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Abstract. This paper presents the ongoing research activities of the
Italian Interuniversity Center of Integrated Systems for the Marine En-
vironment, ISME, in the field of harbour protection with autonomous
marine vehicles. In particular, two different strategies have been devel-
oped in the recent years and have been extensively tested both in nu-
merical simulations and in scale experiments. In the first case, a set of
vehicles is positioned around an asset to be protected on the base of an
optimization process of two cost functions, namely, the maximization of
minimum interception distance and the minimization of maximum in-
terception time. When an intruder is detected, an on-line optimization
process selects, among the different vehicles, the one that exhibits the
lowest estimated time to the menace. A motion planning algorithm with
real-time obstacle avoidance is then used to drive the vehicle toward the
intruder. In the second case, a team of vehicles is required to dynamically
patrol a certain region by means of a decentralized control approach. The
proposed solution is based on the merging of two concepts, the Voronoi
tessellations and the Gaussian processes, and it allows robustness with
respect to events as temporary communication or vehicle losses. It also
exhibits characteristics of flexibility /scalability with respect to the num-
ber of team-mates.

Keywords. Autonomous marine vehicles, multi-vehicles system, coor-
dinated control, harbour patrolling

1 Introduction

The problem of maintaining civilian harbours safeguarded against terroristic at-
tacks, coming from the so-called “blue border” (i.e. the sea-side), is receiving
an increasing interest in the recent years. In this context, the use of a team of
“protecting” autonomous marine vehicles certainly represents a promising solu-
tion for reducing the harbour vulnerability. Indeed, under normal conditions, the
vehicles can perform patrolling surveys of the more crucial waterways; instead,
whenever a possible “menace” (i.e. an unauthorized vessel or a vessel moving in a
suspect way) is detected, one vehicle can be used for “intercepting” the menace,



allowing to determine whether the suspect vessel is “hostile” or “friend” without
exposing humans directly to threats.

The Italian Interuniversity Center of Integrated Systems for the Marine Envi-
ronment (ISME) is actively doing research, since more than 15 years, in the field
of marine technologies and oceanic engineering. Among the different research
interests, harbour protection by mean of multiple autonomous surface and un-
derwater vehicles has recently taken an important role. Two different approaches
to solve the latter problem have been developed and will be summarized in this
paper.

In a first case, a set of vehicles is silently positioned around an asset to
be protected. The positioning of the vehicles is obtained as the result of an
optimization algorithm. The optimal vehicle is then selected in case of detection
of an intruder and a real-time motion planning, capable of avoiding obstacles
and current traffic, finally drives the vehicle toward the intruder ([16, 18]).

In the second case, a team of vehicles is required to patrol a certain region,
i.e., to move around while properly collecting information. Patrolling is achieved
with a sub-optimal solution satisfying the severe constraints we face in such
a mission. Surface ([4], [13]) as well as underwater scenario ([12]) have been
considered.

The above algorithms have been achieved in the framework of European
FP7 projects such as Co3AUVs ([5]) and they have been tested via extensive
numerical simulation as well as via experiments with marine vehicles.

2 Interception of suspect vessels with ASVs

Experiments with Autonomous Surface Vehicles (ASVs) are usually performed in
open sea or in waterways in the absence of other unknown moving vessels. When
dealing with harbour protection, however, the scenario is far different from those
above and several crucial issues arise: the ship traffic is intense and the operations
of tourist or merchant ships cannot be delayed or affected anyway by the security
vehicles. Therefore the manoeuvres of ASVs must not perturb at all the normal
harbour activities. Furthermore, there is a concrete risk of collision with other
vessels, with consequent risks of personal injuries and property damages. Thus,
the ASVs have to be provided with good path-following capabilities, since they
need to follow a reference path with a certain accuracy. Moreover, they need
reliable emergency sensory devices enabling a prompt detection of any incipient
obstacle, and suitable techniques for implementing reactive obstacle avoidance
capabilities, in case an unforeseen obstacle is actually detected.

