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a b s t r a c t 

The paper is focused on analytical prediction of the effective bulk and shear modulus for particulate 

composites reinforced with solid spherical particles surrounded by graded interphase zone. A three- 

dimensional elasticity problem for a single inclusion embedded in a finite matrix is studied. The graded 

interphase zone around the inclusion is assumed to have power law variation of the shear modulus with 

radial co-ordinate, with Poisson’s ratio assumed to be constant and equal to that of the matrix. Follow- 

ing Hashin’s approach, two boundary value problems are considered and stress and displacement fields 

in the interphase zone are determined. They are then used to calculate the elastic energy for the sin- 

gle inclusion composite under spherically symmetric state and pure shear state and derive closed-form 

expressions for the bulk modulus and the upper and lower bounds for the shear modulus. Numerical 

results for hard and soft interphase zones are presented and discussed for a range of the interphase zone 

thickness ratios. 
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1. Introduction 

Macroscopic properties of particle-reinforced composite materi-

als are strongly influenced by the phenomena at the interface be-

tween particles and the matrix. For example, study of finished and

unfinished graphite fibres in epoxy matrices ( Drzal et al., 1983 ) re-

vealed that the finish layer, i.e. an epoxy-compatible coating ap-

plied to fibres with the view to enhance their adhesion with the

matrix, creates a brittle interphase layer between the fibre and ma-

trix which increases the interfacial shear strength but at the ex-

pense of changing the failure mode from interfacial to matrix. 

To describe the effect of interfacial phenomena on composites

properties, either an imperfect interface is considered (see e.g.,

Lipton and Talbot, 2001; Arthur and Sudak, 2016 ), or an interphase

zone between particles and the matrix is introduced, with proper-

ties that differ from those of both main phases (see e.g., Voros and

Pukanszky, 2001; Duan et al., 2005; Bienveniste and Baum, 2007 ). 

For composites reinforced with spherical particles,

Hashin (1991) proposed to model an imperfect interface between

particles and the matrix as a thin interphase zone consisting of a

single homogeneous layer, with properties that are different from
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he properties of particles and the matrix. He analysed the result-

ng three-phase composite material using the composite spheres

ssemblage and the generalised self-consistent scheme models and

nvestigated the interphase effect on the effective bulk and shear

odulus and the thermal expansion coefficient. Later, Hashin and

onteiro (2002) used the three-phase model of particle-reinforced

omposite to inversely determine the interphase zone properties

rom the experimentally measured properties of the composite

sing the generalised self-consistent scheme. 

Hervé and Zaoui (1993, 1995) developed a micromechani-

al model for composites reinforced with spherical particles sur-

ounded by multi-layered coatings/interphases with homogeneous

ayers. They replaced the inhomogeneous inclusion (comprising the

article and multi-layered coating/interphase) with an equivalent

omogeneous inclusion and went on to predict the bulk and shear

odulus of the composite. 

Approximation of radially varying properties of the in-

erfacial transition zone by multiple concentric layers with

iecewise-constant properties was explored by Garboczi and

entz (1997) and Garboczi and Berryman (20 0 0) as applied to con-

rete. For small volume fractions of aggregate, analytical formula

as derived for the bulk modulus and thermal expansion coeffi-

ient. 

Experimental results for polymeric materials and concrete in-

icate that properties of the interphase zone are not uniform

https://doi.org/10.1016/j.ijsolstr.2018.01.015
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hrough its thickness but vary radially outward from the centre

f the inclusion (see e.g. Holliday and Robinson, 1973; Lutz et al.,

997 ). On the basis of these observations, a number of researchers

ave assumed specific profiles for the variation of properties in the

nterphase zone, which then enabled them to predict the mechani-

al properties of particulate composites using a variety of methods.

Lutz and Zimmerman (1996, 2005) modelled graded interphase

round the inclusion as graded matrix, with power law variation of

lastic properties allowing a smooth transition between the inter-

hase and the matrix. They used the method of Frobenius series

o derive an expression for the effective elastic moduli of a ma-

erial with a dispersion of inclusions. The model was successfully

sed by Lutz et al. (1997) to predict the bulk modulus of concrete.

 similar approach was used for thermal/electrical conductivity. In

he graded interphase model of Lutz and Zimmerman (1996, 2005) ,

he thickness of interphase zone is not specified but can be set ac-

ording to a chosen criterion. By using these models, Sburlati and

ianci (2015) determined the bulk modulus expression in terms

f hypergeometric functions for hollow and solid inclusions and

burlati and Monetto (2016) performed a parametric investigations

n bulk modulus. In similar way, in Sburlati et al. (2017) , the coef-

cient of thermal expansion was determined. 

Wang and Jasiuk (1998) considered a composite with spher-

cal inclusions and represented the interphase as a functionally

raded material of finite thickness, with power law variation of

he Young’s modulus and constant Poisson’s ratio, or with both

oung’s modulus and Poisson’s ratio varying linearly or cubically

hrough the thickness. They calculated the effective bulk modulus

sing the composites spheres assemblage method and the effective

hear modulus using the generalised self-consistent method. 

Shen and Li (20 03, 20 05) proposed an effective interphase

odel and a uniform replacement method to study the effect of an

nhomogeneous interphase with varying elastic properties in the

adial direction on the effective elastic moduli of composites rein-

orced by spherical particles. Using a modified technique of Shen

nd Li (20 03, 20 05) , Sevostianov and Kachanov (20 06, 20 07) in-

estigated the effect of graded interface on the elastic moduli, con-

uctive and thermal properties of particulate nanocomposites. The

nterphase was treated as a layer of finite thickness with elastic

oduli that smoothly vary from a set minimum value to the mod-

li of the matrix. The authors concluded that the effect of the

atrix/inclusion interface is controlled mainly by the interphase

hickness and less so by the particular profile of property variation

s long as it is changes rapidly and levels smoothly toward the ma-

rix. 

Andrianov et al. (2010) performed an asymptotic analysis of im-

erfect interfaces in the conduction problem for particle-reinforced

omposites. Imperfect interfaces were treated as thin homoge-

eous layers surrounding the particles, with distinct properties and

hickness, which was made to approach zero to develop a solution.

he influence of the interface properties on the effective conduc-

ivity and on the local potential and flux fields was investigated. 

