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—— Abstract

Dictionary Learning and Representation Learning are machine learning methods for decompos-

ition, denoising and reconstruction of data with a wide range of applications such as text re-
cognition, image processing and biological processes understanding. In this work we present
DALILA, a scientific Python library for regularised dictionary learning and regularised repres-
entation learning that allows to impose prior knowledge, if available. DALILA, differently from
the others available libraries for this purpose, is flexible and modular. DALILA is designed to
be easily extended for custom needs. Moreover, it is compliant with the most widespread ML
Python library and this allows for a straightforward usage and integration. We here present and
discuss the theoretical aspects and discuss its strength points and implementation.
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1 Introduction

Nowadays many optimisation algorithms and libraries are freely available for the most
disparate machine learning applications. For example some machine learning tasks, as
classification, have hundreds of algorithms and libraries implementations. This is not the case
for Dictionary Learning (DL) [11, 12, 13, 14, 17, 19, 23] and its specialisation Representation
Learning (RL) [3, 25], which are designed for matrix decomposition and reconstruction.
They can be applied on many application domains such as signal processing [23], image
processing [18], bioinformatics [2] and text-recognition [1]. Even though dimensionality
reduction methods such as PCA [10] and ICA [9] may be used to solve these tasks, dictionary
learning is preferable when more emphasis on the interpretability of the dictionary is required
[11].

In this paper we present DALILA, a Python library for DL and RL. The optimisation is
based on alternating prozimal gradient descent [4], which allows flexibility on the minimisation
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problem and therefore enables the imposition of prior knowledge. Designed to be extremely
flexible and modular, DALILA can be easily extended differently from the other available
libraries.

As regards the implementation, the library is compatible with the scikit-learn Python
library and it supports the distribution of the most computationally heavy routines across
different machines [6].

The remainder of this paper is organised as follows. In Section 2 we present DL, RL and
the alternating proximal gradient descent algorithm. In Section 3 we give an overview on the
library design and the implemented regularisers. In section 4 we comment the other available
libraries on the topic. We finish with the conclusion and further work we intend to perform.

2 Theoretical background

In the following section a basic theoretical background on DL and RL problems is provided,
together with the alternating proximal minimisation algorithm. The expert reader can feel
free to skip it, if she/he is familiar with these mathematical concepts.

2.1 Dictionary Learning

Dictionary learning (DL) is a machine learning method that aims at finding a representation
of the original data as a linear combination of basic patterns (atoms) and coefficients. The
representation is completely data driven, in contrast to more generic and less adaptive
methods such as Wavelet and Fourier transform [15, 26].

Given a dataset X € R"*? where n is the number of samples and d is the feature space
dimension, the goal of DL is to decompose a dataset into two matrices:

a dictionary D € R¥*?  a matrix of atoms that represent basic signals;

the coefficients C € R™** a matrix of weights for the atoms of the dictionary.
k represents the number of atoms composing the dictionary.

Hence, the original matrix X can be retrieved as a linear combination of dictionary and
coefficients as in Equation (1).

X ~ CD (1)

The recovering of the matrices C and D is solved by minimising a loss term ¢: a a posit-
ive differentiable function that quantifies how well the multiplication of the two matrices
approximates the signal.

argmin [Z(X, CD)] (2)
C,D

The minimisation problem in Equation (2) not always gives us the best possible solution.
In presence of noisy data, ill-posed problems or when we have prior knowledge on the problem
one of the usual tricks is to add terms or constraints to the functional in order to obtain a
regularised problem (Equation (3)).

argmin [¢(X,CD) + ®(C) + ¥(D) (3)
CD

®(C) and ¥(D) are two penalty functions that act respectively on the coefficients and on
the dictionary. The functional in Equation (3) can be further specialised in order to include
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Algorithm 1 Alternating proximal gradient descent

1: Random initialization of the matrices C' and D
2: for i = 0 : max_ iters do

3: vp < lipschitz_step,(D)

~o < lipschitz_step,(C)

D1 = prOXyD\p(Dt — 0 Vb (&)

Cry1 = prox, . 4(Ct —vc Ve (l))

if difference between iterates < € and

different between previous and current objective function < € then
break

constraints sets that reduce the space in which a solution is admissible. A very common
example is when we impose the involved matrices to be non-negative, a problem known as
Non-negative Matrix Factorization (NMF) [11].

