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Abstract 

Shear and normal correction factors are used within equivalent single-layer first-order theories for homogeneous and layered 

structures, e.g. first-order shear deformation plate/shell theories, in order to improve the description of the transverse strains.  

Dynamic correction factors may be derived, following the original treatment for homogeneous plates (Mindlin, R.D., J. Appl. 

Phys. 1951), by imposing that certain wave propagation frequencies, e.g. the cut-off frequencies of the lowest cut-off frequency 

modes, match those of three-dimensional elasticity, which are typically obtained through computational procedures. In this paper 

we consider multilayered plates with principal material directions parallel to the geometrical axes and propose the use of a 

multiscale structural theory which allows the accurate closed-form derivation of the cut-off frequencies of the first thickness 

modes associated to plane-strain Rayleigh-Lamb waves. The theory captures the effects of the inhomogeneities on local fields 

and global behavior through homogenized equilibrium equations which depend on a limited number of variables independent of 

the number of layers. Explicit expressions are obtained for the lowest cut-off frequencies of multilayered wide plates with an 

arbitrary number of layers, with arbitrary layup and elastic constants, which are then used to define the dynamic correction 

factors of classical equivalent single-layer theories. The comparison with predictions obtained by matching exact elasticity 

solutions for highly-inhomogeneous bilayer media highlights the accuracy and potentials of the proposed approach.         
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1. Introduction 

Equivalent Single Layer (ESL) theories are extensively being used by the engineering community for anisotropic  
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layered structures, such as laminated and sandwich beams, plates and shells. First-order shear deformation theory 

uses kinematic assumptions which imply constant transverse displacements and transverse shear strains in the 

through-thickness direction. First-order shear, first-order normal deformation theory additionally accounts for the 

transverse compressibility of the layers and assumes thickness-wise constant transverse-normal strains [1,2]. Both 

approaches introduce correction factors, to partly overcome the limitations of the kinematic assumptions for certain 

loadings and frequency ranges. Many different methods have been proposed to derive the correction factors. In 

dynamic problems they are often derived as suggested in the original work of Mindlin for homogeneous plates [3] by 

imposing that the cut-off frequencies of the first cut-off frequency modes predicted by the approximate structural 

theories match those of 3D elasticity. Explicit expressions for the cut-off frequencies using 3D elasticity can be 

obtained only for homogeneous plates and yield the well-known correction factors 2 /12, for both normal and 

shear strains. A numerical solution of the frequency equation is required for layered media, even with only two or 

three layers, and in media with a larger number of layers the cut-off frequencies are typically obtained using a matrix 

formalism and systematic computational methods, e.g. Transverse Matrix Method. Other approaches define the shear 

correction factors by fitting the dispersion relations of the first flexural modes obtained using the ESL theory with 

those of the first modes of the Rayleigh-Lamb waves in the long wavelength limit [4,5]. The procedure to define the 

exact cut-off frequencies or the exact dispersion curves is problem specific and quite complex; because of this, the 

engineering community often extends the correction factors derived for homogeneous plates to layered plates. 

However, the correction factors required to match the exact cut-off frequencies or dispersion curves of layered 

systems may substantially differ from those of homogeneous plates, especially if the mismatch of the elastic 

constants of the layers is high, and this procedure may affect strongly predictions of all modes of propagation, 

including the lowest flexural modes.    

In this paper we examine the potentials of a homogenized first-order structural theory [6], which is based on the 

original zig-zag theory formulated in [7] for fully bonded plates and extended in [8] to systems with interfacial 

imperfections (e.g., thin elastic interlayers or damaged interfaces), for the accurate closed-form derivation of the cut-

off frequencies of the two lowest modes of propagation in layered media. The theory couples an equivalent single 

layer theory (global scale) and a detailed discrete-layer cohesive-crack model (local scale) using homogenization and 

imposing a priori continuity conditions at the layer interfaces. It captures the effects of the inhomogeneous material 

structure and interfacial imperfections on local fields and global behavior through homogenized equilibrium 

equations which depend on the kinematic variables of the global theory only. The equations are then tractable and 

can be solved in closed-form for many relevant problems, e.g. thermo-mechanical loading [9]. 

Explicit expressions are presented for the cut-off frequencies of the two lowest cut-off frequency modes of 

propagation of plain-strain Rayleigh-Lamb waves in multilayered plates with principal material directions parallel to 

the geometrical axes and arbitrary number of layers with arbitrary layup and elastic constants. Correction factors are 

defined by matching to these frequencies those calculated using the equivalent first-order single layer theories. The 

accuracy of the predictions is highlighted through comparison with exact elasticity solutions for bi-layers with highly 

inhomogeneous properties [10].   

