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Abstract

Due to multiple impacts, Cystoseira forests are experiencing a significant decline, which is

affecting the ecosystem services they provide. Despite conservation efforts, there is an

urgent need to develop best practices and large-scale restoration strategies. To implement

restoration actions, we developed an ex situ protocol for the cultivation of Cystoseira. amen-

tacea var. stricta, aimed at reducing the time needed for laboratory culture, thus avoiding

prolonged maintenance and minimizing costs. Specifically, we tested the effects of tempera-

ture, light and substratum on settlement and growth of early life stages using a factorial

experiment. Temperature (20 and 24˚C) and photoperiod (15L:9D) were selected to reflect

the conditions experienced in the field during the reproductive period. Two light intensities

(125 and 250 μmol photons m−2s−1) were selected to mimic the condition experienced in the

absence of canopy (i.e. barren—higher light intensity) or in the understory (lower light inten-

sity) during gamete release. The tested substrata were flat polished pebbles and rough clay

tiles. The release of gametes and the successive survival and development of embryo and

germlings were followed for two weeks. Regardless of the culture conditions, rougher tiles

showed higher zygote settlement, but the substrata did not affect the successive develop-

ment. Zygote mortality after one week averaged 50% and at the end of the second week,

embryonic survival was higher under lower light and temperature conditions, which also

determined the growth of larger embryos.

Introduction

The genus Cystoseira C. Agardh, brown algae belonging to the order Fucales, is distributed

along the Mediterranean and Atlantic coasts from the intertidal to the lower sublittoral. This

genus is ecologically relevant as an “ecosystem engineer” [1], and plays a key functional role in

controlling spatial habitat heterogeneity, productivity, and nutrient cycling in temperate rocky

reefs. In particular, Cystoseira forests provide refuge and food for many invertebrates and

fishes and modulate the structure of the associated benthic community [2]. Currently, some

Cystoseira populations (depending on species and location) are declining/lost throughout the
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Mediterranean [3,4,5,6,7, 8, 9], largely due to multiple human impacts such as urbanization,

overfishing and climate change. Consequently, many systems have shifted from complex and

productive assemblages to simpler, less-productive habitats such as barrens, turf-forming algae

and other ephemeral opportunistic seaweeds, thus impacting the provision of ecosystem ser-

vices [3,10–16]. Cystoseira species are listed as “of community interest” according to the Habi-

tat Directive (92/43/EEC) [17], and are indicators of environmental quality in Mediterranean

coastal waters according to the Water Framework Directive (2000/60/EC) [18] (i.e., EEI [19]

and CARLIT [20, 21]. Several species are protected by the Bern Convention, recognized as a

priority by the Barcelona Convention and considered vulnerable by several international orga-

nizations (i.e. IUCN, RAC/SPA, MedPan).

Despite the implementation of significant conservation efforts, most degraded systems have

not recovered, emphasizing the urgency to develop an active intervention to restore endan-

gered habitats [16]. The threat of losing Cystoseira species is magnified by their low dispersal

capacity due to rapid egg fertilization and zygote sinking [22–25], which hampers natural

recovery in the absence of adults, even if in some Cystoseira species the potential dispersal dis-

tance can be enhanced by the transport in floating rafts [26,27]. As a result, interest in habitat

restoration is increasing according to the Biodiversity Strategy to 2020 (Target 2; European

Commission, 2011), which recommends the reintroduction of relevant species into areas

where they were present historically and where the factors that led to their loss have been

removed.

Small-scale Cystoseira transplants have been attempted utilizing several techniques [28–31].

The most frequently tested method is the transplantation of juveniles or adult thalli: the only

major challenge to this approach is the appropriate fixing of individuals or installation in the

target area.

Outplanting, which consists of producing recruits from fertile material in hatcheries for

placement in the sea, has been explored for the genus Cystoseira to a lesser degree [29,32]. In

contrast, many studies have been performed using other large fucoid seaweeds [33–41] with a

particular focus on the long-term maintenance of seedlings in culture [41–47].

