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Making use of the modern techniques of non-holonomic geometry and constrained
variational calculus, a revisitation of Ostrogradsky’s Hamiltonian formulation of
the evolution equations determined by a Lagrangian of order > 2 in the derivatives
of the configuration variables is presented.
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I. INTRODUCTION

About twenty years after the first formulation of Hamiltonian mechanics, Ostrogradsky
proposed a generalisation of Hamilton’s procedure, valid for Lagrangians involving deriva-
tives of any order of the configuration variables!=3.

In recent years, the study of this type of Lagrangians has been reconsidered in the context
of gravitational physics and, in particular, in the development of a theoretical framework
for inflation and dark energy based on modifications of General Relativity (see e.g.*%).

Despite this renewed interest, to the best of the authors’ knowledge, a precise geometric
interpretation of Ostrogradsky’s construction is still missing. In an attempt to fill this gap,
we propose here a reformulation of Ostrogradsky’s formalism in modern geometrical terms.

Given the event space, meant as a fibre bundle V,, 1 iR R, we regard the N** jet bundle
jn(Vny1) as an affine subbundle of the first jet j1(jx—1(Vny1))"®. In this way, any problem
involving a Lagrangian depending on the derivatives of order < N of the configuration
variables is converted into an ordinary constrained variational problem.

The problem is then analysed, making use of a revisitation of Pontryagin’s mazimum
principle recently developed in? (in this connection, see also'®!! and references therein).
In the case of a non-degenerate Lagrangian L(t,¢",¢*,¢*,...), the algorithm picks out a
natural concept of “phase space”, identifying it with a submanifold S of the contact bundle
over jn(Vn+1), uniquely determined by the Pontryagin Hamiltonian associated with L.

In the resulting environment, the canonical momenta and the Ostrogradsky Hamiltonian
are simply the pull-back of the coordinate functions along the fibres of the contact bun-
dle and of the Pontryagin Hamiltonian, while the Ostrogradsky equations reproduce the
Hamilton-Pontryagin equations associated with the constrained variational problem.

The layout of the paper is the following: in Section II, the geometrical setup for con-
strained variational calculus is briefly reviewed; Section III is then devoted to the geometric
reformulation of the Ostrogradsky procedure.
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II. CONSTRAINED VARIATIONAL CALCULUS

In this section, we briefly review the geometrical setup for constrained variational calculus
outlined in?. The basic environment is a (n + 1)-dimensional event space, meant as a fiber
bundle ¢ : V,;1 — R and referred to local fibred coordinates t,q", ..., q".

Every section 7 : R — V,, 11, locally described as ¢° = ¢'(t), is interpreted as an evolution
of an abstract system B with n degrees of freedom: for instance, if B is a mechanical system,
the manifold V, 41 is identified with the configuration space—time of B, and the fibration
t: Vy41 — R with the absolute time function.

The first jet bundle ji(V,11), referred to local jet coordinates t, ¢%, ¢*, is called the kinetic
space. Every section v : R — V,, 41 admits a corresponding lift j1(7) : R — j1(Vs41), locally
expressed as ¢¢ = ¢'(t), " = %.

The presence of non—holonomic constraints is accounted for through the assignment of a

submanifold ¢ : A — j1(Vy41) fibred over V,, 11, as described by the commutative diagram

A — J1(Vny1)

1 »

VnJrl

VnJrl

Referring A to local fibered coordinates t,q*,24 (A = 1,...,r < n), the embedding
i: A— j1(Vni1) is locally represented as

qi:wi(t,ql,...,q",zl,...,zr) (2)

with rank H%H =r.

A section v : R — V41 is called admissible if and only if there exists a section 4: R — A
satisfying ji(y) = é-4. A section 4 : R — A is similarly called admissible if and only if
i-4 = ji(7-4). In coordinates, if 4 is represented as ¢* = ¢'(t), 2 = z*(t), the admissibility
condition is summarized into the system of first order ODE’s

= :wi(tvql(t)a---aqn(t)azl(t)v"'vzr(t)) (3)

The geometry of the submanifold A has been extensively studied in the context of non—
holonomic mechanics (see, among others,'>!3 and references therein). For the present
purposes, we recall the concept of contact bundle = : C(A) — A, meant as the vector
sub-bundle of the cotangent space T*(A) locally spanned by the contact 1-forms

w'i=dg' —P'(t,q", 2") dt (4)

