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 3 

ABSTRACT 4 

 5 

At a historic time when the eco-sustainability of industrial manufacturing is considered one of the 6 

cornerstones of relations between people and the environment, the use of energy from Renewable 7 

Energy Sources (RES) has become a fundamental element of this new vision. After years of vain 8 

attempts to hammer out an agreement to significantly reduce CO2 emissions produced by the 9 

burning of fossil fuels, a binding global accord was finally reached (Paris December 2015 - New York 10 

April 2016). 11 

As we know, however, some of the most commonly-used RES, such as solar or wind, present the 12 

problem of discontinuity in energy production due to the variability of weather and climatic conditions. 13 

For this reason, the authors thought it appropriate to study a new methodology capable of marrying 14 

industrial users’ instantaneous need for energy with the production capacity of Renewable Energy 15 

Sources, supplemented, when necessary, by energy created through self-production and possibly 16 

acquired from third-party suppliers. All of this in order to minimize CO2 emissions and company 17 

energy costs. 18 

Given the massive presence of stochastic and sometimes aleatory elements, for the proposed 19 

energy management model we have used both Monte Carlo simulation and on-line real-time Discrete 20 

Event Simulation (DES), as well as appropriate predictive algorithms. A test conducted on a tannery 21 

located in southern Italy, equipped with a 700 KWp photovoltaic installation, showed extremely 22 

interesting results, both economically and environmentally. In particular the application of the model 23 

permitted an annual savings of several hundreds of thousands of euros in energy costs and a 24 

comparable parallel reduction of CO2 emissions. The systematic use of the proposed approach, 25 

gradually expanded to other manufacturing sectors, could result in very consistent benefits for the 26 

entire industrial system. 27 

 28 
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 31 

1 Introduction and literary review 32 

Since the early 2000s, the concept of Sustainable Manufacturing has had an increasing presence in 33 

the industrial field. To summarize extremely briefly, the principal objective is to establish a 34 

relationship between manufacturing and the environment, with greater attention to protecting the 35 

latter.  36 

 37 



The idea of sustainability applies and extends to each phase of the industrial manufacturing cycle:  38 

 in product design: possibly making use of recyclable and non-polluting materials; 39 

 in manufacturing: seeking to minimize manufacturing waste and the use of energy from 40 

traditional sources and the consequent CO2 emissions; 41 

 in distribution: reducing as much as possible ground transportation and the product’s carbon 42 

footprint. 43 

A significant contribution for sustainability is made by the correct management of energy, particularly 44 

electric power. A complete analysis of the importance of energy management in manufacturing has 45 

been recently presented in a review article based on 365 papers published from 1995 to 2015. The 46 

authors investigated six main lines of researh related to energy management in this specific context 47 

of study [1]. The term “sustainable”, when applied to the use of energy, is evoked, on the one hand, 48 

in the search for less consumption per unit produced, and on the other hand, in the growing use of 49 

self-production through Renewable Energy Sources (RES). “Cleaner Energy for cleaner production” 50 

was the leit motiv of the 17th conference “Process Integration, Modelling and Optimization for Energy 51 

Saving and Pollution Reduction-PRESS” which aim was to share with the scientific community ideas 52 

and technologies that can be used in the real word. Modelling, Simulation and Optimization were the 53 

main topics of this conference [2]. However, in the face of the above, there is a significant problem 54 

caused by randomness in the volumes of production generated by most RES, whose behavior is 55 

predictable only with margins of uncertainty, which are not always trivial. This makes their use 56 

problematic in cases where there are continuous consumption demands according to pre-set 57 

schedules, as with industrial applications. Until effective storage systems become available, it will 58 

always be necessary to supplement discontinuous RES sources (sun and wind, for example) with 59 

traditional sources to ensure continuity in energy supply during the hours in which RES production 60 

is absent. A focus on sustainability therefore requires the identification of an integrated management 61 

model that privileges, where possible, the self-production of RES and minimization of the use of 62 

traditional sources. Some authors consider the storage of energy supplied by RES, that at times 63 

exceed the demand, as a way to reduce the mismatch between the supplied energy and the 64 

forecasted production, due to forecasting errors, using the Stochastic Approximation Average 65 

technique [3]. Other authors attempted to reduce both the energy consumption costs and CO2 66 

emission by predicting the energy consumption using predictive methodologies as the Methods-67 

Energy Measurement [4]. 68 

After an accurate analysis of the scientific literature, the authors note the lack of methodologies with 69 

the objectives presented in this paper, that is, an energy management strategy that allows the 70 

simultaneous minimization of CO2 emissions and costs of production, acting, under stochastic 71 

conditions, both from the perspective of energy consumption and production by RES and traditional 72 

sources. 73 



In fact, some authors approach the problem only from the perspective of predicting energy demand 74 

