wind speed of 10 kn both the propulsion configura-
tions are able to keep the desired position and head-
ing; however, different amplitudes of the oscillations 
around the desired set-point and then different per-
formances of the two propulsion systems are evi-
dent. For a wind speed of 30 kn instead, the conven-
tional propulsion cannot perform the desired DP 
maneuver (see Figure 6). The same conclusions are 
reflected in the Figures from 8 to 13, where differ-
ences between the two propulsion plants are under-
lined. The thrusts required to the actuators and thus 
delivered by the two propulsion plants are very far 
from each other. Also the required and delivered 
force and moment are deeply unequal, since the de-
viation from the desired set-point is very different. 
These results are reflected in Figures 12 and 13, 
where the power required to the engines for the two 
propulsion configurations is shown. 

Figure 5. Motions time history for wind speed of 10 kn. 
 

Figure 6. Motions time history for wind speed of 30 kn. 



Figure 7. Ship position (trajectory of  the origin of the body‐fixed frame) and orientation variations for wind 10 kn (on the left) and 
30 kn (on the right). 
 

Figure 8. Time history of required and delivered thrust for wind speed of 10 kn. 

Figure 9. Time history of required and delivered thrust for wind speed of 30 kn. 



Figure 10. Time history of required and delivered force and moment for wind speed of 10 kn. 
 

Figure 11. Time history of required and delivered force and moment for wind speed of 30 kn. 
 

Figure 12. Time history of required engine power for wind speed of 10 kn 
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Figure 13. Time history of required engine power for wind speed of 30 kn 
 

 

5 CONCLUSIONS 

A simulation model for dynamic positioning of a 
vessel equipped with cycloidal propellers has been 
presented. Dynamic simulations have been carried 
out and compared with those regarding the same 
ship equipped with conventional propellers. The 
obtained results confirm the conclusions of a pre-
vious work (Altosole et al. 2017), where simula-
tions in static conditions were performed. As it was 
expected, it is shown that cycloidal propellers can 
be a valid alternative to traditional propellers in 
case of strong DP requirements. Simulation results 
have been provided also to illustrate the effectiveness 
of the proposed propulsion plant and the correspond-
ing thrust allocation, as well as the reliability of the 
mathematical and numerical model implemented for 
cycloidal propellers. Future works will concern dy-
namic simulations of maneuvering at design speed. 
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