Comparative analysis of different approaches to modelling im-

erfect interfaces in fibre-reinforced composites was performed by

evostianov et al. (2012) . It was concluded that if the contrast be-

ween fibre and matrix properties is large, there is little difference

n effective elastic properties of the composite as predicted by the

ifferential approach, three-phase model and spring model. 

Nazarenko et al. (2016) proposed a new approach to the deter-

ination of equivalent inhomogeneity for spherical particles and

he spring layer model of their interphases with the matrix ma-

erial, suitable for thin compliant interphases where displacement

umps are significant but stress jumps are small. The properties

f equivalent inhomogeneity, incorporating only properties of the

riginal inhomogeneity and its interphase, are determined employ-

ng a new approach based on the exact Lurié’s solution for spheres.
Focussing on fibre-reinforced composites, Andrianov et al.

2017) considered an infinitely thin interface on the phase bound-

ry, the properties of which are the average value of the prop-

rties of the matrix and fibres. This interface model was used

o derive the effective asymptotic formulae for conductivity of

ensely packed fibre-reinforced composites, including the case of

on-conducting fibres contacting each other through a thin con-

ucting interface. 

The aim of this paper is to predict analytically bounds for the

ffective bulk and shear modulus of particulate composites rein-

orced with solid spherical particles surrounded by graded inter-

hase zone, using the composite spheres assemblage method of

ashin (1960, 1962) and Hashin and Shtrikman (1963) . The pa-

er is organised as follows. In Section 2 , three-dimensional elas-

icity problems for a single inclusion embedded in a finite matrix

re formulated. The graded interphase zone around the inclusion

s assumed to have power law variation of the shear modulus with

adial co-ordinate, and Poisson’s ratio is assumed to be constant

nd equal to that of the matrix. In Section 3 , explicit solutions for

pherically symmetric condition and shear condition respectively

ith displacement and traction boundary conditions are developed

nd stress and displacement fields are determined. In Section 4 ,

hey are used to calculate the elastic energy for the single inclu-

ion composite under radially symmetric condition and pure shear

tate and derive closed-form expressions for the bulk modulus and

he upper and lower bounds for the shear modulus. In Section 5 ,

umerical results for hard and soft interphase zones are presented

nd discussed for a range of the interphase zone thickness ratios.

he effect of Poisson’s ratio of the graded interphase zone on the

ulk modulus value is also investigated and discussed. 

. Problem formulation 

Consider a composite material with solid spherical inclusions

mbedded in an isotropic matrix, with a non-homogeneous inter-

hase zone between each inclusion and the matrix. The volume

raction of the inclusions with the interphase zone is assumed

o be uniform throughout the composite. On a macroscopic scale,

he composite material is assumed to be quasi-homogeneous and

uasi-isotropic. 

In order to determine the shear and bulk modulus of the above

omposite, we use the composite spheres assemblage model (CSA)

f Hashin (1960, 1962) in which a spherical representative volume 

lement of radius R containing one inclusion is adopted. 

The element is referred to spherical co-ordinate system (0; r , θ ,

) ( Fig. 1 ) and (consists so of the representative sphere of radius R ,

oncentric with a solid spherical inclusion of radius b , and a non-

omogeneous interphase zone ( b ≤ r ≤ c ) surrounding the inclusion

 c ≤ R ). We assume that the matrix is isotropic and homogeneous,

ith the shear modulus μm 

and Poisson’s ratio νm 

, and the in-

lusion (0 ≤ r ≤ b ), is also isotropic and homogeneous, with elastic

roperties μi and ν i . 

We assume that the shear modulus of the non-homogeneous

nterphase zone varies in the radial direction according to the

ower law in the form 

(r) = μm 

(
c 

r 

)β

with μ(b) = μip . (2.1)

t its interface with the matrix (r = c) , the graded interphase zone

as the same value of the shear modulus μm 

as the matrix. The

nhomogeneity parameter β controls the profile of the power law

n the interphase zone and can be determined as 

= 

ln 

(
μip 

)
− ln ( μm 

) 

ln ( c ) − ln ( b ) 
. (2.2) 



226 R. Sburlati et al. / International Journal of Solids and Structures 138 (2018) 224–235 

Fig. 1. Composite sphere model in the plane z = 0 . 
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Several advantageous aspects of the present interface model are

worth mentioning. The model imposes no restrictions on the in-

terface thickness, as there is no requirement that the interface

should be a thin layer. The model can be applied to both harder-

than-matrix and softer-than-matrix interphase zones. This is not

the case for other interface models, for example those where the

properties of the interface are taken as the average value of matrix

and inclusion properties. The graded interphase zone is treated as

a single inhomogeneous layer rather than a set of multiple homo-

geneous layers, with properties varying as a continuous function of

radial coordinate. The properties of the graded interphase zone de-

pend on the properties of the matrix (they match properties of the

matrix at the outer boundary of the graded interphase zone) and

are independent from the properties of inclusions. The profile of

the interphase zone can be controlled via the inhomogeneity pa-

rameter. 

We assume that Poisson’s ratio of the interphase zone has the

same value νm 

as the Poisson’s ratio of the matrix. This assumption

is not as restrictive as it may seem, since the value of Poisson’s

ratio seems to have negligible effect on the shear modulus bounds,

similarly to the case of a particle-reinforced composite without the

interphase. 

We assume that perfect bonding exists at all interfaces; there-

fore, the following continuity conditions for stresses and displace-

ments are fulfilled: 

[ σr ] r= b = 0 , [ σrθ ] r= b = 0 , 
[
σrφ

]
r= b = 0 , [ u r ] r= b = 0 , 

[ u θ ] r= b = 0 , 
[
u φ

]
r= b = 0 , 

[ σr ] r= c = 0 , [ σrθ ] r= c = 0 , [ σrφ] r= c = 0 , [ u r ] r= c = 0 , 

[ u θ ] r= c = 0 , 
[
u φ

]
r= c = 0 . (2.3)

In order to determine the bulk and shear modulus of the com-

posite sphere shown in Fig. 1 , we adopt Hashin’s energy approach

(1962) , and consider two different boundary value problems that

lead, respectively, to the effective bulk modulus and to the upper

and lower bounds for the shear modulus. In this way, we adopt, in

r = R, radially symmetric boundary conditions to determine bulk

modulus and shear boundary conditions in the plane z = 0 to de-

termine the shear bounds. 
.1. Spherically symmetric boundary conditions 

In order to obtain the bulk modulus for the problem shown in

ig. 1 , spherically symmetric problems are considered assuming at

 = R the following two conditions. 