[5-8] while many others only from the perspective of predicting energy availability from RES sources 75 

[9-15]. With regard to the use of DES for the purpose of energy savings and optimization of 76 

consumption, the authors found some interesting contributions. Ghani et al. use DES for the real-77 

time evaluation of energy demand in the automotive industry in the redesigning phase of the 78 

manufacturing process in order to optimize the sizing of the production line with a view toward energy 79 

savings [16].  80 

Kouki et al. developed a framework called ERDES (Energy-Related Discrete Event Simulation), 81 

which again uses DES for the purpose of predicting future energy consumption at various times of 82 

the day in order to test different scheduling scenarios for manufacturing activities and, consequently, 83 

minimizing energy costs [17]. 84 

Both contributions, though offering interesting insights, approach the problem only from the 85 

perspective of optimization of consumption and not production of RES energy. 86 

Some authors have recently proposed a real time method of energy control in manufacturing 87 

systems. Their aim is to have an increase of production of energy by RES on site. They act in 88 

stochastic regime using also DES but their methodology, according to the authors themselves, shall 89 

be improved because there is no fit with the paradigm of Lean Manufacturing [18]. 90 

In order to obtain effective and efficient management of RES, predictive models for both the industrial 91 

energy demand and the production capacity of RES (in relation to the predicted weather and 92 

climactic patterns) are required. The objective of the proposed study is to provide Energy Managers 93 

in manufacturing environments with a support tool that, using the potentialities of Discrete Event 94 

Simulation (both on-line and on-line real-time) and the Monte Carlo simulation , supplemented by a 95 

special predictive algorithm, allows optimization of the energy supplying mix (self-production from 96 

renewable and not renewable sources and/or purchase on the electricity market).  97 

Through this approach, as we will see below, both the economic impact, in terms of energy 98 

procurement costs, and the environmental impact, expressed in terms of reduction of CO2 emissions, 99 

can be significantly reduced. This is in full accord both with the Sustainable Manufacturing  100 

Compared to the models found in literature the methodology proposed by the authors is able to 101 

optimize both the cost of energy and the CO2 emissions without affecting the scheduling of 102 

production. It is the model that fits to the reality on the basis of the changed operating or atmospheric 103 

conditions and not vice versa. 104 

 Another important feature is, as demonstrated in the test case described in the paper, the relative 105 

ease of application of the proposed methodology. To apply the methodology no specific knowledge 106 

on the logic and the statistical tecniques underlying the model are required. To manage optimally 107 

energy sources is sufficient interpret the results provided by the model. The authors point out that, 108 

unlike other studies, the proposed methodology takes into account the self-production through 109 



cogenerative microturbine and the purchase or sale of energy produced to the grid (in defect or in 110 

excess , respectively), in order to preserve the economic sustainability of the operation. 111 

 112 

2 Methods: the ERIM-P and ERIM-RT models 113 

In dealing with the problem of the supplemented and optimal use of energy produced by RES in 114 

manufacturing, the authors, taking some DES previous studies [19-20] as a jumping-off point, 115 

propose a management approach based on two steps, supported by two respective models called 116 

ERIM-P (Energy Resources Intelligent Management-Predictor) and ERIM-RT (Energy Resources 117 

Intelligent Management-Real Time). 118 

The purpose of ERIM-P is to develop, 24 hours in advance, two types of predictions: 119 

1) the hourly electrical energy requirement of the manufacturing plant based on a production 120 

plan created for the next day, but keeping in mind the stochastic events present in the 121 

system (breakdowns, stoppages, missed appointments, availability of materials, 122 

variability of processing and set up times, etc.)  123 

2) the quantity of possible self-production of RES energy based on weather predictions for 124 

the next day. 125 

By comparing the two hourly profiles (consumption and self-production of RES) it will be possible to 126 

determine, as a consequence, the quantity of electrical energy to be self-produced through traditional 127 

sources (i.e. microturbines) and, in case, the quantity of electrical energy to be purchased from/sold 128 

to the grid.  129 

This model, which will be described in detail in subsection 2.1, acts under stochastic conditions 130 

through a DES simulator of the manufacturing plant. Its objective is to allow Energy Managers to 131 

optimize the use of available energy sources by knowing one day in advance of the lack or surplus 132 

of the hourly requirement compared to the quantity of producible energy, from both economic and 133 

environmental standpoints, attempting as much as possible to make use of renewable sources.  134 