2.2 Alternating proximal gradient descent

It is worth noting that the optimisation of Equation (3) poses some issues. In fact, due to the
multiplication present in the loss function ¢, Equation (3) is jointly non-convex. Moreover
the generality of the penalty terms requires the use of a minimisation algorithm that deals
with different choices of penalties without a substantial change in its flow.

All taken into account, our optimisation choice is alternating proximal gradient descent
[4] which assures the convergence to a local minima under the following assumptions: 1) the
loss function ¢(X, CD) is differentiable and partially Lipschitz continuous; 2) it is possible to
compute the proximal mapping of the penalty terms in closed form or at least to approximate
it. See [4] for mathematical details and theoretical proofs.

The proximal mapping [16] of a function g for a point u is defined as Equation (4).

1
pr0%(u) = anganin (9(3) + - || v~ ) ()

When the computation of the prox is not available in a closed form, it can be approximated
via a iterative algorithm.

A general overview on the optimization algorithm is given in Algorithm 1. The algorithm
alternates the steps 3, 4, 5 and 6 until convergence. In step 4 the computation of the gradient
descent is performed on the dictionary keeping the coefficients fixed. On the result the
proximal mapping of the dictionary learning penalty W is applied. The same is done in step
6 on the coefficients.

We want to remark that the gradient is computed w.r.t. the previous iteration in both
cases [17]. This allows to perform the two steps in parallel if needed.

2.3 Representation learning (sparse coding)

Representation learning is a more general form of sparse coding (SC) that similarly to DL
aims at finding the best approximation of a signal X (Equation (1)), when the dictionary D
is given. This leads to a problem which is easier to minimise and, given convex loss function
and penalty, becomes convex. The convexity property guarantees that a global optimum can
be always reached.
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Cross Validation Minimisation Regularisation
Utilities Algorithms Terms
tune_parameters_DL: S R »
Ly e Dictionarylearning: class —; Penalty: class

- LBPenalty:

- LlPenalty:
tune_parameters_RL: RepresentationLearning: [l + L2Penalty: class
E bl .
method class + ElasticNetPenalty: class

GrouplassoPenalty: class
- LInfPenalty: class

Figure 1 Diagram of DALILA library structure. The main core consists of the two classes which
address the minimization problem. This depends on the class Penalty which represents a generic
penalty term and that can be specialised by declaring subclasses. The library also offers cross
validation utilities for the free parameters tuning.

In representation learning the choice of the penalty on the coefficients is arbitrary and
dictated by the problem while in SC we assume the use of L° or L! norms. The formalisation
is given in Equation (5).

argénin {(X,CD) + ®(C) (5)

This optimisation problem, since involves the minimisation on only one variable, can be
solved with proximal gradient descent that acts similarly to what explained in Algorithm 1
without steps 3 and 5.

3 DALILA

DALILA is a library for signal decomposition and reconstruction. Its first focus is Dictionary
Learning (DL) described in Section 2. The fact that both the dictionary and the coefficients
are learned from data allows for a more complete analysis of the results extracting useful
information about the original signals. Moreover the possibility to impose prior knowledge
on the problem using penalty terms grants that the final matrices respect certain constraints.
Examples for regularised DL are: 1) image denoising where sparsity imposition forces the
most important atoms to be used and the noisy ones to be discarded; 2) pattern recognition,
where the atoms of the dictionary are seen as latent patterns from which the original signals
are generated.

DALILA second focus is Representation Learning whose purpose is to represent the
original data matrix on a new space defined by the atoms of the dictionary D. Penalty terms
can be added to impose a structure on this new representation.

The learned coefficients may be used as a new representation for further tasks such
as: 1) compressed sensing that exploits sparsity reducing the size of the original signal; 2)
classification where, rather than considering the original signal, the coefficients are used as
new features.
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3.1 Implementation

DALILA is implemented in Python. It supports different versions of Python and it is
scikit-learn compatible. See https://slipguru.github.io/dalila for the full docu-
mentation and a quick start.