• Displacement boundary value problem 

u 

(m ) (R ) = s R, (2.4)

where s is the normal strain. 

• Traction boundary value problem 

σ (m ) 
r (R ) = 3 K m 

s, (2.5)

where K m 

is the bulk modulus of the matrix. 

.2. Shear boundary conditions 

To obtain the shear modulus for the problem shown in Fig. 1 ,

e recall that, for a generic homogeneous sphere ( S ) of radius R

ith shear modulus μ in a pure shear state, we have 

u 

(S) 
x = 

γ

2 

y, u 

(S) 
y = 

γ

2 

x, u 

(S) 
z = 0 , σ (S) 

xx = 0 , σ (S) 
yy = 0 , 

(S) 
xy = τ, σ (S) 

xz = 0 , σ (S) 
yz = 0 , σ (S) 

zz = 0 , (2.6)

here τ = μγ . 

The displacement and stress components in spherical co-

rdinates are 

 

(S) 
r ( r, θ, φ) = 

γ

2 

r sin 

2 θ sin 2 φ, 

 

(S) 
θ ( r, θ, φ) = 

γ

4 

r sin 2 θ sin 2 φ, 

 

(S) 
φ ( r, θ, φ) = 

γ

2 

r sin θ cos 2 φ, (2.7)

nd 

(S) 
r ( r, θ, φ) = τ sin 

2 θ sin 2 φ, σ (S) 
θ ( r, θ, φ) = τ cos 2 θ sin 2 φ, 

(S) 
rθ ( r, θ, φ) = 

τ

2 

sin 2 θ sin 2 φ, σ (S) 
θφ ( r, θ, φ) = τ cos θ cos 2 φ, 

(S) 
rφ ( r, θ, φ) = τ sin θ cos 2 φ, σ (S) 

φ ( r, θ, φ) = −τ sin 2 φ. (2.8)

n this way, we assume the two different cases. 

• Displacement boundary value problem 

We assume that at the outer boundary the displacement field

is given by Eq. (2.7) with r = R and the material properties are

those of the matrix: 

u 

(m ) 
r (R, θ, φ) = 

γ

2 

R sin 

2 θ sin 2 φ, 

u 

(m ) 
θ ( R, θ, φ) = 

γ

4 

R sin 2 θ sin 2 φ, 

u 

(m ) 
φ ( R, θ, φ) = 

γ

2 

R sin θ cos 2 φ. (2.9)

• Traction boundary value problem 

We assume that, for r = R, the stresses are given by

Eq. (2.8) and μ = μm 

; so we have: 

σ (m ) 
r (R, θ, φ) = τ sin 

2 θ sin 2 φ, 

σ (m ) 
rθ ( R, θ, φ) = 

τ

2 

sin 2 θ sin 2 φ, 

σ (m ) 
rφ ( R, θ, φ) = τ sin θ cos 2 φ. (2.10)

. Elastic solutions 

First, we explicitly find elastic solutions for the non-

omogeneous interphase zone, while adopting classic solutions

vailable in the literature for the homogeneous matrix and inclu-

ion. In particular, we study the elastic solutions for the spheri-

al symmetry problem and the shear problem in the following two

ubsections. 
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.1. Spherical symmetry solution 

The Navier equation for the interphase zone with spherical

ymmetry and elastic properties described by (2.1) becomes 

d 2 u (r) 

dr 2 
− ( β − 2 ) 

r 

du (r) 

dr 
+ 

2 ( ( β − 1 ) νm 

+ 1 ) 

(νm 

− 1) 

u (r) 

r 2 
= 0 , (3.1) 

n terms of the radial displacement component u ( r ). See also Hervé

nd Zaoui (1993) where, in the equilibrium equation at p.2, with

ur assumption (2.1) we have μ′ (r) r = −μ(r) β. 

The solution of Eq. (3.1) is 

 ( r ) = B 1 r 
h 1 + B 2 r 

h 2 , (3.2)

here 

 1 = ξ + 

√ 

ξ 2 + ( 4 − ξ ) ξ νm 

+ 2 √ 

1 − νm 

, 

 2 = ξ −
√ 

ξ 2 + ( 4 − ξ ) ξ νm 

+ 2 √ 

1 − νm 

, (3.3) 

here B 1 , B 2 are two integration constants. The stress components

re 

σr ( r ) = f 11 B 1 r 
h 1 −β−1 + f 12 B 2 r 

h 2 −β−1 , 

θ ( r ) = σφ( r ) = f 21 B 1 r 
h 1 −β−1 + f 22 B 2 r 

h 2 −β−1 , (3.4) 

here 

f 11 = 

2 μm 

c β ( h 1 ( νm 

− 1 ) − 2 νm 

) 

2 νm 

− 1 
, f 12 = 

2 μm 

c β ( h 2 ( νm 

− 1 ) − 2 νm 

) 

2 νm 

− 1 
, 

f 21 = − 2 μm 

c β ( νm 

h 1 + 1 ) 

2 νm 

− 1 
, f 22 = − 2 μm 

c β ( νm 

h 2 + 1 ) 

2 νm 

− 1 
. (3.5) 

Then, we use the solution for the homogeneous matrix ( m ) as 

u 

(m ) ( r ) = A 1 r + 

A 2 

r 2 
, 

(m ) 
r ( r ) = −2 μm 

( νm 

+ 1 ) A 1 

2 νm 

− 1 

− 4 μm 

A 2 

r 3 
, 

(m ) 
θ ( r ) = σ (m ) 

φ ( r ) = −2 μm 

( νm 

+ 1 ) A 1 

2 νm 

− 1 

+ 

2 μm 

A 2 

r 3 
, (3.6) 

nd, for the solid homogeneous inclusion ( i ), as 

u 

(i ) ( r ) = C 1 r, 

(i ) 
r ( r ) = −2 μi ( νi + 1 ) C 1 

2 νi − 1 

, 

(i ) 
θ ( r ) = σ (i ) 

φ ( r ) = −2 μi ( νi + 1 ) C 1 
2 νi − 1 

. (3.7) 

e observe that the homogeneous solutions are also obtained for

= 0 , h 1 = 1 and h 2 = −2 in Eqs. (3.2) , (4) with the elastic prop-

rties of the specific layer. 