The second model, ERIM-RT, in completion of the first, acts on the current day, taking into account 135 

through the use of an online real-time DES simulator of what is happening in real time with the 136 

manufacturing plant (with projections repeated for each remaining hour of the day) and the actual 137 

instantaneous production of RES energy, due to the actual weather conditions. The use of a special 138 

predictive algorithm [21] provides, every 30 minutes, starting from the current weather situation, an 139 

update of the available RES energy production prediction for subsequent times of the day. 140 

ERIM-RT, correcting the projections made through ERIM-P, helps to establish if and when to activate 141 

self-production from traditional sources and/or to access the electricity market in the subsequent 142 

hours of the day. 143 

 144 

 145 

 146 



2.1 ERIM-P Model 147 

The Energy Resources Intelligent Management-Predictor (ERIM-P) model was conceived with the 148 

objective of supporting energy managers in the manufacturing industries in planning the use of the 149 

various available RES and traditional sources, with the goal of reducing energy costs and minimizing 150 

environmental impact.  151 

To identify the hourly energy production expected for the next day, special weather prediction sites 152 

must be used, which provide conditions for usability of such sources for each hour of the next day. 153 

The ERIM-P model translates the hourly producibility of the various RES sources into probability 154 

distribution functions and combines them using the Monte Carlo simulation.  155 

The model’s output provides the hourly availability of RES energy to supply the manufacturing plant. 156 

To obtain this result, the authors created a sub-model within ERIM-P called Internal Energetic Source 157 

Predictor (IESP), whose task is, as noted previously, to obtain an hourly profile of availability of RES 158 

electrical energy. 159 

A second sub-model in ERIM-P consists of a DES simulator that reproduces the manufacturing plant. 160 

This simulator is kept online with the plant, and its purpose, at the end of each work day (starting 161 

from the current status of the plant and from the production plan for the next day), is to provide a 162 

consumption profile for each hour/half hour of the next day.  163 

The two energy profiles supplied by the IESP model and the DES model feed the ERIM-P model, 164 

which develops the hourly energy plan for the next day (Figure 1).  165 

 166 

 167 

Figure 1 ERIM-P framework 168 

 169 

 170 



In particular ERIM-P outputs, for every half-hour of the next day, the following data: 171 

 X consumption of energy (KWh) required by the plant 172 

 Y electrical energy self-produced by RES 173 

 Y’ energy self-produced with other sources   174 

 Y’ max maximum availability of self-production 175 

 Y” energy that needs to be purchased on the electrical market 176 

As already emphasized, knowing one day in advance the presumed behavior of the system as a 177 

whole will allow the Energy Manager to optimize, as much as possible, decisions regarding self-178 

production, purchase, and/or sale of energy from/to the market.  179 

 180 

2.1.1 Limits of ERIM-P 181 

The use of a stochastic predictive approach using online DES and Monte Carlo simulators provides 182 

clear benefits in the capacity to describe the behavior of complex systems, leading to results that 183 

are absolutely consistent with the actuality of the system under examination. However, unpredictable 184 

events and/or extemporaneous decisions made by production management can create significant 185 

deviations between the consumption predicted by the simulator the day before and the reality of the 186 

following day. 187 

In addition, the IESP model is based on hourly weather predictions which, though released by 188 

sources that are reliable and specialized, is also subject to randomness. Neither of the above 189 

considerations regarding the predictive capacity of the DES and Monte Carlo simulations 190 

compromise the validity of these methodologies, but, under certain conditions, they become a limit 191 

to the benefit of the proposed model. This is because the single or combined action of the two 192 

influences (variation in production and/or weather) can generate differences that also affect the 193 

economic results of energy management. 194 

For this reason, the authors decided to supplement this model, which we can call “day-ahead”, with 195 

a model called ERIM-RT, or the “current day” model. Subsection 2.2 describes the additional 196 

model in detail, to be used as a supplement to the previous one.  197 

 198 

2.2 ERIM-RT 199 

This model is placed in conjunction to ERIM-P with the objective of overcoming the limitations 200 

described in the previous subsection 2.1.1. The core elements of ERIM-RT are: a DES simulator 201 

functioning online real-time with the plant and a predictive update algorithm for RES production, 202 

which is also an online real-time agent with weather conditions (Figure 2). 203 

 204 



 205 

Figure 2 Input/Output schematization of ERIM-RT  206 

 207 

Starting from the zero moment of the morning shift, the real-time simulator, every 30 minutes, 208 

receives the data for the current status of the plant (machine occupation and operators, breakdowns, 209 

production plans, changes thereof, etc.) and projects them along the entire arc of the production day. 210 