In this perspective, DIST (University of Genova, Italy) and Selex Sistemi In-
tegrati (a Finmeccanica Company, Italy), one of the international leading players
in providing large systems for security and defence, are cooperating within an
on-going joint research project, on the realization of the so-called Swarm Man-
agement Unit (SMU), a tool conceived for supervising the operations of a team
of ASVs performing (semi-)autonomous surveillance activities within civilian
harbours. Details on the SMU project are provided in [6,17], together with a



Fig. 1. The interception problem: a) without obstacles (b) with an obstacle

description of the levels of interaction between the SMU and the operator in
charge of monitoring the ASVs activities.

Here we focuses on the problem of intercepting a detected menace before it
could reach a particular “asset” (i.e. a crucial site to be maintained safeguarded)
and of how to determine a-priori the better nominal positioning of the “inter-
ceptors” ASVs in order to increase their chances of success.

2.1 On-line selection of the interceptor

Once a menace is detected, the key factor for a prompt reaction is time. Therefore
the better ASV for the interception is the one which is predicted to reach the
menace in the shortest possible time. In the considered harbour scenario, all
the other vessels in the area represent fixed or moving obstacles which have
to be avoided by the interceptor ASV; as a consequence, for every ASV, the
computation of its predicted time of interception is strictly related with the
identification of its minimum-time path to reach the menace, which in turn
depends on the contingent traffic situation.

A detailed description of the motion planner has been presented in [6,17]
and only its basic results are here reported for the reader’s convenience. At first,
the simplified problem depicted in Fig. 1 is first considered; i.e., given a single
ASV, say the i-th, moving at its maximum speed v;, find (if any) the ASV
heading angle # enabling the interception of a menace m, starting from a generic
position P, = (—L, H) w.r.t. the ASV and moving at a constant speed v,, with
a constant heading angle .

By defining the motion of the i-th ASV as:

P2 [0] = [ 0

and the motion of the menace as

Pt 2 [1] = [ omeestt L] ®



if no obstacles are located between the menace and the ASV (Fig. 1.a), the angle
0 can be calculated as:

0 = asin (i}—msm (¥ + ¢)> —¢ (3)
clearly subject to
1< Psin(p+¢) <1 (4)

7

where ¢ £ arctan(—H/ — L).
In case solution (3) exists, given the angle 0, the time needed for the inter-
ception can be calculated as:
—L

(myi) _
! ~ v;cos(0) — vcos(vp)’ L#0 (5)

while the point of the interception is obtained as:

Pg{m,z)

i vicos(H)t(m?)
plen & | B { (0) } (6)
Y

v;sin(0) (M)

where the notation ()% means that the quantity (-) refers to the i-th vehicle
intercepting the menace m.

The more realistic situation where at least one obstacle (be it a static or a
moving one) prevents the ASV from moving on a straight line is sketched in Fig.
1.b.

By now moving back the attention to the original problem of on-line selecting
the better interceptor, consider Fig. 2, representing a situation where a menace
is discovered at point P,, and is moving towards an asset, located at point
P, = (4,Ys). A given number of vehicles i = 1,--- | N are located in their
respective positions P;. As soon as the menace is detected, for every ASV, the
predicted point of interception P("% and related instant of interception ¢("%
is first of all calculated by the motion planner, as explained before. The problem
of selecting the most suitable vehicle can then be simply stated as the following
minimization problem:

arg min ¢ (™ (7)
3

which can be easily on-line solved, given the availability of all the ¢(™% terms.

2.2 Off-line optimization of the ASVs position

The problem of better positioning the ASVs for achieving adequate levels of pro-
tection can be considered as a special instance of the so-called spatial resource-
allocation problem, which has been studied for many years and has registered
interesting results in particular in the field of fixed or mobile sensing networks
(see, among the others, [9], [7] and references therein indicated). The proposed
solution is based on the following two criteria. First of all, the ASVs must be
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Fig. 2. (a) Schema of the intercept problem (b) with a minimum distance of intercep-
tion required

in the condition of always intercepting any menace before it can reach a cer-
tain security distance from the asset. As shown in the following, the adoption
of such a primary criterion, other than reducing the chances of the menace to
harm the asset, provides, as a by-product, an indication on the minimum number
of “asset-protector” ASVs. All the (eventually available) other ASVs can then
be employed for the secondary criterion, here stated in terms of reducing the
maximum interception time.

