
K3 SURFACES WITH A NON-SYMPLECTIC AUTOMORPHISM AND

PRODUCT-QUOTIENT SURFACES WITH CYCLIC GROUPS

ALICE GARBAGNATI AND MATTEO PENEGINI

Abstract. We classify all the K3 surfaces which are minimal models of the quotient of the product

of two curves C1 × C2 by the diagonal action of either the group Z/pZ or the group Z/2pZ. These K3
surfaces admit a non-symplectic automorphism of order p induced by an automorphism of one of the

curves C1 or C2. We prove that most of the K3 surfaces admitting a non-symplectic automorphism

of order p (and in fact a maximal irreducible component of the moduli space of K3 surfaces with a
non-symplectic automorphism of order p) are obtained in this way.

In addition, we show that one can obtain the same set of K3 surfaces under more restrictive assumptions

namely one of the two curves, say C2, is isomorphic to a rigid hyperelliptic curve with an automorphism
δp of order p and the automorphism of the K3 surface is induced by δp.

Finally, we describe the variation of the Hodge structures of the surfaces constructed and we give an

equation for some of them.

1. Introduction

One of the main themes of interest in the study of K3 surfaces S regards their automorphisms. We
call an automorphism g of S non-symplectic if it acts non-trivially on the nowhere vanishing holomorphic
2-form ω. In the case |g| = p, a prime number, g(ω) = ζpω, where ζp is a primitive p-th root of unity.
The pairs (S,g) are quite rare, in the sense that there are strict restrictions on both p, which must be
smaller then or equal to 19, and on the K3 surface S, which cannot be generic in the moduli space. More
precisely, the families of K3 surfaces with a non-symplectic automorphism of odd prime order have a
finite number of connected components and the biggest of them has dimension 9 while the moduli space
of the K3 surfaces is 20-dimensional.

Several authors worked on the classification of K3 surfaces admitting a non-symplectic automorphism
of odd prime order (see, e.g., [AS08], [AST11],[K92], [OZ98], [OZ99], [OZ00]) and eventually their com-
plete classification is given in [AST11]. The classification is based on the following procedure: First,
a non-symplectic automorphism g of order p acting on a K3 surface S, determines an action on the
lattice T := (H2(S,Z)g)⊥) ⊂ H2(S,Z) . The lattice T satisfies several conditions. Second, one lists all
the lattices with such conditions. Third, for each lattice T in the list one has to actually construct an
example of a K3 surface admitting a non-symplectic automorphism g and such that T ' (H2(S,Z)g)⊥).
Each example is given by an ad hoc construction.

The aim of this paper is to give a systematical way to construct most of these K3 surfaces by showing
that they are the minimal models of product-quotient surfaces (i.e., of the minimal resolution of the
quotient (C1×C2)/G where the Ci are curves of genus g(C) ≥ 1 and G is a finite group acting diagonally
on the product, see Definition 3.2). In addition, as we have already observed, the pairs (S,g) are quite
”special”, we give here a geometrical interpretation of this ”speciality” in many cases: S is the minimal
model of a product-quotient surface. Moreover, we prove that there is a curve which seems to play
a central rôle in this construction. We define the curve Dp as the hyperelliptic curve with equation
v2 = up − 1. It clearly admits an automorphism δp of order p, acting on u as the multiplication by ζp,
and an automorphim τp of order 2p which is the composition of δp with the hyperelliptic involution. We
prove the following theorem.

Theorem 1.1. If S is a K3 surface admitting a non-symplectic automorphism of order p = 3 (resp.
p = 5, 7, 11, 13, p = 17, 19) whose fixed locus contains at least 2 (resp. 1, 0) curves, then it is the minimal
model of a resolution of the quotient (C1 ×Dp)/(g1 × τp), where g1 is an automorphism of C1 of order
2p. The non-symplectic automorphism of order p on S is induced by the automorphism id× δp.
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Any K3 surface S constructed in the Theorem 1.1 admits two isotrivial families of curves, whose
general member is isomorphic to C1 and Dp respectively. The non-symplectic automorphism of order p
on S is in fact given by the action of an automorphism on each member of one of these families.

We observe that the K3 surfaces given by the Theorem 1.1 admit a non-symplectic automorphism of
order 2p too, the one induced by id×τp. This gives a geometrical explanation of the following significative
result on non-symplectic automorphisms: If a K3 surface S admits a non-symplectic automorphism of or-
der p, under certain conditions on the fixed locus it admits in fact a purely non-symplectic automorphism
of order 2p (see [GS13, Theorems 1.6, 1.7] and [Di12] for the precise statement).

The proof of the Theorem 1.1 is based on the construction of the K3 surfaces that we now explain.
We first bound the genus of ther curves C with a cyclic group of automorphisms G of order p (resp.
2p), having the properties that C/G ' P1, and such that there exists an eigenspace H1,0(C)ζip (resp.

H1,0(C)−ζip) of dimension 1 of the induced action. This is achieved by exploiting the Riemann Existence

Theorem, the Holomorphic Lefschetz Fixed-Point formula, and the Chevalley–Weil formula. Second, we
classify all these curves and we couple them by choosing the action of G in such a way that the singular
surfaces (C1 × C2)/G have pg = 1 and q = 0. Third, we resolve the singularities and we get product-
quotient surfaces X which are not minimal models, but in two cases. We observe that K2

X could be very
negative. After having found all the (−1)-curve on X (this is a quite delicate task see e.g., [BP12]) we
carefully contract them to produce a minimal model S of (C1×C2)/G. Finally, we prove that S is a K3
surface.

As a byproduct of the proof we classify the K3 surfaces which are minimal models of the product-
quotient surfaces with the groups Z/pZ and Z/2pZ. Hence, we obtain also a ”negative” result: if a K3
surface does not satisfy the hypothesis of Theorem 1.1 (i.e., either it does not admit a non-symplectic
automorphism of order p, or it admits a non-symplectic automorphism of order p, but its fixed locus
does not satisfy the condition of the Theorem 1.1), then this K3 surface is not the minimal model of a
product-quotient with group Z/2pZ. However, we cannot exclude that such a K3 surface is the minimal
model of a product-quotient with a different group. Indeed, we are aware that this is the case for at least
certain families of K3 surfaces admitting a non-symplectic automorphism of order 3. We shall analyze
this problem in a forthcoming article.

This paper is organized as follows.
In Section 2 we briefly recall three classical results: the Riemann Existence Theorem, the Holomorphic

Lefschetz Fixed-Point formula, and the Chevalley–Weil formula. We establish the upper and lower bound
for the genus of a curve C with a cyclic group of automorphisms of odd prime order, and the property
that there exists an eigenspace H1,0(C)ζip of dimension 1. We state similar results for cyclic groups of

automorphisms of order 2p. Moreover, we give some explanatory examples introducing the curve Dp.
Section 3 is divided into three parts. In the first part we give the definition of product-quotient

surfaces and we recall the properties of these surfaces that are needed for our purposes. In the second
part we calculate the Hodge numbers of product-quotient surfaces. In the last subsection we describe
the automorphisms of the minimal model of a product-quotient surface.

In Section 4 we describe, first, the procedure we used to construct product-quotient surfaces with
group either Z/pZ or Z/2pZ and pg = 1 and q = 0. Second, we give a method to prove that these
surfaces are K3 surfaces.

Sections 5 and 6 present the main results of the paper on K3 surfaces which are minimal models of
product-quotient surfaces with group either Z/pZ or Z/2pZ respectively. Moreover, in these two sections
one can find the tables with the surfaces we constructed (see Table 1 and Table 2).

In Section 7 we give the equations for the singular models of the K3 surfaces constructed for p =
3, 5, 7, 11. In particular if p = 5, 7, 11 we describe these surfaces as hypersurfaces in weighted projective
spaces.

In the last section we describe the variation of the Hodge structures of the K3 surfaces constructed in
terms of the Hodge structure of H1(C1) relating them by a half twist.

In the Appendix there is the MAGMA script of the program that we used. There are essentially two
programs Surfacesp and t1t2PtsSurfaces. The former one gives a list of all product-quotient surfaces
X with group Z/pZ (p any odd prime), pg(X) = 1 and q(X) = 0, as well as the singularities of
(C1 ×C2)/(g1 × g2), this program becomes very slow as p increases. The latter program gives a similar
list, it is much faster, it works also for the group Z/2pZ, but it requires two additional data which are
the number of ramification points of the two coverings Ci → Ci/G.
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Notation: We work over the field of complex numbers C. We will denote by ζn := e
2πi
n a primitive

n-th root of unity.
By “curve” or “Riemann surface” we mean a projective, non-singular curve C, we denote by H1,0(C) =
H0(C,Ω1

C) and by g(C) := h1,0(C) := dimH1,0(C) the genus of the curve.
By “surface” we mean a projective, non-singular surface S, and for such a surface ωS = OS(KS)

denotes the canonical class, pg(S) = h2,0(S) = h0(S, ωS) is the geometric genus, q(S) = h1,0(S) =
h1(S, ωS) is the irregularity and χ(S) = 1 − q(S) + pg(S) is the Euler-Poincaré characteristic. The
Noether formula is 12χ(S) = K2

S + e(S), where e(S) is the Euler number of S.
By abuse of notation by “(−1)-curve” we mean a curve C with C ' P1 and C2 = −1.

Acknowledgments: We warmly thanks Bert van Geemen and Roberto Pignatelli for several essential
suggestions and useful discussions.

2. Curves

This section is devoted to recall some classical results: a reformulation of the Riemann Existence
Theorem, the Holomorphic Lefschetz Fixed-Point formula, and the Chevalley–Weil formula, as well as
fixing the notation. Moreover, here we establish all the properties for the curves that we will use to
construct K3 surfaces in the next sections.

2.1. The Riemann Existence Theorem.

Definition 2.1. Let m1, . . . ,mr be positive integers with mi ≥ 2 for all i. A polygonal group of type
(m1, . . . ,mr) is a group presented as follows:

Γ(m1, . . . ,mr) := 〈γ1, . . . , γr|γm1
1 = · · · = γmrr = γ1 · . . . · γr = 1〉.

Definition 2.2. Let Γ be a polygonal group and G be a finite group. An epimorphism θ : Γ(m1, ...,mr)→
G is called admissible if θ(γi) = xi has order exactly mi for all i. If an admissible epimorphism exists,
then the image (x1, . . . , xr) of a set of generators of Γ is called a spherical system of generators for G.

The following is a reformulation of Riemann’s Existence Theorem (see e.g., [M95] chapter III, sections
3 and 4):

Theorem 2.3. A finite group G acts as a group of automorphisms on some compact Riemann surface C
such that C/G ' P1 if and only if there are natural numbers m1, . . . ,mr, and an admissible epimorphism

θ : Γ(m1, . . . ,mr)→ G.

The genus g(C) is determined by the Riemann–Hurwitz relation:

(1) 2g(C)− 2 = |G|

(
−2 +

r∑
i=1

(
1− 1

mi

))
.

The G−cover C → P1 is branched in r points p1, . . . , pr with branching number m1, . . . ,mr, respec-
tively. Moreover, the cyclic subgroups 〈xi〉 and their conjugates are the non-trivial stabilizers of the
action of G on C.

In this paper we always assume G to be cyclic, so any spherical system of generators is of the form
(xξ1 , . . . , xξr ), where ξi ∈ Z/nZ. Moreover, we are interested only in the cases:

G = Z/nZ with n = p or n = 2p and p prime.

