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Abstract: This paper presents a whole body control framework for the control of a dual
arm underwater vehicle manipulator system developed in the context of the MARIS Italian
research project, which deals with the control and coordination of underwater vehicles for
manipulation and transportation problems. The proposed framework is the extension of the
one used in the successful TRIDENT FP7 project that has been improved to be able to deal
with multidimensional inequality control objectives. After the presentation of the mathematical
background, the paper presents some simulation results showing the good performances of the
proposed algorithm.
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1. INTRODUCTION

Underwater vehicle manipulator systems (UVMS), also
called Intervention Underwater Autonomous Vehicles (I-
AUV), have been increasingly studied and exploited in the
last few years. Their goal is to automatize actions currently
performed by Remotely Operated Vehicles (ROVs), which
have the fundamental drawback of requiring expensive
support vessels equipped with dynamic positioning sys-
tems and capable of handling the tether cable, and manned
submersibles, which instead require a human operator and
thus can only be used for a few hours with the additional
problem of placing a human being in a dangerous environ-
ment.

For these reasons, the research in this field has seen a
steady increase in the past two decades. During early
90s, seminal works have been carried out at the Woods
Hole Oceanographic Institute concerning the design and
control compliant of underwater manipulators Yoerger
et al. (1991) and the coordinated vehicle/arm control for
tele-operation Schempf and Yoerger (1992). At the end
of that decade, major breakthroughs were achieved in
the pioneering AMADEUS project Lane et al. (1997),
which covered dual-arm underwater manipulation control
aspects, in the UNION project Rigaud et al. (1998) where
the mechatronic assembly of an autonomous UVMS has
taken place for the first time, and in the SAUVIM project
Yuh et al. (1998); Marani et al. (2008) where the first
successful attempts at underwater autonomous interven-
tion were accomplished. A nice survey on the developed
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control architectures for underwater robots until late 90s
can be found in Yuh (2000).

Another important milestone has been achieved with the
TRIDENT project Sanz et al. (2012) that has demon-
strated the autonomous recovery of a black-box from the
sea floor Simetti et al. (2013, 2014), where for the first time
a vehicle and an arm of comparable masses were controlled
in a coordinated manner.

Recently, the TRITON Spanish research project Sales
et al. (2014) is instead focusing on underwater intervention
on a permanent observatory’s panel, and has achieved
some practical results on floating valve-turning operations
Cieslak et al. (2015), although the proposed approach does
not deal with the discontinuity problems that might arise
with the use of the task priority framework near singulari-
ties. Furthermore, it uses the notion of “concurrent” tasks
whose solution is summed to the solution of those following
the task priority framework, thus violating their priorities.
The panel valve-turning scenario is also the subject of
the PANDORA project Lane et al. (2012), which focuses
on the problem of persistent autonomy. Another on-going
EU project is DexROV Gancet et al. (2015), which is
dealing with the inspection and maintenance in presence
of communication latencies.

The ARROWS project Allotta et al. (2015b) proposes to
adapt and develop low cost autonomous underwater vehi-
cle technologies to significantly reduce the cost of archaeo-
logical operations, covering the full extent of archaeological
campaign. Within such a context, Allotta et al. (2015a)
have proposed a modelling of the UVMS and a suitable
grasp planning strategy and a decentralized cooperative
control strategy Conti et al. (2015), which focuses on the



control of a team of UVMSs performing a transportation
task, but does not take into account all the inequality
control objectives that each UVMS needs to satisfy.

Finally, the Italian funded MARIS project Casalino et al.
(2014), which is the context where the present work has
been developed, focuses on the development of a unify-
ing control framework capable of managing single, dual
arm and cooperative UVMSs, tackling the problems of
manipulation and transportation in underwater scenarios
Manerikar et al. (2015b,a); Simetti et al. (2015).

One of the important aspects in the control of UVMS
is how to effectively exploit all their degrees of freedom
(DOF) for accomplishing the required tasks. This problem
is further increased by analysing the actual tasks that an
UVMS has to tackle. Indeed, aside from positioning the
end-effector over the blackbox or the pipe to be grasped,
most if not all the other tasks are dedicated to maintaining
the safety of the system (avoiding the arm’s joint limits,
avoiding self collisions and collision with other vehicles)
or certain operative configurations (i.e. keeping the object
grossly centred, avoiding camera occlusions) and thus are
a prerequisite for the final end-effector positioning task.
These safety/operational tasks are usually accomplished
whenever they are under, above or between some given
thresholds, because they are inequality control objectives.

The seminal results on task/operational-based control
Nakamura and Hanafusa (1986), Khatib (1987), and their
successive extension with the introduction of priorities
between tasks Nakamura (1991), Siciliano and Slotine
(1991) did not integrate inequality control objectives effi-
ciently. Indeed, they were converted to equality ones, over-
constraining the system. This is due to the fact that, in the
original formulation, activating (inserting) or deactivating
(deleting) a task implies a discontinuity in the null space
projector, which leads to a discontinuity in the control law
Lee et al. (2012).

In the last decade, major research efforts have been spent
in order to incorporate inequality control objectives in the
task-based control paradigm. In Mansard et al. (2009b) a
new inversion operator is introduced for the computation
of a smooth inverse with the ability of enabling and
disabling tasks, and has been extended to the case of a
hierarchy of tasks in Mansard et al. (2009a). However, the
major problem within that work is that it requires the
computation of all the combinations of possible active and
inactive tasks, which grows exponentially.