In this way, the hourly demand profiles, individual and total, calculated by ERIM-P the day before, 211 

are updated every 30 minutes based on actual operations and until the end of the working day, and 212 

thus the actual hourly quantity of energy that must be made available to the manufacturing plant for 213 

that day. 214 

 215 

The predictive update algorithm for RES energy production recalculates, again every 30 minutes, 216 

based on the actual weather conditions at the site where the plant is located, the quantity of RES 217 

energy that it will be capable of producing from that moment until the end of the day. The additive 218 

algorithm is formulated as follows: 219 

 220 

𝐹𝑘+𝑖|𝑘 = 𝑚𝑖𝑛{𝐹𝑘+𝑖|𝑘−1 +𝑀𝑘 − 𝐹𝑘|𝑘−1, 𝑃𝑝} 221 

where: 222 

 Fk+i/k is the prediction of power production made at the moment k of the day for all the 223 

remaining hours of the current day; 224 

 Mk is the quantity of power actually produced by RES at moment k; 225 

 F k/k-1 is the prediction of power production made at moment k-1 for the day for the moment 226 

K and, obviously, it cannot in any case exceed the peak power of the RES plant; 227 

 F k+i/ k-1 is the prediction of the quantity of power produced at the moment k-1 for the day for 228 

the hours from K to the end of the day; 229 

 Pp is the peak power of the RES plant. 230 

 231 



The algorithm pseudocode can be defined as follows: 232 

 233 

for k=0, 30, 60, 90, 120…..1440 234 

If | 1k k i kA F     235 

| | 1k i k k i kF F    236 

else 237 

𝐹𝑘+𝑖|𝑘 = 𝑚𝑖𝑛{𝐹𝑘+𝑖|𝑘−1 +𝑀𝑘 − 𝐹𝑘|𝑘−1, 𝑃𝑝} 238 

where 
kA  are the actual weather conditions 239 

 240 

Following this logic, ERIM-RT is able to notably improve the performance of ERIM-P, although this 241 

model is in itself capable of providing significant improvements to the Energy Manager’s decision-242 

making process. 243 

The benefit derives from the fact that, even if the predictions of ERIM-P for power demand for the 244 

next day are completely erroneous due to changing operating and/or weather conditions, ERIM-RT 245 

will be able to remediate inaccurate predictions. Obviously, the more energy-intensive the 246 

manufacturing processes and/or the higher their stochasticity, the more using ERIM-RT will yield 247 

significant economic results in terms of lower costs for energy used.  248 

 249 

3. Application of the methodology to a real case 250 

The plant taken into consideration for testing the proposed approach is a medium-sized 251 

manufacturing tannery, located in southern Italy in the tannery district of Solofra. Its annual 252 

production is on the order of 9,000 tons of hides treated, and the peak power used is on the order of 253 

500 kW (in sizes of 55/65 kW for the major machines). The duration of individual processing cycles 254 

ranges from a few minutes per piece to approximately 20 hours for calcination and unhairing. The 255 

annual consumption of electric power is approximately 3 million kWh, while thermal energy 256 

consumption is approximately 2,500,000 kWh. The sum of the two amounts of consumption exceeds 257 

5 Gwh/year, and therefore this particular tannery can be considered for all intents and purposes an 258 

“Energy Intensive” industrial process. 259 

The tannery’s capacity for self-production of electric power is provided by: 260 

 a photovoltaic panel installation for a total of 700 kWp. The average DNI of the site is 1,750 261 

kWh/M2 262 

 2 co-generative microturbines, supplied by natural gas, with a nominal electric power of 200 263 

kW (with 33% efficiency) and thermal (water at 60-70°C) equal to 285 kW, for a total of 264 

efficiency of >80%.  265 



To manage the self-production of electric power, tannery management decided to adopt eco-266 

sustainability as a general rule. As a consequence, the objective is to produce, as much as possible, 267 

only the amount of energy strictly required for operation of the tannery, or to keep the difference 268 

between electric power consumed and electric power produced (ΔkWh) as close to zero as possible. 269 

From this perspective, given that photovoltaic production is connected to exogenous factors, the way 270 

to minimize CO2 emissions is to optimize management of the functioning of the 2 turbines. 271 