Adopting the notation V(V,,41) C T (Vi41) for the vertical bundle relative to the fibration

Vo1 L R and V*(Vp41) for the associated dual bundle, commonly referred to as the phase
space, the contact bundle is canonically isomorphic to the fibred product Axy,,, , V*(Vni1),
giving rise to the fibred morphism

CA) —— V*Vun1)

| - ®)

A —— Vo

We refer C(A) to fibred coordinates ¢, q*, 2%, pi, defined according to the identification
g :pi(a)wzlw(a) Vo e C(A)



An important geometrical attribute of the contact bundle is its Liouville 1-form ©, locally
expressed as'®

O := pzwz =Di [dql —W (taqkaZA) dﬂ (6)

The geometrical framework outlined above provides the mathematical setting for an in-
trinsic formulation of constrained variational calculus. To this end, we consider an action
functional of the form

Th] = / Lt = / CL(t (), A (1)) dt ()

Y to

assigning to each admissible section v : R — V,, 41 a corresponding “cost”, expressed as the
integral of a Lagrangian function L(t,q',2%) € F(A) along the lift 4 : R — A. The aim is
studying the (local) extremals of the functional (7) with respect to admissible deformations
of v leaving the endpoints (o), y(t1) fixed.

The result may be achieved observing that, under very general assumptions, the original
problem is mathematically equivalent to a free variational problem on the contact bundle.

The procedure, outlined in ?, relies on the fact that, by means of the Liouville 1-form (6),
every Lagrangian L(t,q’, 2?) € F(A) may be lifted to a 1-form 9, over C(A) according to
the prescription

I = Ldt+0O = (L — pip") dt + p;dq’ == —H dt + p;dq’ (8)

The function H(t,q", 24, pr) = pi Vi (t, q%, 24) — L(t,q*, 2*) € F(C(A)) is known in the
literature as the Pontryagin Hamiltonian. By means of the 1-form (8), to each section
7 : [to, t1] — C(A), expressed in coordinates as ¢° = ¢'(t), 2 = z(t), p; = pi(t)), we assign
the action functional

)= [0 = [ [eeton =t no (9 - viedo.20) | a0 o

Y

The resulting setup is closely related to the original one, based on the functional (7) and
on the constraints (3). In fact, denoting by v : C(A) — V,41 the composite projection
C(A) = A — Vp41, it turns out that every “ordinary” extremal of the original problem
is the projection v = v -4 of a solution of the free variational problem based on the
functional (9)¢. More specifically, the requirement of stationarity of the action integral (9)
under arbitrary deformations leaving the projections v(%(to)), v(3(t1)) fixed leads to 2n+r
equations

dq OH

_ 7 k A\ __
e Pt g%, 2") = o (10a)
dp; 0L ok oH
dt  9q Pk dqt  Iq (10b)
oyt OL oM
Pig A 9.4 g.a (10c)

1 jnvolved in

for the unknowns q'(t), 24(t), p;(t), identical to the Pontryagin equations®
the study of the constrained functional (7).

In order to work out the content of the system (10), it is convenient to start with eq. (10c).
The latter identifies a subset of C(A), henceforth denoted by §. The Hamiltonian # is

called regular if and only if the condition

O*H



holds for all o € §. When this is the case, egs. (10c) may be uniquely solved for the
variables 2z, giving rise to a representation of the form

A =2t q' pi) (12)

Under the stated assumption, the subset S is therefore a (2n+1)—dimensional submanifold
i: S — C(A), locally diffeomorphic to the phase space V*(V,41).
The pull-back H :=i*(H) of the Pontryagin Hamiltonian, expressed in coordinates as

H(tv qiapi) = Phn wh(ta qiv ZA(ta qupk)) - L(ta qia ZA(tv qkapk)) (13)

yields a proper Hamiltonian function on §. Through the latter, egs. (10a), (10b) may
be written as ordinary Hamilton equations. On account of egs. (10c) we have in fact the
identifications

z

= =V (14a)

allowing to cast egs. (10a), (10b) into the form
Cil_(f = gZ (15a)
% . ‘;Z (15b)