Another interesting approach is given in Lee et al. (2012).
The idea is to modify the reference of each task that is
inserted or being removed, in order to comply with the
already present ones, in such a way to smooth out any
discontinuity. However, the algorithm requires m! pseudo
inverses with m number of tasks. The authors provide also
approximate solutions, which are suboptimal whenever
more than one task is being activated/deactivated (in
transition).

Previous works of the authors dealt with the control
of underwater free floating manipulators Casalino et al.
(2012a,b); Simetti et al. (2014) in the context of the
TRIDENT project. In such works, all the tasks except
the end-effector position control were represented by scalar

inequality tasks. The activation and deactivation of scalar
tasks was tackled in the prioritized control.

This work generalizes the framework presented in Simetti
et al. (2014) and allows its use to the dual arm scenario
of the MARIS project, where multidimensional inequality
tasks naturally arise. It retains the simplicity of the origi-
nal task-priority framework Siciliano and Slotine (1991)
since it only uses pseudo-inverses. Tasks are activated
and deactivated via the use of an activation matrix. The
possible discontinuities that can arise with the use of an
activation matrix Mansard et al. (2009a,b) are eliminated
with the use of a novel task-oriented regularization and the
singular value oriented one. This allows to treat inequality
control objectives efficiently, as their corresponding tasks
are deactivated whenever the system is inside the valid-
ity region of the inequality objective, avoiding any over-
constraining of the system.

The work is structured as follows. Section 2 introduces
some definitions and the main control objectives of the
dual arm UVMS. Section 3 presents the underlying task
priority framework that allows the UVMS to concurrently
carry out its different tasks. Simulation results are pre-
sented in Section 4, and some final conclusions are given
in Section 5.

2. DEFINITIONS AND PRELIMINARIES

Before starting the discussion we first introduce some
notation and definitions. Then, the control objectives of
the UVMS are presented and finally the basics of pseudo
inverse problems are recalled.

2.1 Notation

Vectors and matrices are expressed with a bold face char-
acter, such as M , whereas scalar values are represented
with a normal font such as γ. Given a matrix M :

• M(i,j) indicates the element of M at the i-th row and
j-th column;

• M{k} refers to the k-th row of M ;

• M# is the exact generalized pseudo-inverse (see Ben-
Israel and Greville (2003) for a review on pseudo-
inverses and their properties), i.e. the pseudo inverse
of M performed without any regularizations.

Further, less used, notation is introduced as needed.

2.2 Definitions

Let us consider a free floating dual arm UVMS such as the
one depicted in Fig. 1, and in order to avoid any confusion,
let us report hereafter some definitions often used in this
paper:

• the system configuration vector c ∈ Rn, which for a
dual arm UVMS is

c ,

[
qa
qb
η

]
, (1)

where qa ∈ Rla is the arm a configuration vector,
qb ∈ Rlb is the arm b configuration vector and η ∈ R6

is the vehicle generalised coordinate position vector,



Fig. 1. Dual arm configuration with the relevant frames

which is the stacked vector of the position vector
η1 and orientation vector η2, the latter expressed in
terms of the three angles yaw, pitch and roll (applied
in this sequence) Perez and Fossen (2007). From the
above definitions it results n = la + lb + 6;
• the system velocity vector ẏ ∈ Rn, which for a single

vehicle manipulator system is

ẏ ,

[
q̇a
q̇b
v

]
, (2)

where q̇a ∈ Rla are the arm a joint velocities, q̇b ∈ Rlb

are the arm b joint velocities, and v ∈ R6 represents
the vehicle’s linear and angular velocities expressed
on the vehicle frame 〈v〉;
• given the system configuration vector c, we define

an equality control objective an equality of the type
f(c) = 0 to be eventually achieved. An example of
this type of control objective is the position control
of an arm’s end-effector;
• we define an inequality control objective an inequality

of the type f(c) < 0 to be eventually achieved, where
the inequality is satisfied component by component.
An example of this type of control objective is the
avoidance of the arm’s joint limits;
• we define task as tracking at best a suitable reference

rate ˙̄x, capable of driving the associated variable
x toward the corresponding objective. For example,
a task is tracking a reference velocity for the arm
end-effector, which was generated in order to reach
the goal position, where the corresponding control
objective is satisfied;
• the control objectives may have different priorities

and the same holds for their associated tasks. The
achievement of a task with lower priority should
not interfere with the achievement of a task with
higher priority. Tasks with the same priority are
achieved simultaneously, if possible. A set of tasks
with different priorities is also called a hierarchy of
tasks.

2.3 Control Objectives

This section presents the control objectives that the dual
arm UVMS, sketched in Figure 1 has to tackle.

The simplest inequality objective that both arms must
respect is that all their joints are falling within their
physical limits, i.e. for each arm it must hold

qi,m ≤ qi ≤ qi,M ; i = 1, . . . , l; (3)

with l being the number of arm joints (i.e. la for arm
a and lb for arm b respectively). Furthermore, each arm
should avoid their singularity configurations. This can
be achieved by maintaining the manipulability measure
Yoshikawa (1985) above a minimum value, thus trivially
leading to the following inequality type objective for each
arm

µ ≥ µm. (4)

For the good operability of the vision algorithms, the
vehicle must keep the object grossly centred into its
camera field of view. This means that the modulus of the
misalignment error ξ, formed by the unit vector joining
the origin of the object to the camera frame, and the unit
vector z axis (the one perpendicular to the image plane) of
the camera frame itself, must be below a certain threshold.
The misalignment vector between two vectors is defined as
the angle-axis around which the first vector should rotate
in order to be aligned with the second one.

