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ABSTRACT

The paper is focused on analytical prediction of the effective bulk and shear modulus for particulate
composites reinforced with solid spherical particles surrounded by graded interphase zone. A three-
dimensional elasticity problem for a single inclusion embedded in a finite matrix is studied. The graded
interphase zone around the inclusion is assumed to have power law variation of the shear modulus with
radial co-ordinate, with Poisson’s ratio assumed to be constant and equal to that of the matrix. Follow-
ing Hashin’s approach, two boundary value problems are considered and stress and displacement fields
in the interphase zone are determined. They are then used to calculate the elastic energy for the sin-
gle inclusion composite under spherically symmetric state and pure shear state and derive closed-form
expressions for the bulk modulus and the upper and lower bounds for the shear modulus. Numerical
results for hard and soft interphase zones are presented and discussed for a range of the interphase zone

thickness ratios.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Macroscopic properties of particle-reinforced composite materi-
als are strongly influenced by the phenomena at the interface be-
tween particles and the matrix. For example, study of finished and
unfinished graphite fibres in epoxy matrices (Drzal et al., 1983) re-
vealed that the finish layer, i.e. an epoxy-compatible coating ap-
plied to fibres with the view to enhance their adhesion with the
matrix, creates a brittle interphase layer between the fibre and ma-
trix which increases the interfacial shear strength but at the ex-
pense of changing the failure mode from interfacial to matrix.

To describe the effect of interfacial phenomena on composites
properties, either an imperfect interface is considered (see e.g.,
Lipton and Talbot, 2001; Arthur and Sudak, 2016), or an interphase
zone between particles and the matrix is introduced, with proper-
ties that differ from those of both main phases (see e.g., Voros and
Pukanszky, 2001; Duan et al., 2005; Bienveniste and Baum, 2007).

For composites reinforced with spherical particles,
Hashin (1991) proposed to model an imperfect interface between
particles and the matrix as a thin interphase zone consisting of a
single homogeneous layer, with properties that are different from
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the properties of particles and the matrix. He analysed the result-
ing three-phase composite material using the composite spheres
assemblage and the generalised self-consistent scheme models and
investigated the interphase effect on the effective bulk and shear
modulus and the thermal expansion coefficient. Later, Hashin and
Monteiro (2002) used the three-phase model of particle-reinforced
composite to inversely determine the interphase zone properties
from the experimentally measured properties of the composite
using the generalised self-consistent scheme.

Hervé and Zaoui (1993, 1995) developed a micromechani-
cal model for composites reinforced with spherical particles sur-
rounded by multi-layered coatings/interphases with homogeneous
layers. They replaced the inhomogeneous inclusion (comprising the
particle and multi-layered coating/interphase) with an equivalent
homogeneous inclusion and went on to predict the bulk and shear
modulus of the composite.

Approximation of radially varying properties of the in-
terfacial transition zone by multiple concentric layers with
piecewise-constant properties was explored by Garboczi and
Bentz (1997) and Garboczi and Berryman (2000) as applied to con-
crete. For small volume fractions of aggregate, analytical formula
was derived for the bulk modulus and thermal expansion coeffi-
cient.

Experimental results for polymeric materials and concrete in-
dicate that properties of the interphase zone are not uniform
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through its thickness but vary radially outward from the centre
of the inclusion (see e.g. Holliday and Robinson, 1973; Lutz et al.,
1997). On the basis of these observations, a number of researchers
have assumed specific profiles for the variation of properties in the
interphase zone, which then enabled them to predict the mechani-
cal properties of particulate composites using a variety of methods.

Lutz and Zimmerman (1996, 2005) modelled graded interphase
around the inclusion as graded matrix, with power law variation of
elastic properties allowing a smooth transition between the inter-
phase and the matrix. They used the method of Frobenius series
to derive an expression for the effective elastic moduli of a ma-
terial with a dispersion of inclusions. The model was successfully
used by Lutz et al. (1997) to predict the bulk modulus of concrete.
A similar approach was used for thermal/electrical conductivity. In
the graded interphase model of Lutz and Zimmerman (1996, 2005),
the thickness of interphase zone is not specified but can be set ac-
cording to a chosen criterion. By using these models, Sburlati and
Cianci (2015) determined the bulk modulus expression in terms
of hypergeometric functions for hollow and solid inclusions and
Sburlati and Monetto (2016) performed a parametric investigations
on bulk modulus. In similar way, in Sburlati et al. (2017), the coef-
ficient of thermal expansion was determined.

Wang and Jasiuk (1998) considered a composite with spher-
ical inclusions and represented the interphase as a functionally
graded material of finite thickness, with power law variation of
the Young’'s modulus and constant Poisson’s ratio, or with both
Young’s modulus and Poisson’s ratio varying linearly or cubically
through the thickness. They calculated the effective bulk modulus
using the composites spheres assemblage method and the effective
shear modulus using the generalised self-consistent method.

Shen and Li (2003, 2005) proposed an effective interphase
model and a uniform replacement method to study the effect of an
inhomogeneous interphase with varying elastic properties in the
radial direction on the effective elastic moduli of composites rein-
forced by spherical particles. Using a modified technique of Shen
and Li (2003, 2005), Sevostianov and Kachanov (2006, 2007) in-
vestigated the effect of graded interface on the elastic moduli, con-
ductive and thermal properties of particulate nanocomposites. The
interphase was treated as a layer of finite thickness with elastic
moduli that smoothly vary from a set minimum value to the mod-
uli of the matrix. The authors concluded that the effect of the
matrix/inclusion interface is controlled mainly by the interphase
thickness and less so by the particular profile of property variation
as long as it is changes rapidly and levels smoothly toward the ma-
trix.