The original constrained variational problem is thus reduced to a free Hamiltonian
problem in the submanifold S, with Hamiltonian H(t,¢", p;) identical to the pull-back
H =i*"(H).

lll. THE OSTROGRADSKY PROCEDURE REVISITED

In this section, we present a revisitation of Ostrogradsky’s construction of a Hamilto-
nian setup for non—degenerate Lagrangians depending on higher order derivatives of the
configuration variables':3. The idea is regarding any such Lagrangian as a function on a
submanifold of a suitable kinetic space, thereby reducing the original problem to a con-
strained one, of the kind described in the Section II. As we shall see, this will result into a
self-consistent interpretation of Ostrogradsky’s formalism in modern geometrical terms.

For the sake of simplicity, and to better clarify the basic ideas and notations, we shall first
consider Lagrangians of order 2 in the derivatives. The procedure will then be extended to
higher order Lagrangians.

A. Lagrangians of order 2 in the derivatives

Given a Lagrangian of the form L(t,q',¢%,§*), the corresponding Euler-Lagrange equa-
tions read

oL d oL & oL
P _— = = ) == ]. .« ].
o diog Tarag 0 tTheom (16)

02L

Assuming the validity of non-degeneracy condition detHW # 0, the Ostrogradsky

procedure relies on adopting the functions

P 0. (9L_18L 1 OL

(17)



as coordinates in a (4n + 1)-dimensional phase space, with p{ and p} playing the role of
canonical momenta respectively conjugate to the variables ¢° and ¢°.

Under the stated non-degeneracy condition, the last set of equations (17) can be solved
for the unknowns ¢?, giving rise to a representation of the form

§'=q' (t.q",d" k) (18)
In this way, introducing the Ostrogradsky Hamiltonian
H:=plq' +pji' — L, (19)

expressed in terms of the variables ¢, ¢%, p?,p} through eqs. (18), a straightforward calcu-
lation yields the relations

oH _
)

OH . 9H _ 0L OH _, 0L
ol ~" o T agt o Mo

-1

q,

In view of these, the content of eqs. (16), (17) may be cast into the Hamiltonian form

¢ _ .i_ OH ' _ . _ OH (20a)
dt _q_ap?’ dt _q_apg
dp? d 0L d* oL 0L 0H @ d OL 0L 0 OH

_ 4oL @ oL oL o =89 _ 90— 22 (90p
dt ~ dt 9gi  di2oi g d¢ ' At dtog  oag D aqz( )

To clarify the geometrical meaning of the Ostrogradsky procedure, we focus on the fiber
bundle V, 11 — R and on the associated first jet bundle. For reasons that will be clear
soon, we change the notation ji(V,41) into Q, ¢* into ¢}, ¢* into ¢, and regard the bundle
t: @ — R, referred to local coordinates t,q’,, a = 0,1 as our new event space.

By its very definition, the second jet bundle j2(V,+1) is then canonically isomorphic to
an affine subbundle of the first jet bundle j;(Q), as expressed by the commutative diagram
(see e.g.”8, or also!* for the time-independent case)

j2(Vat1) —— 1(Q)

wl lw (21)

Q :Q

Referring j;(Q) to jet coordinates t,q, ¢’ , the image i(j2(Vnt1)) C j1(Q), henceforth
denoted by A, is locally described by the equations ¢5 = ¢i. We can therefore refer A
to local fibred coordinates t,¢’,, 2%, and represent the imbedding A — 5;(Q) through the
equations (analogous to egs. (2))

Go = Vo (t. b, 41, 2"), (22)

with 9§ = ¢¢ and 9% = 2¢. Alternatively, we may regard A as a fiber bundle over V, 1,
related to jo(V,y1) by the fibred isomorphism (¢, g, ¢}, 2%) «— (¢, 4%, 4", G*).

Summing up, we conclude that assigning a variational problem in V, i, based on a
Lagrangian L(t,q¢',q% ¢') € F(j2(Vas1)), is equivalent to assigning a constrained varia-
tional problem in Q, with constraint submanifold A — j1(Q) described by eqgs. (22) and
Lagrangian L(t,q’,z%) € F(A).