Usually, the need for large numbers of germlings for outplanting represents a bottleneck in

the design of large-scale restoration actions, so it is especially challenging to plan an efficient,

effortless and cost-effective seedling production system that fits the breeding needs of a specific

species. Considering the high potential of Cystoseira to generate gametes and zygotes under

optimal conditions, the cultivation of germlings starting from fertile receptacles represents a

sustainable option for restoring endangered species without depleting natural populations.

From this perspective, the development of effective cultivation protocols tailored to the eco-

physiological needs of different species is a compulsory milestone.

The aim of this study was to develop an ex situ protocol for the restoration of Cystoseira
amentacea var. stricta Montagne, a sensitive caespitose intertidal Mediterranean species whose

reduction/loss has primarily been recorded in several locations in the NW Mediterranean

[6,48]. The protocol aimed to maximize zygote settlement, minimize embryo development

time and generate a dense coverage of healthy germlings for outplanting. Based on these objec-

tives, we tested the effects of easily adjustable variables (temperature, light and substratum) on

the settlement and growth of early life stages to develop best practices for the restoration of

this sensitive species.

Materials and methods

In June 2016, during the reproductive period of C. amentacea var. stricta, healthy apical fronds

of ca. 3 cm in length holding mature receptacles were collected in the intertidal zone at
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Bogliasco, Genoa (NW Italy, 44˚22’40.37"N—9˚4’35.14"E) (Fig 1). No specific permits were

required for collecting specimens in the selected location because it is not part of a protected

or private area. Additionally, non-destructive sampling was performed, as only apical branches

were collected. In particular, the site is characterized by a tide in the range of 30 cm (the baro-

metric tide may dominate the water level) and an average spring temperature of 20˚C. After

sampling, apices wrapped with seawater-wetted towels were delivered within 24 h under dark,

cold and humid conditions to the laboratory in Trieste (NE Italy) (Fig 1) for culture in

environmentally controlled rooms.

The temperature and photoperiod were selected to reflect typical seasonal conditions at the

sampling site during the reproductive phase of C. amentacea var. stricta (from late spring to

summer). The photoperiod was set to a 15:9 h light:dark cycle, and light intensities were cho-

sen to mimic two possible scenarios occurring in nature during the gamete release, fertilization

and the early life growth stages of Cystoseira: in the absence of a canopy, as on barren ground

(higher light intensity) or in the understory (lower light intensity). Light was provided by LED

lamps (AM366 Sicce USA Inc., Knoxville, USA), and irradiance was measured with a LI-COR

LI-190/R Photometer (LICOR-Biosciences, Lincoln, NE, USA). Light irradiance (L) was set at

125 μmol photons m−2s−1 (L-) or at 250 μmol photons m−2s−1 (L+), while temperature (T) was

set at 20˚C (T-) or at 24˚C (T+) The medium used in the experiments was Stosch’s enriched fil-

tered and autoclaved seawater (VSE) [49,50]. Aquaria were filled with 4 L of culture medium,

renewed every 4 days to minimize any possible effects of nutrient limitation and continuously

aerated by air pumps. Two substrata with differing natures and roughness were tested: flat pol-

ished pebbles and rough clay tiles.

A factorial laboratory experiment was performed that combined irradiance, temperature

and substratum. Four combinations of culturing conditions consisting of two crossed levels of

each environmental condition (L+T+, L+T-, L-T+, L-T-) and two substrata (Pebbles and Tiles)

were tested in a two-way crossed design.

