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Background. Metabolic reprogramming is shaped to support specific cell functions since cellular
metabolism controls the final outcome of immune response.Multiple sclerosis (MS) is an autoimmune
disease resulting fromlossof immunetoleranceagainst centralnervoussystem(CNS)myelin.Metabolic
alterations of T cells occurring during MS are not yet well understood and their studies could have
relevance in the comprehension of the pathogenetic events leading to loss of immune tolerance to self
and to develop novel therapeutic strategies aimed at limitingMS progression.

Methods and Results. In this report, we observed that extracellular acidification rate
(ECAR) and oxygen consumption rate (OCR), indicators of glycolysis and oxidative
phosphorylation, respectively, were impaired during T cell activation in naïve-to-treatment
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relapsing remitting (RR)MS patients when compared with healthy controls. These results
were also corroborated at biochemical level by a reduced expression of the glycolitic
enzymes aldolase, enolase 1, hexokinase I, and by reduction of Krebs cycle enzymes
dihydrolipoamide-S-acetyl transferase (DLAT) and dihydrolipoamide-S-succinyl transferase
(DLST). Treatment of RRMS patients with interferon beta-1a (IFN beta-1a) was able to restore T
cell glycolysis andmitochondrial respirationaswell as the amount of themetabolic enzymes toa
level comparable to that of healthy controls. These changes associated with an up-regulation of
the glucose transporter-1 (GLUT-1), a key element in intracellular transport of glucose.

Conclusions. Our data suggest thatTcells fromRRMSpatientsdisplaya reducedengagementof
glycolysis andmitochondrial respiration, reversibleupon IFNbeta-1a treatment, thus suggestingan
involvement of an alteredmetabolism in the pathogenesis of MS.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiple Sclerosis (MS) is a demyelinating disease mediated by
pathogenic T cell responses against myelin antigens followed by a
broader neurodegenerative process [1]. Hyperactivity of T cells
observed during MS is also associated with the failure of local
regulatorymechanismsmainlymediatedby regulatoryT (Treg) cells
[2]. The balance between protective immunity and inflammatory
response requires thatTcells properly activateanddifferentiate into
either Treg or conventional T (Tconv) cells. In this context, it has
been reported that Tconv and Treg cells require distinct metabolic
programs to support their own functions, suggesting that metabo-
lism drives the outcome of immune response. While Tconv are
quiescent in vivo, Treg cells represent themost actively proliferating
and glycolitic compartment in vivo [3–5].

Theclose relationshipbetween thesystemicmetabolicasset and
immune function was also suggested by data showing an altered
immunometabolic profile in patients with autoimmune diseases.
Indeed, the evaluation of the serum biomarkers involved in the
control of both obesity and immune system function (ie. leptin,
soluble CD40 ligand (sCD40L), soluble leptin receptor (sLeptinR)),
revealed their unbalancedexpression inautoimmunediseases such
as type 1 diabetes (T1D), MS and Behcet's syndrome [6–8].

Metabolic alterationsofTcellsoccurringduringMS,havenotbeen
investigatedso far, andcouldhaverelevance in thecomprehensionof
the pathogenicmechanisms leading to the loss of immune tolerance
to self. In this context, the role of interferon (IFN) beta-1a in the
metabolic control of immune cells function has not been elucidated
[9]. Here we report that T cells from naïve-to-treatment relapsing
remitting (RR)MS patients displayed an impaired engagement of
glycolysis and mitochondrial metabolism upon T cell receptor (TCR)
activation, reversible upon IFNbeta-1a treatment. These data provide
novel evidence foran involvementofmetabolisminthepathogenesis
of RRMS and suggest a novel mechanism of action for IFN beta-1a
through themodulation of CD4+ T cell metabolic pathways.
2. Methods

2.1. Subjects and Study Design

We obtained peripheral blood from healthy individuals
(n = 57), naïve-to-treatment (patients with clinically definite
MSwithout treatment, either cortisone or other drugs) (n = 32)
and IFN beta-1a (Rebif®-44; Merck-Serono) treated (n = 39)
RRMS patients after they signed an informed consent
approved by the Review Board of the Università degli Studi di
Napoli “Federico II”. RRMS patients had relapsing-remitting
disease with a Kurtzke Expanded Disability Status Scale (EDSS)
score between 0 and 7; we excluded subjects with concomitant
endocrine and metabolic disorders. We included in the study
healthydonors thathadnohistory of inflammatory, endocrineor
autoimmune diseases, and were gender-, age- and body mass
index- matched with RRMS, (baseline characteristics of healthy
controls and RRMS patients are shown in Table S1). We collected
all blood samples at 9:00 a.m. in heparinized vacutainers
(BD Biosciences) and processed themwithin the following 4 h.