In the determination of the extremals, we can now proceed along the lines indicated in
Section II. To this end, we consider once again the contact bundle C(A) over A, and denote
by v : C(A) — Q the composite projection C(A) — A — Q, and by t,¢’,, 2%, p% the local
coordinates on C(A) defined by the prescription

o = pi(0) (dge —vadt) ., Vo €C(A) (23)



the summation convention being henceforth extended to all type of indices.
Starting with the Lagrangian L(t, ¢!, 2") € F(A), we then construct the 1-form

9y = Ldt + p (dgl, —hdt) = —Hdt + pf dg., € C(A)
with
H(t,qh, 2" pd) = pfl, — L(t, ¢4, 2") = plqi + piz* — L(t, g}, 2") (24)

denoting the Pontryagin Hamiltonian.
Eventually, we assign to each section 7 : [tg,t1] — C(A) the action functional

7= . A i (e dqfx
I[IY] = / ﬁL :/ _H(taQ()uZ apz) +pz dt dt
_ t

5

The request of stationarity of the latter under arbitrary deformations leaving the points
v(¥(to)), v(3(t1)) fixed leads to the Pontryagin equations

dg},  OH dpy  OH
o e at g (25)
oM, oL

= pr — - = 2
9 Pi T B 0 (25b)

for the unknowns ¢’ (t), 2°(t), p(t). These are the precise analogue of eqs. (10) for the case
in study. In particular, eqs. (25b) reproduce the content of the last set of eqs. (17) under
the morphism (¢, g}, ¢4, 2%) < (t,¢*, 4%, §*).

Denoting by S the subset of C(A) described by egs. (25b) and taking eq. (24) into account,

2
it is readily seen that the non—degeneracy condition detH%
9%L

det‘ 92007
z zZ )
We can therefore solve egs. (25b) for the variables z*, getting an expression of the form

# 0, here rephrased as

= 0, automatically ensures the regularity of the Pontryagin Hamiltonian (24).

2 =2'(t,q5, k) (26)

formally identical to eq. (18)
Exactly as it happened in Section II, eq. (26) allows to regard S as a submanifold

S 4 C(A), locally diffeomorphic to the phase space V*(Q). In view of egs. (17), (25b), the
pull back of the Pontryagin Hamiltonian (24) to the submanifold S yields the function

H{(t g, pf) = plai + iz (t, a5, pi) — Lt a4, 2" (8 g5, p1))
identical to the Ostrogradsky Hamiltonian (19) and satisfying the relations
OH OH OH OH

opy o dqi, — 0dl

On account of the latter, eqs. (25a) may be cast into the canonical Hamiltonian form

da _ 01 daf _ o1
d — op)’ dt — Op}
dp?  0H dp!  O0H
d  0¢’ dt — og

reproducing the content of the Ostrogradsky equations (20).



B. Lagrangians of order N in the derivatives

The Ostrogradsky construction is easily extended to Lagrangians depending on higher
order derivatives. To this end, letlel(VnH)‘ denote the Nth jet-bundle of the event space,
referred to fibred coordinates ¢, 4", qj, ..., qy. Setting g5 = ¢*, the Euler-Lagrange equa-

tions associated with a Lagrangian L(¢,q", ¢}, ...,q)) are synthetically written as
N
d* OL
Z(_l)adt_aai =0, i=1,....n (27)
o0 dq
For each a =0, ..., N — 1, let the canonical momentum p® conjugate to the coordinate ¢,

be defined according to the prescription

N—-1
df—~ 9L

pi = (-1 o (28)

¢ ﬁz:;l dtb=> dqj

whence, in particular
_ oL o 4 ,
pi\l 1:8—1(t7q17q17ﬂ(ﬁ\/) (28)
dn

The variables t,q¢’,p%, a =0,...,N — 1 are regarded as coordinates in a (2nN + 1)-
dimensional phase space.

2
Under the non-degeneracy assumption detH% ’ # 0, egs. (28’) may be solved for
gy, giving rise to expressions of the form IN%IN
gy = a6, - ah-rR ) (29)

The Ostrogradsky Hamiltonian is then defined as
N-1
Hityghs sty o0 ™) = S 00y — Lt s dy_rodl)  (30)
a=0

with ¢4 given by eq. (29). In this way, taking eqs. (28’) into account, the Hamilton equations
generated by the Hamiltonian (30) are easily recognized to be

dg,, 0H

m _%zqfﬂrl (a=0,...,N—2), (31a)
K]
dgiy_ OH ; _
2; L = 5‘pr1 = QN(tvqlga"'aQJk\fflﬂpg 1) (31b)
i
dp? oOH oL dp§ oOH a1 . OL
L = —— = — L= ——— = —pf : =2,...,N 31

Conversely, a straightforward check shows that egs. (31c), together with egs. (28’), imply
the validity of the Euler-Lagrange equations (27).