At the same time, the vehicle must also be closer than a
given horizontal distance dM to the vertical line passing
through the object, and between a maximum and min-
imum height with respect to object located on the sea
floor. This consequently translates into the requirement of
achieving the following inequalities

‖ξ‖ < ξM ; ‖d‖ ≤ dM ; hm ≤ ‖h‖ ≤ hM ; (5)

where d and h are the horizontal and vertical vectors.

Since the vehicle should avoid configurations with high tilt
angle values, this further requires the achievement of the
following additional inequality

‖ϕ‖ ≤ ϕm, (6)

where ϕ represents the misalignment vector that the
absolute vertical z-axis unit vector forms with respect to
the vehicle z-axis one,

Within the fulfilment of the above goals, each arm’s end
effector must eventually reach the object frame, for then
starting the successive grasping phase. Thus the following
equality objectives have to be achieved for both arms

‖r‖ = 0 ; ‖ϑ‖ = 0, (7)

where r is the position error and ϑ the orientation error.

Finally, after that the two arms have separately grasped a
common object, in order to transport it to a goal location,
the whole system must be suitable coordinated to also
comply with the kinematic constraint that the object itself
imposes, i.e.

Jt,aq̇a = Jt,bq̇b. (8)

where Jt,a is the tool frame 〈t〉 Jacobian of the arm a
once we have set 〈t〉 as coincident with 〈o〉, and where Jt,b

is similarly defined for the arm b. Note how the vehicle
velocity v does not have any influence on the minimization
of the object stress, since it is naturally always complaint
with the object kinematic constraint.

The presence of two arms naturally creates the need
of managing efficiently multidimensional inequality tasks
(e.g. the stacked manipulability task of the two arms).
The next section shows the extension of the framework
used in the TRIDENT project Simetti et al. (2014), which
only handled scaled inequality multidimensionals, to the
case of multidimensional tasks of the MARIS project.



Before doing that, the next subsection presents some
preliminaries about regularized pseudo inverses.

2.4 Regularized Pseudo Inverse

Before introducing the core of this work, it is useful to
recall the fundamentals of pseudo inverses and the regu-
larization mechanism. Toward that end, let us consider the
following Jacobian relationship

ẋ = Jẏ, (9)

with J ∈ Rm×n, ẏ ∈ Rn and ẋ ∈ Rm.

Given a reference velocity vector ˙̄x, the velocity vector ẏ
that realizes ˙̄x at best, in a least-squares sense, can be
found as the result of the following minimization problem

min
ẏ
‖ ˙̄x− Jẏ‖2 . (10)

The solution to the above problem can be found computing
the square and taking the derivative equal to zero, which
leads to

(JTJ)ẏ = JT ˙̄x, (11)

which can be solved using the pseudo inverse as

ẏ = (JTJ)#JT ˙̄x. (12)

The above formula refers only to the minimum norm
solution. Since for the rest of the work we will focus
on exploiting the residual arbitrariness in the solution,
it is worth to consider the actual manifold of solutions,
considering also the null space:

ẏ = (JTJ)#JT ˙̄x+ (I − (JTJ)#JTJ)ż, ∀ż. (13)

Note that, exploiting the following identities involving
pseudo inverses

X# = (XTX)#XT , (14)

X# = XT (XXT )#, (15)

then (13) can be rewritten in the following, more usual,
form

ẏ = J# ˙̄x+ (I − J#J)ż, ∀ż. (16)

Performing a regularization means changing the original
minimization problem (10) by adding an additional regu-
larization cost, as in the following

min
ẏ
‖ ˙̄x− Jẏ‖2 + ‖ẏ‖2R . (17)

This is usually done to deal with the ill-definition of
the solution near a singularity of the matrix J . The
solution of the regularized problem, following the same
steps performed for the original one, is

(JTJ +R)ẏ = JT ˙̄x, (18)

ẏ = (JTJ +R)#JT ˙̄x. (19)

The presence of the regularizing matrix R does not allow
anymore to use the identity (14) and perform the substitu-
tion as in (16). Instead, the following substitution in (16)
is performed

J# → (JTJ +R)#JT (20)

and the manifold of solutions with J regularized by R
results to be

ẏ = (JTJ+R)#JT ˙̄x+(I−(JTJ+R)#JTJ)ż, ∀ż. (21)

It is noteworthy to see that the projection matrix (I −
(JTJ+R)#JTJ) is not anymore an orthogonal projector
on the null space of J whenever R 6= 0.

Remark: In some works, notwithstanding the regulariza-
tion of J with R in the minimum norm solution, the
null space projection matrix is calculated without the
regularization matrix R, and thus is still an orthogonal
projection. However, exploiting the non-orthogonality of
the projection matrix is one of the key ideas of this work,
and thus we will always consider it computed with J
regularized by R as in (21). Furthermore, if the projection
matrix is calculated without any regularization, a discon-
tinuity occurs whenever an exact singularity of the matrix
J is encountered.

3. WHOLE BODY CONTROL FRAMEWORK OF
DUAL ARM UVMS

This section presents the whole body control framework
developed for the control of dual arm UVMS. Toward that
end, we first focus on the problem of dealing with mul-
tidimensional inequality control objectives and we show
how classical regularization methods based on SVD are
not enough to eliminate practical discontinuities that arise
when trying to activate or deactivate one of such tasks.
The introduction of a novel regularization, called task
oriented, coupled with the SVD one, allows to create a
continuously varying null space, which is exploited by a
final minimization on the control vector to eliminate any
practical discontinuity. Successively, the extension to the
hierarchy of priority levels is presented. With this novel
activation method, the task priority framework presented
in Simetti et al. (2014) is straightforwardly extended to
cope with the dual arm case.