From now on we shall assume that we are in one of these cases. Notice that some of the results are true
also for more general cases.

As an automorphism group of C, G = 〈g〉 gives a conformal self-mapping g : C → C of order n. Please
notice that the abstract group G has also other realizations: as image of an admissible epimorphism 〈x〉
or as local action 〈ζn〉 near a point P ∈ C. Suppose that gk fixes a point P ∈ C, then in a suitable local
coordinate z near P we must have gk(z) = ζinz. Thus gk is locally a rotation at P and the rotation angle
is determined in the following proposition.

Proposition 2.4. [Ha71, Theorem 7] Let C be a curve associated to the spherical system of generators
(xξ1 , . . . , xξr ). Let Pj be a point with a non trivial stabilizer in 〈g〉 ⊂ Aut(C) of order m generated by
gξj . Then gξj (z) = ζ

ηj
n z where z is the local coordinate near the point Pj and ξjηj ≡ n/m mod n and

0 < ηj < m.
3



Assume that n = p with p prime, denote by ai the number of ramification points of C where the local
action is given by ζip. Notice that in this case we have total ramification over each branch point. The
condition of Theorem 2.3 is equivalent to the condition

(2)

p−1∑
i=i

i−1ai ≡ 0 mod p,

where the inverse of i is taken mod p. We shall call this condition the numerical monodromy condition.

2.2. The Holomorphic Lefschetz Fixed-Point Formula. Let Z/nZ ' G ⊂ Aut(C), then there is
an induced linear action of G on the Dolbeault cohomology H∗,∗(C). Let us recall the holomorphic
analogous of the Lefschetz Fixed-Point formula.

Theorem 2.5. (Holomorphic Lefschetz Fixed-Point Formula [GH, p. 426]) Let G be a group of auto-
morphism of a smooth complex curve C. Let g ∈ G then it holds

1− Tr(g |H0(X,Ω1
X)) =

∑
P∈C

g(P )=P

1

1− ζP
,

where ζP is the local action of g in P .

In particular in the case G ' Z/pZ we have a decomposition in eigenspaces

H1,0(C) =

p−1⊕
j=1

H1,0(C)ζjp .

The dimension of each eigenspace will be denoted by

αj := dimH1,0(C)ζjp .

With this piece of notation we can rewrite the Holomorphic Lefschetz Fixed-Point Formula in the
following way.

Corollary 2.6. Let C be a curve and G = 〈ζp〉 ' Z/pZ then it holds

(3) −
p−1∑
j=1

ζjαj =

p−1∑
l=1

al
1

1− ζl
− 1.

Proposition 2.7. (The Chevalley–Weil Formula) Let C be a cyclic p : 1 cover P1. Let ai be the number
of ramification points of C where the local action is given by z 7→ ζipz, and αj := dimH1,0(C)ζjp . Then

αj are determined by the ai’s:

(4) αp−r = −1 +
1

p

p−1∑
l=1

all
−1(p− r),

where the product l−1(p− 1) is taken mod p, and r = 1, . . . , n− 1.

Proof. First let us consider the LHS of (3)

−
p−1∑
j=1

ζjαj = −
p−2∑
j=1

αjζ
j + αp−1 +

p−2∑
j=1

αp−1ζ
j = αp−1 +

p−2∑
j=1

(αp−1 − αj)ζj .

We can rewrite the above equation as

(5)


−1 0 . . . . . . 1
0 −1 0 . . . 1
...

. . . 1
0 −1 1
0 . . . . . . 0 1





α1

α2

...

...
αp−1

 =



coeff. of ζ
coeff. of ζ2

...

...
coeff. of 1

 .
4



Second looking at the RHS of (3) we have,

(6)

p−1∑
l=1

al
1

1− ζl
=

1

p

p−1∑
l=1

al
( p−1∑
k=0

(p− 1− k)ζlk
)

=
1

p

p−1∑
l=1

al
( p−1∑
h=0

(p− 1− hl−1)ζh
)

=

=
1

p

p−1∑
l=1

al
[ p−2∑
h=0

(p− 1− hl−1)ζh −
(
p− 1− (p− 1)l−1

) p−2∑
h=0

ζh
]

=
1

p

p−1∑
l=1

al
( p−2∑
h=0

l−1(p− h− 1)ζh),

where the product l−1(p−h−1) is taken mod p. Comparing the coefficient of ζ0 from the LHS and the
RHS of (3) we obtain

(7) αp−1 = −1 +
1

p

p−1∑
l=1

all
−1(p− 1).

More generally we have by (5)
αp−r = αp−1 − coeff of ζr.

By substituting the expression of the coefficient of ζr given in (6) we obtain (4). �

Notice that the above proposition is a special case of the well known Chevalley–Weil Formula, see
[CW34].

The above proposition has many important applications.

Corollary 2.8. Let r be the number of ramification points for π : C → C/(Z/pZ) ' P1. If there exists
i ∈ {1, . . . , p− 1} such that αi = 1, then (p− 1)/2 ≤ g(C) ≤ (p− 1)2 and 3 ≤ r ≤ 2p.

Proof. By (4) we have

g(C) =

p−1∑
k=1

αk = 1− p+

p−1∑
k=1

[1
p

p−1∑
l=1

all
−1(p− k)

]
.

Notice that
∑p−1
k=1 l

−1(p − k) is the sum of the first p − 1 integers, hence it is equal to p(p − 1)/2, and
this gives g(C). The equation αi = 1 gives conditions on the ai’s. Substituting these values in g(C) one
obtains (p − 1)2 −

∑
i λiai with λi ∈ N, which is less then or equal to (p − 1)2. The minimal genus is

realized by the curve in Example 2.9.
The case p = 3 was already studied in [vG92]. �

Notice that by (7) the condition: αp−1 being a natural number, is equivalent to the numerical mon-
odromy condition (2). Hence, by the Riemann Existence Theorem we have a curve with group of
automorphism Z/pZ and quotient P1 once we provide a integral soltution of (7).

Example 2.9. Let G ' Z/pZ. The triple (xp−1, xp−1, x2) is a spherical system of generators for G.
Hence, by Theorem 2.3 there exists a curve, Dp, such that Dp is a p : 1 cover of P1 branched in 3 points

and the cover automorphism δp acts locally as ζp−1
p near two fixed points and as ζ

(p+1)/2
p near the other

one. This means that the only non zero ai’s are ap−1 = 2, a(p+1)/2 = 1. For every choice of three points

in P1 there exists an involution of P1 switching the first two points and fixing the other, so there exists
an involution of P1 acting in this way on the branch points of Dp → P1. This induces an involution on
Dp, which will be denoted by ιp. We observe that ιpδp = δpιp and we denote by τp = ιpδp. An equation
of Dp and the corresponding equation for its automorphisms are:

Dp : up = v2 − 1, δp : (u, v) 7→ (ζpu, v), ιp : (u, v) 7→ (u,−v), τp : (u, v) 7→ (ζpu,−v).

The genus of Dp, computed by the Riemann–Hurwitz formula, is g(Dp) = (p − 1)/2. The curve Dp is
hyperelliptic over P1

[u] and so a basis for H0,1(Dp) is given by {ujdu/v}, j = 0, . . . , (p− 3)/2. Therefore

the eigenspaces decomposition of H0,1(Dp) for the induced action of δp is αi = 1 if i = 1, . . . , (p− 1)/2
and αi = 0 if i = (p+ 1)/2, . . . , p− 1. This agrees with the results stated in Proposition 2.7.
Finally we observe that D3 is the elliptic curve with complex multiplication of order 3, which is associated
to the automorphism δ3.

There are analogous results for G ' Z/2pZ. The calculations are similar to the ones done above, which
is why we omit it here. To get the formulae one can use the MAGMA script MaxGenus in the Appendix.
Despite the similarities, there is a difference between the case Z/pZ and the case Z/2pZ. In the latter
case we succeeded in finding a maximal genus only if we ask that the eigenspace H0,1(C)ζi2p = 1 is

relative to an element of maximal order. Indeed, we obtain the following.
5



Corollary 2.10. Let r be the number of ramification points for π : C → C/(Z/2pZ) ' P1. If there exists
i ∈ {1, . . . , p− 1} such that dim(H1,0(C)−ζip) = 1, then (p− 1)/2 ≤ g(C) ≤ (2p− 1)2 and 3 ≤ r ≤ 4p.

Example 2.11. Let us consider the curve Dp and the automorphism τp of order 2p (cf. Example 2.9)
whose associated spherical system of generators is (xp+2, x2p−2, xp). The action of τp on the form uidu/v
is the multiplication by −ζi+1

p , 0 ≤ i ≤ (p− 3)/2. Hence, the eigenspaces decomposition of H1,0(Dp) for
τp is the following: if 0 ≤ i ≤ (p− 3)/2 and i ≡ 0 mod 2, then αi+1 = 1; if 0 ≤ i ≤ (p− 3)/2 and i ≡ 1
mod 2, then αp+i+1 = 1; αj = 0 otherwise. We observe that τp switches two of the fixed points of δp
and fixes the third fixed point of δp. Clearly the two points switched by τp are the ones where the local
action of δp is ζp−1

p and the point fixed both by τp and by δp is the one where the local action of δp is

ζ
(p+1)/2
p . The automorphism τ2

p coincides with δ2
p and this identifies the local action of τp: τp fixes one

point with local action −ζ(p+1)/2
p ; τ2

p fixes other two points (switched by τp) with local action ζp−2
p ; τpp

fixes other p points (permuted by τp) with local action −ζpp = −1.

3. Surfaces

In this section we recall the properties of the product-quotient surfaces and their minimal models and
we calculate their numerical invariants.

3.1. Product-Quotient Surfaces. Let us consider two curves C1 and C2 of genera greater then or
equal to 1, and their product C1 × C2. Then Aut(C1) × Aut(C2) ⊂ Aut(C1 × C2). One can say even
more in the case g(Ci) ≥ 2.

Lemma 3.1. [C00, Corollary 3.9] Let us assume g(C1) ≥ 2 and g(C2) ≥ 2. If C1 6' C2, then Aut(C1 ×
C2) = Aut(C1)×Aut(C2), otherwise Aut(C1 × C2) = (Aut(C1)×Aut(C2)) o Z/2Z

Let G ⊂ Aut(C1)×Aut(C2) be a finite group and consider (C1 ×C2)/G, where G acts diagonally on
the product C1 × C2.

Definition 3.2. The minimal resolution X of the singularities of (C1×C2)/G, where G is a finite group
with a diagonal action on the direct product of two smooth curves C1 and C2 of respective genera at least
1, is called a product-quotient surface with group G.

We call (C1 × C2)/G the quotient model of the product-quotient surface.

Product-quotient surfaces were intensively studied, we refer to [BP12], [MP10] and [BCGP09] for a
detailed account of them. We recall only the facts that are important for our purposes.

Remark 3.3. The following facts hold:

(1) There are only finitely many points on C1 × C2 with non trivial stabilizer, which is cyclic.
Therefore the quotient model has only a finite number of cyclic quotient singularities.