2. Model and wave propagation analysis 

The propagation of plane-strain Rayleigh-Lamb waves in the multilayered plate of infinite in plane extent 

and thickness h shown in Fig. 1 has been studied in [6] using a multiscale homogenized model. In this paper the 

model in [6] is extended to account for the transverse compressibility of the layers and used to define correction 

factors of ESL theories. The plate in Fig. 1 consists of n  layers joined by 1n  zero-thickness interfaces. The 

thickness of the layer k, with  1,.., 1k n   numbered from bottom to top, is ( )k h  and the coordinates 
1

3

kx and 3

kx  

defines its lower and upper interfaces. The interfaces are assumed as mathematical surfaces where the interfacial 

tractions are continuous while the materials properties may change discontinuously (the more general case of 

imperfect interfaces has been treated in [6]). The results have been obtained under the following assumptions: the 

layers have different mechanical properties, are linearly elastic and orthotropic with principal material directions 

parallel to the geometrical axes and 
( )k

ijC  the stiffness coefficients with respect to the axes of material symmetry, 
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, 2,3,5i j ; the in plane displacements are piece-wise linear functions of the through-thickness coordinate (first-

order theory); plane-strain parallel to the plane 2 3x x . 

 

 

 

 

Fig. 1. Layered plate with n unequal orthotropic layers, principal material directions parallel to the geometrical axes, and n-1 interfaces.  

A small-scale displacement field in the layer k at the coordinate  1 2 3, ,x
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where 02 2( , )v x t , 0 2( , )w x t , 2 2( , ) x t  and 3 2( , ) x t  define the displacement field of the global model, which is 

continuous with continuous derivatives in the thickness direction and coincides with that of first-order shear and 

normal deformation theory. This field is enriched by local contributions, given by the terms in the summations on 

the left hand side. The functions 2 3 3( )( ) i i

j x x x for 1,..., 1 i k  and 2,3j define a piece-wise linear 

displacement field in 3x , which is introduced to reproduce the zig-zag pattern due to the multilayered material 

structure. The small-scale kinematic description of the problem is defined by a total of 4+2×(n-1) unknown 

functions in the n layers. The 2×(n-1) small-scale unknowns may be defined as functions of the global unknowns, 

02v , 0w  , 2  and 3  by imposing continuity of shear and normal tractions at the n-1 layer interfaces. This yields 

the macro-scale displacement field, which is then used, along with the compatibility and constitutive equations of 

the layers to derive the weak form of the dynamic equilibrium equations using Hamilton principle [8]. The system of 

equations can be decoupled and to show that the transverse behavior is controlled by a sixth order equation in 0w , 

which reduces to the classical fourth order equation of first-order shear deformation theory when the zig-zag effect 

is negligible [9]. A similar behavior is observed in [11] where highly contrasted laminated plates are studied through 

a multi-scale asymptotic approach.    

To analyze the propagation of continuous, straight-crested waves in the 2x  direction, solutions of the form 

2 2y( , ) exp ( )x t Y i kx t   are assumed, with 2y( , )x t  the displacement variable, Y  an unknown constant; k, the 

wave number, and w, the radian frequency, are related to the wavelength,   , frequency,  f , and the wave speed, 

c, by  2 /  k , / 2 f  and /c k . Substitution into the dynamic equilibrium equations yields a system of 

homogeneous equations in the unknown constants whose non-trivial solution gives the frequency equation of the 

problem. The method and relevant results have been presented in [6] for plates with transverse incompressibility of 

the layers and 
( )

3 2 3 0 2( , , ) ( , )k v x x t w x t  in Eq. (1). 

According to the proposed theory, four wave-types are operative in a multilayered plate. These types 

correspond to the two lowest branches of all frequency curves and to the branches of the first two cut-off 

frequencies. The asymptotic limits of the first and second cutoff frequency modes  for infinitely long wavelengths, 
0k , are defined by the first and second thickness modes, which are propagation modes characterized by the 

absence of transverse displacements 0 2( , ) 0w x t  and by in-plane displacements independent of the in-plane 
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coordinates (thickness-shear mode) and by non-zero transverse displacements and the absence of longitudinal 

displacements and rotations, 02 2( , ) 0v x t  and 2 2( , ) 0 x t  (thickness-stretch mode). These modes can be used to 

easily calculate in closed form the cut-off frequencies of the lowest cut-off frequency modes in plates with complex 

layups. In the limit of the long wavelengths, for 0k , the frequency equations of the first thickness modes as 

predicted by the homogenized model are: 
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with SH
 and  ST

 the radian frequencies of the thickness-shear and -stretch modes and the coefficients 
0 1 2, ,R R R ,

1 2,N NR R 55 ,A 33A , which depend on the elastic constants, inertia and stacking sequence, given in Appendix A [6]. 