The five unknown integration constants can be obtained from

he continuity conditions (2.3) and boundary conditions at r = R

n the displacement form (2.4) or in the traction form (2.5) . In

ppendix A we explicitly write the equation system to obtain the

ntegration constants. 

.2. Shear solution 

Following Christensen (2005) , we assume the displacement

eld in the interphase zone in the following form 

u r ( r, θ, φ) = 

1 

2 

U r ( r ) sin 

2 θ sin 2 φ, 

u θ ( r, θ, φ) = 

1 

4 

U θ ( r ) sin 2 θ sin 2 φ, 

 φ( r, θ, φ) = −1 

U φ( r ) sin θ cos 2 φ. (3.8) 

2 
n this way, the stresses become 

σr ( r, θ, φ) = 

μ( r ) 

r ( 2 νm 

− 1 ) 

(
dU r ( r ) 

dr 
( νm 

− 1 ) r − 2 νm 

U r ( r ) 

)
× sin 

2 θ sin 2 φ

+ 

νm 

μ( r ) U θ ( r ) 
(
sin 

2 θ − 2 cos 2 θ
)

sin 2 φ

r ( 2 νm 

− 1 ) 

− 2 νm 

μ( r ) U φ( r ) sin 2 φ

r ( 2 νm 

− 1 ) 
, 

σθ ( r, θ, φ) = − μ( r ) 

r ( 2 νm 

− 1 ) 

(
dU r ( r ) 

dr 
νm 

r + U r ( r ) 

)
sin 

2 θ sin 2 φ

−
μ( r ) U θ ( r ) 

(
( νm 

− 1 ) sin 

2 θ + cos 2 θ
)

sin 2 φ

r ( 2 νm 

− 1 ) 

− 2 νm 

μ( r ) U φ( r ) sin 2 φ

r ( 2 νm 

− 1 ) 
, 

σφ( r, θ, φ) = σθ ( r, θ, φ) + 

μ( r ) 

r 

(
U θ ( r ) sin 

2 θ + 2 U φ( r ) 
)

sin 2 φ, 

σrθ ( r, θ, φ) = 

μ( r ) 

4 

(
dU θ ( r ) 

dr 
− U θ ( r ) 

r 
+ 2 

U r ( r ) 

r 

)
sin 2 θ sin 2 φ, 

σrφ( r, θ, φ) = −μ( r ) 

2 

(
dU φ( r ) 

dr 
− U φ( r ) 

r 
− 2 

U r ( r ) 

r 

)
cos 2 φ sin θ,

θφ( r, θ, φ) = 

μ( r ) 

r 
U θ ( r ) cos θ cos 2 φ. (3.9)

he functions U r ( r ), U θ ( r ) and U φ( r ) are determined from the fol-

owing set of Navier equations 

d 2 U r ( r ) 

dr 2 
− ( β − 2 ) 

1 

r 

dU r ( r ) 

dr 
+ 

3 

2 ( νm − 1 ) 

1 

r 

dU θ ( r ) 

dr 

+ 

5 + 2 (β − 4) νm 

νm − 1 

U r (r) 

r 2 
− 9 + 6 (β − 2) νm 

2 (νm − 1) 

U θ (r) 

r 2 
= 0 , 

d 2 U θ ( r ) 

dr 2 
− ( β − 2 ) 

1 

r 

dU θ ( r ) 

dr 
− 2 

2 νm − 1 

1 

r 

dU r ( r ) 

dr 

− 2 ( 6 − β) νm + β − 12 

2 νm − 1 

U θ (r) 

r 2 
− 4(β − 2) νm − 2(β − 4) 

2 νm − 1 

U r (r) 

r 2 
= 0 ,

U φ ( r ) = −U θ ( r ) . (3.10)

he solution of this set of equations, written in terms of four inte-

ration constants K j , ( j = 1 , 2 , 3 , 4) is 

 r ( r ) = 

(
K 1 r 


2 + K 2 r 
−
2 + K 3 r 


1 + K 4 r 
−
1 

)
r ξ , U θ ( r ) = −U φ ( r ) 

= 

(
K 1 Q 1 r 


2 + K 2 Q 2 r 
−
2 + K 3 Q 3 r 


1 + K 4 Q 4 r 
−
1 

)
r ξ , (3.11) 

here we have set ξ = (β − 1) / 2 , 

1 = 

1 

2 

√ 

2 (2 ( 1 − νm 

) ξ 2 + 2 ( 3 νm 

− 1 ) ξ − (11 νm 

− 13)) −
√ 

δ

(1 − νm 

) 
, 

2 = 

1 

2 

√ 

2 (2 ( 1 − νm 

) ξ 2 + 2 ( 3 νm 

− 1 ) ξ − (11 νm 

− 13)) + 

√ 

δ

(1 − νm 

) 
, (3.12) 

= 16 ((25 νm 

− 22) νm 

+ 1) ξ 2 − 16 (5 νm 

− 3)(5 νm 

− 7) ξ

+ 4 (25 νm 

− 78) νm 

+ 228 , (3.13) 

nd 

Q 1 = −( ( 4 νm 

− 1 ) ξ + 
2 − 2 νm 

+ 3 ) 
Q 12 

Q̄ 

, 

Q 2 = −( ( 4 νm 

− 1 ) ξ − 
2 − 2 νm 

+ 3 ) 
Q 12 

Q̄ 

, 

Q 12 = ( 2 νm 

− 1 ) 
(
( νm 

− 1 ) ξ 2 − 4 νm 

ξ − ( νm 

− 1 ) 
2 
2 
)