A cyclic quotient singularity is locally analytic isomorphic to the quotient of C2 by the diagonal

linear automorphism with eigenvalues e
2πi
n , e

2πiq
n with (q, n) = 1. This singularity is called of

type 1
n (1, q), or q

n for short.
(2) The exceptional divisor E on the minimal resolution of a cyclic quotient singularity is given by

a Hirzebruch-Jung string (see e.g., [BHPV, Chapter III, Section 5]). A Hirzebruch-Jung string

(HJ-string, for short) is a union Ẽ := ∪kiEi of smooth rational curves Ei such that:
• E2

i = −bi ≤ −2 for all i,
• EiEj = 1 if | i− j |= 1,
• EiEj = 0 if | i− j |≥ 2,

where the bi’s are given by the continued fraction associated to 1
n (1, q). Indeed, by the formula:

n

q
= b1 −

1

b2 − 1
...− 1

bk

.

(3) A product-quotient surface comes together with two isotrivial fibrations. Let us consider one of
them: π2 : X → C2/G. Take any point b ∈ C2/G, and let F denote the fibre of π2 over b. Then
(see [S96, Theorem 2.1]):
• The reduced structure of F is the union of an irreducible smooth curve Y , called the central

component of F , and either none or at least two mutually disjoint HJ-strings, each one
meeting Y at one point. These strings are in one-to-one correspondence with the branch
points of C1 → (C1/H), where H ⊂ G is the stabilizer of b.

6



• The intersection of a string with Y is transversal and it takes place at only one of the end
component of the string.

(4) There are formulae for calculating the self intersection of the canonical divisor of a product-
quotient surface.

K2
X ≥

8(g(C1)− 1)(g(C2)− 1)

|G|
+

∑
x∈Sing(X)

hx,

where hx depends on the type of singularity at x and the equality holds if g(Ci) ≥ 2, for at least
one value of i ∈ {1, 2}. If x is a cyclic quotient singularity of type 1

n (1, q) then:

hx := 2− 2 + q + q′

n
−

k∑
i=1

(bi − 2),

where q′ ∈ {1, . . . , n − 1} is such that qq′ ≡ 1 mod n, and [b1, . . . , bk] is the continued fraction
associated to 1

n (1, q).
(5) Finally, notice that X is in general not a minimal model. Indeed, we will treat mostly examples

with X not minimal.

3.2. Hodge Structure of X. Sometimes it will be useful to keep track of the action of an automorphism
on each curve separately; that is why in the following we assume G ' Z/nZ ' 〈x〉 ↪→ Aut(C1) x 7→ g1,
and G ↪→ Aut(C2), x 7→ g2. We have G = 〈g1× g2〉 ⊂ Aut(C1×C2), and we write (C1×C2)/(g1× g2)
for (C1 × C2)/(〈g1 × g2〉).

We shall describe the Hodge structure of the product-quotient surface X whose quotient model is
(C1×C2)/G. The Hodge numbers of X are determined by the action of G on the cohomology of C1 and
C2.

As in the previous section we denote by αi, i = 1, . . . n the dimension of the eigenspace H1,0(C1)ζin with

eigenvalue ζi w.r.t. the action of g1 and by βi, i = 1, . . . n, the dimension of the eigenspace H1,0(C2)ζin
with eigenvalue ζin. w.r.t. the action of g2.

By [F71, Satz 1] we have

H0(X,ΩiX) ' H0(C1 × C2,Ω
i
C1×C2

)G.

with i = 0, 1, 2
Thus by the Künneth formula, we have

• H0,0(X) = H0,0(C1 × C2)G = H0,0(C1)⊗H0,0(C2);
• H1,0(X) = H1,0(C1 × C2)G = H1,0(C1)id ⊗H0,0(C2)⊕H0,0(C1)⊗H1,0(C2)id,

in particular h1,0(X) = h0,1(X) = αn + βn;
• H2,0(X) = H2,0(C1 × C2)G =

∑n
i=1H

1,0(C1)ζin ⊗H
1,0(C2)ζn−in

,

in particular h2,0(X) = h0,2(X) =
∑n
i=1 αiβn−i.

In order to find h1,1(X), one has to know the number and the type of singularities of (C1 × C2)/G.
Indeed, the desingularization of (C1 × C2)/G introduces some exceptional divisors which increase the
Picard number of the surface and thus h1,1(X).

Here we describe the structure of H1,1(X) starting from the description of the action of gi on Ci,
i = 1, 2.

Let us consider the set of points of C1 (resp. C2) with a non trivial stabilizer w.r.t. the action of g1

(resp. g2). Let us denote by ai,h (resp. bi,h) the number of points on C1 (resp. C2) whose stabilizer

has order h and such that the local action of g1
|g1|/h (resp. g2

|g2|/h) is ζih. Let P ∈ C1 (resp. Q ∈ C2)
be a point with stabilizer of order h (resp. k) where local action of g1 (resp. g2) is ζih, i ∈ {1 . . . h}
(resp. ζjk, j ∈ {1 . . . k}). We assume h (resp. k) are divisors of |g1| different from |g1|. We will say that
P ×Q is a point of type ((i, h), (j, k)) and clearly the number of these points is ai,hbj,k. The stabilizer
of these points has order d(h,k) := gcd(h, k) and the orbit of P × Q w.r.t. g1 × g2 contains |g1|/d(h,k)

distinct points. In particular we observe that if d(h,k) = 1 the stabilizer of P ×Q is empty and its orbit
contains exactly |g1| points and if i = j = |g1|, then the stabilizer of P × Q is Z/|g1|Z and the orbit
of P × Q consists only of P × Q. Let us now consider the quotient model (C1 × C2)/G and the image
P ×Q of the point P × Q for the quotient map: the point P ×Q is smooth if d(h,k) = 1; otherwise

it is a singular points of type 1
d(h,k)

(1, q) where q can be computed as in [BHPV, Prop. 5.3]. The im-

ages of the ai,hbj,k points of type ((i, h), (j, k)) under the quotient map consists of ai,hbj,kdh,k/|g1| points.

7



Now we assume that n = p is a prime number: then h (resp. k) is necessarily 1, hence ai,h = ai (resp.

bj,k = bj) with the notation of Section 2. The singular point P ×Q ∈ (C1 ×C2)/G is of type 1
p (1, ij−1),

where ij−1 is computed in mod p. Moreover, the orbit of every point with non trivial stabilizer consists
only of one point and thus we have exactly aibj singular points on (C1 × C2)/G which are of type
1
p (1, ij−1).

Once one knows the number and the type of singularities of (C1×C2)/G one can easily compute h1,1(X),
recalling that every singularity we introduce a HJ-string, by Remark 3.3 (2), and that

H1,1(C1 × C2)G =
(
H1,1(C1)⊗H0,0(C2)

)
⊕
(
⊕i
(
H1,0(C1)ζin ⊗H

0,1(C2)ζn−in

))
⊕

⊕
(
⊕i
(
H0,1(C1)ζin ⊗H

1,0(C2)ζn−in

))
⊕
(
H0,0(C1)⊗H1,1(C2)

)
,

In particular, since H0,1(Cj)ζin ' H1,0(Cj)ζn−in
, j = 1, 2, h1,1(C1 × C2)G = 2(1 +

∑n
i=1 αiβi).

The following proposition recap the results proved in this section.

Proposition 3.4. Let Ci, i = 1, 2 be a curve with an automorphism gi of order n. Let αl :=
dim(H1,0(C1)ζln) and βm := dim(H1,0(C2)ζmn ). Let a(i,h), b(j,k) and d(h,k) as above. Note that i and j

are invertible in Z/d(h,k)Z and we denote by ri and sj their inverse. Let X be the minimal resolution of
the quotient surface (C1 × C2)/(g1 × g2). Then the Hodge numbers of X are:

h0,0(X) = 1, h1,0(X) = αn + βn, h2,0(X) =

n∑
i=1

αiβn−1

h1,1(X) = 2(1 +

n∑
i=1

αiβi) +
∑
h,k

n−1∑
i=1

n−1∑
j=1

(ai,hbj,kd(h,k)/n)k(i, j)

where:
• we pose k(i, j) = 0 if d(h,k) = 1;

• k(i, j) is the number of curves introduced by a singularity of type 1
d(h,k)

(1, q);

• q := isj ∈ Z/d(h,k)Z (or equivalently q := jri ∈ Z/d(h,k)Z).

Remark 3.5. We recall that αi and βi are uniquely determined by ai and bi and viceversa, thus the
Hodge numbers of X depend only on the set of values {αi βi}, i = 1, . . . , n (or equivalently on the set of
values {ai bi}, i = 1, . . . , n).

3.3. The minimal model S. As observed in the last point of Remark 3.3 the surface X is in general
non minimal. Let us denote by S the minimal model of X. Since hi,0 are birational invariant, the Hodge
numbers h0,0, h1,0, h2,0 of the product-quotient X coincide with the ones of its minimal minimal model
S. More complicate is the computation of h1,1(S).

In order to determine the minimal model S of a product-quotient X, we have to find all the (−1)-
curves on X. In the cases we will treat the (−1)-curves are central components of reducible fibres of one
or both isotrivial fibrations of X. Then, after contractions of these, the (−1)-curves could be images of
some divisors in the HJ-strings. Note that this is in general not true, see e.g., [BP12]. A quick method
to calculate the self intersection of the central components is given in [P10]. We shall recall it.

Definition 3.6. We say that a reducible fibre F1 of π2 : X −→ C2/G is of type
(
q1
n1
, . . . , qrnr

)
if it

contains exactly r HJ-strings Ẽ1, . . . , Ẽr, where each Ẽi is of type 1
ni

(1, qi). The same definition holds

for a reducible fibre F2 of π1 : S −→ C1/G.

Proposition 3.7. [P10, Proposition 2.8] Let F1 be of type
(
q1
n1
, . . . , qrnr

)
and let Y1 be its central compo-

nent. Then

(Y1)2 = −
r∑
i=1

qi
ni
.

If F2 is of type (
q′1
n1
, . . . ,

q′r
nr

) then (Y2)2 = −
∑r
i=1

q′i
ni
.

In the following example we construct two surfaces, S1 and S2, both of them are the minimal model
of quotients of D3 ×D3 by a diagonal action of Z/3Z but the action of this group is different in the two
cases. As a consequence the minimal resolution of one quotient has an infinite number of (−1)-curves,
the minimal resolution of the other has no (−1)-curves and the minimal models of these two resolutions
are totally different: one of them is a rational surface, one is a K3 surface.
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Example 3.8. Let us consider the product of two elliptic curves D3×D3 and its automorphisms δ3×δ1
3

and δ3 × δ2
3 . We will denote by Xi the minimal resolution of (D3 ×D3)/(δ3 × δi3) and by Si its minimal

model. We recall that δi3 acts on H1,0(D3) as the multiplication by ζi3. We obtain h0,0(Xi) = h0,0(Si) = 1,
h1,0(Xi) = h1,0(Si) = 0 for i = 1, 2; h2,0(X1) = h2,0(S1) = 0 and h2,0(X2) = h2,0(S2) = 1.
Now we compute h1,1(Xi): on (D3 × D3)/(δ3 × δ3) there are 9 singularities of type 1

3 (1, 1) and on

(D3 × D3)/(δ3 × δ2
3) there are 9 singularities of type 1

3 (1, 2). The resolution of a point of type 1
n (1, 1)

introduces 1 curve of self intersection −n, and thus h1,1(X1) = 9+dim
(
H1,1(D3 ×D3)δ3×δ3

)
= 13. The

desingularization of singularities of type 1
n (1, n−1) introduces n−1 rational curves with self intersection

−2, whose dual diagram is An−1, and thus h1,1(X2) = 2 · 9 + dim
(
h1,1(D3 ×D3)δ3×δ

2
3

)
= 20.