DALILA has a modular and easily extendible design (see Figure 1). The core of the
library consists of two classes, DictionaryLearning and RepresentationLearning which
respectively solve the two minimisation problems in Equation (3) and (5). These classes
depend on a generic penalty term (Penalty) which can be specialised into different regular-
isers by declaring a subclass. The library is therefore easily extendible with new regularisers
and flexible in the choice of the model. Cross validation utilities to tune the parameters
of the model are provided, the two methods shown in Figure 1, tune_parameters_DL and
tune_parameters_RL, can perform the tuning by parallel or distributed computation using
dask library [6].

The loss function ¢ introduced in a generic form in Equation (3) and (5) is common to
both DictionaryLearning and RepresentationlLearning classes. It is implemented as the
Frobenius norm of the difference between the original signal and its reconstruction, defined
as Equation (6).

((X,CD) = ||X - CD|f} (6)

As regards the regularisation terms, called ® and ¥ in Equation (3) and (5), DALILA
offers many possibilities.

In this way a proper regulariser, dependent from the task, can be chosen, during
the initialisation of the DictionaryLearning/RepresentationLearning instances. In fact
DictionaryLearning/RepresentationLearning minimisation algorithms do not depend
on the penalties chosen, as long as the penalty classes inherit from the superclass Penalty

and reimplement the same methods (Figure 1). For a better understanding see Appendices
B, C.

Available regularisation terms

The penalty terms ® and U are the product between a regularisation parameter and, typically,
a norm. The norm is used to impose a structure on the matrix, while the regularisation
parameter, a positive scalar, weights the regularisation term influence on the solution.

In the following we show the possible choices for & and ¥ applied on a generic matrix
M whose i-th row is indicated as M, . and j-th column as M. ;. Its generic element is
denoted by m;;. With the notation ®|¥ we indicate that the penalty can be applied or on
the dictionary or on the coefficients or on both.

LiPenalty - £; norm
SIW(M) =AY [Myfli =AY > |mijl (7)
i i

Regularisation terms of this form, due to the geometrical meaning of the ¢; norm, force
the solution to be sparse and, therefore, highly interpretable [21]. If the penalty is applied
on the dictionary it promotes a dictionary whose atoms have a low number of non-null
components. For the coefficients, the penalisation promotes a reconstruction based only
on few atoms of the dictionary, discarding the ones which give minor contribution to the
original signal.

6:5
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The proximal operator related to this regulariser is

mij; — A if mi; > A
ProxXe gy (mij) = {0 if mij € [=A\, ] (8)
mi; + A if mi; < —-A

L2Penalty - £2 norm

O|W(M) = )\Z mej (9)

Penalties of this form, as in the previous case, can be applied to both matrices C and D.
The /5 regularisation term leads to the shrinkage of the components of each row, but,
differently from the ¢; norm, it does not lead to a sparse solution [22].

The proximal operator is

proxgy (M) = max(1 — A/[|M;,|2,0) M, (10)
ElasticNetPenalty
O[T(M) = [00\1||Mi,:||1 + (1= a)A2|[ My, |2 (11)

i
Elastic Net can be preferable to ¢; norm, in the case of highly correlated variables, and
also to ¢5 norm since it inherits the possibility of finding a sparse solution [27].

Here A\ and A9 weight the two norms separately while a € [0, 1] balances the contribution
of the two terms. The proximal operator is

proseyy (M) = ( ) proxy, .1, (M,.) (12)

1+ Oé)\g
LOPenalty - £¢ pseudo-norm
OIU(M) : Vi Mo < s (13)

where ||[M; .||o counts the number of non-zero elements in the row. The regularisation
parameter s € N impose the maximum number of non-null elements in M; ., naturally
leading to sparse results. The proximal operator is

proxgy (M) = { Zi‘;’t}il::;ee s (14)
where S is the set containing the first s biggest components of M ..
LInfPenalty - £, norm
o0 (15)

(M) = A ML

where |M. ;|loo returns the maximum element in the column. This regularisation term
acts column-wise only on the coefficients and it is useful in presence of a redundant
dictionary [24].
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The effect of this regulariser is to discard the atoms that overall have a low impact in the
reconstruction while emphasising the atoms that, even if only in few samples, contribute
largely.