Preventing menaces from getting too close to the asset The problem of
guaranteeing that any menace can be always intercepted, before it gets too close
to the asset, can be translated into a worst-case-scenario optimization problem.
Indeed it has to be granted that, even if the menace is detected in the closest
possible position to the asset (i.e. at a distance r), the ASVs are always in
the condition of intercepting it on time (i.e. before the menace reaches a given
security distance dip, < 7, see Fig. 2b).

Let P = {Py,---, Py} denote the set of initial positions of a team of N
ASVs, while be P,, the initial position of a detected menace m. For any given
set of initial conditions (P,,, P), the distance between the interception point
related to the i-th ASV and the asset can be easily computed as follows:

di (P, P) £ ||PU"™) — Py (8)

It then follows that, for any given (P,,, P), the most suitable ASV for the inter-
ception is selected as:

i° = argilrlrjlaxp d; (P, P) 9)

whose corresponding distance between the interception point and the asset is

D(P,,,P)2 d; (P, P 1
(PurP) £ max d (P, P) (10)

By now solving the above problem for any possible P, (while still maintaining
fixed the set P), the worst-case-scenario, i.e. the point P, leading to the closest



to the asset interception point, can be calculated as:

Dy, (P) & min D (P,,, P 11
(P)£ min D (P, P) (1)
By finally letting the optimization variable P vary, the optimal positions of the
ASVs are obtained as:

P° 2 arg max D, (P) (12)

By combining all the above relationships, the following formulation of the
original optimization problem is obtained:

m

P = arg max {min [m?x <||P(m’i) — Pa||)] } (13)

whose corresponding distance from the interception point and the asset in the
worst-case-scenario is clearly:

D° = max {r%inn [m?x <||P(m’i) - Pa||)] } (14)

In case D° results lower than d;j, it means that the considered amount of
ASVs is not sufficient to always guarantee the fulfillment of the security threshold
distance, and a simple algorithm for determining the minimum number of ASVs
required for protecting the asset can be applied solving the problem (14) for an
increasing number of vehicles k.

Minimizing the maximum interception time In case the number of avail-
able vehicles N is greater than the number k£ of vehicles necessary to meet the
required minimum distance of interception from the asset, the remaining N — k
ASVs can be exploited to solve another kind of optimization problem: minimiz-
ing the maximum interception time.

To better approach the problem, it is convenient to split the set of ASVs into
two subsets: the first k£ vehicles with a fixed optimal positioning, as determined
by the previous problem; and the remaining N — k ones, whose set of positions
pA {Px+1, -+, Py} is the subject of the here considered secondary optimization
problem.

With these premises, for any given initial conditions (P,,, P), the most suit-
able ASV for the interception is now the one with the lowest interception time,
that is:

i° £ arg ‘min (2 (15)
T mos
whose corresponding interception time is
T (P, P) % min t™? (16)
i| P, P
Then, by again considering the menace in all the allowed positions, the worst-
case-scenario can be found as:

Tw(P) = max T (P, P) (17)



Therefore the optimal positions of the extra-ASVs can be found by minimizing
the time of interception in the worst-case-scenario; that is:

PO 2 arg m;n Tw (P) (18)

Finally note that, since problem (17) considers all the possible P,, points, the
extra ASVs are spread out, the farther away from the asset, the bigger the con-
sidered area is. The following more convenient formulation of problem (17) can
therefore be made, by introducing a proper weighting function 0 < W (P,,) <1
expressing the “probability of detection” of a menace in any particular point:

T, (P) & max W(En)T (P, P) (19)

In this way the points at the boundaries of the considered area could have a very
low weight, as those inside the circle of radius r should have a zero weight.