3.1 Task Oriented Regularization

To begin the discussion, let us again consider the Jacobian
relationship (9) and a scenario where, for some reason,
one or more of these rows start losing importance, even
to a point where the associated equation should not
be anymore considered. In particular, for each row we
consider an associated scalar value 0 ≤ a ≤ 1 whose
meaning is the following:

• a = 1 implies that the corresponding scalar task
must be exactly assigned if possible, i.e. the goal is
to have ẋ = ˙̄x. We term this as an active task ; for an
inequality control objective this is the case where it is
not yet satisfied, i.e. f(c) > 0 and the tracking of the
velocity reference is needed to reach the region where
inequality is satisfied.

• a = 0 implies that the corresponding scalar task
should not be considered, i.e. ẋ should be uncon-
strained. We term this situation as a deactivated
task ; for an inequality control objective this implies
that f(c) < −β < 0, i.e. the control objective is
satisfied with a given security threshold (represented
by β > 0). The β value allows to create a buffer
zone, where the inequality is already satisfied, but
the activation value is still greater than zero. This
is necessary to avoid chattering problems around the
inequality control objective threshold.

• 0 < a < 1 implies that ẋ should smoothly evolve
between the two previous cases. This is called a task
in transition, and for an inequality control objective
it means that the control objective is satisfied but not



yet to the point where it is completely safe to neglect
the corresponding task, i.e. −β < f(c) < 0.

The straightforward idea is to modify the problem (10)
by adding a weight diagonal matrix A, whose diagonal
elements are defined as above. Following this idea, (10)
becomes

min
ẏ
‖A( ˙̄x− Jẏ)‖2 . (22)

Its corresponding manifold of non-regularized solutions is

ẏ = (AJ)#A ˙̄x+ (I − (AJ)#AJ)ż, ∀ż. (23)

Equation (23) unfortunately exhibits discontinuities in the
ẏ when A is varied, since the weighted pseudo-inverse
is invariant to the weights on the rows of J that are
linearly independent Doty et al. (1993). More specifically,
the discontinuity occurs whenever a value of A(i,i) changes
from 0 to ε > 0 and vice versa.

To deal with the problem of discontinuities, the use of
the DLS (damped least squares) and SVO (singular value
oriented) regularizations has been proposed. While the
latter is certainly better, since it acts specifically only
on the singular directions, in both cases there is not a
straightforward relationship between the activation and
the regularization damping values. This in turn requires
either to have high damping values, which have a detri-
mental impact on the performances, or small ones, which
do not prevent the issues with “practical” discontinuities,
as highlighted in Mansard et al. (2009b).

Since simply imposing a weight A is insufficient to obtain
the desired behavior of activating and deactivating some
rows of J without “practical” discontinuities and that both
the DLS and SVO regularization have different drawbacks,
the idea is to modify the original minimization problem
introducing a novel regularization, the here called task
oriented regularization:

min
ẏ

[
‖A( ˙̄x− Jẏ)‖2 + ‖Jẏ‖2A(I−A)

]
. (24)

The rationale of this choice is that we want to preserve the
rows that have their corresponding A(i,i) = 1. Thus, the
choice of using A(I −A) guarantees that a regularization
is added only to the rows in transition. Indeed, it is
easy to see that the cost vanishes for all the rows with
A(i,i) = 0 or A(i,i) = 1. Thus, if A is made of only such
values, the regularization cost vanishes and the solution
just corresponds to the pseudo inverse of the active rows
(see Appendix A). The manifold of regularized solutions
is now

ẏ = (JTAJ)#JTAA ˙̄x+ (I − (JTAJ)#JTAAJ)ż, ∀ż,
(25)

which can be more compactly written as

ẏ = (
√
AJ)#

√
AA ˙̄x+ (I − (

√
AJ)#

√
AAJ)ż

, ρ+Qż, ∀ż.
(26)

However, it can be shown that (26) can still suffer of
discontinuities when one of the A(i,i) goes to zero. The
next section focuses on how to solve this problem.

3.2 Continuity of the Transition

In this section we will show how to solve the problem of
the discontinuity of the control law (26). The idea is to

combine the previously introduced task oriented regular-
ization with the singular value one. The SVO regulariza-
tion ensures the continuity of the pseudo inverse, making
the matrix to be inverted always of constant rank m.
However, as stated in Section 3.1, the problem of using
only the SVO regularization is that to obtain a practical
continuous transition, high values of the regularization are
necessary, with a clear impact on the performances of the
control. Instead, the previous sections have shown how the
task oriented regularization acts as soon as the activation
is lower than one, without impacting on the other rows.
However, the task oriented regularization does not prevent
the change of rank of the matrix to be inverted. The idea
is thus to combine the task oriented regularization with
the SVO one, combining the best of both regularizations:

• the task oriented regularization acts as soon as the
task is being deactivated, immediately releasing its
corresponding control directions, increasing the arbi-
trariness space of the solution;

• the singular value oriented regularization ensures the
practical continuity even with small values because
of the contemporaneous presence of the task oriented
one.