With the same method of the Section 7 we obtain that an equation for (D3 × D3)/(δ3 × δi3) is given
by y2 = x3 + (v2 − 1)2i, which is the equation of an elliptic fibration over P1

[v]. If i = 1, this elliptic

fibration is a rational elliptic fibration (this depend on the degree of (v2− 1)2i). By the standard theory
of elliptic fibration (cf. [M89]), it has 3 reducible fibers (over 1, −1 and ∞) of type IV (coming from
the contraction of the central components of the reducible fibers on X1). The rank of the Mordell–Weil
group of this elliptic fibration is 10−2−6 = 2. This implies that there are infinite sections of this elliptic
fibration, and thus an infinite number of (−1)-curves. Since the minimal elliptic fibration is obtained by
contractions of X1, we obtain that X1 contains an infinite number of (−1)-curve. A minimal model, S1,
of X1 is birational to P2, so h1,1(S1) = 1.
The elliptic fibration y2 = x3 + (v2

2 − 1)4 has a K3 surface as minimal model. The reducible fibers of
this elliptic fibration are 3 fibers of type IV ∗ each of them consists of the central component (which is
a (−2)-curve, by Proposition 3.7) and of three copy of A2. So X2 coincides with S2 and h1,1(S2) = 20.
This K3 surface was constructed in [SI77].

3.4. Automorphisms of S and quotient surfaces. By construction the surface (C1×C2)/(g1× g2)
always admits an automorphism of order n induced by id × g2 ∈ Aut(C1 × C2) (or equivalently by
g1 × id ∈ Aut(C1 × C2)). This automorphism lifts to an automorphism of X and of S. Thus one can
consider the quotient ((C1 × C2) / (g1 × g2)) / (id× g2). Since 〈g1 × g2, id × g2〉 = 〈g1 × id, id × g2〉,
we have the following commutative diagram:

C1 × C2

↙n:1 ↘n:1

(C1 × C2) /g1 × g2 (C1 × C2) /id× g2

↘n:1 ↙n:1

C1/g1 × C2/g2.

This diagram lifts to the minimal resolution of all the surfaces we are considering, and so one obtains
that the surface X has a generically n2 : 1 map to C1/g1 × C2/g2, and in particular to P1 × P1, if we
assume Ci/gi ' P1. Moreover, the map X → P1 × P1 induces a rational n2 : 1 map S 99K P1 × P1.

We can explicitly describe the action of id × g2 on the cohomology of X (we keep the assumption
Ci/gi ' P1): id×g2 acts as the identity on the spaces H0,0(X) and H1,0(X) . The invariant subspace of
H2,0(X) under id×g2 is the image of the space H1,0(C1)g1⊗H1,0(C2)g2 and thus has dimension αnβn =
0. As we saw in Section 3.2, the space H1,1(X) splits into two parts: the image of H1,1(C1 × C2)g1×g2

and a direct summand, say R, which comes from the resolution of the singularities of (C1×C2)/(g1×g2).
Hence, H1,1(X)id×g2 splits into the direct sum of the image of (H0,0(C1)⊗H1,1(C2))⊕ (H1,0(C1)g1 ⊗
H0,1(C2)g2) ⊕ (H0,1(C1)g1 ⊗ H1,0(C2)g2) ⊕ (H1,1(C1) ⊗ H0,0(C2)) and Rid×g2 . The dimension of the
first term is 2 + 2αnβn = 2. We note that, if every point in the branch locus of Ci, i = 1, 2 is
of total ramification, then the action of id × g2 is the identity on R, and one finds H1,1(X)id×g2 =
(H0,0(C1)⊗H1,1(C2))⊕ (H1,1(C1)⊗H0,0(C2))⊕ (R⊗ C).

4. K3 surfaces

This section is devoted to the construction of K3 surfaces S, which are minimal model of product-
quotient surfaces.

We recall that by definition a K3 surface S has h1,0(S) = 0 and trivial canonical bundle. The Hodge
numbers of S are uniquely determined by these properties and are h0,0(S) = h2,0(S) = 1, h1,0(S) = 0,
h1,1(S) = 20.
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4.1. Product-quotient surfaces with pg = 1 and q = 0. Let S be the minimal model of a product-
quotient X with quotient model (C1 × C2)/(g1 × g2). If S is a K3 surface, then q(S) = h1,0(S) = 0
and pg(S) = h2,0(S) = 1. Since hi,0 are birational invariants, h1,0(X) = 0, h2,0(X) = 1. Therefore, by
Proposition 3.4, αn + βn = 0 and

∑n
i=1 αiβn−i = 1. In particular

(8) αn = βn = 0 and there exists i ∈ {1 . . . n} such that αi = βn−i = 1, αjβn−j = 0 if j 6= i.

Condition (8) is divided in two: a condition on each factor of the product, namely the action of gi on
H1,0(Ci); and a condition on the whole product, namely the action of g1 × g2 on H2,0(C1 × C2).

Now we shall give a procedure to construct product-quotient surfaces with pg = 1 and q = 0. Since,
in general, this algorithm requires excessively long calculations, many of them are performed using the
MAGMA script in the Appendix. While describing the procedure we also indicate which part of the program
does what.

First we search for pairs (C1,g1) which satisfy the following two conditions: αn = 0, or equivalently
Ci/gi ' P1; and there exists an index 0 < j < n such that αj = 1. The first condition is obtained by
giving spherical systems of generators for G (see Theorem 2.3). The second one is obtained exploiting the
Chevalley–Weil formula and calculating the rotation angles as in Proposition 2.4. Analogous conditions
must hold for a second pair (C2,g2).

Second we couple the curves by requiring that there exists an i ∈ {1 . . . n} such that αi = βn−i = 1
and αjβn−j = 0 if j 6= i.

Let us assume that n = p a prime. The curves Ci, admitting an automorphism gi of order p such that
Ci/gi ' P1 and αj = 1 for some j ∈ {1, . . . , p − 1}, have genus at most (p − 1)2 by Corollary 2.8. The
number of the ramification points of the cover Ci → Ci/gi is at most 2p. This implies that the number
of curves with these properties is finite. These curves are classified by the MAGMA program given in the
Appendix. The calculation can be found in the function Surfacesp. The function calculates all the
partitions of all the numbers from 3 up to 2p, giving all the admissible ramification data (a1, . . . , an−1)
of the coverings Ci → Ci/gi ' P1. Afterwards it evaluates the αj , as in Proposition 2.7, and lists only
the ones with αj = 1 for at least one j ∈ {1, . . . , p− 1}.
Remark 4.1. We observe that for every prime p there exists at least one curve with the required
properties, the one with ap−1 = 2 and a(p+1)/2 = 1 (cf. Example 2.9).

The condition αjβn−j = 0 if j 6= i implies that the list (α1, . . . , αp−1, β1, . . . βp−1) contains at least
p − 2 zeros. This condition is verified in the function MaybeSur1 in the Appendix. Then, the function
TheSur tests if a surface given by MaybeSur1 has also pg = 1.

Proposition 4.2. There exists a finite number of surfaces S which are the minimal model of (C1 ×
C2)/(g1 × g2) with |(g1 × g2)| = p and pg(S) = 1, q(S) = 0.

Proof. For a given p, the number of surfaces S is finite, since the numbers of pairs (Ci,gi) is so (cf.
Corollary 2.8).

The automorphism id × g2 induces an automorphism on S which acts non trivially on H2,0(S), see
Section 3.4. In order to give a bound for p we prove that there exists no a surfaces Z with pg(Z) = 1,
q(Z) = 0 and an automorphism of order p > 19 acting non trivially on H2,0(Z).
Let Z be a minimal surface with h2,0(Z) = 1 which admits an automorphism σ of order p and let H2(Z)ζip
be the eigenspace of the eigenvalue ζip for the action of σ, i = 0, . . . , p − 1. The dimension of H2(Z)ζip
does not depend on i if i 6= 0. Thus if there exists i 6= 0, i ∈ {1 . . . p− 1} such that dim(H2(Z)ζip) ≥ 1,

b2(Z) ≥ p− 1.
Since h2,0(Z) = 1, K2

Z ≥ 0. By h1,0(Z) = 0 follows that χ(Z) = 2 and that e(Z) ≤ 24 by Noether
equality. So b2(Z) ≤ 22.
Since there exists no a surface Z with pg(Z) = 1 q(Z) = 0 and b2(Z) > 22, there exists no a surfaces Z
with pg(Z) = 1, q(Z) = 0 and an automorphism of order p > 19 acting non trivially on H2,0(Z). �

Remark 4.3. Since a minimal surface with pg = 1, q = 0 can not admit an automorphism of order
p > 19, there exists no pairs (C1×C2,g1×g2) such that |g1×g2| = p > 19, dim(H1(C1×C2)g1×g2) = 0
and dim(H2,0(C1 × C2)g1×g2) = 1.

Lemma 4.4. Let X be the minimal resolution of (C1 × C2)/G. Let Fi be the fiber of πj : X → Cj/G,
{i, j} = {1, 2}. We recall Fi ' Ci. If q(X) = 0, the linear systems |Fi| on X, i = 1, 2 are complete and
of dimension 1.
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Proof. Since F 2
i = 0, we have the short exact sequence

0→ O(KX − Fi)→ O(KX)→ OFi(KFi)→ 0.

This induces the long exact sequence in cohomology

H1(X,O(KX))→ H1(Fi,O(KFi))→ H2(X,O(KX − Fi))→ H2(X,O(KX))→ 0.

By Serre duality dim(H1(X,O(KX))) = q(X) = 0 and H2(X,O(KX − Fi)) = H0(X,O(Fi)). Therefore
dim(H0(X,O(Fi))) = dim(H1(Fi,O(KFi))) + dim(H2(X,O(KX))) = dim(H0(Fi,O)) + 1 = 2. �

Proposition 4.5. Let X be the minimal resolution of (C1 × C2)/G. If q(X) = 0, the dimension of the
family of product-quotient surfaces of (C1 × C2)/G is r1 + r2 − 6, where Ci → Ci/G is ramified in ri
points.

Proof. By Teichmüller theory the number η of parameters of the family of product-quotient surfaces is
less then or equal to r1 + r2 − 6. For simplicity we assume r2 = 3. If η < r1 − 3, then there exists a
positive dimensional family of curves isomorphic to C1 which induces a family of isotrivial fibrations on
X, whose fibers are isomorphic to C1. Since q(X) = 0, Pic(X) = NS(X)/Tors ' ZN/Tors for a certain
positive integer N . By Lemma 4.4, the linear system |F1| is complete and of dimension 1. Since Pic(X)
is discrete there is no positive dimensional family of such linear systems. Therefore η = r1 − 3. �

There is a finite number of surfaces as described in Proposition 4.2. These surfaces are given by
the program Surfacesp. However the number of permutations of the ramification points increases too
rapidly with the growth of p for a computation in a short time. Since our aim was the construction of
K3 surfaces, and we know the dimension of the families we are searching for, we wrote another program
with a fixed number of ramification points, and hence with fixed dimension of the family. The program
t1t2PtsSurfaces in the Appendix – given a cyclic group G of order p or 2p and the numbers ti, i = 1, 2,
of ramification points of Ci → C1/G ' P1 – returns a list of product-quotient surfaces X with pg(X) = 1
and q(X) = 0, as well as the singularities of X.