By also considering the weighting function, the final formulation of the sec-
ondary optimization problem becomes:

po— arg min {n}gax [W(Pm) mjnt(m,i)} } (20)
p m i

2.3 Simulative results

Here we presents the results obtained when the scenario of Fig. 3 is used as
area of operation. In the following pictures, the dark dot represents the asset
to protect, the squares with black frame represent the position of the ASVs,
while the smaller dots instead indicate that if a menace appears in such posi-
tion.Moreover, the smaller circumference around the asset is a graphical repre-
sentation of the minimum safety distance dy;,, while the bigger one represent the
minimum distance of detection r. Figures 4a and 4b show the paths of the ASVs
when intercepting the candidate menace, which is represented with a circle.

The first simulation is depicted in Fig. 5. Between the two cases, only the
detection distance r has been changed. When r is increased, the position of the
ASVs can be further away from the asset, as r guarantees that the first detection
of the menace cannot occur at ranges closer than it. Moreover, as it can be clearly
seen, the ASVs are chosen to guard the entry points to the inner harbour area,
as these points are choke points, where a surface menace must pass through if it
wants to reach the asset.

The second simulation, presented through Fig. 6, shows what happens if
the minimum required interception distance is increased. This increase in the
required performance of the system imposes that two vehicles are now necessary
to satisfy the first optimization problem. Such change will obviously decrease
the performance of the system w.r.t. the secondary optimization problem.



Fig. 3. Dark star: asset; Squares: ASV; Smaller circle: d; Bigger circle: r

Fig. 4. Different computed paths for the intercepting vehicles. (a) as the menace is
detected just at the minimum distance r, the selected vehicle intercepts it before the
minimum required distance dy,. (b) menace is detected far away (top left corner) and
thus multiple vehicles can intercept it



Fig. 5. Comparison by changing the detection distance r (a) r = 400, dworst = 214,
tworst = 22.93, (b) r = 750, dworst = 373, tworst = 22.62

(a) | (b)

Fig. 6. Comparison by changing the minimum required interception distance dq; (a)
den, = 178, duorst = 374, tworst = 20.64, (b) dip = 400, duworst = 460, tworst = 20



3 Dynamic patrolling

This section deals with the problem of dynamic patrolling with a team of ma-
rine vehicles. The patrolling task consists in traveling around an area, at regular
intervals, in order to protect or supervise it [1]. Patrolling, thus, involves re-
peatedly visiting key locations within the working area, to assess environmental
state with respect the presence of eventual intruders or any unexpected event.
Despite of the fact that the patrolling tasks have been widely faced in literature
from a theoretical point of view, only a few experiments have been carried out,
especially in marine environment, without simplistic assumptions due to the ex-
isting technical problems. Indeed, the marine environment exhibits an additional
challenge due to the extremely harsh conditions in which the vehicles need to
operate.

For this reason, the problem at hand as been afforded at DIEI (University of
Cassino, Italy) considering a list of realistic constraints in the development of a
motion control solution for a team of autonomous vehicle that will be detailed
in the following.

To the purpose, the developed strategy merges together two useful math-
ematical tools: Gaussian Processes and Voronoi tessellations. Given acquired
samples, the Gaussian Processes [15] allow to predict the field at unknown loca-
tion and to compute the uncertainty involved in that prediction [10]. Gaussian
Processes allow us to address in the proposed algorithm in an elegant fashion the
time and space variability, i.e., both a forgetting factor and the need to patrol
more often certain regions. The Voronoi tessellations represents a subdivision of
a set given a finite number of points [8, 14]. One of their main feature is that they
can be calculated in a distributed way. Each vehicle, thus, is able to compute
its Voronoi cell relying only on its exteroceptive sensors and/or communication
capabilities.