The minimization problem (24) thus becomes

min
ẏ

[
‖A( ˙̄x− Jẏ)‖2 + ‖Jẏ‖2A(I−A) +

∥∥V T ẏ
∥∥2
P

]
, (27)

where V T is the right orthonormal matrix of the SVD de-
composition of JTAJ = UΣV T , and P is a diagonal sin-
gular value oriented regularization matrix, whose diagonal
elements p(i,i) are a bell-shaped, finite support functions of
the corresponding singular value. The manifold of solution
of the above problem can be thus written as

ẏ = (JTAJ + V TPV )#JTAA ˙̄x

+ (I − (JTAJ + V TPV )#JTAAJ)ż

, ρ+Qż, ∀ż.
(28)

From the above formula it is clear that the matrix Q
evolves continuously with A, since the V TPV regular-
ization maintains the matrix to be inverted always of the
same rank.

The main idea to eliminate any practical discontinuities
is to exploit the arbitrariness of the solution ż in order
to minimize the resulting control vector ẏ. The rationale
is simple. At the extreme values of A (i.e. only values
either one or zero) the obtained solution corresponds to the
pseudo inverse of only the active rows, which is the min-
imum norm solution obtainable while fulfilling the given
tasks. Thus, the idea is to minimize the control vector as
much as possible also during a task activation/deactivation
transition, in order to smoothly join these two minimum-
norm extrema.

The above idea can be represented by the following mini-
mization problem:

min
ż

[
‖ρ+Qż‖2 + ‖(I −Q)ż‖2

]
. (29)

The introduction of the second cost allows to penalize the
use of the control directions characterized by an eigenvalue
strictly less than one, due to the complementary nature of
the eigenvalues of Q and I −Q. The solution of (29) is



0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

A1(2,2)

 

 

q̇1
q̇2

(a)

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

A1(2,2)
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Fig. 2. Different behaviours of the control vector ẏ and
task velocities ẋ1. (a), (b) represent the case with
only SVO (c), (d) show the behaviour with SVO and
task oriented regularization, while (e), (f) show the
final behaviour when a secondary task minimizing ẏ
is introduced.

ż = −(QTQ+ (I −Q)T (I −Q))#QTρ, (30)

which substituted into the manifold ρ+Qż yields

ẏ =
(
I −Q

(
QTQ+ (I −Q)T (I −Q)

)#
QT
)
ρ

,Mρ.
(31)

Figure 2 shows the different behaviors depending on the
choice of the applied regularizations. In the example the
task Jacobian is

J1 =

[
1 −0.5
1 1

]
, (32)

the velocity reference is ˙̄x1 = [0.1 0.1]
T

and the graphs
show the value of the control and task velocities as the
second row of J1 is activated/deactivated. The first two
sub-figures show that the use of SVO alone is insufficient to
provide a “practical” continuous transition over the whole
interval, as already stated. The successive two sub-figures
show that the addition of the task oriented regularization
modifies the behavior as soon as the value of the activation
becomes different than one. The final two sub-figures show
that the addition of the ẏ minimization, combined with
the SVO and the task oriented regularization provides a
“practical” continuous transition over the whole interval.

3.3 Extension to Task Priority Framework

In this section, we shall first tackle the possible discon-
tinuities that can arise when a second level of priority is
introduced, and then generalize the proposed framework
to any number of priority levels.

Smoothing the Discontinuities in the Prioritized Control
Let us now consider another task that has to be executed
with lower priority, represented by the following Jacobian
relationship

ẋ2 = J2ẏ, (33)

with J2 ∈ Rm2×n, ẏ ∈ Rn and ẋ2 ∈ Rm2 . The mini-
mization for this second task must be performed taking
into account that ẏ has been partially fixed by the higher
priority task. The manifold of solutions of the first task is
given by (28) and is ẏ = ρ1+Q1ż1. Let us remark how, for
the time being, we are not considering the minimization on
the control vector, because that completely consumes any
residual arbitrariness. We shall later see in Section 3.3.2
how that minimization is used in a hierarchy of tasks.

With that in mind, the second minimization problem can
only exploit the arbitrariness of ż1, leading to

min
ż1

[∥∥A2( ˙̃x2 − J2Q1ż1)
∥∥2 + ‖J2Q1ż1‖2A2(I−A2)

+
∥∥V T

2 ż1
∥∥2
P2

]
,

(34)

with the definition ˙̃x2 , ˙̄x2 − J2ρ1, and where the same
task oriented and SVO regularizations have been employed
to deal with the activation matrix A2.

Whenever a second level of priority is considered, a new
source of possible discontinuities is represented by the
non-orthogonal projection matrix Q1. To focus only on
the discontinuities created by the projection matrix and
to simplify the notation, let us suppose, without loss of
generality, A2 = I and for the moment let us neglect the
presence of the SVO regularization. Then, the solution of
the previous minimization is

ż1 = (J2Q1)# ˙̃x2 (35)

which substituted into the first control law leads to

ρ2 = ρ1 +Q1(J2Q1)# ˙̃x2. (36)

Note that Q1(J2Q1)# is in actuality the weighted pseudo-
inverse, with weights Q−11 on the control vector ẏ Naka-
mura (1991).

However, the above solution, while weighting the control
directions, thus preferring to use those that have an
eigenvalue of λi = 1 (i.e. unconstrained), fails under
certain conditions. Indeed, there are cases where control
directions with an eigenvalue 0 < λi < 1 are treated as if
λi = 1, because of possible invariance of the minimization
with respect to the weights Doty et al. (1993). This
means that, even if the corresponding control direction
only begins to be released by the higher priority tasks,
the current priority level would consider it as totally free,
leading to discontinuities.