+ 12 νm 

2 − 16 νm 

+ 2 , 
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Q 3 = −( ( 4 νm 

− 1 ) ξ + 
1 − 2 νm 

+ 3 ) 
Q 34 

Q̄ 

, 

Q 4 = −( ( 4 νm 

− 1 ) ξ − 
1 − 2 νm 

+ 3 ) 
Q 34 

Q̄ 

, 

Q 34 = ( 2 νm 

− 1 ) 
(
( νm 

− 1 ) ξ 2 − 4 νm 

ξ − ( νm 

− 1 ) 
1 
2 
)

+ 12 νm 

2 − 16 νm 

+ 2 , 

Q̄ = 12 νm 

( 2 νm 

− 1 ) 
2 ξ 2 − 6 ( 2 νm 

− 1 ) 
(
4 νm 

2 − 7 νm 

+ 1 

)
ξ

+ 6 νm 

( νm 

− 1 ) ( 2 νm 

− 5 ) + 3 . (3.14)

We observe that, for the isotropic homogeneous case, we have:


1 = 3 / 2 , 
2 = 7 / 2 , ξ = −1 / 2 and the quantities Q 1 , Q 2 , Q 3 and

Q 4 , assume the following values: 

Q 1 = 

7 − 4 νm 

6 νm 

, Q 2 = −2 

3 

, Q 3 = 1 , Q 4 = 

2(2 νm 

− 1) 

4 νm 

− 5 

. (3.15)

Now, the functions U 

(m ) 
r , U 

(m ) 
θ

and U 

(m ) 
φ

in the homogeneous ma-

trix ( m ), obtained by the solution of (3.9) , by putting β = 0 , as-

sume the form 

 

(m ) 
r ( r ) = H 1 r 

3 + 

H 2 

r 4 
+ H 3 r + 

H 4 

r 2 
, 

 

(m ) 
θ ( r ) = 

7 − 4 νm 

6 νm 

H 1 r 
3 − 2 

3 

H 2 

r 4 
+ H 3 r + 

2 ( 2 νm 

− 1 ) 

4 νm 

− 5 

H 4 

r 2 
, 

 

(m ) 
φ ( r ) = −U 

(m ) 
θ ( r ) , (3.16)

and, in similar way, in the homogeneous solid inclusion ( i ) we

have 

 

(i ) 
r ( r ) = F 1 r 

3 + F 3 r, 

 

(i ) 
θ ( r ) = 

7 − 4 νi 

6 νi 

F 1 r 
3 + F 3 r, 

 

(i ) 
φ ( r ) = −U 

(i ) 
θ ( r ) . (3.17)

The unknown integration constants can be obtained from the

continuity conditions (2.4) and boundary conditions at r = R in

the displacement form (2.8) or in the traction form (2.9) . In

Appendix B we explicitly write the equation system to obtain the

integration constants. 

4. Application of Hashin’s theory 

The elastic solutions derived in the previous sections can be

used to determine bounds for the elastic moduli of the compos-

ite sphere shown in Fig. 1 . 

The general Hashin’s theory considers the change in strain en-

ergy in a corresponding equivalent homogeneous sphere of radius

R and elastic properties K h and μh , due to the presence of non-

homogeneities. The different displacement or traction assumptions

at r = R (see Section 2 ) introduced to evaluate the change of the

strain energy of the composite sphere of Fig. 1 and the equivalent

homogeneous sphere, permit us to obtain the bounds for the elas-

tic moduli ( Hashin, 1962 ). 

Before deriving the formulae for these bounds, let us introduce

the following quantities: 

η = 

(
b 

R 

)3 

,  = 

c 

b 
, (4.1)

where η is the volume fraction of the inclusions in the compos-

ite. We note that, as a consequence of the above definitions and

the geometry of the problem ( Fig. 1 ), η and  are related by the

inequality 0 ≤η ≤ 1/ 3 . 
.1. Bulk modulus 

Application of Hashin’s method shown that the expressions for

he effective bulk modulus K h obtained with the displacement or

raction conditions coincide. 

• Displacement or traction approach 

We consider the elastic energy U h stored in a sphere of radius

R and volume V , comprised of the effective medium, subjected

to boundary conditions (2.4) : 

U h = U 0 + δU, (4.2)

where 

U 0 = 

9 

2 

V K m 

s 2 , (4.3)

is the energy stored in an homogeneous sphere of radius R with

boundary conditions (2.4) and bulk modulus K m 

of the matrix

of the composite sphere. Moreover, we define the effective bulk

modulus as the value for which it holds 

U h = 

9 

2 

V K h s 
2 . (4.4)

The explicit calculation of the term δU can be done by using

Eshelby formula ( Eshelby, 1957 ). So doing we get the expression

K h 

K m 

= 1 −
N 0 

(
K m 

+ 

4 

3 

μm 

)
η

N 0 K m 

η + 1 

, 
(4.5)

where N 0 = N 1 /N 2 and 

N 1 = 2 h 2 ( h 2 −1 ) 
(
β( ( 3 K m 

+4 μm 

) ( h 2 −β) −3 K m 

+ 8 μm 

) 

+ 9 K i ) 
4 

− β( h 2 − β + 2 ) 
(
( ( 3 K m 

+ 4 μm 

) h 2 + 6 K m 

− 4 μm 

) β

− 9 K i ) 
3 , 

N 2 = −2 h 2 ( h 2 +2 ) 
(
β( ( 3 K m 

+4 μm 

) ( h 2 −β) −3 K m 

+ 8 μm 

) 

+ 9 K i ) K m 



+ β( h 2 − β − 1 ) 
(
( ( 3 K m 

+ 4 μm 

) h 2 + 6 K m 

− 4 μm 

) β

− 9 K i ) K m 

. (4.6)

We remark that the case without the interphase is obtained

when h 1 = 1 , h 2 = −2 , β = 0 and so, the terms N 0 becomes 

N 0 = 

3 (K m 

− K i ) 

( 3 K i + 4 μm 

) K m 

. (4.7)

.2. Shear modulus bounds 

For the composite shear modulus in the energy approach of

ashin (1960, 1962) , the effective shear modulus for the composite

aterial μh satisfies the following inequality 

(T ) 
h 

≤ μh ≤ μ(u ) 
h 

, (4.8)

here μ(u ) 
h 

and μ(T ) 
h 

are the equivalent shear modulus for the dis-

lacement problem and the stress problem, respectively. 