3.1 Problem description

The problem at hand is characterized by challenging theoretical as well as im-
plementation issues. Strongly motivated by the need to perform experimental
validation of the derived algorithm, the follwing constraints have been consid-
ered:

— Coordination. Robotic missions such as the one addressed in this paper are
more efficient by means of a coordinated, multi-robot strategy;

— Decentralization. One central computational unit represents a weak point
for a multi-robot algorithm. This is particularly significant when a security
application, such as patrolling, is considered;

— Robustness. When robots move around in the real world, they are necessarily
confronted with a number of unexpected events that may seriously jeopar-
dize the success of their missions. It is not realistic to design a multi-robot
algorithm that is not robust, in a wide sense, with respect to the possibility
that one or more robots simply stop functioning, or hold in place, or that
the communication among them may experience temporary black outs;



— Scalability. As a scalability constrain we want that the computational burden
associated to each robot does not change with the number of robots;

— Communications. Different communication technologies (e.g. for surface or
underwater communication) come with different bandwidths and ranges that
directly impact on the performance achievable with multiple vehicle pa-
trolling algorithms. A reliable algorithm must be customizable with respect
to the available communication bandwidth;

— Real-time. Each robot needs to take decision in real-time, thus preventing
the use of off-line planning algorithms;

— In view of practical implementation, additional features such as, for example,
obstacle avoidance policies, need to be considered.

These constraints are fundamental for experiments in a real scenario and, dif-
ferently form other solutions, are naturally taken into account by the designed
solution.

We now describe the patrolling problem addressed in this paper: consider
a region A € R, [ = 2,3 and a function y = f(x,1), x € A, with f :
R! x [0,00) — Rgy, where f is application dependent. For example, in the
case of patrolling/security applications y represents the level of safety of the
environment at point & and at time t.

The function f exhibits a spatial correlation that is mainly affected by the
nature of the underlying phenomenon under study and/or the sensor suite used.
It is also important to stress that the function may be time-varying, at a scale
that once again is determined by the phenomenon under investigation.

Our main goal is to develop a strategy to estimate the function f by taking
appropriate measurements using robots equipped with sensor suites. In what
follows, we let N, denote the number of robots and , ;(t) € R, i=1,2,...,Nr
the position of robot ¢ at time t. In addition, each robot is assumed to be able
to sense or receive the position of some neighbors, where the term neighbor
indicates a robot @, ; that is close to x,; with respect to a certain metric (for
example the Euclidean distance).

The patrolling task shares several aspects with sampling. In particular, at
given instant the knowledge about the safety status of a location in the area
depends on the team configuration and, therefore, on the robots’ positions @, ;,
Vi =1,2,...,N,. Thus, given a robot with position x, ;, it is possible to state
whether this position is safe or not based on the value of function f at this
point; it can be argued that this information can be used to infer the status
at other locations in the neighbourhood (spatial dependence). An example is
represented by an intruder or a toxic substance spill at location ;. Finally, it
can be also argued that in a dynamic scenario, a location that has been marked
as safe (because it was visited in the past) but has not been visited by any of the
patrolling robots for a certain amount of time should no longer be considered
as safe; instead, a high uncertainty should be associated to its status. Thus,
high uncertainty must be associated not only to those cells that have remained
unvisited but also to the cells that were visited but long back in time (time
dependence). An example is represented by a moving intruder, a moving oil



spill, or a changing temperature field. The aim is, therefore, to estimate the map
function f(a,t) by reducing the uncertainty in its knowledge; namely, by bringing
the robots toward those locations characterized by a high degree of uncertainty.
It is assumed that a robot will be able to measure the degree of safety, f, of a
location by means of some sensor as, for example, a vision sensor. Moreover, it
should be clear that the developed strategy is suitable both for patrolling and
sampling as shown in [4]. In addition, the use of multi-robot systems requires a
coordination mechanism among robots. Specifically a Voronoi tessellation is used
for both distributing the calculus of the function f and coordinating the motion
of robots. A Gaussian process strategy is, instead, used to predict function f.

3.2 The Voronoi partition

Voronoi partitions (or diagrams) are subdivisions of a set D characterized by a
metric with respect to a finite number of seed points belonging to that set.