A deeper insight into the geometrical meaning of eqs. (28), (30) is gained denoting by
Q = jn_1(Vny1) the (N—1)* jet bundle of the fibration ¢ : V,,y1 — R, regarded as a fibre
bundle ¢ : @ — R, and by j1(Q) the corresponding first jet bundle.

The N** jet bundle jx(V,41) is then canonically isomorphic to an affine subbundle of
71(Q), as summarized into the commutative diagram

INVns1) —— 71(Q)
| E

Q :Q



Adopting t,¢,, (a =0,...,N —1) as local coordinates in Q, and referring j;(Q) to jet
coordinates t, ¢, ¢, the submanifold A := i(jy(Vny1)) C j1(Q) is locally described by the
equatlons qa = q(y 41, «=0,..., N—2. We can therefore refer A to local fibred coordinates
t,qh, .- q_1,2", and represent the imbedding A — j1(Q) through the equations

g:wg(t,qé,...,qjv_l,zi), a=0,...,N—-1 (32)

withwi—qg+1,a—0 ,N —2,and ¢ _, = 2"

Alternatively, we may regard A as a fiber bundle over V1, isomorphic to jn(Va+i1)
through the fibred morphism (¢,¢3, ..., q%_1,2%) «— (£, 8, - -, q%_1,dY)-

Once again, collecting all results, we conclude that assigning a variational problem in
V11, based on a Lagrangian L(t,q),,...,q%) € F(jin(Vnt1)), is equivalent to assigning a
constrained variational problem in Q, with constraint submanifold A — j;(Q) described
by eqs. (32) and Lagrangian L(t,qi, ..., q%_4,2%) € F(A).

The constrained problem in Q@ may then be lifted to a free variational problem on the
contact bundle C(A), referred to fibred coordinates t,q’, 2% p®, a = 0,...,N — 1. The
procedure, identical to the one exploited in Sect. IIL A, culminates in the introduction of
the Pontryagin Hamiltonian

N—
Mt gl 2" pf) = Z Pl — Lit, ¢, 2") =

= p (JQJrl _’_pi\f lzz_L(taqiv"'a(ﬁvflﬂzi) (33)

Preserving the notation C(A) % Q for the composite map C(A) — A — Q, to each
section ¥ : [to,t1] — C(A) we now assign the action functional

N—-1

1) :=L—Hdt+ Zpgdqu/to ( H+Z o q(,)

Imposing stationarity of the latter under arbitrary deformations leaving the projections
v(F(to)), v(3(t1)) fixed leads to the Pontryagin equations

i fot
dag _ 8_}[7 dpi _ _ OH (34a)
dt opy dt 0ql,
OH No1 OL
ey 34b
9z i 0z (34b)
for the unknowns ¢’ (t),z%(t),p*(t). Eqs. (34b) reproduce the content of egs. (28’) under
the morphism (¢,qf, ..., q%_1,2%) «— (&, b, .-, d_1,dN)-

Denoting by S the subset of C(A) described by eqgs. (34b), it is readily seen that the non—

# 0, automatically

2L
degeneracy condition H # 0, here rephrased as detH%

2L
gk BqN
ensures the regularity of the Pontryagin Hamiltonian (33). We can therefore solve eqs. (34b)
for the variables 2%, getting the expression
ZZ:Zl(tvqlgv" aQN 1ﬂp£] 1) (35)
formally identical to eq. (29).

Eqgs. (35) point out that the subset S C C(A) is in fact a submanifold i : S — C(A),
locally diffeomorphic to the phase space V*(@). A straightforward check shows that the
pull back H :=i*(H) of the Pontryagin Hamiltonian (33) determines a proper Hamiltonian
function on V*(Q), identical to the Ostrogradsky Hamiltonian (30), and that the Hamilton
equations generated by H coincide with the Ostrogradsky equations (31).
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