Fertile apices were gently cleaned with a brush and rinsed with sterile seawater to remove

adherent biofouling and surface detritus. Fronds were then placed in individual aquaria: three

apices with mature receptacles on each substratum in separate aquaria per condition (in tripli-

cate). Three additional replicates were placed on glass slides under each condition to observe

Fig 1. Map showing the geographical location of the collection site (A) and the laboratory site (B) in northern Italy.

https://doi.org/10.1371/journal.pone.0193011.g001
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zygote development with an inverted microscope (Leica, DM IL LED), and photographs were

obtained with a Canon Powershot G9, avoiding stress on the treatment replicates.

Data analysis

Egg release and settlement. After 2 h, gametes were released on all substrata under all

conditions. Next, the receptacles were removed, and their fresh weight (FW) was measured.

Due to the high density of eggs released on each substratum and to reduce manipulation stress

as much as possible, counts were performed by processing photographic data. For each sub-

stratum, eggs were counted in 5 randomly selected 1x1 cm quadrants in photos obtained from

a Leica MZ6 stereo microscope with a Nikon Coolpix 4500 camera. The number of eggs per

unit of receptacle FW was analyzed as a response variable to compare settlement on different

substrata under different conditions. Two-way crossed ANOVA was performed using both

factors and their interaction as fixed factors. The data were square-root transformed to satisfy

the assumptions of normality and homoscedasticity.

Embryo development. At the end of the first week, replicate embryos in all four growth

stages were visible on glass slides and were counted: I-embryos with 4 primary rhizoids, II-

embryos with 8 rhizoids, III-embryos with short apical hair/s, and IV-embryos with long apical

hair/s (Fig 2). To analyze the differences among conditions, a PERMANOVA was applied

using the percentage of individuals at each stage as a response variable and conditions as fac-

tors. Pairwise comparisons of significant terms were performed.

Embryo survival. After 24 h (T0), the number of zygotes was counted on each substratum

(5 1x1 cm quadrants) by processing photographic data. Counts were then repeated at week 1

and week 2 to calculate the germling survival rate. We applied an ANCOVA for both week 1

and week 2 with unequal slopes for survival rate as a response variable and density (i.e., num-

ber of fertilized eggs) as a covariate, and substrata, conditions and their interactions were used

as fixed factors. Assumptions were validated after applying the arcsine square root transforma-

tion (suitable for proportional data). Post hoc SNK tests were performed on significant interac-

tion terms.

Subsequent germling growth. At week 2, three subsequent developmental stages were

identifiable: I-round-shaped, II-elongated, and III-elongated with branch (Fig 3). The area of

ten randomly chosen individuals per shape was measured in each replicate substratum and

used as a response variable. The area was quantified by processing photographic data using

Fig 2. Early stages of C. amentacea var. strictaat week 1: I-embryos with 4 primary rhizoids, II-embryos with 8

rhizoids, III-embryos with short apical hair/s, and IV-embryos with long apical hair/s.

https://doi.org/10.1371/journal.pone.0193011.g002

Ex situ cultivation protocol for Cystoseira amentacea var. stricta

PLOS ONE | https://doi.org/10.1371/journal.pone.0193011 February 15, 2018 4 / 16

https://doi.org/10.1371/journal.pone.0193011.g002
https://doi.org/10.1371/journal.pone.0193011


ImageJ software [51]. Conditions and substrata were used as crossed fixed factors in a PER-

MANOVA, and pairwise comparisons were performed on significant terms.

Results

Morphogenesis

C. amentacea var. stricta is a monoic species with female and male gametes produced in the

same conceptacle (Fig 4A). In our trials, gamete release began soon after the receptacles were

placed in the aquaria, and the mean diameter of the eggs was 122±3 μm (n = 20). Fertilization

occurred externally, and the development of a fecundation membrane around the zygote facili-

tated its adhesion to a substratum (Fig 4B). The zygote cytoplasm, which was initially homoge-

neous, became metabolically differentiated (polarization) with the establishment of a vertical

growth axis (connecting the rhizoid and thallus pole). Twelve hours after fertilization (AF), the

first division perpendicular to the growth axis was observed, leading to the formation of two

equally sized cells (Fig 4C). The second division, which was parallel to the first, occurred in the

lower cell 20–22 h AF (Fig 4D), while the third division, perpendicular to the first, appeared in

the upper cell (Fig 4D). Within 32–34 h AF, many divisions occurred without an increase in

embryo volume.