Remark 4.6. If |g1| = 2p, then by Remark 2.10 there exists a finite list of curves with at least one

αj = 1 and ζj2p is a primitive 2p-root of unity. If the action of g1 on C1 is of this type, the same must be

true for the action of g2 on C2, thus we have a finite list for (C1 × C2)/(g1 × g2). Hence, we obtain a
complete classification of such surfaces as in Proposition 4.2. Otherwise, if we assume that the action of
g1 on C1 is such that αj = 1 and ζj2p is a either a primitive p-root of unity or (−1), then the same must
be true for the action of g2 on C2. In this case we can not construct a complete list of the curves C1

and C2, since we have no an upper bound for their genera, and so for the number of ramification points
of the map fi : Ci → Ci/gi ' P1. Anyway, if we fix the maximal number n of ramification points for fi,
then we obtain a finite list of curves Ci and thus a finite number of surfaces (C1 × C2)/(g1 × g2) as in
Proposition 4.2. Our aim is to construct K3 surfaces, so the bound on n depends on the dimension of the
moduli space of K3 surfaces. More precisely, the moduli space of projective K3 surfaces has dimension
19, so the sum of the ramification points of f1 and f2 can not be grater then 25.

4.2. K3 surfaces. Let S be the minimal model of (C1×C2)/(g1×g2). Let us assume 〈g1×g2〉 ' Z/nZ.
If S is a K3 surface, then by definition pg(S) = 1 and q(S) = 0. Therefore the K3 surfaces obtained as
minimal model of (C1 × C2)/(g1 × g2) are among the ones listed in Section 4.1. In order to prove that
S is a K3 surface one has to verify that the canonical bundle is trivial.

Lemma 4.7. Let Z be a surface obtained contracting −K2
X (−1)-curves on X. We recall that pg(Z) = 1

and q(Z) = 0. Let F1 be the class of the fiber of the fibration π2 : X → C2/〈g2〉 and F2 be the class of
the fiber of the fibration π1 : X → C1/〈g1〉. Let E be the sum of all the exceptional divisors of the blow
up X → Z. If (KX − E)F1 = 0 and (KX − E)F2 = 0, then KZ is trivial. In this case Z is minimal.

Proof. We shall denote by Pk the singular points of (C1 × C2)/(g1 × g2), and by Aj,k the exceptional
curves of the blow up π : X → (C1 × C2)/(g1 × g2) over Pk.
Let D be an effective divisor on X, then D = λ1F1 + λ2F2 + λ3B +

∑
j,k λj,kAj,k with λi, λj,k ≥ 0 and

BF1 > 0, BF2 > 0. If DF1 = 0 and DF2 = 0, then λ1 = λ2 = λ3 = 0. For every k, Aj,k is a HJ-string,
hence DAj,k = 0 for every j and k. Therefore DF1 = DF2 = 0 give a homogeneuos linear system in
λj,k. The corresponding matrix is a diagonal block matrix and each block is invertible, being associated
to the resolution of the quotient singularity Pk. Thus D = 0.
The divisor KX − E is an effective divisor being the pullback of the canonical divisor of Z, which has
pg(Z) = 1. Applying the previous result to D = KX −E we obtain KX −E = 0 hence KZ is trivial. �
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Necessary conditions to obtain a K3 surface S as minimal model of the minimal resolution X of the
quotient (C1 × C2)/(g1 × g2) are the following:

(1) hi,0(X) = 1, for i = 0, 2;
(2) h1,0(X) = 0;
(3) there are exactly −K2

X (−1)-curves on X.

Thus, in order to classify the K3 surfaces S, we list the surfaces X satisfying the conditions (1), (2). If
|g1 × g2| = p is prime number, as already said, this is done by the program Surfacesp.

Next we consider the (−1)-curves which are either central components Y of reducible fibers (we
calculate Y 2 using Proposition 3.7) or appear as image of curves in HJ-string after some contractions. In
this way we find −K2

X (−1)-curves. After the contraction of all these curves we always obtain a surface
which satisfy the condition of Lemma 4.7 and so a surface Z with trivial canonical bundle. This implies
that there are no other (−1)-curves on Z, which is thus the minimal model S of X and in particular S
is a K3 surface.

4.3. Non-symplectic automorphisms. We saw in Section 3.4 that every surface S which is the min-
imal model of a product-quotient with g1 × g2 admits an automorphism induced by id× g2 which acts
non trivially on H2,0(S). This means that if S is a K3 surface, the automorphism induced on S by
id × g2 is a purely non-symplectic automorphism on S. Thus the surface S admits a non-symplectic
automorphisms of prime order.

Definition 4.8. Let W be a K3 surface. Let ωW be a generator of H2,0(W ). An automorphism g ∈
Aut(W ) of order n is called symplectic if g(ωW ) = ωW , purely non-symplectic if g(ωW ) = ζinωW and
ζin is a primitive n-root of unity.

We observe that an automorphism of prime order p which is non-symplectic is purely non-symplectic.This
type of automorphism are classified [AST11]. In this section we summarize the main results on non-
symplectic automorphisms of prime order, which will be considered in the following.

For every prime number 2 ≤ p ≤ 19 there exists a K3 surface W admitting a non-symplectic automor-
phism g of order p. Let us assume 3 ≤ p ≤ 19. The fixed locus Fixg(W ) = {w ∈W such that g(w) = w}
consists of the disjoint union of n isolated points and k+ 1 curves. At most one of the fixed curves has a
positive genus, and we denote by g(C) the genus of the curve with highest genus. Hence, the fixed locus
consists of n isolated points, k rational curves and another curve C with a possibly positive genus. For
each prime number 3 ≤ p ≤ 19 there exists a finite number of possibilities for the fixed locus Fixg(W ),
and the fixed locus is uniquely determined by the three invariants (n, g(C), k+1). The admissible choices
for (n, g(C), k + 1) are listed in [AST11], where it is also proved that there exists a K3 surface with a
non-symplectic automorphism of order p with fixed locus determined by (n, g(C), k+ 1) for every admis-
sible choice of the invariants.
More precisely, the invariants (p, n, g(C), k + 1) determine uniquely the two lattices Sp(n,g(C),k+1) :=

H2(W,Z)g and T p(n,g(C),k+1) := (H2(W,Z)g)⊥ and a K3 surface admits a non-symplectic automor-

phism of order p with fixed locus determined by (n, g(C), k + 1) only if Sp(n,g(C),k+1) is primitively

embedded in its Néron-Severi group. This allows one to describe the family of K3 surfaces with a
non-symplectic automorphism of order p and a prescribed fixed locus in terms of the period map of
K3 surfaces. We will denote by Mp

(n,g(C),k+1) the family of K3 surfaces admitting a non-symplectic

automorphism of order p with fixed locus determined by (n, g(C), k + 1). It has one connected com-

ponent of dimension
(

rk(T p(n,g(C),k+1))/(p− 1)
)
− 1. To give a more precise description of the mod-

uli space of the K3 surfaces that admit a non-symplectic automorphism of order p and a prescribed
fixed locus, we consider the action of g on T p(n,g(C),k+1) ⊗ C, which does not depend on the K3 sur-

face considered. By definition g has no eigenvalue 1 on T p(n,g(C),k+1) ⊗ C and the decomposition in

eigenspaces consists of p − 1 equidimensional eigenspaces (of the eigenvalues ζip, i = 1, . . . p − 1).

Let (T p(n,g(C),k+1) ⊗ C)ζp be the unique eigenspace such that (T p(n,g(C),k+1) ⊗ C)2,0
ζp
6= 0. Set B :=

{z ∈ P((T p(n,g(C),k+1) ⊗ C)ζp) such that (z, z) = 0, (z, z) > 0}. The space B is a ball of dimension

(rk(T p(n,g(C),k+1))/(p−1))−1. Let Γ := {γ ∈ O(T p(n,g(C),k+1)⊗C) such that γg = gγ}. The generic point

of B/Γ corresponds to a K3 surface admitting a non-symplectic automorphism as required and there is
a birational map between the space of such K3 surfaces and B/Γ (see [DK07, Section 11]).
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For a fixed prime number 3 ≤ p ≤ 19, there are some inclusions among the familiesMp
(n,g(C),k+1), for

exampleM3
(9,0,6) ⊂M

3
(8,0,5). All these inclusions are described in [AST11] and the maximal components

are determined in [AST11, Theorem 9.5]:
if p = 3, there are three maximal components: M3

(3,−,0), M
3
(0,4,1), M

3
(0,5,2) and for every admissible

data (n, g(C), k + 1), we have M3
(n,g(C),1) ⊂ M

3
(0,4,1) and M3

(n,g(C),k+1) ⊂ M
3
(0,5,2) if k + 1 ≥ 2. The

dimension of each family is m = 10− n;
if p = 5, 7, 11, there are two maximal components: Mp

(n,−,0), and M3
(n,g(C),1) and for every admissible

data (n, g(C), k + 1), we have M3
(n,g(C),k+1) ⊂M

3
(n,g(C),1) if k + 1 6= 0. The dimension of each family is

m = (13− n)/(p− 2) if p = 5, 7 and m = (11− n)/(p− 2) if p = 11;
if p = 13, 17, 19, there is only one (rigid) K3 surface admitting a non-symplectic automorphism of order
p. Thus there is one maximal component (in fact one component of dimension 0) which is M13

(9,0,1),

M17
(7,−,0), M

19
(5,−,0) respectively.

The K3 surfaces we are constructing are members of the families of K3 surfaces admitting a non-
symplectic automorphism of prime order. In certain cases it turns out they are the general member of
some of these families. In the following sections we will construct K3 surfaces S and we will determine
the fixed locus of the non-symplectic automorphism induced by id× g2 (or by some of its powers), and
thus we identify on which component of the family of K3 surfaces with a non-symplectic automorphisms
they lie.

The following remark is used to determine the fixed locus.

Remark 4.9. Let us assume |g2| = p is a prime number. The automorphism of S induced by id × g2

fixes all the central components of all the reducible fibers of both the fibrations π1 and π2 and all the
singular points of the HJ-strings introduced resolving the singularities of (C1 × C2)/(g1 × g2). It is
possible that the automorphism fixes some disjoint components of certain HJ-strings which do not meet
any other fixed curves. It induces an automorphism gS on S which is non-symplectic of order p.

5. K3 surfaces which are minimal models of (C1 × C2)/(Z/pZ)

The aim of this section is to list and to describe the K3 surfaces obtained as minimal model of
(C1 × C2)/(g1 × g2) with |g1 × g2| = p.

Theorem 5.1. The K3 surfaces S admitting a non-symplectic automorphism of odd prime order p with
fixed locus listed in the column (n, g, k + 1) of the Table 1 are all minimal models of product-quotient
surfaces with group Z/pZ. Moreover, for each such surface S we can choose (C2,g2) ' (Dp, δp) and the
non-symplectic automorphism on S is always induced by id× δp.

Viceversa all the K3 surfaces which are minimal models of (C1 ×C2)/(g1 × g2), |g1 × g2| = p admit
a non-symplectic automorphism of order p whose fixed locus is one of those listed in Table 1.

Proof. Let us fix p. By Section 4.3 we know the dimension Mp of the maximal components of the family
of K3 surfaces with a non-symplectic automorphim of order p. Since every K3 surface minimal model
of a product-quotient with group Z/pZ admits a non-symplectic automorphism of order p (see Section
3.4), we can bound the number of moduli of the pairs (C1,g1), (C2,g2) by Mp, see also Proposition 4.5.