2.2. Immunophenotypic Analysis

Immunophenotypic analysis of peripheral blood of RRMS patients
and healthy controls was performed as previously described [6].
Briefly, triple combinations of different anti-human mAbs (e.g.,
FITC- and phycoerythrin (PE)-anti-CD3, PE- and PC-5-anti-CD4, PC5-
anti-CD8, PE-antiCD16, PC5-anti-CD19, PE-anti-CD25, FITC-anti-CD45,
and PEanti-CD56 all from Coulter Immunotech), were used for
immunofluorescence stainingand to identify different cell populations.
Analysis was performed with an EPICS XL flow cytometer (Beckman
Coulter) using the BeckmanCoulter software programXL system II.

2.3. Fluorescent Bead-based Immunoassay

All serum samples from RRMS patients and controls were
obtained via centrifugation and stored at −80 °C before the
analysis. The bead-based analyte detection system Human
obesity 9plex kit (Bender MedSystems) was used to perform the
quantitative detection of leptin, soluble CD40 ligand (sCD40L),
soluble ICAM-1 (sICAM-1), monocyte chemoattractant protein-1
(MCP-1), myeloperoxidase (MPO), osteoprotegerin (OPG) and
soluble tumor necrosis factor (sTNF)-R by Flow Cytometry.

2.4. sLeptinR Measurement

Circulating soluble leptin receptor (sLeptinR) was determined
in serum samples using human Leptin sR Immunoassays
(R&D System).
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2.5. Metabolic Seahorse Assays

The metabolic profile has been evaluated in 12 h cultured
peripheral blood mononuclear cells (PBMCs) stimulated with
OkT3 (mouse anti-human CD3) 0.1 μg/ml. Cells were plated in
XFe-96 plates (seahorse Bioscience) at the concentration of
4 × 105 cells/well and cultured for 12 h in RPMI-1640 medium
supplemented with 100 UI ml−1 penicillin and 100 μg ml−1

streptomycin (Thermo scientific) and 5% autologous serum.
Real-time measurements of oxygen consumption rate (OCR)
and extracellular acidification rate (ECAR) were made with an
XFe-96 Extracellular Flux Analyzer (Seahorse Bioscience). OCR
was measured in XF medium (non-buffered DMEM medium
containing 10 mM glucose and 1 mM sodium pyruvate) under
basal conditions and in response to 5 μM oligomycin, 1.5 μM
of FCCP (carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone)
and 1 μM of antimycin and rotenone (Sigma-Aldrich). ECAR was
measured in XF medium in basal conditions and in response to
10 mM glucose, 5 μM oligomycin and 100 mM of 2DG (all from
Sigma-Aldrich). Experimentswith the Seahorse systemwere done
with the following assay conditions: 3 min of mixture; 3 min of
waiting; and 3 min of measurement.

2.6. Western Blot Analyses

Total cell lysates from CD4+ T cells, were obtained through
incubation of cells for 20 min at 4 °C in a solution of 50 mM
Tris-HCl (pH 7.5), 150 mM NaCl and 1.0% Triton X-100, plus
SigmaFast protease inhibitor (S8820; Sigma-Aldrich) and
Sigma phosphatase inhibitor (P5726; Sigma-Aldrich), and immuno-
blot analyses were performed using the following antibodies: anti-
aldolase, anti-enolase 1, anti-hexokinase I, anti-DLAT, anti-DLST (all
1:1000 dilution and from Cell Signaling Technology, Beverly, MA)
anti-Glut-1 (1:500 dilution and fromAbcam) and anti- VDAC (1:1000
dilution and from Santa Cruz Biotechnology). The filters were also
probed with an ERK1/2 antibody (1:1000 dilution from Santa Cruz
Biotechnology) to normalize for the amount of loaded protein.