For this tannery, the problem of the cost of eco-sustainability of kWh produced, once the cost of 272 

investment in energy production plants are amortized, can be framed as follows: 273 

 for the photovoltaic installation, maintenance costs (cleaning of panels and possible 274 

replacement of inverters at a rate of one/two in 20 years) are to be taken into consideration 275 

 for the microturbines, costs for gas and maintenance which are, overall, lower than costs for 276 

purchasing from the electric market, are to be taken into consideration. 277 

Considering that in Italy, excess power to the electrical grid is sold at a price per kWh that is markedly 278 

lower than the price of purchasing from the same market, the tannery needs to use the co-generating 279 

microturbines to produce only what the tannery can use. 280 

 281 

3.1 Modeling the tannery process through DES 282 

The plant receives raw and salted hides and produces batches of wet blue leather, that is, hides that 283 

have completed the entire tanning process (Figure 3). 284 

285 

Figure 3: schematization of tanning process 286 

Production takes place in three 8-hour shifts/day, six days a week. Using the Simul 8 software, a 287 

DES simulation model was developed for the entire hide processing cycle; thus it was possible to 288 

obtain output of the daily energy demand for the various machines operated. Stochasticity is included 289 

in the model through suitable probability density functions deduced from data gathered in the field, 290 

such as: duration of individual processing, breakdowns, ordinary maintenance, availability of 291 

employees, etc. 292 



Since the DES simulation model is an essential component of both ERIM-P and ERIM-RT, its 293 

capacity to accurately reproduce the operating of the actual system is an indispensable element for 294 

obtaining real benefits from the proposed methodology. For this reason, in addition to statistical 295 

validation tests on the magnitude of the experimental error [22-24], the authors wanted to add a 296 

further verification test based on the congruency between the quantity of energy actually consumed 297 

by the tannery in a standard year and the quantity obtained from the simulator. The difference was 298 

on the order of 3%; that is, approximately 2,925,000 kWh simulated compared to 3,000,000 kWh 299 

consumed by the actual plant. We can therefore conclude that the DES model is fully capable of 300 

providing reliable data on the quantity of energy consumed by the tannery every 30-60 minutes, and 301 

it is therefore usable as a predictive tool, both for the demand for the next day (ERIM-P model) and 302 

the demand for the current day (ERIM-RT model).   303 

 304 

3.2 Implementation of ERIM-P and ERIM-RT in the case study 305 

The use of ERIM-P, compared to traditional management of the energy consumed by the tannery, 306 

can lead to significant benefits, both economically and environmentally (reduction of CO2 307 

emissions). In fact, the model allows, the day before, an initial optimization of the energy to be self-308 

produced and/or purchased, acting on a behavior prediction that is very consistent with the reality of 309 

the tannery with regard to what the managers can predict.  On the other hand, ERIM-RT acts on the 310 

current day, based on the predictions of ERIM-P, corrected online real-time, based on the 311 

instantaneous operations of the tannery. This provides further significant improvements to the 312 

Energy Manager’s decision-making ability. 313 

The advantages created by the use of ERIM-RT versus ERIM-P alone are illustrated in subsection 314 

3.3 below, through an analysis of some typical days.  315 

To facilitate comparison between the performance of the two models in economic and environmental 316 

terms, an appropriate KPI (Key Performance Indicator) called ΔkWh was introduced to measure the 317 

prediction error. This represents the difference between the kWh actually consumed by the plant and 318 

the energy requirement predicted by the model. 319 

There are three possible cases: 320 

1. ΔkWh = 0, that is, the model predicts, with no margin of error, both plant demand and 321 

RES production, such that the energy produced is the only energy consumed. 322 

Represents the ideal condition of maximum eco-sustainability; 323 

2. ΔkWh < 0, the model overestimates energy production compared to actual demand. The 324 

excess energy produced can be sold on the electricity market; 325 

3. ΔkWh > 0, the model underestimates the energy demand. Requires the production of a 326 

greater quantity of energy than the amount predicted. This can occur through the use of 327 



the two 200 kWh microturbines present at the tannery and, if more energy is needed, 328 

through purchasing on the electricity market. 329 

In both cases where ΔkWh is other than 0, the tannery could have an excess of CO2 emissions, 330 

certainly in the third case (ΔkWh > 0), and possibly in the second case (ΔkWh < 0). 331 

To estimate the benefit in terms of both economic and environmental impact, the following 332 

parameters were taken into consideration: 333 

 Production Cost 

(€/kWh) 

Revenue 

(€/kWh) 

CO2 emissions 

(kg/kWh) 