• Displacement approach - upper bound 

We consider a homogeneous sphere S of radius R , with bound-

ary conditions (2.9) and shear modulus of the matrix of com-

posite sphere μm 

. Then the elastic energy of this sphere is 

U 

(u ) 
0 

= 

1 

2 

μm 

γ 2 V, (4.9)

where V is the volume of the sphere S . 
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Similarly, for the equivalent homogeneous sphere with μ =
μ(u ) 

h 
, and the same boundary conditions (2.10) , the elastic en-

ergy U 

(u ) 
h 

of this sphere is in the form 

U 

(u ) 
h 

= 

1 

2 

μ(u ) 
h 

γ 2 V. (4.10) 

Following Hashin (1960, 1962) and by using Eshelby’s formula

( Eshelby, 1957 ), the elastic energy (4.7) can be written as 

U 

(u ) 
h 

= U 

(u ) 
0 

+ δU 

(u ) , (4.11) 

where 

δU 

(u ) = −4 π μm 

γ (νm 

− 1) 

4 νm 

− 5 

H 4 . (4.12) 

The coefficient H 4 is obtained using displacement boundary

value problem. 

In this way, we obtain 

μ(u ) 
h 

= μm 

+ 

δU 

(u ) 

1 

2 

γ 2 V 

. (4.13) 

In explicit form, the normalized shear modulus μ(u ) 
h 

can be

written as 

μ(u ) 
h 

μm 

= 1 + 

b 11 η
10 / 3 + b 12 η

b 21 η10 / 3 + b 22 η7 / 3 + b 23 η5 / 3 + b 24 η + b 25 

, (4.14) 

where the quantities b ij are 

b 11 
−10 = 30 ( 1 − νm 

) ( ( 2 νm 

− 1 ) ( 6 ( 19 νm 

− 7 ) μm 

V 1 

− 3 ( νm 

− 7 ) V 2 + 27 νm 

V 3 ) ) 

+ 30 ( 1 −νm 

) ( ( 4 ( 28 −31 νm 

) V 4 + 6 ( 4 νm 

−7 ) V 5 ) μm 

+ 3 ( 10 νm 

− 7 ) V 6 ) , 

b 12 
−3 = 30 ( 3 ( 2 νm 

− 1 ) ( 2 ( 4 V 1 μm 

+ V 2 ) + 3 V 3 ) ) ( νm 

− 1 ) 

× ( 10 νm 

− 7 ) − 2 ( 30 μm 

( 2 V 4 + 3 V 5 ) − 45 V 6 ) 

× ( νm 

− 1 ) ( 10 νm 

− 7 ) , 

b 21 = −2 ( 5 νm 

− 4 ) b 11 

15 ( νm 

− 1 ) 
, 

b 22 
−7 = 150 ( 1 − 2 νm 

) ( 2 ( νm 

( νm 

+ 12 ) − 7 ) μm 

V 1 

+ ( 2 νm 

( νm 

− 3 ) + 7 ) V 2 ) 

− 25 ( 27 νm 

( 2 νm 

− 1 ) V 3 − ( 4 νm 

( 32 νm 

− 57 ) 

+ 112 ) μm 

V 4 + 6 ( 7 − 2 νm 

( 2 νm 

+ 3 ) ) μm 

V 5 ) 

− 75 ( 4 νm 

( 2 νm 

− 3 ) + 7 ) V 6 , 

b 23 
−5 = 63 ( 2 νm 

− 1 ) ( 16 ( νm 

+ 2 ) μm 

V 1 − 12 ( νm 

− 2 ) V 2 

+ 3 ( νm 

+ 5 ) V 3 ) 

+ 63 ( 4 ( νm 

− 3 ) μm 

V 4 − 12 ( 2 νm 

− 1 ) μm 

V 5 + 6 V 6 ) , 

b 24 = 

5 ( 4 νm 

( 2 νm 

− 3 ) + 7 ) b 12 

6 ( 1 − νm 

) ( 10 νm 

− 7 ) 
, (4.15) 

b 25 = 2 ( 2 νm 

− 1 ) ( 24 ( 19 νm 

− 17 ) μm 

V 1 + 6 ( 13 νm 

− 11 ) V 2 

+ 9 ( 7 νm 

− 5 ) V 3 ) ( 10 νm 

− 7 ) − 4 ( μm 

( 19 νm 

− 17 ) 

× ( 2 V 4 + 3 V 5 ) − 3 ( 5 νm 

− 4 ) V 6 ) ( 10 νm 

− 7 ) . (4.16) 

The quantities V i , (i = 1 . . . 6) are given in Appendix C . 

• Traction approach - lower bound 

For the traction problem, we consider a homogeneous sphere

with μ = μm 

with boundary conditions at r = R given by (2.10) .

Similarly to the previous case, we have 

U 

(T ) 
0 

= 

τ 2 

2 μm 

V. (4.17) 
For the equivalent homogeneous sphere with μ = μ(T ) 
h 

and

boundary conditions at r = R given by (2.11), we have 

U 

(T ) 
h 

= 

τ 2 

2 μ(T ) 
h 

V. (4.18) 

In this case the elastic energy (4.11) can be written as 

U 

(T ) 
h 

= U 

(T ) 
0 

+ δU 

(T ) , (4.19) 

where 

δU 

(T ) = 

4 π μm 

τ (νm 

− 1) 

4 νm 

− 5 

H 4 . (4.20) 

The coefficient H 4 is obtained from the traction boundary value

problem. 