2.7. Statistical Analysis

Comparison between healthy controls, naïve-to-treatment
and IFN beta-1a treated RRMS patients were evaluated using
non-parametric one-way ANOVA test (Kruskal-Wallis test)
with Dunn's post-hoc test or chi-square test. We verified the
Gaussian distributionwith appropriate test, D'Agostino-Pearson
omnibus normality test. Statistical analyses were performed
with GraphPad program (Abacus Concepts).
3. Results

3.1. Immunometabolic Profiling of RRMS Patients Reveals
a Specific Effect of IFN Beta-1a Treatment on Immune Cell
Populations and Circulating Inflammatory Adipocytokines

We analyzed the immunological and metabolic profile of naïve-
to-treatment and IFN beta-1a treated RRMSpatients respectively.
We measured peripheral blood immune cell subpopulations
(Fig. 1A–H) and the plasma levels of different immunometabolic
markers such as leptin, soluble leptin receptor (sLeptin-R),
sCD40 ligand (sCD40L), osteoprotegerin (OPG),myeloperoxidase
(MPO) and sICAM-1 (Fig. 1I–N). Naïve-to-treatment RRMS
patients had a higher number of CD4+ T cells with a memory
phenotype (CD4+CD45RO+) with respect to healthy controls (P ≤ 0.05)
while their numberwas lower in IFNbeta-1a treatedwhen compared
to naïve-to-treatment RRMS patients (P ≤ 0.05) (Fig. 1G). IFN beta-1a
treated RRMS patients were characterized by a reduced number of
lymphocytes, CD3+ and CD4+ T cells when compared with naïve to
treatment RRMS patients (P ≤ 0.05) (Fig. 1A–C). In addition, patients
treated with IFN beta-1a displayed a lower number of total
lymphocytes, CD3+ T cells, CD8+ T cells and NK cells, T cells with a
naïve phenotype (CD3+CD45RA+) and CD8+CD11b+ cells (recently
activated effector CD8+ T cells) as compared with healthy control
subjects (P ≤ 0.05 and P ≤ 0.001) (Fig. 1A and B, D–F andH).

Parallel analysis of the plasma immunometabolic biomarkers
revealed that RRMS patients, at diagnosis, showed significant
higher levels of the circulating adipocytokine leptin (P ≤ 0.05) (Fig.
1I) and OPG (P ≤ 0.05) (Fig. 1L), and a lower concentration of MPO
(P ≤ 0.05) and sICAM-1 (P ≤ 0.05) (Fig. 1M and N) as compared with
those in control subjects. IFN beta-1a treatment resulted in a
serum leptin downtrend as testified by the loss of significant
difference in leptin levels between controls and treatedpatients
(Fig. 1I). Inaddition, IFNbeta-1a treatedpatientsshowedasignificant
higher concentration of circulating sLeptin-R (P ≤ 0.05) and a lower
level of sCD40L (P ≤ 0.05) andOPG (P ≤ 0.0001) with respect to naïve-
to-treatment RRMS patients (Fig. 1J–L).

3.2. Reduced Engagement of T Cell Glycolysis and
Mitochondrial Respiration in naïve-to-treatment RRMS
Patients are Recovered by IFN Beta-1a Treatment