Andrianov et al. (2010) performed an asymptotic analysis of im-
perfect interfaces in the conduction problem for particle-reinforced
composites. Imperfect interfaces were treated as thin homoge-
neous layers surrounding the particles, with distinct properties and
thickness, which was made to approach zero to develop a solution.
The influence of the interface properties on the effective conduc-
tivity and on the local potential and flux fields was investigated.

Comparative analysis of different approaches to modelling im-
perfect interfaces in fibre-reinforced composites was performed by
Sevostianov et al. (2012). It was concluded that if the contrast be-
tween fibre and matrix properties is large, there is little difference
in effective elastic properties of the composite as predicted by the
differential approach, three-phase model and spring model.

Nazarenko et al. (2016) proposed a new approach to the deter-
mination of equivalent inhomogeneity for spherical particles and
the spring layer model of their interphases with the matrix ma-
terial, suitable for thin compliant interphases where displacement
jumps are significant but stress jumps are small. The properties
of equivalent inhomogeneity, incorporating only properties of the
original inhomogeneity and its interphase, are determined employ-
ing a new approach based on the exact Lurié’s solution for spheres.

Focussing on fibre-reinforced composites, Andrianov et al.
(2017) considered an infinitely thin interface on the phase bound-
ary, the properties of which are the average value of the prop-
erties of the matrix and fibres. This interface model was used
to derive the effective asymptotic formulae for conductivity of
densely packed fibre-reinforced composites, including the case of
non-conducting fibres contacting each other through a thin con-
ducting interface.

The aim of this paper is to predict analytically bounds for the
effective bulk and shear modulus of particulate composites rein-
forced with solid spherical particles surrounded by graded inter-
phase zone, using the composite spheres assemblage method of
Hashin (1960, 1962) and Hashin and Shtrikman (1963). The pa-
per is organised as follows. In Section 2, three-dimensional elas-
ticity problems for a single inclusion embedded in a finite matrix
are formulated. The graded interphase zone around the inclusion
is assumed to have power law variation of the shear modulus with
radial co-ordinate, and Poisson’s ratio is assumed to be constant
and equal to that of the matrix. In Section 3, explicit solutions for
spherically symmetric condition and shear condition respectively
with displacement and traction boundary conditions are developed
and stress and displacement fields are determined. In Section 4,
they are used to calculate the elastic energy for the single inclu-
sion composite under radially symmetric condition and pure shear
state and derive closed-form expressions for the bulk modulus and
the upper and lower bounds for the shear modulus. In Section 5,
numerical results for hard and soft interphase zones are presented
and discussed for a range of the interphase zone thickness ratios.
The effect of Poisson’s ratio of the graded interphase zone on the
bulk modulus value is also investigated and discussed.

2. Problem formulation

Consider a composite material with solid spherical inclusions
embedded in an isotropic matrix, with a non-homogeneous inter-
phase zone between each inclusion and the matrix. The volume
fraction of the inclusions with the interphase zone is assumed
to be uniform throughout the composite. On a macroscopic scale,
the composite material is assumed to be quasi-homogeneous and
quasi-isotropic.

In order to determine the shear and bulk modulus of the above
composite, we use the composite spheres assemblage model (CSA)
of Hashin (1960, 1962) in which a spherical representative volume
element of radius R containing one inclusion is adopted.

The element is referred to spherical co-ordinate system (O; r, 6,
¢) (Fig. 1) and (consists so of the representative sphere of radius R,
concentric with a solid spherical inclusion of radius b, and a non-
homogeneous interphase zone (b <r <c) surrounding the inclusion
(c<R). We assume that the matrix is isotropic and homogeneous,
with the shear modulus w;, and Poisson’s ratio vy, and the in-
clusion (0 <r<b), is also isotropic and homogeneous, with elastic
properties w; and v;.

We assume that the shear modulus of the non-homogeneous
interphase zone varies in the radial direction according to the
power law in the form

B
n) = () with u(®) = i (21)

At its interface with the matrix (r = c¢), the graded interphase zone
has the same value of the shear modulus @, as the matrix. The
inhomogeneity parameter 8 controls the profile of the power law
in the interphase zone and can be determined as

~ In(pip) —In (ptm)

p= In (c) —In (b) (2.2)
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Fig. 1. Composite sphere model in the plane z=0.

Several advantageous aspects of the present interface model are
worth mentioning. The model imposes no restrictions on the in-
terface thickness, as there is no requirement that the interface
should be a thin layer. The model can be applied to both harder-
than-matrix and softer-than-matrix interphase zones. This is not
the case for other interface models, for example those where the
properties of the interface are taken as the average value of matrix
and inclusion properties. The graded interphase zone is treated as
a single inhomogeneous layer rather than a set of multiple homo-
geneous layers, with properties varying as a continuous function of
radial coordinate. The properties of the graded interphase zone de-
pend on the properties of the matrix (they match properties of the
matrix at the outer boundary of the graded interphase zone) and
are independent from the properties of inclusions. The profile of
the interphase zone can be controlled via the inhomogeneity pa-
rameter.

We assume that Poisson’s ratio of the interphase zone has the
same value v, as the Poisson’s ratio of the matrix. This assumption
is not as restrictive as it may seem, since the value of Poisson’s
ratio seems to have negligible effect on the shear modulus bounds,
similarly to the case of a particle-reinforced composite without the
interphase.