The proximal operator is

proxg(m;) = m; — AlI; (m;/A) (16)

The algorithm for the projection on the ¢; ball is explained in [7].

GroupLassoPenalty - £; 2 norm

SUM) =AY > [Migle (17)

i geg

where G is the set of the groups (i.e. the indices of the columns) defined by the user.
For each row of the matrix M the penalty enforces all the values of a group to be selected
or discarded together (i.e. all of them set to zero). The groups cannot be overlapping
and they have to cover all the columns indices. Its proximal mapping is

proxq,I\I,(Mi,:)g =max(l — \/|[M;4/|2,0) M; , forallgeg (18)

Additional user-implemented penalties As introduces before DALILA is flexible in
the sense that it allows to use different penalties without changing the minimisation flow
and it further allows the user to declare new non-considered penalties. More details are
given in Appendix C.

Both for DictionaryLearning and RepresentationLearning the user can impose non-
negativity constraints on the involved matrices. When this requirement is applied both on
the dictionary and the coefficients it is called Non-negative Matrix Factorization [11]. The
non-negativity condition can, moreover, be imposed only on the coefficients in order to obtain
a more interpretable contribution of the dictionary elements to the reconstruction of the
original signal [19]. The projection is performed by setting to zero all the negative elements
in the considered matrix.

Furthermore, in the DictionaryLearning class the user can impose the normalization
condition on the dictionary matrix, which is equivalent to set the euclidean norm of each
row equal to 1.

HDl ||2 =1 forallie {1’7]{7} <19)

50

Model selection

A critical aspect of these reconstruction techniques is constituted by the choice of the free
parameters, which are the number of atoms k that define the dictionary and the regularisation
values that weight the penalty terms. This choice depends on the dataset given as input X
and it can varies depending on different factors, as the high level of noise in the measurements,
the redundancy of the founded dictionary and the interpretability of the solution. Given
the fact that there is an infinite set of possible values for each parameter and no theoretical
formulation that guides to the best solution exists, the only feasible approach is to empirically
solve a searching problem over the parameters space.

DALILA allows for a fine tuning of the free parameters of the model on the dataset by
performing a grid search based on cross validation. The best combination of parameters is
selected as the one that returns the best mean score over multiple iterations. As score we
use BIC (Bayesian Information Criterion) [20], shown in Equation (20).

BIC = —log(n) - k — ¢ £(X,CD) (20)
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where ¢ is a positive constant. The highest value of the BIC corresponds to the best
model in the search space. This procedure is available both for DictionaryLearning and
RepresentationlLearning.

The two procedures, tune_parameters_DL and tune_parameters_RL, allow the user to
specify different search modalities. In tune_parameters_DL the user can choose among
different configurations.

tuning the number of atoms together with the dictionary penalty and after searching the

regularisation parameter on the coefficients;

fixing the number of atoms in the estimator and tuning the penalties together;

fixing the penalties values and tuning the best number of atoms;

tuning all the possible value together, number of atoms and regularisation parameters,

analysing every possible combination in the grid.

4 Related work

As of today other libraries addressing similar tasks are available, SPAMS! (SPArse Modeling
Software) [13] and the Decomposition modules of scikit-learn [5, 12].

SPAMS, implemented in C++, performs the decomposition tasks through dictionary
learning, non negative matrix factorization and sparse PCA. It offers a good set of options,
but, even if it is interfaceable with Python, it is not scikit-learn compatible. Therefore, it
cannot be integrated in scikit-learn pipelines. Moreover, it is non trivial to customise or
extend it.

The other main competitor, the decomposition module of scikit-learn library, imple-
ments dictionary learning and NMF but it only has few fixed penalty terms.

5 Conclusions and further work

In this work we introduced DALILA, a library for dictionary learning and representation
learning. We presented its main features: the wide variety of penalties, the possibility to
customise the library on specific problems, its compatibility with scikit-learn library,
its high flexibility and its scalable architecture which allows to perform parallel parameter
searching procedures.

The wide variety of penalties applicable on the matrices allow the user to solve a broad
range of problems. Moreover, since scientific problems can introduce more specific and new
needs, the possibility to customise and adapt the library is essential.