Within the first week, the rhizoids developed as follows: via perpendicular divisions, the

rhizoid mother cell gave rise to four cells that differentiated into four primary rhizoids (Figs

4E and 2) that grew further, forming long filaments (ca. 150–200 μm long). After detachment

of the fecundation membrane, the length of the embryo increased through subsequent cell

divisions, and secondary rhizoids were formed (Fig 4F). Thus, the embryo assumed an erect

position, and an invagination with hyaline hairs appeared in the apical region (Fig 4H and

4G). At week 1 AF, the more developed embryos were 353±26 μm long and 259±37 μm wide

(n = 20). At week 2 AF, germlings with numerous rhizoids grew further [466±26 μm long and

275±28 μm wide (n = 20)] and small lateral branches with some cryptostomata began to ap-

pear. At week 3 AF, numerous cryptostomata were observed (Fig 4I), and iridescence, which is

typical of adult plants, was visible on the thallus surface. At this time point, the germlings were

Fig 3. C. amentacea var. stricta germling stages at week 2: I-round-shaped, II-elongated, and III- elongated with

branching.

https://doi.org/10.1371/journal.pone.0193011.g003
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1.38±0.13 mm long and 0.46±0.06 mm wide (n = 20). At the end of the third week, few tiles

were transported back in the field at Bogliasco. Juveniles were 4.73±0.05 mm long and 0.81

±0.09 mm wide after 1 month in the field, and they grew up to 9 cm in 9 months (April 2017).

Egg release and settlement

The number of settled eggs was higher on Tiles (avg = 5226, SE = 566) than on Pebbles

(avg = 2429; SE = 199), highlighting a significant effect of substratum roughness (p<0.0001; S1

Table). Conversely, no significant differences were detected between conditions or within the

interaction term.

Early embryo development

The percentage of individuals was calculated for each of the four stages observed in the glass

slide replicates (Fig 2). An MDS ordination plot (Fig 5) showed three different groups: L+T-,

L+T+ and one group comprising L- conditions (L-T- and L-T+). PERMANOVA confirmed sig-

nificant differences among these groups (p<0.001; S2 Table). Furthermore, a bar plot (Fig 6)

revealed a higher percentage of embryos in stage IV (embryos with long apical hair/s) under

L-conditions.

Fig 4. Early development of Cystoseira amentacea var. stricta. A. Detail of a conceptacle with an oogonium and antheridia (arrowhead). B. Zygote with a central large

nucleus. C. First zygote division (arrow). D. Second zygote division (II) parallel to the first (I) and third (III) and fourth divisions (IV) perpendicular to the first. E.

Embryo with rhizoidal buds (arrow). F. Embryo with secondary rhizoids. Note the detachment of the fecundation membrane (arrow) during embryo elongation. G.

Hyaline hairs growing from the invagination in the apical region of the embryo. H. Embryo with long apical hairs and numerous rhizoids (arrow). I. Germling with

cryptostomata (arrows). Bar = 200 μm.

https://doi.org/10.1371/journal.pone.0193011.g004

Fig 5. MDS ordination plot of the percent composition of embryonic developmental stages at week 1 under the

different conditions. L+ T+ = high light–high temperature, L+ T- = high light–low temperature, L- T+ = low light–high

temperature, L- T- = low light–low temperature.

https://doi.org/10.1371/journal.pone.0193011.g005
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Embryo survival

The ANCOVA results indicated strong significant differences among conditions and small dif-

ferences between the two substrata at week 1 (p<0.0001 and p<0.03, respectively; S3 Table).