We assume that perfect bonding exists at all interfaces; there-
fore, the following continuity conditions for stresses and displace-
ments are fulfilled:

[07]—p = 0. [09)iy = O, [00p],_, =0, [tr]_p =0

[ugl,_p = 0, [ug],_, =0,

[07]i—c = 0, [0pgli=c =0, [Unp]r:c =0, [w]._ =0,

[uglc =0, [ug] _.=0. (2.3)

In order to determine the bulk and shear modulus of the com-
posite sphere shown in Fig. 1, we adopt Hashin’s energy approach
(1962), and consider two different boundary value problems that
lead, respectively, to the effective bulk modulus and to the upper
and lower bounds for the shear modulus. In this way, we adopt, in
r =R, radially symmetric boundary conditions to determine bulk
modulus and shear boundary conditions in the plane z =0 to de-
termine the shear bounds.

2.1. Spherically symmetric boundary conditions

In order to obtain the bulk modulus for the problem shown in
Fig. 1, spherically symmetric problems are considered assuming at
r = R the following two conditions.

« Displacement boundary value problem

u™(R) = sR, (2.4)
where s is the normal strain.

« Traction boundary value problem
0™ (R) = 3Kps, (2.5)

where K, is the bulk modulus of the matrix.

2.2. Shear boundary conditions

To obtain the shear modulus for the problem shown in Fig. 1,
we recall that, for a generic homogeneous sphere (S) of radius R
with shear modulus w in a pure shear state, we have

s _ 7Y ©_Y
Uy’ = 2 Y, uy - 2

00

=0, 6 =0, 0 =0,

xu vy =

($)

oy =1, 0% =0, 0 =0, (2.6)

where 7 = uy.
The displacement and stress components in spherical co-
ordinates are

u (1,0, ¢) =
ud(r.0.¢9) =
uéf)(r,e,ab) =

and
or(s>(r,9,¢) = Tsin’0 sin 2¢, 09(5>(r,9,¢) =17 cos?0 sin2¢,

o (ro.¢) = E sin 26 sin 2¢, o(s)(r, 6.¢) =T cos6 cos2¢,

rsin’ @ sin 2¢,

rsin 26 sin 2¢,

NIR AR NVR

rsinf cos2¢, (2.7)

(5)(r 0.¢) =t sind cos2p, o’ (1.6, ¢) =

In this way, we assume the two different cases.

—7 sin2¢. (2.8)

« Displacement boundary value problem
We assume that at the outer boundary the displacement field
is given by Eq. (2.7) with r = R and the material properties are
those of the matrix:

u™ (R.6.¢) = ¥ Rsin’ 0 sin2¢,
u{”(R.6.¢) = %Rsinze sin 2¢),

uf" (R0, ) = %Rsin@ c0s 2. (2.9)

« Traction boundary value problem
We assume that, for r=R, the stresses are given by
Eq. (2.8) and @ = pum; so we have:

o ™R.0,¢) =1 sin29 sin2¢,
o\"(RO.$) = = sm29 sin 2¢,

o3 R 6.9) =1 sm@ 05 2¢. (2.10)

3. Elastic solutions

First, we explicitly find elastic solutions for the non-
homogeneous interphase zone, while adopting classic solutions
available in the literature for the homogeneous matrix and inclu-
sion. In particular, we study the elastic solutions for the spheri-
cal symmetry problem and the shear problem in the following two
subsections.
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3.1. Spherical symmetry solution

The Navier equation for the interphase zone with spherical
symmetry and elastic properties described by (2.1) becomes

d*u(ry (B-2)du(r)  2((B-Dvm+Du(r)
drz  r ar (Wm—1) 2z 0, (31)

in terms of the radial displacement component u(r). See also Hervé
and Zaoui (1993) where, in the equilibrium equation at p.2, with
our assumption (2.1) we have w/ (r)r = —u(r)B.

The solution of Eq. (3.1) is

u(r) = Byr™ + By, (3.2)
where
. VE+(@A-§Evg+2
hh =&+ A ,
. VE+(@E-§Evg+2
hy =§ — Vi : (3.3)

where By, B, are two integration constants. The stress components
are

or(r) = fr Birm=P=1 4 fip Borhe=h-1,

0 (1) = 0y (1) = for Byr"=F=1 4 fop Byrh=F-1, (34)

where

fin = 2 € ( (Vi = 1) = 2p) fi = 2 i€ (hy (Vi = 1) = 2vm)

" 20 — 1 = 2V — 1 ’
2 itmCP (vmhy + 1 2 (P (vmhy + 1

fa = ——“mz l)(mm—; ) o= ——Mmzv(m"li ). (3.5)

Then, we use the solution for the homogeneous matrix (m) as

u™(ry = Ajr + &

r2’
2 2’ (Vm + 1)A1 4MmA2
(m) _ m
o () =~ 2vp—1 3
2 vm+ DA 2 umA
o™ 1) = oM r) = - 2HnUn * DR Ziinfly (3.6)
m
and, for the solid homogeneous inclusion (i), as
u®(ry =qr,
i 2pi(vi+ 1)C
o) = -2 )G
1
i i 2 wi(vi+1)C
0,9(1) (r) — O,qgl) (r) — _ l“"lz(vl = 1) 1 ) (37)
1

We observe that the homogeneous solutions are also obtained for
B=0,hy =1 and h, = -2 in Egs. (3.2), (4) with the elastic prop-
erties of the specific layer.