We analyzed the extracellular acidification rate (ECAR) and the
oxygen consumption rate (OCR), indicators of glycolysis and
oxidative phosphorylation, respectively, in PBMCs isolated from
healthy controls, naïve-to-treatment and IFN beta-1a treated
RRMS patients upon T cell receptor (TCR) anti-CD3 stimulation
(OKT3) (Fig. 2).We observed that, naïve-to-treatment RRMS patients
had a lower glycolytic rate (Fig. 2A) compared to healthy controls as
testified by impaired, basal, maximal glycolysis (oligomycin-stimu-
lated) and glycolytic capacity (P ≤ 0.05 and P ≤ 0.001) (Fig. 2B-D). In
agreement with these findings also the O2 consumption rate (OCR),
an indicator of oxidative phosphorylation (OXPHOS), was lower
in naïve-to-treatment RRMS patients as compared to healthy
controls (Fig. 2E) as indicated by a decreased basal, maximal
respiration and spare capacity (ability to respond to ATP demand)
(P ≤ 0.05, P ≤ 0.001 and P ≤ 0.0001) (Fig. 2F–H). Surprisingly, in IFN
beta-1a treated patients we detected a higher glycolysis, as testified
by higher maximal glycolysis and glycolytic capacity when com-
pared with naïve-to-treatment RRMS patients (P ≤ 0.05) (Fig. 2A–D).
IFN beta-1a treatment was able to improve mitochondrial respira-
tion in RRMS patients, since basal andmaximal respiration and the
spare capacity were higher in IFN beta-1a treated with respect to
naïve-to-treatment RRMS patients (P ≤ 0.05) (Fig. 2E–H).

3.3. Key Enzymes of Glycolysis and Mitochondrial
Respiration are Reduced in Naive-to-treatment RRMS Patients
and Restored by Treatment with IFN Beta-1a

Next, we evaluated whether the above observed functional
impairment of ECAR and OCR in RRMS subjects associated
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Fig. 1 – Peripheral immunometabolic signature of RRMS patients before and after IFN beta-1a treatment. The graphs show the
number per mm3 of several peripheral blood immune cell subpopulations and the serum concentration of several cytokines
implicated in the control of metabolism and immune system functions in healthy controls (n = 24), naїve-to-treatment (n = 15)
and IFN beta-1a treated (n = 15) RRMS patients. Data are shown as mean ± s.e.m. Comparisons were evaluated using
non-parametric one-way ANOVA test (Kruskal-Wallis test) and Dunn's post-hoc test *P ≤ 0.05, **P ≤ 0.001, ***P ≤ 0.0001.
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with a parallel alteration in the expression of key enzymes
involved in glycolysis and mitochondrial respiration, respectively.
Western blotting analyses on purified CD4+ T cells from naïve-to-
treatment RRMS patients stimulated for 12 h with anti-CD3/CD28
beads, revealed a statistically significant reduction in aldolase,
enolase 1, hexokinase I, and dihydrolipoamide S-acetyltransferase
(DLAT), and a trend towards a lower expression of the glucose
transporter Glut-1, and of dihydrolipoamide succinyltransferase
(DLST) (Fig. 3A and B). To rule out that these changes were to be
ascribed to a reduction in the mitochondrial mass, we evaluated
the expression of Voltage-Dependent Anion Channel (VDAC), a
marker of reflecting theamount ofmitochondrial proteins (Fig. S1).
We observed that the naive-to-treatment RRMS patients showed
an higher level of VDAC compared with healthy controls and IFN
beta-1a treatedMS patients, thus suggesting that the deficit in the
metabolic mitochondrial enzymes level in naïve-to-treatment
RRMS patients was not secondary to a reduced mitochondrial
mass and number (Fig. S1A and B). Interestingly, IFN beta-1a
treatment restored the amount of glycolitic and mitochondrial
proteins to a level comparable to that of healthy controls (Fig. 3A
and B).
4. Discussion
Disturbed metabolic pathways could lead to alterated func-
tions of immune cells resulting in loss of immune tolerance
to self [10]. In this context, several studies have demonstrat-
ed that cell metabolism is critical to regulate T cell fate since
distinct metabolic programsmay direct towards either effector
or regulatory functions [11], and that important inhibitors of
metabolism can regulate immune response in healthy and
pathogenic cells [12]. Little is known about the systemic and
cellular metabolic changes of immune cells occurring in MS
patients [6] and, in addition, the effect of immunomodulating
therapies on T cells metabolism (ie. IFN beta-1a) still remains
unclear.