Microturbine 0.11 - 0.45 

Photovoltaic  -  - - 

Grid  0.25 0.08 0.45 

 334 

3.3. Scenario analysis 335 

To determine the economic benefits obtainable through use of the proposed methodology, 3 possible 336 

scenarios were taken into consideration: 337 

 Scenario 1: the energy demand for the tannery estimated the day before is in line with actual 338 

consumption, while the hourly production from photovoltaic sources estimated the previous 339 

day is not in line with the actual availability for the day. 340 

 Scenario 2: the energy demand for the tannery estimated the day before is not in line with 341 

actual consumption, while the hourly production from photovoltaic sources estimated the day 342 

before is in line with the actual availability for the day. 343 

 Scenario 3: both the energy demand for the tannery and the production from photovoltaic 344 

source estimated the day before are in line with actual consumption/production 345 

The three scenarios were compared with regard to the results obtained through the use of the ERIM-346 

P predictive model alone versus those obtained through the addition of the ERIM-RT model. 347 

 348 

3.3.1 Scenario 1 349 

In Figure 4, the energy demand predicted by ERIM-P DES is compared with the actual demand for 350 

the day. The analysis in Figure 4 shows that in the absence of particular random elements disrupting 351 

production, the DES simulator succeeds in faithfully reproducing, one day in advance, the operations 352 

of the tannery and the consequent energy demand over the various hours of the day. 353 

 354 



 355 

Figure 4: Daily energy demand for Scenario 1 356 

Figure 5 shows the deviation between the production of photovoltaic energy estimated by the IESP 357 

sub-model of the ERIM-P and the energy actually produced the next day. 358 

 359 

Figure 5 Photovoltaic production for Scenario 1 360 

 361 

In Figures 6 and 7, we can detect the differing behaviors of ERIM-P and ERIM-RT in the situation 362 

described in this scenario. The application of ERIM-P (Figure 6) generates an underproduction, in 363 

particular during the central hours of the day, caused by incorrect planning for operation of the 364 

microturbines. To cover this instantaneous demand, it will be necessary to utilize the electrical power 365 

market or the unplanned operation of the turbines. On the other hand, the ERIM-RT model (Figure 366 

7), through the predictive update algorithm, best uses the turbines, whose cost of production of kWh 367 

hours is lower than purchasing from the grid.  368 
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369 

Figure 6 ERIM-P output for Scenario 1 370 

 371 

 372 

Figure 7 ERIM-RT output for Scenario 1 373 

By comparing the results obtained with the two models, we can calculate the prediction errors 374 

committed by both and compare them: 375 

 ERIM-P generates a negative ΔkWh equal to 2,328 kWh during daylight hours and 2,503 376 

kWh throughout the entire day (24h) 377 

 ERIM-RT generates a negative ΔkWh of 426 kWh during daylight hours and 501 kWh 378 

throughout the entire day (24h) 379 

Considering the costs previously indicated for the energy produced by the turbines and for energy 380 

purchased from the market, a savings of approximately €300 is obtained by using ERIM-RT. 381 

If we were to consider instead that the weather prediction made the day before underestimates the 382 
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production of photovoltaic energy, with ERIM-RT we would obtain a lower cost overall of 383 

approximately €30, but most importantly lower CO2 emissions, equal to more than 815 kg.  384 

 385 

3.3.2 Scenario 2 386 

A day is taken into consideration where the energy demand for the current day is greater than what 387 

was predicted the day before due to the extemporaneous insertion of further requests for the product. 388 

The hourly weather conditions for the current day are, on the other hand, in line with the predictions 389 

of the prior day. 390 

The graphics in Figures 8 and 9 show the difference, ex post, of the behavior of the two models, 391 

which is accentuated all the more by the unpredictable exogenous interference, which becomes 392 

significant for the current day. The comparison also shows greater coverage with self-production 393 

from turbines, in non-daylight hours, by the supplemental model ERIM-RT, while the single model 394 

ERIM-P would force purchases on the electrical power market to handle the instantaneous, 395 

unpredicted demand.  396 

 397 

Figure 8 ERIM-P output for Scenario 2 398 

 399 

The predictive error in production, attributable to the change of operating conditions the next day, 400 

generates an increase in the tannery’s energy consumption of more than 3,200 kWh. 401 

The ERIM-RT double model’s responsiveness to exogenous events decreases this value by more 402 

than 2,500 kWh, and so to only 700 kWh. 403 

As a consequence, the costs of the predictive error are practically doubled from €0.12/kWh to 404 

€0.25/kWH. 405 

 406 
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 407 

Figure 9 ERIM-RT output for Scenario 2 408 

Economically, the advantage created by ERIM-GM, derived from the sale of photovoltaic power, is 409 

quantifiable at approximately €360. As in Scenario 1, we now analyze the opposite case, where the 410 

energy demand is markedly lower compared to the predictions of the previous day. In this case the 411 