The five unknown integration constants can be obtained from
the continuity conditions (2.3) and boundary conditions at r =R
in the displacement form (2.4) or in the traction form (2.5). In
Appendix A we explicitly write the equation system to obtain the
integration constants.

3.2. Shear solution

Following Christensen (2005), we assume the displacement
field in the interphase zone in the following form

u(r, 0, ¢) = % U, (r) sin® 0 sin 2¢,
Ug(r,0,¢) = % Uy (r) sin20 sin2¢,

uy(r.0,¢) = —%U(p(r) sinf cos 2¢.

In this way, the stresses become

wu(r) du(r)
rvm—T) ( ar (WVm —Dr— 2va,(r))
x sin?@sin2 ¢
Vm i(r)Up (1) (sin’ 6 — 2 cos? 6) sin2 ¢
* r2vm—1)
2vm (1) Ug () sin2 ¢
B rQvm—1) ’
- r(zl:(ri O (d[’zy) VUm T + Ur(r)> sin® 0sin2 ¢
w()Up (1) ((vm — 1) sin” 0 + cos?0) sin2 ¢
B r2vm—1)
2vm u(ryUy(r)sin2 ¢
B rQvn —1) ’
04(r.0.¢) =0y(1.0,¢) + @

() (dUe ()  Uy(r)

o (1,0,9) =

og(r,0,9) =

(Up (1) sin®6 +2U, (r))sin2¢,

09 (r0.9) = = ar - +2Urﬁr))sin2851n2¢,

() (AU () Up(r)  _Ui(r)
orp(1.0.9) = == ( & r i

>c052¢sin9,

09y (1.0, 9) = @Ug(r) cosf cos2¢. (3.9)

The functions Ui(r), Up(r) and Ug(r) are determined from the fol-
lowing set of Navier equations

d2U(r) 1 dU,(r) 3 1 dUy (1)
I A b il Ty ol
5+2(B—4)vn U (1)

TR L T 2(m-1 2 0,
d?U, (1) 1 dUy (1) 2 1dUr(n)
dr? _('3_2)? dr  2vp—1r dr
_26=-B)vm+B-12Uy(r) 4(B-2)vm—-2(B-4) U (N —0
2vm —1 2 2 — 1 2
Uy (r) = =Uy (). (3.10)

The solution of this set of equations, written in terms of four inte-
gration constants K;, (j=1,2,3,4) is
Ur(r) = (Ko %2 + Ky r™2 + K3 181 + Kyr=21)r8 . Uy (1)

=-Uy (1)
= (K1Qi 2 + KoQa 1722 + K3Q3 1™ + KyQar=1)rf,

(3.11)
where we have set & = (8 —1)/2,
A 1\/2(2(1—vm)§2+2(3um—1)g—(11vm—13))—J§
T2 I =vm) ’
12 -vm)E2+2Bvn—1)E - (1vy —13)) + V38
Ay = i\/ . , (3.12)

§=16((25Vm —22) U +1)E2— 16 (5vpm —3)(Bum —7) &

+ 4 (25 vy — 78) vy + 228, (3.13)
and
Q = —((4vm— DE + A, —2vm+3)%,
Q, = Q2

—(Avn—1E Ay —2Vpn+3) T

Q2= 2vm - 1)((Vn1 - ])52 —4vpE — (v — ])AZZ)
+ 12v2 =16 vy + 2,
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Q= ~((4vn =D + Ay —2un+3) 2,
Qi = ~((vn =g = & =200+ 3) 2
Qs = Q2vm — D ((n — DE* = 4vné — (v — DAL?)

+ 122 =16 vy + 2,
Q =12vnRVm — 1)*62 =6 2vm — 1)(4vm® — Tvm + 1)
+ 6 V(v —1)(2 Vv —5) +3. (3.14)

We observe that, for the isotropic homogeneous case, we have:
A1 =3/2, Ay =7/2, & =-1/2 and the quantities Q;, Q», Q3 and
Qy4, assume the following values:

7 —4vn 2

Q= R Q=-3

2Qun—1)
3 Sem”

G=1 U="7, "3

(3.15)
Now, the functions Ur(m),UO(m) and Ug") in the homogeneous ma-

trix (m), obtained by the solution of (3.9), by putting 8 =0, as-
sume the form

H. H.

U™ (r) = Hir® + 22 4 Har + 3,
7—4v 2H 2Qvm—1)H
(m) _ m 3 <12 m 4
g™ (1) = 6 v Hir 3r4+H3r+ 4vy, -5 r2’

U™ (r) = ~Ug™ (n), (3.16)
and, in similar way, in the homogeneous solid inclusion (i) we
have

Uy =Fr’ +Er,
i 7—4v;
U (ry = ——FR1® + Br
7] ( ) 6]),' 1 +F3 s
Uy (ry = U’ (n). (3.17)
The unknown integration constants can be obtained from the
continuity conditions (2.4) and boundary conditions at r =R in
the displacement form (2.8) or in the traction form (2.9). In
Appendix B we explicitly write the equation system to obtain the
integration constants.

4. Application of Hashin’s theory

The elastic solutions derived in the previous sections can be
used to determine bounds for the elastic moduli of the compos-
ite sphere shown in Fig. 1.