To solve this problem, the idea is to compute a new task
reference in lieu of ˙̃x2. In particular, we want to find
which is the best velocity obtainable minimizing the use
of control directions in transition. Toward that end, we
exploit the following auxiliary problem

min
u̇1

[∥∥A2( ˙̃x2 − J2Q1u̇1)
∥∥2 + ‖J2Q1u̇1‖2A2(I−A2)

+ ‖(I −Q1)u̇1‖2 +
∥∥∥V̂ T

2 u̇1

∥∥∥2
P̂2

]
,

(37)



where this time V̂ T
2 is the right orthonormal matrix of the

SVD decomposition ofQT
1 J

T
2 A2J2Q1+(I−Q1)T (I−Q1).

The corresponding task velocity is

ẋ∗2 = J2Q1u̇1 ,W2
˙̃x2, (38)

which is then used as a reference velocity in (34). We then
have the following results:

• if u̇1 is such that ẋ∗2 = ˙̃x2, then ż1 will be the

minimum norm solution that gives ˙̃x2, just as in (35).
Furthermore, in this case W2 = I;

• conversely, ż1 = u̇1 and the obtained ẋ2 will necessar-
ily differ from ˙̃x2 because not enough unconstrained
control directions are available to obtain the desired
velocity.

In practice, Q1(J2Q1)#W2
˙̃x2 operates in this way: first it

finds the best ẋ∗2 = W2
˙̃x2 that can be obtained minimizing

the use of control directions in transition, and then it
exploits the standard weighted pseudo-inverse to obtain
the corresponding weighted minimum norm solution (i.e.
Q1(J2Q1)#ẋ∗2 ).

Minimization of the Control Vector as the Final Task
In the previous section we have seen how to deal

with a secondary task, exploiting (37) to cope with fact
that the standard weighted pseudo inverse Q1(J2Q1)# is
insufficient.

Let us now go back to the minimization of the control
vector presented in Section 3.2. It is clear that such a
minimization can actually be seen as another task to be
executed. This can be simply done considering J2 = I,
A2 = I and ˙̄x2 = 0. Then, we can see how (29) is just a
special instance of (37).

This task should be placed as the very last task of
the hierarchy, consuming all the residual arbitrariness
to ensure continuous transitions without any practical
discontinuity.

Unifying Formula for the Pseudo Inverse Before pro-
ceeding to the extension to any number of priority levels,
let us first introduce a more compact notation by intro-
ducing the operator (·)#,A,Q as in the following:

X#,A,Q ,
(
XTAX + (I −Q)T (I −Q)+

+V TPV
)#
XTAA

(39)

where V is the right orthonormal matrix of the SVD
decomposition of XTAX + (I − Q)T (I − Q) and P is
the same defined in (27).

The task oriented regularization (27) can be simply ob-
tained by writing J#,A,I or J#,A,· to highlight the fact
that the third cost vanishes from the minimization prob-
lem. Finally, the auxiliary problem (37) can be obtained
by writing (JQ)#,A,Q.

3.4 Extension to Any Number of Priority Levels

Putting all the pieces together, and with the definition of
the pseudo inverse given in the previous section, the ex-
tension to any number of priority levels is straightforward.
With the initializations

ρ0 = 0, Q0 = I, (40)

then for k = 1, . . . , N , where N is the total number of the
tasks:

Wk = JkQk−1(JkQk−1)#,Ak,Qk−1

Qk = Qk−1(I − (JkQk−1)#,Ak,·JkQk−1)

Tk , (I −Qk−1(JkQk−1)#,Ak,·WkJk)

ρk = Tkρk−1 +Qk−1(JkQk−1)#,Ak,·Wk ˙̄xk

(41)

thus ending up with the final control law

ẏ = ρN (42)

because, according to Section 3.3.2, theN -th and final task
should be the minimization of the control vector ẏ, which
consumes any residual arbitrariness.

4. SIMULATION RESULTS

In this section we present a simulation using the proposed
task-priority framework for whole body dual arm UVMS
control, where a fully-actuated vehicle endowed with two
7 DOFs arms is accomplishing a transportation task. In
considered simulated environment, the UVMS starts from
a position (in meters) of [0 0 0] with the object firmly
grasped by its two arms. A common tool frame 〈t〉 is
placed at the center of the object, in correspondence of
the object frame 〈o〉, at about 30 cm distance from the
two arms’ end-effectors, and its initial position results to
be in [−0.4078 0 0.9125] due to the initial postures of the
arms. The goal of the transportation task is to bring the
object frame 〈o〉 in the position [3 1 4] with a rotation
described by a roll angle of π/5, a pitch angle of π/5 and
a yaw angle of π/2.

The tasks that the UVMS has to execute are, in order of
priority

(1) minimizing the interaction on the object, i.e. the ve-
locities of the two arms end-effectors once transferred
to the common object frame should be equal (a 6
dimensional equality task);

(2) avoid both arms joint limits (a 14 dimensional in-
equality task, one for each joint);

(3) maintain both arms with a good dexterity to avoid
singular postures (a 2 dimensional inequality task);

(4) keep the vehicle with a horizontal attitude (a scalar
inequality task);

(5) moving the two end-effectors in the required final goal
position (a 12 dimension equality task).