3. Cut-off frequencies of thickness-shear and thickness-stretch modes 

The cut-off frequencies of the lowest thickness-shear and thickness-stretch modes associated to plane-strain 

Rayleigh-Lamb waves propagating along one of the principal material directions, are obtained through the solution 

of the frequency equations given in Eq. (2): 
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The cut-off frequencies derived using first-order shear deformation theory and first-order shear and normal 

deformation theory, ,

. . SH ESL

c o  and ,

. . ST ESL

c o , can be easily recovered from Eqs. 3,4 by neglecting the zig-zag 

contributions,  1;k

22 0   for 1,.., 1 k n , in Eq. (7) which leads to the modified coefficients given in Eq. 8. Explicit 

expressions for the cut-off frequencies similar to those presented above have been derived in [12] by means of a 

higher-order layer-wise zig-zag theory. A comparison between the two results will be presented elsewhere. 

4. Shear and normal correction factors for beams and wide plates 

Shear and normal correction factors for the solution of plane strain problems using equivalent single layer 

theories in multilayered wide plates can be calculated by imposing that the cut-off frequencies of the first thickness 

modes must equate the cut-off frequencies in Eqs. 3,4, 
,

. . . . SH ESL SH

c o c o  and 
,

. . . . ST ESL ST

c o c o  , which yields: 
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The correction factors have been normalized using the correction factors of homogeneous plates, 2

3 /12 gk k  
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[3] to highlight the influence of an inhomogeneous material structure on the behavior. The accuracy of the 

correction factors in Eqs. 5,6 is verified through comparison with the correction factors obtained by matching the 

exact cut-off frequencies of 2D elasticity for a bi-layer medium with isotropic layers [10]. Figure 2 shows the shear 

correction factors which should be used in a first-order shear deformation theory to match the lowest cut-off 

frequencies of a plate with two fully bonded layers of thicknesses, f and  c , and shear moduli in the plane 
2 3x x ,  

lG  and 
uG . The correction factors are shown on varying the normalized thickness of the lower layer, f/h. The 

results compare predictions obtained using the exact cut-off frequency and the cut-off frequencies given by Eq. 3 

(homogenized model). The elastic constants used in Fig. 2a, / 2u lG G  and  u l
 could describe a classical 

[0/90] cross-ply laminate with unidirectionally reinforced carbon-epoxy layers; those used in Fig. 2.b, 0.02u lG G  

and 0.15 u l
 could describe the carbon-epoxy face sheet and foam core of a composite sandwich plate. The 

correction factors obtained through the homogenized structural model (Eq. 5, solid lines) are very accurate over 

most of the domain but for c/h=(00.15), which describes a plate with a very thin softer layer. In this limiting 

configuration, the effects of the inhomogeneity are negligible and the required correction factor, as predicted by 2D 

elasticity, coincides with that of a homogeneous plate. This behavior, which is probably a consequence of the 

assumed first-order kinematic description, needs to be further investigated. A comparative study on the correction 

factors derived here and obtained by other static/dynamic approaches is in progress.  

5. Conclusions 

Explicit expressions for the correction factors of Equivalent Single Layer theories have been derived for 

multilayered plates with principal material axes parallel to the geometrical axes by matching the cut-off frequencies 

of the first cut-off frequency modes of propagation of plane-strain Rayleigh-Lamb waves with those obtained using 

a multiscale homogenized structural model. Applications to highly inhomogeneous bilayers show that the correction 

factors virtually coincide with those obtained numerically using the cut-off frequencies of 2D elasticity but for some 

limit configurations where the effects of the material inhomogeneity become negligible and the correction factors 

coincide with those of homogeneous plates. The explicit expressions can be used for systems with many layers, 

3n  , for which 2D elasticity solutions would instead require complex computational procedures. 
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Appendix A. Coefficients 

The coefficients in the expressions of the cut-off frequencies derived using the homogenized structural approach 

and assuming perfect bonding of the layers are given below.  
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Under the assumptions of the first-order Equivalent Single Layer theories they simplify as: 
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Fig. 2. Correction factors of first-order shear deformation theory required to match the lowest cut-off frequencies of plane-strain Rayleigh-Lamb 

waves in bi-layers; solid line: matching frequencies calculated using the homogenized model, Eq. 3; boxes: matching frequencies from 2D 

elasticity [10]; dotted line: homogeneous plate. (a) bi-layer with limited mismatch of the elastic properties. (b) bi-layer with high mismatch.  
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