DALILA is fully compliant with one of the most complete machine learning Python
libraries that is scikit-learn. This makes almost effortless its integration with the majority
of machine learning Python pipelines.

The possibility to parallelise or distribute computationally heavy routines [6] greatly
reduce the wall-clock time. Nevertheless our implementation is still basic and therefore the
time performance are worse compared to the other presented libraries. In the future we plan
to replace the use of dask with an hybrid parallelised system which will take advantage both
of MPI tasks distribution and the computational acceleration given by GPUs.

Given DALILA flexibility and the existence of other Dictionary Learning related problems,
we aim at extending it. The planned expansions are: 1) Discriminative Dictionary Learning
[14], a variant of the dictionary learning problem which includes the classification task; 2)

! nttp://spams-devel.gforge.inria.fr/doc/html/
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Shift Invariant Dictionary Learning [8] that allows the reconstruction of signals using atoms
with smaller support than the original signal and 3) Total Variation penalty in combination
with Lasso [19].
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Appendix: example of usage and related output

In this appendix we want to offer some insights of how DALILA code works and the possible
outcomes we can obtain. All the experiments are performed on the ORL database of faces 2.
This database is saved as a matrix within the library with 400 samples and 112 x 92 features.

In order to perform Dictionary Learning on this dataset we firstly need to flatten the
matrices into arrays and then apply the fitting procedure. In this estimator we are using an
arbitrary number of atoms that we choose randomly and we impose non-negativity on both
the matrices since we are dealing with gray scale images that have values in the range of
[0,255].

import numpy as np

3 from dalila.dictionary_learning import DictionaryLearning

from dalila.penalty import Li1Penalty

dataset = np.load("/path/to/dalila/folder/dalila/databases/

di,

ORL_database.npy")
d2, n = dataset.shape

data = np.empty((n, d1xd2))
for i in range(mn):

datali,:] = np.ravel(dataset[:,:,i])

estimator = DictionaryLearning(k=60, non_negativity="both")

C,

; estimator.fit(data, n_iter=1000)

D = estimator.decomposition ()

Some of the results obtained with this code are depicted in Figure 2. Here the most used

atoms in the reconstructions are showed. In Figure 3, instead, we show some reconstructions

and their original signals to perform a qualitative comparison.

2 The database is available for download at the link http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html


http://dx.doi.org/10.1109/TIT.2007.909108
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

N

|

2

V. Tozzo, V. D’Amario, and A. Barla 6:11
e |

. '

Figure 2 The ten more recurrent atoms for the reconstruction of the samples in ORL dataset.

In this example we tune only the right number of atoms we should use for this particular
dataset. Given the dimensionality of the dataset we picked as range k € [5, 10, 15, 20, 30, 40, 50].

Moreover we did not use the basic BIC score but a normalised one since the values
within the BIC computation, with this dataset, are not comparable in their magnitude (see
scoring_function). The results are showed in Figure 4 where we can see that the best
number of atoms is 15.

import matplotlib.pyplot as plt
import numpy as np

s from dalila.parameters_research import tune_parameters_DL

from dalila.dictionary_learning import DictionaryLearning

dataset = np.load("/path/to/dalila/folder/dalila/databases/
ORL_database.npy")

dl, d2, n = dataset.shape

data = np.empty((n, d1xd2))

for i in range(mn):

datal[i,:] = np.ravel(dataset[:,:,i])

def scoring_function(estimator, X, y=None):
C, D = estimator.decomposition ()

s r_error = (np.linalg.norm(estimator.X - C.dot(D))/

np.linalg.norm(estimator.X))

5 n = estimator.X.shape [0]

return -(2.3*np.array(r_error) + 0.00l*estimator.k*np.log(n))

possible_ks = [5,10,15,20,30, 40,50]

estimator = DictionarylLearning(k=5, non_negativity="both")
gscv = tune_parameters_DL (data, estimator, analysis=2,
range_k=possible_ks, fit_params={’n_iter’:500},
scoring_function=scoring_function)

ICCSW 2017



6:12

DALILA: A DictionAry Learning LibrAry

Figure 3 Examples of the reconstruction obtained with DL decomposition. In the first row the
reconstructions are shown and beneath them their original picture.