Figure 3 reports the control vector generated during this
simulation, showing how the arms (Fig. 3(a) and Fig. 3(b))
and the vehicle requested velocities are continuous (see
Fig. 3(c) for the vehicle linear velocities and Fig. 3(d) for
the angular ones). The successive Fig. 4(a) reports the time
history of the arm a joint limits activation functions, while
the arm b ones have not been reported since they were zero
during all the trial. Figure 4(b) reports the time history of
the other tasks activation functions, showing in particular
how the manipulability task has been in transition for
both arm a and arm b without causing problems to the
generated system velocities. The successive Fig. 4(c) shows
the convergence of the object position to the desired
one. Finally, Fig. 5 shows some snapshots of the UVMS
performing the required transportation task.
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Fig. 3. Dual arm simulation: (a) arm a joint velocities, (b) arm b joint velocities (c) vehicle linear velocity (d) vehicle
angular velocity.
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Fig. 4. Dual arm simulation: (a) activation functions for the joint limits task for arm a, (b) activation functions for the
other tasks (c) object position error.

(a) (b)

(c) (d)

Fig. 5. Snapshots of the UVMS performing the required
transportation task.

5. CONCLUSIONS AND FUTURE WORKS

The paper has presented a task-priority based control
of dual arm underwater floating manipulators. Starting
from the results of the TRIDENT project Simetti et al.
(2014), we have extended the core framework to encompass
the activation and deactivation of multidimensional tasks.
This in turns allows the introduction of multidimensional
inequality control objectives, since each row can now
be activated/deactivated independently from the others
without incurring in “practical” discontinuities, as the
simulation results have shown.

The MARIS project is now focusing on the experimental
trials of a single underwater manipulator system. Other
relevant activities carried out within the project regard
the improvement of the vision based techniques for object
pose estimation Rizzini et al. (2015), adaptive dynamic

control Antonelli and Cataldi (2014), visible light commu-
nications Cossu et al. (2013) and studies on UVMS single
range observability Parlangeli and Indiveri (2014). Future
works will be focused on the implementation and experi-
mentation of the cooperative control strategies presented
in Manerikar et al. (2015b,a); Simetti et al. (2015) and
may include the addition of velocity saturations in the
prioritized control, in a similar manner as developed in
Antonelli et al. (2009).
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A., and Turetta, A. (2012b). A task and subsystem
priority based control strategy for underwater float-
ing manipulators. In IFAC Workshop on Naviga-
tion, Guidance and Control of Underwater Vehicles
(NGCUV 2012), 170–177. Porto, Portugal. doi:10.3182/
20120410-3-PT-4028.00029.

Casalino, G., Caccia, M., Caiti, A., Antonelli, G., Indiveri,
G., Melchiorri, C., and Caselli, S. (2014). Maris: A
national project on marine robotics for interventions. In
Control and Automation (MED), 2014 22nd Mediter-
ranean Conference of, 864–869. IEEE. doi:10.1109/
MED.2014.6961482.

Cieslak, P., Ridao, P., and Giergiel, M. (2015). Au-
tonomous underwater panel operation by GIRONA500
UVMS: A practical approach to autonomous under-
water manipulation. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, 529–
536. IEEE. doi:10.1109/icra.2015.7139230.

Conti, R., Meli, E., Ridolfi, A., and Allotta, B. (2015).
An innovative decentralized strategy for I-AUVs coop-
erative manipulation tasks. Robotics and Autonomous
Systems, 72, 261–276. doi:10.1016/j.robot.2015.06.006.

Cossu, G., Corsini, R., Khalid, A., Balestrino, S., Coppelli,
A., Caiti, A., and Ciaramella, E. (2013). Experimental
demonstration of high speed underwater visible light
communications. In Optical Wireless Communications
(IWOW), 2013 2nd International Workshop on, 11–15.
IEEE. doi:10.1109/IWOW.2013.6777767.

Doty, K.L., Melchiorri, C., and Bonivento, C. (1993).
A theory of generalized inverses applied to robotics.
International Journal of Robotics Research, 12(1), 1–19.
doi:10.1177/027836499301200101.

Gancet, J., Urbina, D., Letier, P., Ilzokvitz, M., Weiss,
P., Gauch, F., Antonelli, G., Indiveri, G., Casalino, G.,
Birk, A., et al. (2015). Dexrov: Dexterous undersea in-
spection and maintenance in presence of communication
latencies. In IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles (NGCUV), 218–
223. Elsevier. doi:10.1016/j.ifacol.2015.06.036.

Khatib, O. (1987). A unified approach for motion and
force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and
Automation, 3(1), 43–53. doi:10.1109/jra.1987.1087068.

Lane, D.M., Davies, J.B.C., Casalino, G., Bartolini, G.,
Cannata, G., Veruggio, G., Canals, M., Smith, C.,
O’Brien, D.J., Pickett, M., Robinson, G., Jones, D.,
Scott, E., Ferrara, A., Angelleti, D., Coccoli, M., Bono,
R., Virgili, P., Pallas, R., and Gracia, E. (1997).
AMADEUS: advanced manipulation for deep underwa-
ter sampling. IEEE Robot Autom Mag, 4(4), 34–45. doi:
10.1109/100.637804.

Lane, D.M., Maurelli, F., Kormushev, P., Carreras, M.,
Fox, M., and Kyriakopoulos, K. (2012). Persistent
autonomy: the challenges of the pandora project. In
Proceedings of IFAC MCMC, 268–273. Elsevier. doi:
10.3182/20120919-3-IT-2046.00046.