ERIM-GM helped reduce the cost of ΔkWh by 10% and halved (-52%) CO2 emissions. 412 

 413 

3.3.3 Scenario 3 414 

A day was taken into consideration where there were significant deviations both in terms of 415 

consumption and production of RES electric power. Under these conditions, the ERIM-RT model 416 

increases its performance possibilities compared to the ERIM-P model alone. 417 

Depending on whether the deviations between the actual situation and the prediction (both in terms 418 

of demand and RES production) are positive or negative, 4 sub-scenarios can be identified: 419 

 DLPH(Demand Lower Production Higher): predicted demand lower than actual demand and 420 

predicted RES production higher than actual RES production 421 

 DLPL(Demand Lower Production Lower): predicted demand lower than actual demand and 422 

predicetd RES production lower than actual RES production 423 

 DHPH (Demand Higher Production Lower): predicted demand higher than actual demand 424 

and predicted RES production higher than actual RES production 425 

 DHPL(Demand Higher Production Lower): predicted demand higher than actual demand and 426 

predicted RES production lower than actual RES production 427 

 428 

3.3.3.1 Scenario DLPH 429 
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The prediction of energy demand, developed by ERIM-P DES, is lower than the next day ex post, 430 

while the photovoltaic production predictions mad e by IESP are greater than those actually realized. 431 

In other words, the energy consumption demanded by the tannery by DES for the following day is 432 

greater than predicted, while IESP overestimated photovoltaic production due to an unexpected 433 

disturbance.  434 

 435 

Figure 10 ERIM-P output for Scenario DLPH 436 

Under these conditions, ERIM-P generates a ΔkWh of approximately 7,000 kWh, while ERIM-RT 437 

generates an error of only 900 kWh. ERIM-P, predicting less energy consumption than the actual, 438 

undersizes the use of the turbines, with the related penalties in terms of costs (having to go onto the 439 

electrical market for the missing quantity) (Figure 10 and Figure 11). 440 

 441 

Figure 11 ERIM-RT output for Scenario DLPH 442 
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However, ERIM-RT recognizes, thanks to online real time update mechanisms, the changed 443 

conditions of energy demand and production, allowing a savings of approximately €900, equal to 444 

45% of the cost developed by ERIM-P. 445 

 446 

3.3.3.2 Scenario DLPL 447 

The prediction of energy demand by the DES of ERIM-P for the next day is less than the total, as in 448 

the prediction for photovoltaic production made by IESP. In this scenario, the ERIM-P simulator 449 

predicts an hourly energy consumption profile that is lower than the actual profiles for the next day, 450 

and IESP provides a profile for energy actually available that is lower than the actual one for the day 451 

after. The related predictive error by ERIM-P is -4,270 kWh, while the one made by ERIM-GM is 452 

reduced by approximately one-fifth, or -925 kWh (Figures 12 and 13).  453 

 454 

 455 

Figure 12 ERIM-P output for Scenario DLPL 456 

This occurs because the reduced need for energy predicted by ERIM-P causes less planning for the 457 

use of the turbine, with the consequent need to then instantaneously buy from the electrical energy 458 

market, with the consequent increase in costs. Under these conditions, ERIM-RT brings savings in 459 

terms of energy costs of about 35% (equal to €355/day) compared to ERIM-P. 460 

The benefits to the ecosystem under these conditions generated by the use of ERIM-RT consists in 461 

CO2 emissions reduced by approximately 390 Kg. 462 

 463 
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 464 

Figure 13 ERIM-RT output for Scenario DLPL 465 

3.3.3.3 Scenario DHPH 466 

The prediction of electrical consumption by ERIM-P DES higher than what is realized the next day. 467 

Based on weather predictions, IESP predicts photovoltaic production greater than what is actually 468 

realized on the current day. In this case as well, the integrated ERIM-GM model is clearly more 469 

reliable, since it reduces to one-quarter the predictive error for electrical energy (approximately 1,000 470 

kW hours compared to 4,000 kWh predicted by ERIM-P), with an economic benefit of approximately 471 

€230 over 24 hours. With regard to CO2 emissions, ERIM-P would involve the production of 2,703 472 

Kg in 24 hours, compared to 1,665 kg for ERIM-RT. 473 

 474 

3.3.3.4 Scenario DHPL 475 

ERIM-P DES predicts for the following day an energy profile greater than what is actually recorded, 476 

while IESP, based on weather predictions, underestimates RES production. 477 

In this case, the utility of the ERIM-GM model is even greater. This is because with a ΔkWh of 6,600 478 

kWh for ERIM-P, the ΔkWh of ERIM-RT is only 700 kWh. In terms of CO2, with ERIM-P emissions 479 

would have been equal to 3,800 kg, while ERIM-RT allows a reduction of 1,000 kg.  480 