The general Hashin’s theory considers the change in strain en-
ergy in a corresponding equivalent homogeneous sphere of radius
R and elastic properties K, and w,, due to the presence of non-
homogeneities. The different displacement or traction assumptions
at r =R (see Section 2) introduced to evaluate the change of the
strain energy of the composite sphere of Fig. 1 and the equivalent
homogeneous sphere, permit us to obtain the bounds for the elas-
tic moduli (Hashin, 1962).

Before deriving the formulae for these bounds, let us introduce
the following quantities:

3
n:(ﬁ) , Q:%, (4.1)

where 5 is the volume fraction of the inclusions in the compos-
ite. We note that, as a consequence of the above definitions and
the geometry of the problem (Fig. 1), n and Q are related by the
inequality 0 <n <1/Q3.

4.1. Bulk modulus

Application of Hashin’s method shown that the expressions for
the effective bulk modulus K}, obtained with the displacement or
traction conditions coincide.

« Displacement or traction approach
We consider the elastic energy Uy, stored in a sphere of radius
R and volume V, comprised of the effective medium, subjected
to boundary conditions (2.4):

U, = U + 68U, (4.2)
where

9 2
U = 5VKns”, (43)

is the energy stored in an homogeneous sphere of radius R with
boundary conditions (2.4) and bulk modulus Ky, of the matrix
of the composite sphere. Moreover, we define the effective bulk
modulus as the value for which it holds

U, = %VK,,SZ. (4.4)

The explicit calculation of the term §U can be done by using
Eshelby formula (Eshelby, 1957). So doing we get the expression

4
ﬁ No <Km + 3 Hm) n (4.5)

Kn — NoKmn+1
where Ny = N;/N, and
Ny = Q2" (hy—1) (P (3 Kin+4 ptm) (hy— B) —3 Kin+8 fim)

+ 9K)HQ*
— QF (hy = B+2)((BKn + 4 pm)ha + 6 Kin — 4 i) Q2P
- 9K) 2,

Ny = —Q2" (hy+2) (P (3 Kin+4 fim) (ha— B) —3 Kin+8 pam)
+ 9K)Kn 2
+ QP (hy — B = 1)((B K + 4 im)hy + 6 Kin — 4 1) 2P
— 9K)Kip. (4.6)

We remark that the case without the interphase is obtained
when hy =1,hy = -2, 8 =0 and so, the terms Ny becomes
3 (Km — Ki)

T GKi +4mum)Kn (4.7)

0

4.2. Shear modulus bounds

For the composite shear modulus in the energy approach of
Hashin (1960, 1962), the effective shear modulus for the composite
material uy, satisfies the following inequality

i <y < (4.8)

where ,u,(I”) and M,(,T) are the equivalent shear modulus for the dis-
placement problem and the stress problem, respectively.

« Displacement approach - upper bound
We consider a homogeneous sphere S of radius R, with bound-
ary conditions (2.9) and shear modulus of the matrix of com-
posite sphere (. Then the elastic energy of this sphere is

1
Ug" = 5 im >V, (49)

where V is the volume of the sphere S.
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Similarly, for the equivalent homogeneous sphere with u =
u;]”), and the same boundary conditions (2.10), the elastic en-
ergy U,g“) of this sphere is in the form

1
(u) (u)
Uhu = i /,Lhu ‘)/ZV (410)

Following Hashin (1960, 1962) and by using Eshelby’s formula
(Eshelby, 1957), the elastic energy (4.7) can be written as

Uh(u) _ Ué”) +8UW, (4.11)
where
SUW — Ay (m—1) H,. (412)

4v, -5

The coefficient H; is obtained using displacement boundary
value problem.
In this way, we obtain

@ _ SUW
My = Hm+ 3 (4.13)
27V

In explicit form, the normalized shear modulus ,u,g”) can be
written as

MI(IU) by n'%3 + by

Mm * ba1 1973 + by 773 + baz 373 + bag ) + bys

where the quantities b;; are

. (414)

b1 7% = 30(1 — vi)) (2 Vi — 1)(6(19 vy — T ptmVs
— 3 (U = )Va + 27 vp3))
+ 30(1 =) ((4(28 =31 vy )V4+6(4 v —7)Vs) fhm
+ 3 (10, — 7)Vp),
by Q73 =303Q2vm— 1)QRMAVI tm +V2) +3V3)) (v — 1)
x (10vm —7) =2 (30 hm(2Vs +3Vs) — 45 Vp)
x (Vm = 1)(10 vy — 7),
by — _2(5vm —4)by ’
15 (v — 1)
by Q77 = 150(1 — 2 Vi) 2 (Vi (Vi + 12) = ) Vi
+ Cvn(vm—3)+7)W,)
— 2527 v (2 v — V3 = (4 v (32 vy — 57)
+ N2) Vs + 6(7 = 20m (2 vm + 3)) mVs)
— 75(4 v 2 vm —3) + 7)Vs,
b3 27> = 632 vm — 1)(16 (Vi + 2)pmV1 — 12 (v — 2)V,
+ 3(Um +5)V5)
+ 63(4(Vm — 3)UmVa — 12Qvm — D pumVs + 6Vs),
5(4vm(2vm —3) 4+ 7)byy
6(1—vm)(10vy, —7) °

bos = (4.15)

bas = 2(2Vm — 1)(24(19 V — 17) Vs + 6(13 v — 11)V5
+ 9(7 v — 5)V5) (10 vy — 7) — 4(pm (19 v — 17)

x 2V4+3Vs) =35 Um—4)Ve)(10vm — 7). (416)

The quantities V;, (i=1...6) are given in Appendix C.