At week 2 the interaction term (conditionXsubstratum) was significant (p<0.001; S4 Table):

on both substrata, the extreme conditions did not differ from each other (L+T+ = L-T-), but

they differed significantly from the other two conditions (L+T-; L-T+). On Tiles, L+T- and L-T+

did not differ significantly, although they differed on Pebbles. Additionally, ANCOVA indi-

cated that L+T- was significantly different between substrata, while survival was slightly higher

on Pebbles. As shown in boxplots (Fig 7), the survival rate at week 1 was higher under extreme

conditions (L+T+; L-T-) compared to the other two conditions (L+T-; L-T+). The survival rate

from week 1 to week 2 conspicuously decreased (between 50 and 95%) for the L+T+, L+T- and

Fig 6. Bar plot of the percent composition of embryonic developmental stages at week 1 under the different

conditions. L+ T+ = high light–high temperature, L+ T- = high light–low temperature, L- T+ = low light–high

temperature, L- T- = low light–low temperature. I = embryos with 4 primary rhizoids, II = embryos with 8 rhizoids,

III = embryos with short apical hair/s, IV =: mbryos with long apical hair/s.

https://doi.org/10.1371/journal.pone.0193011.g006

Fig 7. Boxplot of the survival rates at week 1 (A) and week 2 (B) among conditions and substrata. L+ T+ = high

light–high temperature, L+ T- = high light–low temperature, L- T+ = low light–high temperature, L- T- = low light–low

temperature. Pe = Pebbles, Ti = Tiles.

https://doi.org/10.1371/journal.pone.0193011.g007

Ex situ cultivation protocol for Cystoseira amentacea var. stricta

PLOS ONE | https://doi.org/10.1371/journal.pone.0193011 February 15, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0193011.g006
https://doi.org/10.1371/journal.pone.0193011.g007
https://doi.org/10.1371/journal.pone.0193011


L-T+ conditions, while the survival rate under L-T- remained more stable with a mortality

below 30%.

Subsequent germling growth

PERMANOVA performed on the germling area at different stages (Fig 3) at week 2 showed

significant differences among conditions (p = 0.001) with L-T-condition different from the

others conditions (S5 Table; Fig 8).

Discussion

Given the worldwide concern over the loss of key habitat-forming organisms, such as the large

brown macroalgae of the order Fucales, and the downstream cascade effects on the services

provided by such organisms, there is an urgent need to develop best practices and restoration

strategies. Studies that provide sound information on how to best undertake habitat restora-

tion are crucial for managing coastal ecosystems.

Outplanting appears to be an ecologically sustainable approach that consists of two main

steps: culturing germlings in the laboratory and transferring them into the field [37,41,45,52].

For Cystoseira, outplanting appears to be a feasible management option that can provide many

healthy specimens for re-introduction to the environment without impacting natural popula-

tions [29,32,53].

In this study, we focused on the first step of the outplanting process: developing an effective

protocol for cultivating the early stages of C. amentacea var. stricta. This approach is challeng-

ing because most eco-physiological studies of Cystoseira, both in the field and in the laboratory,

have focused on the adult stages. Nevertheless, the single/few-celled stages are characterized by

simplicity and sensitivity, so compared to adults, any environmental variable will exert greater

effects on germling mortality and growth rate [54,55]. Thus, the needs of these ontogenetic

stages must be understood because findings related to the macrothallus stages cannot be

extrapolated to the microscopic stages [56]. Thus, species-specific best practices for the cultiva-

tion of germlings must be developed to implement a successful large-scale restoration strategy.

Fig 8. Boxplots of the area of the different stages (A: stage I; B: stage II; C: stage III) at week 2 among conditions

for both substrata. L+ T+ = high light–high temperature, L+ T- = high light–low temperature, L- T+ = low light–high

temperature, L- T- = low light–low temperature. Pe = Pebbles, Ti = Tiles.

https://doi.org/10.1371/journal.pone.0193011.g008

Ex situ cultivation protocol for Cystoseira amentacea var. stricta

PLOS ONE | https://doi.org/10.1371/journal.pone.0193011 February 15, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0193011.g008
https://doi.org/10.1371/journal.pone.0193011


First, we tested whether it was possible to collect samples far from the breeding facility (ca.