In this study, we investigated the systemic immunometabolic
signature and the metabolic profile of T cells from patients with
RRMS before and after immunomodulating therapywith IFN beta-
1a. Specifically, we performed a comprehensive peripheral blood
immuno-phenotype of healthy controls, naïve-to-treatment and
IFN beta-1a treated RRMS patients to evaluate the effect of
pharmacological treatment on immune cells populations number.
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Naïve-to-treatment RRMS patients showed a higher number of
CD4+ T cellswithmemoryphenotype (CD45RO+) probably ascribed
to chronic inflammatory state that leads to an increase ofmemory
population and a decrease in the pool of naïve T cells, thus
confirming also other studies that found an increased frequency
and activation of the memory CD4+ T cell compartment in MS
[6,13]. In our experimental setting, IFN beta-1a treatment reduced
CD4+ memory T cell population, likely reflecting the effect of
therapy on abnormally persistent systemic activation occurring in
MS patients. This result is in agreement with other reports
showing that both either IFN beta-1a or glatiramer acetate were
able to restore the imbalance in the number of memory CD4+ T
cells in MS subjects [14]. At metabolic level, we confirmed that
RRMS patients had higher levels of the adipocytokine leptin [15],
known to be increased during inflammation and autoimmunity.
IFN beta-1a treatment induced a trend, even if not statistically
significant, towards a decrease in serum leptin. sLeptinR
represents the main leptin-binding protein in human blood
and biologically it can modulate leptin effects on cells target
either by inhibiting the binding of leptin to its membrane
receptors or by increasing the availability of circulating leptin,
delaying its clearance [16]. IFN beta-1a therapy resulted in an
increase of sLeptinR levels that could act as a decoy molecule
and inhibit leptin activity in the periphery. OPG, a protein
member of the tumor necrosis factor (TNF) receptor family
and its ligand, namely receptor activator of nuclear factor
kappaB ligand (RANKL), are principally involved in the regulation
ofosteoclastogenesis [17]; howeverabnormalitiesof theOPG/RANKL
system have been reported in various immune-mediated
human diseases, such as rheumatoid arthritis, periodontal
disease, autoimmune thyroid disease, coronary artery disease
and myeloma bone disease [18,19]. In line with this evidence,
OPG levels were higher in naive-to-treatment RRMS patients
and IFN beta-1a treatment was able to decrease significantly
OPG levels in RRMS patients. In addition, we alsomeasured the
amount of sCD40L, known to be involved in the pathogenesis of
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Fig. 3 – Biochemical pathways of CD4+ T cells from RRMS patients before and after IFN beta-1a treatment. (A) Immunoblot for
aldolase, hexokinase I, enolase 1, Glut-1, DLAT andDLSTonCD4+ T cells fromhealthy control, naїve-to-treatment and IFNbeta-1a
treated RRMSpatient upon 12 h anti-CD3/CD28 stimulation. Total ERK 1/2 served as a loading control. One representative out of at
least three independent experiments. (B) The graphs show the relative densitometric quantitation of aldolase, hexokinase I,
enolase 1, Glut-1, DLAT and DLST normalized on total ERK1/2 in healthy controls, naїve -to-treatment and IFN beta-1a treated
RRMS patients. One representative experiment is shown, from one individual for each condition; in total we runned al least 3
healthy controls, 3 naive-to-treatment and 3 RRMS IFN beta-1a treated patients. We scanned 3 times at least three films with
different exposures from each subject, and averaged values were utilized as densitometry to reduce variations among samples.
Comparisons were evaluated using non-parametric one-way ANOVA test (Kruskal-Wallis test) and Dunn's post-hoc test
*P ≤ 0.05, **P ≤ 0.001, ***P ≤ 0.0001.
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autoimmunity such as MS, experimental autoimmune enceph-
alomyelitis (EAE), collagen-induced arthritis (CIA) and T1D by
inducing costimulation and T helper (Th)1 responses [20–22].
Also, since CD40/CD40L mRNAs have been previously reported
to be increased in non-stimulated PBMCs from MS patients
compared with healthy controls [23], we measured plasma
sCD40L and observed that IFN beta-1a treatment reduced
significantly its leves. Finally, we evaluated MPO and observed
that its levels are lower in RRMS patients and remained
unchanged after IFN beta-1a treatment.