BIC value

T T T T T T
5 10 15 20 30 40
Number of atoms used in the decompasition

Figure 4 Curve of the scoring_function values (refined BIC) w.r.t. the number of atoms used
for the decomposition. To an higher value corresponds a better model for the dataset. In this case
the best model is the one with 15 atoms in the dictionary.

B Appendix: interchangeability of the penalties

With DALILA trying different penalties on the same dataset requires only few lines of code.

For example suppose we have the right number of atoms (with the dataset we use is 7)
in which to decompose the dataset and that, some oracle, told us the perfect regularisation
parameters for each penalty on that dataset. Then we may want to try different sparsifications
on the coefficients to see which one better approximates the original signal. We tried
LiPenalty, LOPenalty and ElasticNetPenalty.
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1 import numpy as np

s from dalila.dictionary_learning import DictionarylLearning
i from dalila.dataset_generator import synthetic_data_non_negative
5 from dalila.penalty import L1Penalty, LOPenalty, ElasticNetPenalty

7 X, D, C = synthetic_data_non_negative ()

o estimator = DictionarylLearning(k=7, coeff_penalty=L1Penalty(0.01),
non_negativity="both")

10 estimator.fit (X)

11 C_11, D_11 = estimator.decomposition ()

> error_11 = estimator.reconstruction_error ()

. estimator = DictionarylLearning(k=7, coeff_penalty=LOPenalty(3),
non_negativity="both")

5 estimator.fit (X)

16 C_10, D_10 = estimator.decomposition()

17 error_10 = estimator.reconstruction_error ()

19 estimator = DictionaryLearning(k=7, coeff_penalty=ElasticNetPenalty
(0.01, 0.1, 0.7), non_negativity="both")

0 estimator.fit (X)

21 C_en, D_en = estimator.decomposition()

22 error_en = estimator.reconstruction_error ()

After the execution of this piece of code the comparison between the results is straight-forward
and you can notice that the effort is minimal.

C Appendix: addition of a new penalty

DALILA allows to easily introduce new customised penalties for the optimisation of dictionary
learning or representation learning. We want to underline that, even if the implementation
steps are easy, the function that computes the proximal mapping has to be correct and no
theoretical inconsistencies should be present. The behaviour is otherwise unpredictable.

The first step is the import of the super-class Penalty that our new penalty has to extend.
We also import other things that we need later.

1 from dalila.representation_learning import RepresentationlLearning
2 from dalila.penalty import Penalty
3 import numpy as np

The implementation of the new class, besides the construction, has to expose the method
apply_prox_operator that is the one called during the minimisation. In this method the
prox operator is implemented.

1 class NewPenalty(Penalty):

2

3 def __init__(self, regularization_parameter):
1 self .regularization_parameter = regularization_parameter

¢ # x is the matrix on which apply the prox
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7 # gamma is the gradient descent step
s def apply_prox_operator(self, x, gamma):
o # if you are declaring a real penalty

o # change the implementation and

1 # transform x according to your penalty
2 return x

Once we have declared the penalty, in this case a penalty that does nothing, we put it into
the representation learning procedure.

1 fake_data = np.random.rand(50,50)

fake_dictionary = np.random.rand(5, 50)

5 estimator = RepresentationLearning(fake_dictionary, penalty=
NewPenalty (5))

1 estimator.fit (fake_data)

It is also possible to use the parameter research procedures with the new penalty provided
that we also overwrite the method make_grid since the searching function assumes it exists.
We here show a basic example of how it can be implemented, one may want to vary the
interval or the sampling procedure.

1 class NewPenalty(Penalty):

N

; # ..as above..

5 def make_grid(self, low=0.001, high=1, number=10):
¢ # possible regularization parameters to analyse

7 values = np.linspace(low, high, number)

s 1 =[]

o # the list has to be composed of NewPenalty objects
o for (i, v) in enumerate(values):

11 1.append(NewPenalty (v))

12 return 1

Again we show that it is usable right away without further code.

1 from dalila.parameters_research import tune_parameters_RL

> estimator = RepresentationLearning(fake_dictionary, penalty=
NewPenalty (5))
5 gscv = tune_parameters_RL(fake_data, estimator, coeff_penalty_range

=(0.1, 1, 3))
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