The first step consists in listing product-quotient surfaces with pg = 1, q = 0. This is done using the
program t1t2PtsSurfaces giving the group G ' Z/pZ and the numbers t1, t2 such that t1 ≥ 3, t2 ≥ 3
and t1 + t2 = m− 6, where m ≤Mp. Indeed, recall that t1 and t2 are the numbers of branching points
of the projections Ci → Ci/gi respectively. Then t1− 3 and t2− 3 are the moduli of the pairs (Ci,gi),
see e.g. [C00], and m is the dimension of family of the product-quotient surfaces, by Proposition 4.5.

Second step: For every product-quotient surface in the list one has to check if the minimal model is a
K3 surface and has to calculate the fixed locus, determining (n, g, k + 1), of the induced automorphism.
This is done for every entry in the list exactly as in Example 5.3.

Every member of the family, FPQ(C1, C2), of K3 surfaces minimal models of (C1×C2)/(g1×g2), is also
a member of a family Mp

(n,g,k+1). This implies that FPQ(C1, C2) ⊂Mp
(n,g,k+1). For every (n, g, k + 1),

there exists always a choice of (C1,g1) and (C2,g2) such that dim(FPQ(C1, C2)) = dim(Mp
(n,g,k+1))

which implies FPQ(C1, C2) =Mp
(n,g,k+1).

Moreover, we observe that different (up to isomorphism) admissible choices for (C1,g1), (C2,g2)
correspond to the same componentMp

(n,g,k+1). In Table 1 we give one example for each component. It

is remarkable that one can always construct this example choosing C2 ' Dp, g2 ' δp. In Table 1 one
can find: the properties which characterize the pair (C1,g1); the singularities of (C1 × Dp)/(g1 × δp);
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the value of K2
X ; the fixed locus (n, g, k + 1) of the automorphism induced on S; and this identifies

Mp
(n,g,k+1) whose dimension is m. �

The quotients (C1 ×D3)/(g1 × δ3) which admit a minimal model which is a K3 surface are classified
in [GvG10, Remark 3.1] and are listed in Table 1.

p g(C1) (α1, . . . αp−1) (a1, . . . , ap−1) Sing(C1 ×Dp/g1 × δp) K2
X (n, g, k + 1) m

3 4 (3, 1) (0, 6)
(

1
3

)18 −6 (6, 0, 3) 3

3 3 (2, 1) (1, 4)
(

1
3

)12
,
(

2
3

)3 −4 (7, 0, 4) 2

3 2 (1, 1) (2, 2)
(

1
3

)6
,
(

2
3

)6 −2 (8, 0, 5) 1

3 1 (0, 1) (3, 0)
(

2
3

)9
0 (9, 0, 6) 0

5 6 (3, 2, 1, 0) (0, 0, 0, 5)
(

1
5

)10
,
(

3
5

)5 −12 (7, 0, 1) 2

5 4 (2, 1, 1, 0) (0, 1, 0, 3)
(

1
5

)6
,
(

2
5

)5
,
(

4
5

)
−8 (10, 0, 2) 1

5 2 (1, 0, 1, 0) (0, 2, 0, 1)
(

1
5

)2
,
(

2
5

)5
,
(

4
5

)2 −4 (13, 0, 3) 0

7 6 (2, 2, 1, 1, 0, 0) (0, 0, 0, 0, 1, 3)
(

1
7

)6
,
(

3
7

)3
,
(

4
7

)2
,
(

5
7

)
−14 (8, 0, 1) 1

7 3 (0, 1, 1, 0, 0, 1) (0, 0, 0, 2, 1, 0)
(

1
7

)2
,
(

2
7

)2
,
(

3
7

)5 −7 (13, 0, 2) 0

11 5 (1, 1, 0, 1, 1, (0, 0, 1, 0, 0,
(

1
11

)2
,
(

2
11

)
,
(

3
11

)2
, −13 (11, 0, 1) 0

0, 0, 1, 0, 0) 0, 1, 0, 0, 1)
(

4
11

)
,
(

5
11

)
,
(

7
11

)2
13 6 (1, 1, 1, 0, 1, 1, (0, 0, 0, 1, 0, 0,

(
1
13

)2
,
(

2
13

)
,
(

3
13

)2
, −17 (9, 0, 1) 0

0, 0, 1, 0, 0, 0) 0, 0, 0, 1, 0, 1)
(

5
13

)
,
(

6
13

)
,
(

9
13

)2
17 8 (1, 1, 1, 1, 1, 1, 0, 1, (0, 0, 0, 0, 0, 0, 0, 0,

(
1
17

)2
,
(

4
17

)
,
(

5
17

)
, −23 (7,−, 0) 0

0, 0, 1, 0, 0, 0, 0, 0, 0) 0, 0, 0, 0, 1, 0, 1, 1)
(

7
17

)2
,
(

8
17

)
,
(

9
17

)2
19 9 (1, 1, 1, 1, 1, 1, (0, 0, 0, 0, 0, 0,

(
1
19

)2
,
(

3
19

)
,
(

5
19

)2
, −25 (5,−, 0) 0

0, 1, 1, 0, 0, 1, ) 0, 0, 0, 0, 0, 0)
(

7
19

)
,
(

9
19

)
,
(

13
19

)2
0, 0, 0, 0, 0, 0) 0, 0, 1, 1, 0, 1)

Table 1

Remark 5.2. The example listed in Table 1 are all the examples obtained as described if p ≤ 7. For
p ≥ 11 there are other admissible pairs (C1,g1), (C2,g2), such that Ci 6' Dp, i = 1, 2, which correspond
to the components M11

(11,0,1), M
13
(9,0,1), M

17
(7,−,0), M

19
(5,−,0).

Example 5.3. As example (line 5 Table 1) we consider the pairs (C1,g1) and (C2,g2) such that |gi| = 5
and:
• g(C1) = 6, C1 → C1/〈g1〉 is branched in 5 points and the local action of g1 near these points is ζ4

5 .
The dimension of the eigenspaces for the induced action in cohomology is (α1, . . . α4) = (3, 2, 1, 0);
• C2 ' D5, g2 = δ5 (cf. Example 2.9).
We will denote by Pi, i = 1, 2, 3, 4, 5 the branch points of C1 → P1, by Qj , j = 1, 2, 3 the branch points
of C2 → P1 and we assume the local action of g2 is the same near the points Q1 and Q2.
The singularities of the quotient (C1 × C2)/(g1 × g2) are 10 singularities of type 1

5 (1, 1) (over Pi ×Qj ,
i = 1 . . . , 5, j = 1, 2) and 5 of types 1

5 (1, 3) (over Pi × Q3, i = 1, . . . , 5). The resolution of the 10

singularities of type 1
5 (1, 1) consists of the 10 (−5)-curves B̃i,j , i = 1, . . . , 5, j = 1, 2. The resolution of

each singularity of type 1
5 (1, 3) consists of 2 curves, B̃hi,3, h = 1, 2, meeting in one point and with self

intersection −2 and −3, respectively. The resolution of the singularities is as in Figure 1.
14



Figure 1.

The central components FPi of the 5 reducible fibers of the fibration π1 : X → C1/〈g1〉 are (−1)-curves.
The central components FQj of the reducible fibers of π2 : X → C2/〈g2〉 over Qj with j = 1, 2 are
(−1)-curves and the central component FQ3 of π2 over Q3 is a (−2)-curve (cf. Proposition 3.7).

In order to construct the minimal model S we first contract the 5 (−1)-curves FPi (we call this

contraction map σ1). The images B1
i,3 of the curves B̃1

i,3 are 5 (−1)-curves and thus we contract them

(we call this contraction map σ2). After the contraction of the 2 (−1)-curves FQ1 and FQ2 we are left
with only (−2)-curves from the configuration we started with. We call this surface S (see Figure 2).

Figure 2.

We contracted 12 curves and since the canonical bundle of X has self-intersection K2
X = −12, we obtain

K2
S = 0. Now we verify the surface S satisfy the hypothesis of Lemma 4.7 and this proves S is a K3

surface:
By adjunction, 2g(C1)− 2 = (KX − F2)F2 = KXF2 = 10 and 2g(C2)− 2 = (KX − F1)F1 = KXF1 = 2.

Since σ∗1(B1
i,3) = B̃1

i,3 + FPi , the exceptional divisor E of the blow up X → S is

E =

5∑
i=1

(2FPi + B̃1
i,3) + FQ1 + FQ2 .

The curves FPi are sections of the fibration π2 and FQj are sections of the fibration π1, hence FPiF2 =

FQjF1 = 1. The curves B̃hi,j are components of the reducible fibers of both the fibration π1 and π2, hence
15



B̃hi,jF1 = B̃hi,jF2 = 0. So (KX − E)Fi = 0 for i = 1, 2.

By Remark 4.9 the fixed locus of gS on S consists of one rational curve (the image of the central
components FQ3) and 7 points (see Figure 2).

Since C2 is a rigid curve and C1 varies in an irreducible 2-dimensional family, we in fact construct
an irreducible 2-dimensional family F of K3 surfaces S with a non-symplectic automorphism of order
5 and fixed locus (n, g, k + 1) = (7, 0, 1). Thus F ⊂ M5

(7,0,1). By [AST11], M5
(7,0,1) is an irreducible

2-dimensional family of K3 surfaces with the required automorphism and hence F coincides M5
(7,0,1).

6. K3 surfaces which are minimal models of (C1 × C2)/(Z/2pZ)

In Section 5 we described K3 surfaces which are minimal models of a product-quotient surfaces with
group Z/pZ. If p ≤ 11 we never get the maximal irreducible components of the moduli space of K3
surfaces with a non-symplectic automorphism of order p. In order to find at least one maximal irreducible
component of such moduli space, we consider product-quotient with the Z/2pZ.

Theorem 6.1. Let p = 3 (resp. 3 < p ≤ 13, 13 < p ≤ 19). The K3 surface S admitting a non-symplectic
automorphism of order p which fixes at least 2 (resp. 1, 0) curves are all minimal models of product-
quotient surfaces with the group Z/2pZ. In particular we obtain the irreducible maximal component
M3

(n,g,2) (resp. Mp
(n,g,1), M

p
(n,−,0)).

Moreover, we can always choose (C2,g2) ' (Dp, τp) and hence the non-symplectic automorphism on S
is always induced by id× δp.
In Table 2 we list an example for each family assuming (C2,g2) ' (Dp, τp). Viceversa all the K3
surfaces which are minimal models of (C1 × C2)/(g1 × g2), |g1 × g2| = 2p admit a non-symplectic
automorphism of order p whose fixed locus is one of those listed in Table 2.

Proof. The proof is analogous to the one of Theorem 5.1. We remark that in Table 2 one can find: the
properties which characterize the pair (C1,g1); the singularities of (C1 × Dp)/(g1 × τp); the value of
K2
X ; the fixed locus (n, g, k+ 1) of the automorphism induced on S; and this identifiesMp

(n,g,k+1) whose

dimension is m. �

Corollary 6.2. All the K3 surfaces admitting a non-symplectic automorphism of order p = 3 (resp.
3 < p ≤ 13, 13 < p ≤ 19) which fixes at least 2 (resp. 1,0) curves admit a non-symplectic automorphism
of order 2p induced by id× τp.