« Traction approach - lower bound
For the traction problem, we consider a homogeneous sphere
with i = u, with boundary conditions at r = R given by (2.10).
Similarly to the previous case, we have

T2

U =
0 2 m

V. (4.17)

For the equivalent homogeneous sphere with @ = ,u,(f) and
boundary conditions at r = R given by (2.11), we have

) ?
Ut = V. (4.18)
h (T)
2w,
In this case the elastic energy (4.11) can be written as
Uh(” _ Ué” +8UM, (4.19)
where
A7 U T (v — 1)
sy = —rm- 2 m . 4.20
4vy -5 4 ( )
The coefficient H, is obtained from the traction boundary value
problem.
So, we get
1 1 su™ (421)
PR EIG '

In explicit form, the normalized shear modulus ,u,,(f) becomes

(T)

i N By 20+ . (422)
Mm Ba1 n19/3 4By 77/34-By3 /3 +Baa +Bas
where the quantities B are written in terms of b as
B — 4(10 Vm — 7)b]] B, — 4(10 Vm — 7)b21
T T s +7 T T B+
Bzz _ 4(10 Vim — 7)b22 Bz3 _ 4(10 Vm — 7)b23
5Vm+7 ’ 5Vm+7 ’
By, — 4(vn(5vm+3)+7)(10 vy — 7)byy
56vm+7)AvnQvn-3)+7) ’
Biz = b1z, Bays = bas. (4.23)

For small volume fraction of the inclusions, the expressions for
the upper and lower bounds become the same and reduce to the
following expression

Mn b1,
— =1+ _—n. 4.24
Mm bys 7 ( )

5. Numerical results and discussion

In this section, numerical results for the macroscopic bulk and
shear modulus with and without the interphase zone are pre-
sented and discussed.

The following elastic properties are considered for the matrix
and the solid inclusion: p; = 3.6 (tm, v; = 0.7 vy,. These values cor-
respond to those used by Hashin (1962).

For the interphase zone, a range of the interphase zone thick-
ness ratios is analysed: €2 =1.1,1.25, 1.5. As it was pointed out at
the beginning of Section 4, n and 2 are related by the inequality
0<n<1/Q3.

Two cases of elastic properties are analysed: hard interphase
with p, = 1.5 wm and soft interphase with w;, = 0.5 um and Pois-
son’s ratio in matrix vy, = 0.3.

Fig. 2 shows variation of the shear modulus through the thick-
ness of the graded interphase zone, as given by Eq. (2.1), for dif-
ferent values of Q2 and the hard and soft cases. The values of B
for specific interphase zone thickness ratios are determined using
expression (2.3).

Fig. 3 shows the bulk modulus obtained from the formula (4.2).
The red line represents the case without the interphase zone, solid
lines represent the hard cases and the dashed lines represent the
soft cases. We observe that the effect of interphase zone on the
bulk modulus is the most pronounced in the case of soft inter-
phase zone.
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Fig. 3. Normalized bulk modulus for varying interphase thicknesses for hard and soft interphases.

The bulk modulus of a composite with spherical inclusions,
in which the interphase zone had two Lamé constants varying
in radial direction, was investigated previously by Sburlati and
Cianci (2015) and Sburlati and Monetto (2016). Although the power
law (2.1) of the present paper is more restrictive compared to the
one used in the above-cited papers, this power law allows us to
obtain the shear modulus bounds in a simpler way. It is interesting
to note that the interphase zone model introduced in this paper
assumes Poisson’s ratio of the interphase zone to be equal to Pois-
son’s ratio of the matrix. In order to examine the effect of Poisson’s
ratio variation in the interphase, we compare the bulk modulus
prediction obtained by Eq. (4.2) with that obtained in Sburlati and
Cianci (2015).

Fig. 4 shows variation of the normalized shear modulus in the
interphase zone obtained from Eq. (2.1) of the present paper and
the power law given by Eq. (2.1) of the paper of Sburlati and
Cianci (2015), with the inhomogeneity parameter f = 10. Both
variations are shown for the case of the hard interphase with
€ = 1.25. It is worth pointing out that in the present interphase
zone model, the thickness of the zone is defined exactly, whereas

in the previous interphase zone model, like in Lutz and Zimmer-
man (1996, 2005), the thickness of the interphase zone is not de-
fined clearly but instead the whole matrix is treated as a graded
medium and the interphase zone thickness can be set according to
a chosen criterion. Comparison of numerical results produced by
the two different power-law variations allows us to examine the
effect of the Poisson’s ratio on the bulk modulus.

Fig. 5 shows comparison of the normalized bulk modulus ob-
tained from Eq. (4.2) of the present paper and from the expression
(5.4) of the paper Sburlati and Cianci (2015). The case without the
interphase is shown in red for reference. When Poisson’s ratio of
the interphase zone is equal to Poisson’s ratio of the matrix, vy, =
0.3, predictions of both models are very close. When Poisson’s ra-
tio of the interphase zone is not equal to Poisson’s ratio of the ma-
trix, only the previous model is able to predict the bulk modulus.
Normalized bulk modulus for different Poisson’s ratios of the inter-
phase zone (v;, = 0.27, v, = 0.24) is shown in black; v, = 0.3, and
the value of the shear modulus is assumed to be the same. We ob-
serve that as Poisson’s ratio of the interphase zone decreases, the
bulk modulus of the composite decreases too. Therefore, the as-
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with the Sburlati and Cianci (2015) model assuming: v, = vm = 0.3 (dashed line), v, = 0.27, v;; = 0.3 (dot-dashed line) and v;, = 0.24, vy, = 0.3 (dotted line).

sumption of Poisson’s ratio of the interphase zone being the same
as Poisson’s ratio of the matrix, used in the present model, leads
to an overestimation of the bulk modulus value. In the following
we investigate on shear modulus bounds obtained in Section 4.2.