600 km) without damaging the reproductive materials to exclude the possible negative effects

related to the distance of the target site from the hatchery. Transporting under dark and cold

conditions allowed immediate gamete release, thus avoiding thermal and light shock in the

laboratory; indeed, receptacles that were placed in aquaria soon after their arrival in the labora-

tory immediately released gametes. Starting from eggs fecundation, we described the morpho-

genesis and successive germlings development of C. amentacea var. stricta. Based on zygotes

segmentation and number of primary rhizoids, three groups of Cystoseira species have been

identified by [22]. C. amentacea var. stricta belongs to the first group, that is characterized by

spherical eggs, zygotes that adhere to substrata by the fecundation membrane, and four pri-

mary rhizoids [57].

Nutrient limitation affects many processes, such as photosynthetic capacity [58], protein

content [59,60], photoprotection mechanisms [61–63], egg behavior and settlement, embry-

onic development and growth rate [64–69], so the culture medium was enriched to allow the

germlings to invest their photosynthetic energy in growth processes [70,71]. Better growth of

C. amentacea var. stricta germlings with nutrient enrichment has also been observed by [57].

The positive effect of nitrate supply on C. stricta growth rate has been demonstrated in adults

cuttings cultivation, although with small differences between apical and subapical segments

[72]. Together with culture conditions, the choice of substrata must also favor the adhesion of

gametes and zygotes and their successive development. Regardless of the culture conditions,

rougher tiles showed higher zygote settlement than smoother pebbles, although the substrata

did not affect successive germling growth or survival under any of the tested conditions.

Embryonic mortality after one week was elevated under all conditions (50% on average),

which was expected given the very high stochastic gamete and zygote mortality of Cystoseira in

the natural environment. At the end of the first week, embryonic survival was positively

affected by two of the tested conditions: L+T+ and L-T-. At week 2, survival was still higher

under the L-T- condition but significantly decreased under L+T+ treatment. The other two

combined conditions showed the lowest embryonic survival throughout the entire experiment.

Low-light and low-temperature conditions also favor higher embryonic survival rate in Sargas-
sum vachellianum Greville cultivations [73]. Lower light intensity also reduced the time

required for embryo development, allowing a greater number of individuals to reach develop-

mental stage IV (larger embryos) within the first week regardless of temperature. After two

weeks at low irradiance, lower temperature also strongly determined the growth of larger

embryos.

Our findings corroborate that environmental conditions (specifically light and tempera-

ture) may interact and exert synergistic or antagonistic effects on physiological responses in

unpredictable ways that differ according to developmental stage. The distribution of C. amen-
tacea var. stricta is restricted to the intertidal, so this species is naturally exposed to high levels

of irradiance that potentially exceed its light energy requirements, as has been reported for

other species that live close to the water surface [70,74–76]. Generally, sun-adapted species

[sensu 77] develop efficient photoprotection mechanisms to tolerate light stress in addition

to dynamic photoinhibition [75,76,78–86].Our study highlighted the light-shade adaptation

of C. amentacea var. stricta germlings, which showed enhanced growth at lower irradiance

(125 μmol photons m−2 s−1). Other Cystoseira species have been cultivated under different con-

ditions that have primarily depended on laboratory facilities such as Cystoseira susanensis
Nizamuddin (16±1˚C | 40 μmol photons m−2 s−1 [87] and C. barbata (Stackhouse) C. Agardh

(16–17˚C | 120 μmol photons m−2 s−1 [29]. The morphological development of C. amentacea
var. stricta embryos cultivated at 18±1˚C and an average light intensity of 70 μmol photons

m−2s−1 has been described by [57]. After ca. 2 months in these conditions, embryos cultivated

Ex situ cultivation protocol for Cystoseira amentacea var. stricta
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in seawater were 332.60 ± 22.3μm long, while in VSE medium they were 5.14 ± 0.08 mm [57].