Assuming that at the current time ¢ the seed points are the robots’ po-
sitions {x, 1, r2,..., Tr N, }, the corresponding N, Voronoi cells, Vor(z, ),
1=1,2,..., N, are given by

Vor(zri) ={z €D | & -] <l[e -z, )}

The union of the Voronoi cells gives back the entire set and the intersection of
two cells is always empty. The most important property of the Voroni tool for
the use on decentralized robotics is that each robot can compute its own cell by
applying a local algorithm, i.e., by simply knowing its position and the neighbors’
positions, either by direct sensing or by communication. An example is reported
in Figure 7 where the Voronoi tessellation of a three-dimensional set has been
generated according to three randomly generated seed points. Further details on

Fig. 7. Example of a Voronoi partition for 3 points in a 3D set.

the Voronoi-based theory and its applications can be found in [8] or [14].



3.3 The Gaussian Processes

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution. One of the key features of Gaussian
Processes is their potential to yield methods to predict the value of a function
at any location, given a set of previously collected observations (either in space
or in time), with an explicit representation of the uncertainty of that prediction.
For this reason, they will be used as a means to estimate the field f. What
relates one observation to another in such cases is just the covariance function.
In what follows we summarize the key facts about Gaussian Processes needed
to understand the method that we propose. A comprehensive exposition of the
theory can be found in [15].

We view at function f(x,t) as a zero-mean spatio-temporal Gaussian Process

f(a:) ~ Q’P(O,IC(ml, tl;wg, tg) (21)

where K(x1, t1; T2, t2) is the covariance function. We will assume that the co-
variance function K is generically defined as

K1, ti; 29, t2) = O[22 — 1|, [t2 — ta]) (22)

with C' : RS‘ X Ra’ — RT. Notice that both space and time are taken into
account to handle also the non stationary case. For the sake of simplicity, in
equation (22) we assume that the process is homogeneous, second order station-
ary and isotropic, which basically implies that the covariance only depends on
the distance between two generic points &1 and x5 and on the absolute value of
the time difference to — t7.

Given the set S = {(@1,t1), (z2,t2), ..., (Tn, tn)} made of pair of locations
x; € A and instants of time ¢; and the corresponding vector of observation y €
R™, the symbol Xg € R™ "™ represents the symmetric non-negative covariance
matrix whose elements (i, ) is K(x;, ti;x;, t;).

Moreover, given a single element (x*, t) and the set S, og.(z*,t) € R" is a
column vector whose i-th element is K(z*, t;x;, t;).

The objective is to predict y* = f(x*,t) at the generic location x* and at
the current time instant ¢ based on the vector of observations y. In the case of
a multivariate normal distribution over a set S of random variables associated
with n pairs of positions and time instants, the posterior distribution of y* is
characterized by a normal distribution y*|y ~ N (ji, ¥) with [15]:

fi=os.(x,t)" Tg'y (23)
Y =K@tz 1) — os.(x, 1) X5 os.(x,1). (24)

The best estimate of y* is given by (23) and the uncertainty of the estimation
is captured by its variance, described in (24). Thus, while the predicted value
is useful for establishing the most likely appearance of the function f based on
the available sensor data, it can also be misleading if considered in isolation.
One of the key advantages of Gaussian Processes is, therefore, the possibility to
compute the variance of each prediction.



In the considered problem, the ith robot measures the status of location x
using dedicated sensors. We assume that the measurement made by robot ¢ at
position & and time ¢ is given by

y:f(ma t)+wia

where w; ~ N(0,0;) is a white noise Gaussian Process with zero mean and
standard deviation o;. For simplicity, we assume that w; = w ~ N (0, o), i.e., the
robots are equipped with identical sensors. In this case, equation (23) becomes

[L:ESQET (23+02I)71y (25a)
) =K(xz,t; x,t) — a‘sx(m,t)T (Es + 0‘21)71 o5z, (25b)

where I is the identity matrix of proper dimensions.
In the above equations, the matrices X' g and o g, are completely defined once

the function C in equation (22) has been specified. According to [15] and [19], one
possible choice for this function is the Square Exponential Covariance Function:

Mz —ml® (=)

2
Clllez — ||, |t — ta]) = ¢%e 272 2 (26)

where ¢ is a weighting scalar parameter that will be selected to be unitary and the
parameters 75 and 7y are positive scalars used to affect the space and time scales,
respectively. In addition, it is worth noticing that the choice in equation (26)
refers to isotropic domains and known constant 75 and 7.