We observe that the results in Corollary 6.2 were already proved in [Di12] for p = 3 and [GS13] for
p > 3.

16



p g(C1) (α1, . . . α2p−1) (a1, . . . , a2p−1) Sing(C1 ×Dp/g1 × τp) K2
X (n, g, k + 1) m

3 25 (9, 7, 5, 3, 1) (0, 12, 0, 0, 0)
(

1
6

)12 ,
(

1
3

)12 ,
(

1
2

)12 −36 (0, 5, 2) 9

3 22 (8, 6, 4, 3, 1) (0, 10, 2, 0, 0)
(

1
6

)10 ,
(

1
3

)13 ,
(

1
2

)10 −31 (1, 4, 2) 8

3 19 (7, 5, 3, 3, 1) (0, 8, 4, 0, 0)
(

1
6

)8 ,
(

1
3

)14 ,
(

1
2

)8 −26 (2, 3, 2) 7

3 16 (6, 4, 2, 3, 1) (0, 6, 6, 0, 0)
(

1
6

)6 ,
(

1
3

)15 ,
(

1
2

)6 −21 (3, 2, 2) 6

3 17 (6, 5, 3, 2, 1) (0, 8, 0, 2, 0)
(

1
6

)8 ,
(

1
3

)8 ,
(

2
3

)3 ,
(

1
2

)8 −24 (3, 3, 3) 6

3 13 (5, 3, 1, 3, 1) (0, 4, 8, 0, 0)
(

1
6

)4 ,
(

1
3

)16 ,
(

1
2

)4 −16 (4, 1, 2) 5

3 14 (5, 4, 2, 2, 1) (0, 6, 2, 2, 0)
(

1
6

)6 ,
(

1
3

)9 ,
(

2
3

)3 ,
(

1
2

)6 −19 (4, 2, 3) 5

3 15 (5, 4, 3, 2, 1) (1, 7, 0, 0, 0)
(

1
6

)7 ,
(

5
6

)
,
(

1
3

)7 ,
(

2
3

)
,
(

1
2

)8 −21 (4, 3, 4) 5

3 10 (4, 2, 0, 3, 1) (0, 2, 10, 0, 0)
(

1
6

)2 ,
(

1
3

)17 ,
(

1
2

)2 −11 (5, 0, 2) 4

3 11 (4, 3, 1, 2, 1) (0, 4, 4, 2, 0)
(

1
6

)4 ,
(

1
3

)10 ,
(

2
3

)3 ,
(

1
2

)4 −14 (5, 1, 3) 4

3 12 (4, 3, 2, 2, 1) (1, 5, 2, 0, 0)
(

1
6

)5 ,
(

5
6

)
,
(

1
3

)8 ,
(

2
3

)
,
(

1
2

)6 −16 (5, 2, 4) 4

3 7 (3, 1, 0, 2, 1) (0, 1, 8, 0, 3)
(

1
6

)
,
(

1
3

)13 ,
(

1
2

)5 −7 (6, 0, 3) 3

3 9 (3, 2, 1, 2, 1) (1, 3, 4, 0, 0)
(

1
6

)3 ,
(

5
6

)
,
(

1
3

)9 ,
(

2
3

)
,
(

1
2

)4 −11 (6, 1, 4) 3

3 4 (2, 0, 0, 1, 1) (0, 0, 6, 0, 6)
(

1
3

)9 ,
(

1
2

)8 −3 (7, 0, 4) 2

3 7 (2, 2, 1, 1, 1) (1, 3, 0, 2, 0)
(

1
6

)3 ,
(

5
6

)
,
(

1
3

)3 ,
(

2
3

)4 ,
(

1
2

)4 −9 (7, 1, 5) 2

3 3 (1, 0, 0, 1, 1) (1, 0, 4, 0, 3)
(

5
6

)
,
(

1
3

)6 ,
(

2
3

)
,
(

1
2

)5 −2 (8, 0, 5) 1

3 5 (1, 1, 1, 1, 1) (2, 2, 0, 0, 0)
(

1
6

)2 ,
(

5
6

)2 ,
(

1
3

)2 ,
(

2
3

)2 ,
(

1
2

)4 −6 (8, 1, 6) 1

3 1 (0, 0, 0, 0, 1) (0, 1, 2, 0, 3)
(

5
6

)
,
(

2
3

)4 ,
(

1
2

)5 0 (9, 0, 6) 0

5 22 (4, 1, 0, 2, (0, 0, 6, 0,
(

1
10

)6 ,
(

1
5

)2 , −28 (1, 2, 1) 4

2, 4, 5, 3, 1) 0, 0, 2, 0, 0)
(

2
5

)6 ,
(

3
5

)
,
(

1
2

)6

5 17 (3, 2, 0, 2, (0, 0, 4, 0,
(

1
10

)4 ,
(

1
5

)3 ,
(

2
5

)
−21 (4, 1, 1) 3

1, 1, 4, 3, 1) 2, 0, 2, 0, 0)
(

3
5

)6 ,
(

1
2

)4

5 12 (3, 1, 1, 2, (0, 0, 1, 1,
(

1
10

)
,
(

7
10

)
,
(

1
5

)7 −13 (7, 1, 2) 2

0, 2, 2, 1, 0) 0, 0, 6, 0, 0)
(

2
5

)3 ,
(

3
5

)
,
(

4
5

)
,
(

1
2

)2

5 8 (2, 1, 1, 1, (0, 0, 1, 1,
(

1
10

)
,
(

7
10

)
,
(

1
5

)3 −9 (10, 0, 2) 1

0, 1, 1, 1, 0) 0, 0, 2, 2, 0)
(

2
5

)3 ,
(

3
5

)
,
(

4
5

)
,(

1
2

)2

5 4 (1, 0, 1, 1, (0, 1, 0, 1,
(

3
10

)
,
(

9
10

)
, −5 (13, 0, 3) 0

0, 1, 0, 0, 0) 0, 0, 2, 0, 0)
(

1
5

)3 ,
(

3
5

)2 ,
(

1
2

)2

7 19 (2, 2, 3, 1, 0, 2, (0, 0, 0, 4, 0, 0,
(

1
14

)4 ,
(

4
7

)2 , −25 (3, 1, 1) 2

1, 0, 3, 1, 0, 3, 1) 0, 0, 2, 0, 0, 0, 0)
(

5
7

)5 ,
(

1
2

)4

7 12 (1, 1, 2, 1, 0, 1, (0, 0, 0, 1, 1, 0,
(

1
14

)
,
(

5
14

)
,
(

1
7

)3 , −14 (8, 1, 2) 1
0, 1, 2, 1, 0, 1, 1) 2, 0, 0, 0, 2, 0, 0)

(
3
7

)
,
(

4
7

)
,
(

5
7

)
,3(

1
2

)2

7 6 (0, 1, 1, 0, 0, 0, (1, 0, 0, 1, 0, 0,
(

1
14

)
,
(

9
14

)
,
(

1
7

)
, −10 (13, 0, 2) 0

0, 0, 1, 1, 0, 1, 1) 2, 0, 0, 0, 0, 0, 0)
(

3
7

)3 ,
(

6
7

)
,
(

1
2

)2

11 21 (1, 2, 2, 0, 2, 1, 0, 1, 0, 2 (0, 0, 0, 0, 0, 3, 0, 0, 1
(

1
22

)3 ,
(

19
22

)
, −31 (2, 1, 1) 1

1, 0, 2, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(

6
11

)
,
(

9
11

)3 ,
(

1
2

)4

2, 1) 0, 0)

11 10 (1, 0, 1, 1, 0, 1, 0, 0, 0, 1 (0, 0, 0, 0, 0, 0, 1, 0, 1,
(

3
22

)
,
(

7
22

)
,
(

1
11

)2 , −13 (11, 0, 1) 0
0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,

(
2
11

)
,
(

4
11

)
,
(

9
11

)
,

0, 0) 0, 0)
(

1
2

)2

13 12 (0, 1, 1, 0, 1, 0, 0, 1, 0, 1 (0, 0, 0, 0, 0, 0, 1, 0, 1
(

1
26

)
,
(

5
26

)
,
(

3
13

)2 , −18 (9, 0, 1) 0
0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2

(
4
13

)
,
(

6
13

)
,
(

7
13

)
,

0, 0, 1, 0, 1, 1, 1) 0, 0, 0, 0, 0, 0)
(

1
2

)2

17 16 (1, 1, 1, 0, 1, 0, 1, 0, 0, 1 (0, 0, 0, 0, 0, 0, 0, 0, 1
(

1
34

)
,
(

23
34

)
, −22 (7,−, 0) 0

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
(

5
17

)2 ,
(

7
17

)2 ,
(

15
17

)
,

0, 1, 1, 1, 0, 1, 0, 0) 0, 0, 0, 2, 0, 0, 0, 0)
(

1
2

)2

1, 0, 1, 0, 1, 0) 0, 0, 0, 0, 0, 0)

19 18 (1, 0, 1, 1, 1, 1, 0, 0, 1, 1 (0, 0, 0, 0, 0, 0, 0, 0, 0
(

3
38

)
,
(

11
38

)
,
(

1
19

)2 , −22 (5,−, 0) 0
0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0

(
4
19

)
,
(

8
19

)
,
(

17
19

)
1, 1, 0, 1, 1, 1, 1, 1, 0) 0, 0, 0, 0, 0, 0, 0, 0, 0)

(
1
2

)2

0, 0, 1, 1, 0, 0, 0, 0, 0) 0, 0, 0, 0, 2, 0, 0)

Table 2

Remark 6.3. The K3 surfaces constructed in the Table 2 admit an automorphism of order 2p, induced
by id× τp (Corollary 6.2) and one of order 2, induced by id× ιp. The fixed locus of these automorphisms
can be computed case by case. In Section 7 we compute it in certain cases, by using a projective model
of the surfaces.

6.1. Intermediate quotients. The 2p : 1 map C1 × Dp → (C1 × Dp)/(g1 × τp) clearly factorizes
through

C1 ×Dp
p:1−→ (C1 ×Dp)/(g1 × τp)2 2:1−→ (C1 ×Dp)/(g1 × τp).

This induces a 2:1 rational map between the minimal model, Q, of (C1 × Dp)/(g1 × τp)2 and the K3
surface S. In particular Q is a 2-cover of a K3 surface. We observe that pg(Q) ≥ pg(S). This immediately
implies that the Kodaira dimension of Q, k(Q), is non negative. The following examples show that all
the other three possibilities, k(Q) = 0, 1, 2, appear in our classification. First we notice that the genus
of the quotient C1/g1

2 is αp and so q(Q) = αp.
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Let us consider the line 18 of Table 2, it corresponds to the quotient (D3 × D3)/(τ5
3 × τ3). The

quotient (D3×D3)/(τ5
3 ×τ3)2 is isomorphic to (D3×D3)/(δ3×δ2

3). The minimal model of such a surface
is described in [SI77] (see Example 3.8 the fourth line of Table 1) and is a K3 surface. In particular in
this case k(Q) = 0.

Let us consider the line 9 of Table 2. The map C1 → C1/g1
2 ' P1 is branched in 12 points and an

equation of C1 is w3 = p12(t) where p12(t) is a polynomial with 12 simple roots. With the same method
we will apply in Section 7, case p = 3, we obtain the equation y2 = x3 + p2

12(t) of (C1 ×Dp)/(g1 × τp)2.
So the surface Q admits an elliptic fibration, its birational invariant are q(Q) = 0, pg(Q) = 3 = α2 +α5,
and we obtain k(Q) = 1.