In our experiment germlings cultivated in VSE were 1.38±0.13 mm long after three weeks and

4.73±0.05 mm long after one month in the field. We observed cryptostomata and lateral

branches after two weeks of cultivation, while in [57] study cryptostomata were observed after

52 days and ramifications appeared after 106 days.

Studies examining adult thalli of Cystoseira have demonstrated the absence of photosyn-

thetic inhibition, even with very high irradiance [88]. In C. barbata (Stackhouse) C. Agardh

f. aurantia (Kuetzing) Giaccone, photoinhibition only occurs at irradiances higher than

1500 μmol photons m−2s−1 [89], while photosynthesis in C. mediterranea Sauvageau is not sat-

urated at an irradiance of 1600 μmol photons m−2s−1[75]. Notably, the light requirements of

adults should not be extrapolated to the microscopic stages because the presence of non-pho-

tosynthetic tissues in complex thalli increases the need for light energy [76], and the irradiance

reaching the embryos is restricted by adult fronds in nature [35,42,90]. Cystoseira zygotes and

germlings settle under adult plants, where they find a protective screen against high irradiance

and other stressors. In nature, such community self-protection could be particularly important

during spring-summer, when C. amentacea var. stricta produces new recruits in the study

area. Conversely, the lower irradiance requirements of germlings permit high-density cultures

because self-shading is not a restricting factor.

At higher temperatures (24˚C), the proliferation of biofouling was enhanced, particularly at

lower light intensity, progressively affecting the development of C. amentacea var. stricta
embryos. Based on these results, we determined that the lower values tested for irradiance

(125 μmol photons m−2 s−1) and temperature (20˚C) were the best hatchery conditions to

accelerate the development of high numbers of healthy, large embryos.

Further studies are required to improve the second step in the outplanting process to

increase the number of juveniles that can reach the adult stage once they are reintroduced into

the field. Grazing pressure, timing and density dependent effects need to be considered to

achieve the best restoration results.

Supporting information

S1 Table. Two-way crossed ANOVA performed on the number of eggs per gram. Signifi-

cant effects are in bold.

(PDF)

S2 Table. One-way PERMANOVA performed at week 1 based on the percent composition

of three embryonic developmental stages under the different conditions. Significant effects

are in bold.
aPairwise comparisons among conditions: L+T-6¼L+T+6¼ L-T- = L-T+.

(PDF)

S3 Table. ANCOVA performed at week 1 using survival, substratum and condition as fac-

tors and density as a covariate. Significant effects are in bold.
aSNK test among conditions: L+T+6¼L-T- 6¼L+T-6¼L-T.

(PDF)

S4 Table. ANCOVA performed at week 2 using survival as a response variable, substratum

and condition as factors and density as a covariate. Significant effects are in bold.
aSNK test among substrata within condition: Cond. L+T-, T6¼S; all other Cond., T = S.
bSNK test among conditions within substratum: Sub. S, (L+T+ = L-T-)6¼L+T-6¼L-T+; Sub. T,

(L+T+ = L-T-)6¼(L+T- = L-T+).

(PDF)

Ex situ cultivation protocol for Cystoseira amentacea var. stricta

PLOS ONE | https://doi.org/10.1371/journal.pone.0193011 February 15, 2018 11 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193011.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193011.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193011.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193011.s004
https://doi.org/10.1371/journal.pone.0193011


S5 Table. Two-way PERMANOVA performed on the germling area at different stages at

week 2. Condition and substratum are crossed fixed factors. Significant effects are in bold.
aPairwise comparisons among conditions: L-T- 6¼L+T+ = L-T+ = L+T-.