3.4 Application to the patrolling mission

From equation (24), the variance of the estimation at position « given the already
acquired samples and the current time t takes the form

S(x) = C(0,0) — 05, X5 050 (27)

It turns out that minimizing the uncertainty, which corresponds to mini-
mizing the positive definite right-hand side of equation (27), is the same as
maximizing (given the available degrees of freedom) the function

{s(@) = 052" X' o0 (28)

Note also that due to the time dependency of the covariance function in (26), a
point that has been visited too far in the past (with respect to the time parameter
7¢) is candidate to be visited again. This feature is exploited by assigning proper
time constants according to the applications.

It is interesting to reproduce graphically equation (28) for some case studies.
In the simple case we consider, the region of interest is a planar square with uni-
tary length. Three location have been visited, S = {(x1,t1), (@2, t2), (x3,t3)},
with &1 = [0 O}T, Ty = [1 O]T, and x3 = [0.5 1]T at time t1, to and t3, respec-
tively.



— First example (Figure 8 (top left)): ¢t = to = t3 = 0, current time ¢ = 0,
7s = 0.5, 1, = 8.

— Second example (Figure 8 (top right)): t; =ty = t3 = 0, current time t = 0,
7s = 0.2, 4, = 8.

— Third example (Figure 8 (bottom)): t1 = 0, to = 7, t3 = 10, current time
t=10, 75 = 0.5, = = 8.

Fig. 8. Graph of the function (28). Top left: first example. Top right: second example.
Bottom: third example.

In the classical sampling task as in [11,19,20] the field to sample is related
to a physical variable such as temperature, salinity, etc.; the hyper-parameters,
¢, Ts, Tt, are usually identified or learned by training. On the other hand, in the
case of patrolling a different point of view can be used: the hyper-parameters, in
particular the constant 75 and 74, are not related to any physical phenomenon.
On the contrary, they are decided by the user and, then, known beforehand by
the robots. Their value may be chosen so as to confer to the system specific
behaviors. As examples of the above concept, let us consider the following cases:

— a low value of the the parameter 7, in equation (26) implies low space cor-
relation between different locations. On the contrary, a larger value implies
high correlation between even far locations. Such a feature may be used to
take into account the range of robot’ sensors. In addition, 75 can be func-
tion of the location (i.e., 75 = 75(x)); such a feature can be useful, e.g., for
modeling different visibility conditions;

— a low value of the parameter 7; in equation (26) implies low time correla-
tion between cells. This means that the patrolling team needs to visit each



position more frequently. Also in this case, the 7 can be functions of the
location (i.e., 7w = 7¢(x)), in order to take into account the case of environ-
ments where some locations are more exposed to unexpected events than
others (eg., in an harbor patrolling scenario it may be required to visit more
frequently the harbour entry).

— by setting 7w = oo a static field is obtained as in the case of a coverage
mission.

3.5 Proposed coordination strategy

Figure 9 illustrates the proposed control architecture for a single robot. At the
top level, the planner is in charge of deciding the robot trajectory. At the lower
level, the Null-Space-based-Behavioral (NSB) control approach allows following
reference trajectory provided by the upper level, while properly handling un-
expected events such as the presence of obstacles. The NSB has been widely
used by some of the authors and its description will not be given here to avoid
repetion; the interested reader will find in [2], [3], the details of this strategy and
its properties.
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Fig. 9. Control architecture.

3.6 The top level: algorithm description

The top layer in Figure 9 represents the core of the proposed algorithm, i.e.,
the block in charge of computing the next point to be visited by each robot.
As described in the previous Sections, our objective is the maximization of the
function g (x) expressed by equation (28). To this effect, a partition of the area
A according to the Voronoi tessellations is computed, and each robot performs
such a maximization in its own cell. The strategy designed for each robot is given
as: Algorithm

loop



exchange data with the neighbors

build its own cell: Vor(xz, ;)

select next point x; in its own Voronoi cell, and move to that point
send x; to the NSB layer