So, we get 

1 

μ(T ) 
h 

= 

1 

μm 

+ 

δU 

(T ) 

1 
2 
τ 2 V 

. (4.21) 

In explicit form, the normalized shear modulus μ(T ) 
h 

becomes

μ(T ) 
h 

μm 

= 1 + 

B 11 η
10 / 3 + B 12 η

B 21 η10 / 3 + B 22 η7 / 3 + B 23 η5 / 3 + B 24 η+ B 25 

, (4.22) 

where the quantities B ij are written in terms of b ij as 

B 11 = 

4 ( 10 νm 

− 7 ) b 11 

5 νm 

+ 7 

, B 21 = 

4 ( 10 νm 

− 7 ) b 21 

5 νm 

+ 7 

, 

B 22 = 

4 ( 10 νm 

− 7 ) b 22 

5 νm 

+ 7 

, B 23 = 

4 ( 10 νm 

− 7 ) b 23 

5 νm 

+ 7 

, 

B 24 = 

4 ( νm 

( 5 νm 

+ 3 ) + 7 ) ( 10 νm 

− 7 ) b 24 

5 ( 5 νm 

+ 7 ) ( 4 νm 

( 2 νm 

− 3 ) + 7 ) 
, 

B 12 = b 12 , B 25 = b 25 . (4.23) 

For small volume fraction of the inclusions, the expressions for

he upper and lower bounds become the same and reduce to the

ollowing expression 

μh 

μm 

= 1 + 

b 12 

b 25 

η. (4.24) 

. Numerical results and discussion 

In this section, numerical results for the macroscopic bulk and

hear modulus with and without the interphase zone are pre-

ented and discussed. 

The following elastic properties are considered for the matrix

nd the solid inclusion: μi = 3 . 6 μm 

, νi = 0 . 7 νm 

. These values cor-

espond to those used by Hashin (1962) . 

For the interphase zone, a range of the interphase zone thick-

ess ratios is analysed:  = 1 . 1 , 1 . 25 , 1 . 5 . As it was pointed out at

he beginning of Section 4 , η and  are related by the inequality

 ≤η ≤ 1/ 3 . 

Two cases of elastic properties are analysed: hard interphase

ith μip = 1 . 5 μm 

and soft interphase with μip = 0 . 5 μm 

and Pois-

on’s ratio in matrix νm 

= 0 . 3 . 

Fig. 2 shows variation of the shear modulus through the thick-

ess of the graded interphase zone, as given by Eq. (2.1) , for dif-

erent values of  and the hard and soft cases. The values of β
or specific interphase zone thickness ratios are determined using

xpression (2.3) . 

Fig. 3 shows the bulk modulus obtained from the formula (4.2) .

he red line represents the case without the interphase zone, solid

ines represent the hard cases and the dashed lines represent the

oft cases. We observe that the effect of interphase zone on the

ulk modulus is the most pronounced in the case of soft inter-

hase zone. 
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Fig. 2. Power laws in the graded interphase zone for hard and soft interphases. 

Fig. 3. Normalized bulk modulus for varying interphase thicknesses for hard and soft interphases. 
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The bulk modulus of a composite with spherical inclusions,

in which the interphase zone had two Lamé constants varying

in radial direction, was investigated previously by Sburlati and

Cianci (2015) and Sburlati and Monetto (2016) . Although the power

law (2.1) of the present paper is more restrictive compared to the

one used in the above-cited papers, this power law allows us to

obtain the shear modulus bounds in a simpler way. It is interesting

to note that the interphase zone model introduced in this paper

assumes Poisson’s ratio of the interphase zone to be equal to Pois-

son’s ratio of the matrix. In order to examine the effect of Poisson’s

ratio variation in the interphase, we compare the bulk modulus

prediction obtained by Eq. (4.2) with that obtained in Sburlati and

Cianci (2015) . 

Fig. 4 shows variation of the normalized shear modulus in the

interphase zone obtained from Eq. (2.1) of the present paper and

the power law given by Eq. (2.1) of the paper of Sburlati and

Cianci (2015) , with the inhomogeneity parameter β = 10 . Both

variations are shown for the case of the hard interphase with

 = 1 . 25 . It is worth pointing out that in the present interphase

zone model, the thickness of the zone is defined exactly, whereas
n the previous interphase zone model, like in Lutz and Zimmer-

an (1996, 2005) , the thickness of the interphase zone is not de-

ned clearly but instead the whole matrix is treated as a graded

edium and the interphase zone thickness can be set according to

 chosen criterion. Comparison of numerical results produced by

he two different power-law variations allows us to examine the

ffect of the Poisson’s ratio on the bulk modulus. 

Fig. 5 shows comparison of the normalized bulk modulus ob-

ained from Eq. (4.2) of the present paper and from the expression

5.4) of the paper Sburlati and Cianci (2015) . The case without the

nterphase is shown in red for reference. When Poisson’s ratio of

he interphase zone is equal to Poisson’s ratio of the matrix, νm 

=
 . 3 , predictions of both models are very close. When Poisson’s ra-

io of the interphase zone is not equal to Poisson’s ratio of the ma-

rix, only the previous model is able to predict the bulk modulus.

ormalized bulk modulus for different Poisson’s ratios of the inter-

hase zone ( νip = 0 . 27 , νip = 0 . 24 ) is shown in black; νm 

= 0 . 3 , and

he value of the shear modulus is assumed to be the same. We ob-

erve that as Poisson’s ratio of the interphase zone decreases, the

ulk modulus of the composite decreases too. Therefore, the as-
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Fig. 4. Power laws for the graded interphase ( = 1 . 25) with different elastic modulus property: present model (solid line) and model of Sburlati and Cianci (2015) (dashed 

line). 

Fig. 5. Effects of graded Poisson’s ratio on the effective bulk modulus. Comparisons with the results obtained with the present model (solid line) and the results obtained 

with the Sburlati and Cianci (2015) model assuming: νip = νm = 0 . 3 (dashed line), νip = 0 . 27 , νm = 0 . 3 (dot-dashed line) and νip = 0 . 24 , νm = 0 . 3 (dotted line). 
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o  
umption of Poisson’s ratio of the interphase zone being the same

s Poisson’s ratio of the matrix, used in the present model, leads

o an overestimation of the bulk modulus value. In the following

e investigate on shear modulus bounds obtained in Section 4.2 . 

Fig. 6 shows the upper (continuous lines) and lower (dashed

ines) bounds for the normalized shear modulus μh / μm 

obtained

rom the exact expressions (4.11) and (4.18) , respectively for hard

nterphases (a) and soft interphases. The red lines show the

ounds for the composite without the interphase zone considered

y Hashin (see Fig. 5 of Hashin, 1962 ). They are obtained from the

resent model by putting ( = 1) . We observe that composites

ith and without the interphase zone exhibit similar behaviour

or all values of  considered. Also, for thin interphase zone, i.e.