One of the immune abnormalities observed in RRMS is a
reduction in the suppressive function and/or the peripheral
frequency of the anti-inflammatory CD4+CD25+Foxp3+ Treg
cells [24]. Recent studies demonstrated that human Treg cells
in vivo represent the highly proliferative and metabolically
active fraction of CD4+ T cells, whose suppressive function
tightly depends on glycolysis via the induction of specific
Foxp3 gene splicing variants containing the E2, Foxp3E2 [5].
Indeed, we have previously demonstrated that glycolysis is
indispensable for the generation of human inducible (i)Treg
cells from Tconv cells in vitro [5,25]. However, in literature
there are only apparently contrasting results suggesting that
Treg cells rely mainly on lipid oxidation rather than glycolysis.
These results could be ascribed to the different experimental
setting utilized since lipid oxidative in vitro induced Treg cells
were obtained with high doses of IL-2 and TGF-beta in the
presence of strong TCR ligation [11]. However, more recently
also other groups reported that Treg cell proliferation associates
with increased PI(3)K-Akt-mTORC1 signaling, induction of
glycolysis and expression of Glut1 [25,26]. In this report we
found that T cells from RRMS patients were less glycolytic at
functional and biochemical level. Since the engagement of
glycolytic pathway is crucial for the induction and function of
Treg cells [5], we hypothesize that the reduced engagement of
glycolysis in Tconv cells from RRMS patients could associate
with an impaired generation of Treg cells leading to loss of self
immune tolerance. In this context, we also evaluated the
peripheral frequency of Treg cells, and we did not observe a
significant change in their number in our window of observa-
tion (data not shown). This evidence, suggests that the clinical
response to IFN beta-1a, in termsof tolerance induction,may be
still present since Treg cells could be better induced by IFNbeta-
1a treatment andmigrate into the central nervous system (CNS)
thus not necessarily increasing in the periphery.

Our data are in agreement with results showing a
glycolytic deficit also in other autoimmune diseases, such as
rheumatoid arthritis (RA), in which T cells showed a defect in
glycolysis [27]. However, it has also been considered that
other studies have reported increased glycolysis in T cells
from MS patients [28]. This could ascribed to a different
method used for the assessment of glucose metabolism.
Indeed, we analyzed functional ECAR/OCR as indicators of
glycolysis and mitochondrial respiration, respectively, while
in literature reported datamainly rely on the evaluation of the
activity of isolated glycolytic enzymes and not on the whole
cell. Further, our data are in agreement with previous studies
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reporting the capacity of IFN beta-1a to induce glucose uptake
(and consequently glycolysis), via translocation of glucose
transporters on the cell surface [29]. It is important to note
that IFN beta-1a effects were observed only during in vivo
treatment with IFN beta-1a in RRMS patients, while in vitro
stimulation of PBMCs did not result in an induction of
glycolysis and mitochondrial respiration (data not shown),
thus suggesting that IFN beta-1a is able to induce glycolysis in
T cells only upon chronic treatment. Finally, our data could
also be instrumental for creation of novel markers of disease
progression and response to therapy, showing a change in the
metabolic response to IFN-beta1a treatment in MS subjects.

In conclusion, our data support the hypothesis of a possible
involvement of an altered metabolism of Tconv cells in
response to TCR stimulation in the pathogenesis of MS. This
notion is corroborated by data showing that metabolic manip-
ulation with metformin and pioglitazone has beneficial anti-
inflammatory effects in patients with MS [30], as well as a diet
with low calorie and protein content [31,32]. For example, a diet
with very low calorie and pioglitazone administration reduce the
incidence and severity of EAE in C57BL/6 mice [31–33] and
treatment with metformin ameliorates clinical score and miti-
gates the inflammation in CNS by reducing secretion of IL-17 and
by enhancing that of IL-10 and TGF-β [34]. Other evidence
supporting the involvement of metabolism in MS pathogenesis
is the observation that elevated body mass index (BMI) and
obesity correlated with an increased susceptibility to MS [35–38].
5. Conclusion

Although it would be necessary to increase the number of
patients and follow them over time during IFN beta-1a therapy,
these data suggest the presence of metabolic alterations of
T cells in RRMS, and highlight an important role for IFN beta-1a
in modulating cellular metabolism through the induction of
glycolysis and mitochondrial respiration, which could lead to an
increased generation of Treg cells and consequent improvement of
immune tolerance during disease course.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.metabol.2017.08.011.
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