Fig. 6 shows the upper (continuous lines) and lower (dashed
lines) bounds for the normalized shear modulus p,/um obtained
from the exact expressions (4.11) and (4.18), respectively for hard
interphases (a) and soft interphases. The red lines show the
bounds for the composite without the interphase zone considered
by Hashin (see Fig. 5 of Hashin, 1962). They are obtained from the
present model by putting (2 =1). We observe that composites
with and without the interphase zone exhibit similar behaviour
for all values of 2 considered. Also, for thin interphase zone, i.e.
(2 =1.1), the gap between the lower and upper bounds at the
maximum value of n = 0.75 is greater for the soft interphase zone
than for the hard interphase zone.

6. Concluding remarks

The bulk and shear moduli of particulate composites reinforced
with solid spherical particles surrounded by the graded interphase
zone at the particle/matrix interface have been analysed. Two as-
sumptions about the elastic properties of the graded interphase
zone were made: (i) power law variation of the shear modu-
lus with radial co-ordinate and (ii) Poisson’s ratio of the inter-
phase zone being equal to that of the matrix (the second assump-
tion is not as restrictive as it may seem, since the value of Pois-
son’s ratio appears to have negligible effect on the shear modulus
bounds).

The two assumptions have enable us to determine stress and
displacement fields in a spherical representative volume element
containing a single particle (inclusion), when either displacement
or traction boundary conditions are prescribed at the outer bound-
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ary. This in turn has allowed us, following Hashin’s approach, to
determine the elastic energy of the single inclusion composite and
derive closed-form expression for the bulk modulus and the upper
and lower bounds for the shear modulus.

The effect of graded interface zone on the bulk modulus mono-
tonically increases with the particle volume fraction and is more
pronounced for the soft interphase zone than for the hard one.

Comparison of two graded interphase zone models, the one
presented in this paper, the other in Sburlati and Cianci (2015),
shows that when Poisson’s ratio of the interphase zone is equal
to Poisson’s ratio of the matrix, the values of the composite’s
bulk modulus predicted by the two models are very close, but
the present model has the advantage of being simpler. However,
the assumption of Poisson’s ratio of the interphase zone being the
same as Poisson’s ratio of the matrix leads to an overestimation of
the bulk modulus value.

(b)

Fig. 6. Normalized shear modulus bounds for varying interphase thicknesses with hard (a) or soft interphase (b).

Analysis of numerical results for hard and soft interphase zones
over a range of the zone thickness ratios revealed that the shear
modulus bounds for composites with and without the interphase
zone generally behave in a similar manner. Hard graded inter-
phase zone makes the composite stiffer in shear and increases the
shear modulus bounds of the composite, while soft graded inter-
phase zone makes the composite more compliant in shear, de-
creasing the shear modulus bounds. When the interphase zone
is thin relative to the radius of the particle, the gap between
the lower and upper bounds at the maximum permissible parti-
cle volume fraction is greater for the soft interphase zone than
for the hard interphase zone. Finally, we remark that the numer-
ical results obtained for “1(1“) and p,,(f) give rise to a medium
value that is in agreement with the numerical results obtained in
Wang and Jasiuk (1998) by using the generalized self-consistent
method (Christensen and Lo, 1979).
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Appendix A. Spherically symmetric boundary value problem

The integration constants Cy, By, By, A1 and A, can be determined by the following system:

ay =b, ayp=-bM,

)

an a a3 0 0 C] 0
ax a a3 0 0 B] 0
0 a3 043 @34 a5 | B[ =10
0 (g2 ag3 Qaq Qg5 | | Ay 0
0 0 0 asq4 ass] LAp f
where
2pi(1+vy)
hi—B-1 hy—B-1
=5, -1 apy = fun bMP1 a3 = fpbh A1,
Vi — 1
2 umcf (14 vp)
h. h;-1 hy—1 m m
Gy3 = —b™, asp = fryc™™', a3 =fpc™, agy=———-2
2vn —1
azs = dumc?3, ap=ch, ap=c", ay=-c as5=-c?

while, respectively for the displacement or the traction boundary condition, the terms of the last line are

o =R ol =R, [=f® sk

or

T
al) = —(1 4 vm),

aD =

55

Appendix B. Shear boundary value problem

—2Qvn—-DR?, f=fD=—-(1+vp)s.

The continuity conditions (2.3) in the displacements permit us to write the constants Fy, F3, H; and H, in term of the constants K, K>,
K3, K4, H3 and H,. Introducing the quantities

ki =K cd 102 ) =Ky b1 02 g = Ky e840 ey = Ky 810,

we write

_61)1' Q]_E Z}l:l a)j(QJ — 1)l(j

b2 (10v; — 7)

6v; Q1§ Z?:1 C()J(Qj - 1)’{_,

100, -7

2vm Y1 (3Q5 +2)k;

)

4
+ 91_3’: Za)jkj,

10 l)mH3

j=1
8vm(5vm —4)Hy

H;

4
H, = 7% b)Y (2vm(3Q+2) - 7)k; + % Q°b>(10 vy — 7)Hs +

where

w1 = QA s

7b2 22

j=1

C7bh2Q2  Tb5Q3(4vn—5)°

wy =Q%, w3=QM,

w4 = QA

5Q2b?(8 vn? — 12 + 7)Hy

28 vy, —35

)

The remaining constants kq, ky, k3, k4, H3 and H, are obtained using conditions (2.3) on the stresses and the two boundary conditions
(2.9) or (2.10). So doing we get the following system

Cin  Cn2
Ca1 C2
C31 (32
Cy1 Ca2
Cs1 Cs2
Ce1  Ce2

where, for j=1,...