( = 1 . 1) , the gap between the lower and upper bounds at the

aximum value of η = 0 . 75 is greater for the soft interphase zone

han for the hard interphase zone. 
. Concluding remarks 

The bulk and shear moduli of particulate composites reinforced

ith solid spherical particles surrounded by the graded interphase

one at the particle/matrix interface have been analysed. Two as-

umptions about the elastic properties of the graded interphase

one were made: (i) power law variation of the shear modu-

us with radial co-ordinate and (ii) Poisson’s ratio of the inter-

hase zone being equal to that of the matrix (the second assump-

ion is not as restrictive as it may seem, since the value of Pois-

on’s ratio appears to have negligible effect on the shear modulus

ounds). 

The two assumptions have enable us to determine stress and

isplacement fields in a spherical representative volume element

ontaining a single particle (inclusion), when either displacement

r traction boundary conditions are prescribed at the outer bound-
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Fig. 6. Normalized shear modulus bounds for varying interphase thicknesses with hard (a) or soft interphase (b) . 
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ary. This in turn has allowed us, following Hashin’s approach, to

determine the elastic energy of the single inclusion composite and

derive closed-form expression for the bulk modulus and the upper

and lower bounds for the shear modulus. 

The effect of graded interface zone on the bulk modulus mono-

tonically increases with the particle volume fraction and is more

pronounced for the soft interphase zone than for the hard one. 

Comparison of two graded interphase zone models, the one

presented in this paper, the other in Sburlati and Cianci (2015) ,

shows that when Poisson’s ratio of the interphase zone is equal

to Poisson’s ratio of the matrix, the values of the composite’s

bulk modulus predicted by the two models are very close, but

the present model has the advantage of being simpler. However,

the assumption of Poisson’s ratio of the interphase zone being the

same as Poisson’s ratio of the matrix leads to an overestimation of

the bulk modulus value. 
Analysis of numerical results for hard and soft interphase zones

ver a range of the zone thickness ratios revealed that the shear

odulus bounds for composites with and without the interphase

one generally behave in a similar manner. Hard graded inter-

hase zone makes the composite stiffer in shear and increases the

hear modulus bounds of the composite, while soft graded inter-

hase zone makes the composite more compliant in shear, de-

reasing the shear modulus bounds. When the interphase zone

s thin relative to the radius of the particle, the gap between

he lower and upper bounds at the maximum permissible parti-

le volume fraction is greater for the soft interphase zone than

or the hard interphase zone. Finally, we remark that the numer-

cal results obtained for μ(u ) 
h 

and μ(T ) 
h 

give rise to a medium

alue that is in agreement with the numerical results obtained in

ang and Jasiuk (1998) by using the generalized self-consistent

ethod ( Christensen and Lo, 1979 ). 
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ppendix A. Spherically symmetric boundary value problem 

The integration constants C 1 , B 1 , B 2 , A 1 and A 2 can be determin

 

 

 

 

a 11 a 12 a 13 0 0 

a 21 a 22 a 23 0 0 

0 a 32 a 33 a 34 a 35 

0 a 42 a 43 a 44 a 45 

0 0 0 a 54 a 55 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

C 1 
B 1 

B 2 

A 1 

A 2 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

0 

0 

0 

0 

f 

⎤ 

⎥ ⎥ ⎦ 

here 

a 11 = 

2 μi ( 1 + νi ) 

2 νi − 1 

, a 12 = f 11 b 
h 1 −β−1 , a 13 = f 12 b 

h 2 −β−1 , a 21 =

 23 = −b h 2 , a 32 = f 11 c 
h 1 −1 , a 33 = f 12 c 

h 2 −1 , a 34 = 

2 μm 

c β ( 1 +
2 νm 

− 1

 35 = 4 μm 

c β−3 , a 42 = c h 1 , a 43 = c h 2 , a 44 = −c, a 45 = −c −2 , 

hile, respectively for the displacement or the traction boundary c

a (u ) 
54 

= R, a (u ) 
55 

= R 

−2 , f = f (u ) = s R, 

or 

 

(T ) 
54 

= −(1 + νm 

) , a (T ) 
55 

= −2 (2 νm 

− 1) R 

−3 , f = f (T ) = −(1 + ν

ppendix B. Shear boundary value problem 

The continuity conditions (2.3) in the displacements permit us t

 3 , K 4 , H 3 and H 4 . Introducing the quantities 

 1 = K 1 c 
ξ−1+
2 , k 2 = K 2 c 

ξ−1 −
2 , k 3 = K 3 c 
ξ−1+
1 , k 4 = K 4 c 

ξ−1 −

e write 

F 1 = −
6 νi 

1 −ξ
∑ 4 

j=1 ω j 

(
Q j − 1 

)
k j 

b 2 ( 10 νi − 7 ) 
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here 

 1 = −
2 , ω 2 = 
2 , ω 3 = −
1 , ω 4 = 
1 . 

he remaining constants k 1 , k 2 , k 3 , k 4 , H 3 and H 4 are obtained us

2.9) or (2.10) . So doing we get the following system 

 

 

 

 

 

 

c 11 c 12 c 13 c 14 0 0 

c 21 c 22 c 23 c 24 0 0 

c 31 c 32 c 33 c 34 c 35 c 36 

c 41 c 42 c 43 c 44 c 45 c 46 

c 51 c 52 c 53 c 54 c 55 c 56 
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here, for j = 1 , . . . 4 , we have 

c 1 j = 

μm 

2+ ξ (ln () 
(
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ln (ω j ) 
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Q j + 2 ln () 

)
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 j ) 
, 

ditions, the terms of the last two lines are 
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V
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Respectively, for the displacement or the traction boundary con
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Appendix C. Quantities related to the shear bounds 

We introduce the following quantities: 

 1 = V 7 , 1 V 8 , 3 − V 7 , 3 V 8 , 1 , V 2 = V 7 , 1 V 10 , 3 − V 7 , 3 V 10 , 1 , 

 3 = V 8 , 3 V 10 , 1 − V 8 , 1 V 10 , 3 , V 4 = V 7 , 1 V 9 , 3 − V 7 , 3 V 9 , 1 , 

 5 = V 9 , 3 V 8 , 1 − V 9 , 1 V 8 , 3 , V 6 = V 9 , 1 V 10 , 3 − V 9 , 3 V 10 , 1 

and 
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