L

end loop

To select the next point to, we propose the following strategy. Let © = h(s) =
i+ (Ty — @r;)s be a parametrization of the line segment joining the actual
position @, ; of the robot and a generic point x,, € S, with s € [0, 1]; the next
target in S, is determined by

1
h(s))d

I 1L @)
Tu€Sy || — @u|

The heuristics behind the strategy (29) is that, among the unvisited points in
the set Sy, the one characterized by the most unvisited path (normalized by the
path length) is chosen. Another possible strategy would be to simply drive the
robot toward the point of global minimum of £g () inside its Voronoi cell, that
is, compute

Ti= i €s(z). (30)
As an example, Figure 10 shows a comparison between the strategy in (29) and
(30) in a 50mx100m rectangular environment with three vehicles. The space
(7s) and time (73) constants in equation (26) are 4.7m and 400s, respectively.
In particular, the performance index adopted is represented by the integral of
&s(x) over the environment normalized by its area. It is worth noticing that, as
és(x) € [0, 1], the considered index belongs to the same interval. Because of
the meaning of function g (x),

— a performance index equal to 1 means that the field is completely known;

— a performance index equal to 0 means that the field is completely unknown;

— a performance index equal to 1 can be asymptotically reached only in the
case of static fields;

— lower values of the time constant 7 imply lower values of the index at steady-
state.

3.7 Experimental results

Due to lack of space, only the surface experiments will be briefly reported, the
underwater implementation is described in [12]. Video of the underwater as well
as the surface experiments can be downloaded from
webuser.unicas.it/lai/robotica/video.html.

The surface experiments were performed in July 2011 at the Parque Expo
site, Lisbon, PT, using three Medusa autonomous surface robots designed and
built by the marine robotics team of IST /ISR (Instituto Superior Técnico/Institute
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Fig. 10. Normalized integral of function s(x) in a comparison between strategy in
equation (29) (continuous line) and equation (30) (dashed line).

Fig. 11. The three Medusa surface robots setup (the red, black and yellow robots).



for Systems and Robotics) and shown in Figure 11 (red, black, and yellow
robots).

Figure 12 shows the map of the site, with the robots moving in a 60 mx70m
rectangular map. An obstacle consisting of a buoy is placed inside the patrolling
region (the dot in Figure 12). The position of the buoy is fixed and known in ad-
vance by the robots. The maximum robots speed was limited to 0.7 m/s. In what
follows, we summarize the results of an experiment that run for approximately
1 hour.

The robots exchanged information via WI-FI network. The 74 and 7+ param-
eters were set to 3.7m and 200s, respectively; the constant € in Section 3.6 was
set to 0.5.

" A

Yellow Vehic:

Fig. 12. The map of the Parque Expo site in Lisbon with the paths described by the
robots in a typical experiment. The robots (red, black and yellow) are restricted to
move in a 60 mx 70 m rectangular environment.

In Figure 13, the sequence of steps performed by the robots is shown. In each
frame, on the left are shown the Voronoi cells with the robots and the current
targets (big bullets), while, on the right, the plot of function (28) is shown. The
red color is representative of higher values of the function while the blue color
of lower ones. Focusing the attention on the black robot, the following steps are
shown:

1. the robot moves toward the current target as generated by the algorithm
described in Section 3.5,

2. the robot reaches the current target,

the robot chooses the next target inside its own Voronoi cell,

4. the robot moves toward the new target.

©w



Fig. 13. Frames of the experiments. In each frame, on the left are shown the Voronoi
cells with the robots and the current targets (big bullets) while, on the right, the plot
function £s(x) in equation (28) is shown (red color is representative of high values of
the function, blue color of low values).

4 Conclusions

In this paper we presented the latest research of the Italian Interuniversity Cen-
ter ISME in the field of harbour protection using autonomous marine vehicles.
Specifically, we at first presented a solution for the displacement of a fleet of ve-
hicles by optimizing either the interception distance or the interception time to a
menace. Then, we presented a decentralized control approach, based on Voronoi
tessellations and Gaussian processes, to make a fleet of vehicles dynamically pa-
trol a given area. The approaches have been validated via numerical simulations
and experiment with autonomous surface vessels.
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