 481 

 482 

4 Results and Discussions 483 

With reference to the test cases conducted on the tannery, the results illustrated show that the ERIM-484 

RT model allows the obtaining of significant improvements in real time estimates, both of daily energy 485 

demand schedule and actual photovoltaic production obtainable (with consequently more efficient 486 

planning of self-production with turbines and/or purchasing from suppliers).  In demonstration of this, 487 

net 
 

microturbine 
 

photovoltaic 
 

actual 
demand 

 



in the four combined high-variability sub-scenarios below (DLPL,DLPH,DHPL,DHPH) examined for 488 

Scenario 3, we found a clear improvement in energy performance for the tannery in terms of 489 

reduction of error, CO2 emissions, and energy costs. 490 

 491 

ERIM-RT is more effective the larger the deviations are between the prediction made on the day 492 

before and the actual profiles (consumption/self-production/purchase) for the current day. This is 493 

because the tannery, like any other manufacturing system, is characterized not only by stochasticity, 494 

reasonably predictable by pdf, but also by randomness. For this reason, the more the behavior of 495 

the tannery is affected by randomness (in terms of demand versus energy production), the more the 496 

use of the ERIM-RT model becomes essential. To better understand these statements, one need 497 

only take into consideration the two sub-scenarios DLPH  and DHPL. In fact, with these the ERIM-498 

RT model leads to improvements in predictive performance respectively 7.3 and 7 times greater than 499 

with the ERIM-P predictive model alone.  500 

 501 

5 Conclusions  502 

The correct management of energy, particularly electrical energy, is an important contribution to 503 

sustainability. The term “sustainable”, when applied to the use of energy, is evoked, on the one hand, 504 

in the search for less consumption per unit produced, and on the other hand, in the growing use of 505 

self-production through Renewable Energy Sources (RES). For this reason, the meeting on the state 506 

of the planet held in Paris in December 2015 established that investments in RES must grow 507 

significantly and that, by 2020, the longest-industrialized countries will supply €100 billion/year from 508 

public and private investments to convert traditional electric power plants into eco-sustainable plants. 509 

This figure may be increased every five years, if necessary. This agreement was ratified by the UN 510 

on April 22, 2016 in New York. 511 

In developing the intelligent energy management model presented in this paper, the authors 512 

consciously kept these guidelines in mind. 513 

The paper presents a supporting tool for energy managers in manufacturing sector. It uses a discrete 514 

event simulation DES (online and online real time), Monte Carlo simulation and a special predictive 515 

algorithm. The major target for this paper is the optimization of the energy supplying mix (self-516 

production from renewable and not renewable sources and/ or purchase on the electricity market) to 517 

minimize Co2 emissions and company total cost. 518 

The major contribution of this paper is its methodology. It uses the ERIM-P data prediction (hourly 519 

energy needed for the manufacture plant, hourly quantity of self-production of RES energy and 520 

energy used from traditional resources either by purchasing or selling to the grid) and combines it 521 

with a ERIM-RT real time data of manufacture plant and weather conditions using special predictive 522 

algorithm to correct the projection of the data required. 523 



The real application presented, related to an Italian tannery, demonstrates that the proposed 524 

approach, thanks to the integrated and optimized management of RES and non-RES sources of 525 

production, can provide consistent benefits for energy savings and consequently environmental 526 

emissions.  527 

 528 

6 Future developments 529 

The energy model presented in the paper can be extended to three further aspects, again with the 530 

aim of improving economic and environmental performance. The first is the possible inclusion of 531 

thermal energy demands in the ERIM-RT model.  532 

The second is related to the transfer of excess electrical energy produced. Currently the tannery, 533 

like many other small- and medium-sized Italian companies, sells these excesses to the electrical 534 

grid. These are remunerated at a lower price than the cost of production with microturbines. This 535 

gives rise to the idea of using an appropriate variant of the proposed methodology to allow small and 536 

medium companies to, from time to time, sell energy on the market that provides them with the most 537 

favorable conditions, knowing with a good deal of accuracy the day before of the excess energy to 538 

be produced in the various hours of the day.  539 

The third aspect that can be considered could be the presence of an energy storage that could 540 

improve the use of the energy produced by RES sources, reducing sales and purchases from the 541 

grid. 542 

 543 
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