Lee, J., Mansard, N., and Park, J. (2012). Intermediate
desired value approach for task transition of robots
in kinematic control. IEEE Transactions on Robotics,
28(6), 1260–1277.

Manerikar, N., Casalino, G., Simetti, E., Torelli, S., and
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(2014). Increasing the autonomy levels for underwater
intervention missions by using learning and probabilistic
techniques. In ROBOT2013: First Iberian Robotics
Conference, 17–32. Springer.



Sanz, P., Ridao, R., Oliver, G., Casalino, P., Insaurralde,
C., Silvestre, C., Melchiorri, M., and Turetta, A. (2012).
TRIDENT: Recent improvements about autonomous
underwater intervention missions. In Proceedings of the
IFAC Workshop on Navigation, Guidance and Control
of Underwater Vehicles (NGCUV2012), Porto, Portu-
gal. doi:10.3182/20120410-3-pt-4028.00059.

Schempf, H. and Yoerger, D. (1992). Coordinated vehi-
cle/manipulator design and control issues for underwa-
ter telemanipulation. In IFAC Control Applications in
Marine Systems (CAMS 92), 259–267. Genova, Italy.

Siciliano, B. and Slotine, J.J.E. (1991). A general frame-
work for managing multiple tasks in highly redundant
robotic systems. In Proc. Fifth Int Advanced Robotics
’Robots in Unstructured Environments’, 91 ICAR. Conf,
1211–1216. IEEE, Pisa, Italy. doi:10.1109/ICAR.1991.
240390.

Simetti, E., Casalino, G., Manerikar, N., Torelli, S.,
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Appendix A. RESIDUAL ORTHOGONALITY
PROPERTIES OF THE PROJECTOR

In the classical task priority framework the projection
operator is orthogonal, and guarantees that lower priority
task can only act inside the null space of the higher priority
ones. This ensures the invariance of the main task w.r.t.
lower priority ones. However, in our proposed solution,
the projection matrix (see the definition of Q in (26))
is not orthogonal whenever any of the activation values
are different from 0 and 1, i.e. whenever any task is in

the transition zone. In this section we analyse the residual
orthogonality properties of the proposed projector.

Toward that end let us recall the minimization problem
with the task oriented regularization (24)

min
ẏ

[
‖A( ˙̄x− Jẏ)‖2 + ‖Jẏ‖2A(I−A)

]
,

whose manifold of regularized solutions (26) is recalled
hereafter

ẏ = (
√
AJ)#

√
AA ˙̄x+ (I − (

√
AJ)#

√
AAJ)ż

, ρ+Qż, ∀ż.

Let us prove the fact that, under some assumptions,
the projection matrix admits some residual orthogonality
property: it is orthogonal with respect to the active rows of
J , i.e. (JQ){i} = 0 for every i-th row for which A(i,i) = 1.
Toward that end, let us start the discussion by considering
A(i,i) > 0,∀i and J full rank, which implies that

√
AJ is

full row rank. After some simple algebra we get

ẏ = J#A ˙̄x+ (I − J#AJ)ż , ρ+Qż, ∀ż. (A.1)

It is easy to see that the projection matrix (I − J#AJ) is
actually orthogonal to the active rows. Indeed, multiplying
the projector by J yields

J(I − J#AJ) = (J − JJ#AJ) = (I −A)J (A.2)

since JJ# = I under the above assumptions. The above
result implies that, for every row where A(i,i) = 1, then
(JQ){i} = 0 as it was claimed. However, the projection
matrix Q does not prevent ż from influencing the other
rows. As said before, this is a positive fact, as those rows
are being deactivated and thus there is not anymore any
need to guarantee the fulfilment of their corresponding
velocity reference. Indeed, when A(i,i) reaches zero, the
corresponding velocity should be unconstrained.

Let us now drop the two assumptions of full rankness of A
and J . Without losing generality, let us suppose that the
rows with A(i,i) = 0 are at the bottom, and let us partition
A and J in the following way

A =

[
Ā 0
0 0

]
; J =

[
J̄

Ĵ

]
, (A.3)

where J̄ only contains the i-th rows for which A(i,i) 6= 0.
Given the above definition we have that

√
AJ =

[√
ĀJ̄
0

]
, (A.4)

√
AJJT

√
A =

[√
ĀJ̄J̄T

√
Ā 0

0 0

]
. (A.5)

After some simple algebra, the formula for the pseudo-
inverse (

√
AJ)# becomes:

(
√
AJ)# = JT

√
A(
√
AJJT

√
A)#

=
[
J̄# 0

]√
A

# (A.6)

which substituted into the control law (26) yields

ẏ =
[
J̄# 0

]
A ˙̄x+ (I −

[
J̄# 0

]
AJ)ż

, ρ+Qż,∀ż.
(A.7)

This could not be otherwise, as the added cost in (24)
vanishes whenever A is composed only by ones and zeros,
and thus the obtained solution is just the pseudo inverse
of J with only the relevant rows.



The projection matrix (I−
[
J̄# 0

]
AJ) is still orthogonal

to the active rows. Indeed,

JQ =

[
(I − J̄ J̄#Ā)J̄

(I − Ĵ J̄#Ā)J̄

]
(A.8)

Again, it is easy to see that in (I − J̄ J̄#Ā)J̄ , for every
linearly independent row where A(i,i) = 1, then (JQ){i} =
0 as it was claimed. For a set of linearly dependent rows,
the orthogonality property holds if and only if all the
corresponding A(i,i) are equal to one.
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