(PDF)

Author Contributions

Conceptualization: Annalisa Falace, Sara Kaleb.

Formal analysis: Gina De La Fuente, Valentina Asnaghi, Mariachiara Chiantore.

Funding acquisition: Annalisa Falace.

Investigation: Annalisa Falace, Sara Kaleb, Gina De La Fuente.

Methodology: Annalisa Falace, Sara Kaleb, Gina De La Fuente, Valentina Asnaghi, Maria-

chiara Chiantore.

Project administration: Annalisa Falace.

Resources: Annalisa Falace, Mariachiara Chiantore.

Supervision: Annalisa Falace.

Writing – original draft: Annalisa Falace, Sara Kaleb, Gina De La Fuente, Valentina Asnaghi,

Mariachiara Chiantore.

Writing – review & editing: Annalisa Falace, Sara Kaleb, Gina De La Fuente, Valentina Asna-

ghi, Mariachiara Chiantore.

References
1. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994; 69(3):373–386.

https://doi.org/10.2307/3545850

2. Mineur F, Arenas F, Assis J, Davies AJ, Engelen AH, Fernandes F, et al. European seaweeds under

pressure: Consequences for communities and ecosystem functioning. J Sea Res. 2015; 98:91–108.

3. Boudouresque CF. Marine biodiversity in the Mediterranean: status of species, populations and com-

munities. Sci Rep Port-Cros Natl Park, Fr. 2004; 20:97–146.

4. Thibaut T, Pinedo S, Torras X, Ballesteros E. Long-term decline of the populations of Fucales (Cysto-

seira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar Pollut

Bull. 2005; 50(12):1472–1489. https://doi.org/10.1016/j.marpolbul.2005.06.014 PMID: 16026805

5. Micheli F, Levin N, Giakoumi S, Katsanevakis S, Abdulla A, Coll M, et al. Setting priorities for regional

conservation planning in the Mediterranean Sea. PLoS ONE. 2013; 8(4):e59038.8. https://doi.org/10.

1371/journal.pone.0059038 PMID: 23577060
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58. Pérez-Lloréns JL, Vergara JJ, Pino RR, Hernandez I, Peralta G, Niell FX The effect of photoacclimation

on the photosynthetic physiology of Ulva curvata and Ulva rotundata (Ulvales, Chlorophyta). Eur J Phy-

col. 1996; 31:349–359. https://doi.org/10.1080/09670269600651581

59. Vergara JJ, Bird KT, Niell FX. Nitrogen assimilation following NH4+ pulses in the red alga Gracilariopsis

lemaneiformis: effect on C metabolism. Mar Ecol Prog Ser. 1995; 122(1–3):253–263. https://doi.org/10.

3354/meps122253

60. Martı́nez B, Rico JM. Seasonal variation of P content and major N pools in Palmaria palmata (Rhodo-

phyta). J Phycol. 2002; 38:1082–1089. https://doi.org/10.1046/j.1529-8817.2002.01217.x

61. Korbee-Peinado N, Abdala-Dı́az RT, Figueroa FL, Helbling EW. Ammonium and UV radiation simulate

the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patago-

nia, Argentina. J Phycol. 2004; 40:248–259. https://doi.org/10.1046/j.1529-8817.2004.03013.x

62. Korbee N, Figueroa FL, Aguilera J. Effect of light quality on the accumulation of photosynthetic pig-

ments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rho-

dophyta). J Photochem Photobiol. 2005; 80:71–78. https://doi.org/10.1016/j.jphotobiol.2005.03.002

PMID: 16038805

63. Huovinen P, Matos J, Pinto IS, Figueroa FL. The role of ammonium in photoprotection against high irra-

diance in the red alga Grateloupia lanceola. Aquat Bot. 2006; 84:308–316. https://doi.org/10.1016/j.

aquabot.2005.12.002
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