B Um2PHE (In(R) ((vm — DE +vm(3Q; = 2)) + (1 — v) In(w)) )w;

C13
€23
C33
C43
Cs3
C63

C14 0
Co4 0
C34 (35
C44 (g5
Cs4  Css
Ce4  Co5
4, we have

0
0
C3p
Ca6
Cs6
Ce6

k]
k2
k3
k4
Hs
H,

0

C]j

Hi In(€2) (2 vm — 1)
QUE(WOQ+1) - 7)w;

101)1'—7

)



234 R. Sburlati et al./International Journal of Solids and Structures 138 (2018) 224-235

2Q1((Avi—7Qj+6v)w; w22 (((€ — 1) In(R) - In(w)))Q; + 2 In(Q) ) w;
10 v —7 B Mi ll'l(Q) ’
(1 —vp) In(w))
In(£2) '

10 2 vm — 1) (v — 1
€35 =5Qvn—1)(vm—1), Cc36= (b3£r2”3(43(_”;) )
m

Cj =

Gy = —6Vn(Vm—DQj+ (Vm —1)(E +4—4vm) +

8 14 In(wj)
Caj = (4Vm+s_3)Qj+§Um_?—m s
20 20 (vm —1
C45 = ?(1_‘)111): C46=_%-

Respectively, for the displacement or the traction boundary conditions, the terms of the last two lines are

_ 6un(R7 = b7Q7)Q; + b7Q7(7 — 4vm) + 4R v,

cw
> 7 RoD222
cw _ 1 10Rwy, L (10vn — 7)Q5b5
» 702522 TR ;
(w _ SPUMCun =3 ) 1 BRunGun_d) o,
56 7R>(4vp, —5) R~ 7b5(dvyn—5)Q5° 5 ,
c® = @b°(vm (6 +4) - 7) cw—q_ Qb
6 R>(10 vy, — 7) » Ces e
2 2hH2
W = 5(R? - %) (4vm2vm —3) +7) =g =y
66 R5(4 vy —5)(10 v — 7) ; 6 :
or
(0 mBY R 4D (n(6Q) +4) ~T)un
oo 79°h? 785 :
(o _ (4070 —10um)Q7 4+ R (7 Q27 + 5R%vn))
® 7RoD22 :
(D _ 201 (10 (8677 — R us? + (Q3b% (=120 21 + T R?) + 8 K7 )
56 7R5Q5D5 (4 vy — 5)

212 2
B 10 i (2 2212 — R?) gogD
R5(4vn—5) 5 '
D _ 420 (vn (6Q; +4) - 7) D _1_ 4 (10 vy, — 7)Q2%b°

6 R5(5Vm +7) R RRGvm+7)

i  —2002(4vn(2vm —3) +7)Q% +10 (7 — vn?R? s T

Cog = .86 =8 =———.
66 R3(4vm —5)(5vm +7) 6 m

Appendix C. Quantities related to the shear bounds

We introduce the following quantities:
Vi =V71Ve3 —V73Vs 1, Vo =V71Vig3 —V73Vig1,
V3 = Vg3Vio1 — Vg 1Vio3, Va=V71Vo3 —V73Vo 1,
Vs = Vo3V 1 —Vo1Ve3, Ve =Vy1Vio3 —Vo3Vig1

and

Vii=S1a+Su+1, Viz=s3+53+1,Vg1=0Q1514+ Q2824 +Qs, Vg3 =0Q1513+ Q2823+ Q3, Vo1 =—(Vm — 1) (A1 + (S14 —S24)A2)
+ 3 (Q1514 + Q2824 + Qa) v,
+ ((Wn—1E —2vm)(S1a+ 524+ 1), Vo3 = (Vi — 1) (A1 + (513 — 523) A2) + 3 (Q1513 + Q2523 + Q3) vy
+ ((Wvm =& = 2vp) (513 + 523 + 1),
Vio,1 = (Q1S14 — QaS24) Um A2 — A1Quptm
+ m((Q1S14 + Q2824 + Q1) (§ — 1) —10/3(s14 + S24 + 1),
Vios = (Q1513 — Q2823) um A2 + Q3 ptm Ay
+ tm((QiS13 + Q2823 + Q3)(§ — 1) — 10/3(s13 4 523 + 1)),



R. Sburlati et al./International Journal of Solids and Structures 138 (2018) 224-235 235

where

_ U203 — 013002
Q110 — Q12001
Q13021 — X103
Q10 — 020t

o= (12024 — 14022
Q110022 — 12021
Q140001 — 0110024

523 = 4 =
Q11022 — 0120001

and, for j=1,...4, we have

(10v; — 7)Q¥*  u w;

(In(@;) +21In(Q))vm  In(w))
a]j = - 3VmQ]+(Vm_1)$_ (ln(Q))2 + ln(Q)
+ Qua—DH(MOQ+1) - 7) i wj,
1 .
=2+ [e-1- % Q|10 - 1 i w; + 8 ((Q,- + ;)v,- - %Q,)u,-a)j.
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