Let us consider the line 19 of Table 2. It corresponds to the quotient (C1 × D5)/(g1 × τ5) where
g(C1) = 22. Let Y be the minimal resolution of (C1 ×D5)/(g1 × τ5)2. As in Example 5.3 , one proves
that the singularities of (C1 ×D5)/(g1 × τ5)2 are 10 singularities of type 1

5 (1, 1), 12 singularities of type
1
5 (1, 2) and 2 singularities of type 1

5 (1, 3). The computation of K2
Y can be done as explained in Remark

3.3 (4) and it gives K2
Y = 10 > 0. Since Q is the minimal model of Y , K2

Q ≥ K2
Y and we conclude that

K2
Q > 0, Q is a surface of general type, and so k(Q) = 2.

7. Equations

7.1. Automorphisms of order p = 3. In [AS08, Proposition 4.2] it is proved that every K3 surfaces
admitting a non-symplectic automorphism of order 3 fixing at least two curves is in fact an isotrivial
elliptic fibration with generic fiber isomorphic to the elliptic curve Eζ3 with complex multiplication of
order 3. Indeed, every such a K3 surface is described as en elliptic K3 surface with an equation of type
y2 = x3 + f12(t). In view of our construction this is very natural: we proved that every such a K3
surface is the minimal model of the quotient (C1 ×D3)/(g1 × τ3) where D3 ' Eζ3 and τ3 are described
in Example 2.9 and (C1,g1) varies. The maximal component is obtained by (C1,g1) as in the first line
of the Table 2. In this case C1 is a 6 : 1 cover of P1 whose ramification consists of 12 points of order 6.
An equation of C1 is w6 = f12(t), where deg(f12(t)) = 12 and f12(t) does not have multiple roots. The
local action near the fixed points is −ζ2

3 (see Table 2) and thus we can assume that the automorphism
g1 is g1 : (w, t) 7→ (−ζ2

3w, t). The new functions x := uw2, y := vw3 and t are invariant for g1 × τ3 and
satisfy the equation

y2 = x3 + f12(t).

Moreover, if W is the surface defined by this equation, then the generic fiber of the map C1 ×D3 →W
consist of 6 points, thus we have the following commutative diagram:

C1 ×D3

6 : 1↙ ↘ 6 : 1
W 99K (C1 ×D3)/(g1 × τ3)

which shows that W and S are birational and so W is a singular model of the K3 surface S. This
construction was also considered in [vG01, Example 3.11].

More in general the curve C1 has an equation of type w6 = f12(t) where f12 does not admit roots
with multiplicity greater then 5 and there exists no a polynomial h(t) such that either f12(t) = h2(t)
or f12(t) = h3(t). If some of the roots of f12(t) have multiplicity higher then 1, then the fixed locus of
id× δ3 changes and we obtain a member of a more special family (cf. lines from 2 to 18 Table 2).

We saw in Section 5 that certain K3 surfaces admitting a non-symplectic automorphism of order 3,
can be obtained as quotient of (C1×D3) by an automorphism of order 3, g1×δ3. So we obtain a different
equation for these K3 surfaces. Indeed, in this case one can assume C1 to have the following equation
w3 = f6(t), such that f6(t) does not admit roots with multiplicity greater then 2. In a very similar way
as before this gives the following equation for the quotient surface:

y2 = x3 + f6(t)2.

These equations were already considered in [GvG10] and [GS13].

7.2. Automorphisms of order p = 5. In Theorem 6.1 and Table 2 we proved that the K3 surfaces
admitting a non-symplectic automorphism of order 5 with at least one curve in the fixed locus are the
minimal models of quotients (C1 ×D5)/(g1 × τ5) for a certain choices of the pair (C1,g1). In particular
the maximal component (with fixed locus (n, g(C), k + 1) = (1, 2, 1)) is obtained choosing C1 to be a
10 : 1 cover of P1 branched along 6 points of order 10 and 1 point of order 5. An equation of C1 is
w10 = f6(t) where deg(f6(t)) = 6 and f6(t) does not have multiple roots (we are assuming the branch
point of order 5 is at infinity). The local action near the fixed points is −ζ3

5 (see Table 2) and so we
18



can assume that the automorphism g1 is g1 : (w, t) 7→ (−ζ2
5w, t). The functions x := uw2, y := vw5 and

t are invariant under g1 × τ5 and satisfy the equation

y2 = x5 + f6(t).

As in the case p = 3, one shows that this gives in fact a (singular) model of the K3 surface S. The
equation exhibit S as double cover of P2

[x,t] branched along the (non homogenous) sextic x5 + f6(t) = 0.

A similar model for this K3 surface is described in [AST11, Example 5.1], where the relation with the
curves C1 and D5 was not observed.
More in general, we observe that every curve C1 in the Table 2 admits an equation of the type w10 = f6(t)
with f6(t) which is not a square, such that g1 : (w, t) → (−ζ2

5w, t). If f6(t) is generic we find the
previous equation and so the maximal component of the moduli space of K3 surfaces admitting a non-
symplectic automorphism of order 5 fixing at least one curve. Specializations of the polynomial f6(t)
induce specializations of the K3 surface S. For example the line 20 of the Table 2 corresponds to the
curve C1 given by w10 = t2g4(t), deg(g4(t)) = 4 and g4 does not have multiple roots. The corresponding
K3 surface is to the double cover of P2

[x,t] branched along the sextic x5 + t2g4(t) = 0, which has a singular

point of type A4 in the point (x, t) = (0, 0).
The automorphism τ5 (resp. δ5) on D5 induces the non-symplectic automorphism id× τ5 (resp. id× δ5)
of order 10 (resp. 5) on the K3 surface S which acts on the coordinates (x, y, t) as (x, y, t)→ (ζ5x,−y, t)
(resp. (x, y, t)→ (ζ5x, y, t)). The fixed locus of id× δ5 consists of one curve of genus 2 if f6(t) is generic
and specializes to different fixed locus when f6(t) specializes (see also [AST11, Example 5.1]).
We observe that the non-symplectic automorphism (id × τ5)5 of order 2 is exactly the cover involution
of the double cover of P2 and this allows one to compute easily its fixed locus.

We saw in Section 5 that certain K3 surfaces admitting a non-symplectic automorphism of order 5,
can be obtained from the quotient (C1 ×D5)/(g1 × δ5). So we obtain a different equation for these K3
surfaces. The surfaces obtained in this way are listed in Table 1. In the case of the 1-dimensional and
0-dimensional families the equation of the curve C1 is w5 = f3(t), deg(f3(t)) = 3 and f3 is not a cube,
and the automorphism is g1 : (w, t) → (ζ2

5w, t). The functions x := uw2, y := vw5 and t are invariant
and give a (singular) model of the K3 surface S, with equation y2 = x5s+ f2

3 (t).

Every K3 surface that is the double cover of P2 branched along a sextic can be viewed as a hypersur-
face in the weighted projective space WP(3, 1, 1, 1). In particular the homogeneous equation of S can be
written as y2 = x5s+f6(t : s) where (y : x : s : t) are the homogeneous coordinates of WP(3, 1, 1, 1) (y is
the coordinate of weight 3).This remark will be useful in view of the equations we found in cases p = 7, 11.

7.3. Automorphisms of order p = 7. In Theorem 6.1 and Table 2 we proved that the K3 surfaces
admitting a non-symplectic automorphism of order 7 with at least one curve in the fixed locus are the
minimal model of the quotient (C1×D7)/(g1× τ7) for a certain choice of the pair (C1,g1). In particular
the maximal component (with fixed locus (n, g(C), k + 1) = (3, 1, 1)) is obtained choosing C1 to be a
14 : 1 cover of P1 branched along 4 points of order 14 and 1 point of order 7. An equation of C1 is
w14 = t(t− 1)(t− λ1)(t− λ2). The local action near the fixed points is −ζ4

7 (see Table 2) and thus the
automorphism is g1 : (w, t) 7→ (−ζ3

7w, t). The functions x := uw2, y := vw7, t are invariant for g1 × τ7
and satisfy the equation y2 = x7 + t(t− 1)(t− λ1)(t− λ2). As in case p = 3, one shows that this gives in
fact a (singular) model of the K3 surface S: The equation can be homogeneized to

(9) y2 = x7s+ t(t− s2)(t− λ1s
2)(t− λ2s

2) ⊂WP(4, 2, 1, 1)(y:t:x:s).

In order to show that the equation (9) corresponds in fact to a (singular model of a) K3 surface we
observe that the surface defined by (9) is well formed (cf. [Fl00, Definition 6.9]) and quasismooth (cf.
[Fl00, Definition 6.3]). If a hypersurface Z of degree d in a weighted projective space WP(a0, a1, a2, a3)
is well formed and quasismooth, then the adjunction formula generalizes and the canonical sheaf is
ωZ ' OZ(d −

∑3
i=0 ai) (cf. [Fl00, Paragraph 6.14]). In particular if d =

∑3
i=0, then Z is a K3 surface

and so the surface defined by (9) is a singular model of a K3 surface.
We recall that the generic hypersurface of degree 8 in WP(4, 2, 1, 1) is a singular model of a K3 surface
([R79, Section 4.5]) with two singularities of type 1

2 (1, 1) at the points (1 : 1 : 0 : 0), (−1 : 1 : 0 : 0). The
surface defined by (9) (which is not general) has no other singular points.
The automorphism induced on S by id×τ7 acts on the coordinates of WP(4, 2, 1, 1) in the following way:
(y : t : x : s) 7→ (−y : t : ζ2

7x : s). It has order 14 and its fixed locus consists of 5 points: (0 : 0 : 1 : 0),
(0 : 0 : 0 : 1), (0 : 1 : 0 : 1), (0 : λ1 : 0 : 1), (0 : λ2 : 0 : 1). The singular points of WP(4, 2, 1, 1) are
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switched by the automorphism. The fixed locus of the non-symplectic automorphism of order 7 induced
by id×δ7 consists of the point (0 : 0 : 1 : 0) and of the curve y2 = t(t−s2)(t−λ1s

2)(t−λ2s
2) ⊂WP(4, 2, 1).

The well formed expression (cf. [Fl00, Definition 5.11]) of this curve is y2 = t(t− s)(t− λ1s)(t− λ2s) ⊂
WP(2, 1, 1) (cf. [Fl00, Lemma 5.7]) and the genus of such a curve is 1 (e.g., [D82, Corollary 3.4.4]).
We observe that the singular points of WP(4, 2, 1, 1) are contained in the fixed locus of the automorphism.
By equation (9) one sees that S is a 2 : 1 ramified cover of WP(2, 1, 1), with branch locus given by
x7s+t(t−s2)(t−λ1s

2)(t−λ2s
2) = 0. The weighted projective plane WP(2, 1, 1) has a natural embedding

in P3 with coordinates (x0 : x1 : x2 : x3) = (t : x2 : s2 : xs), whose image is a cone Q of equation
x2

3 = x1x2. The branch locus of the covering is now given by the intersection of Q and the curve
x3

1x3 + x0(x0 − x2)(x0 − λ1x2)(x0 − λ2x2) = 0, which does not pass through the vertex of Q. The
automorphism descends to P3 with the action (x0 : x1 : x2 : x3) 7→ (x0 : ζ2

7x1 : x2 : ζ7x3). The fixed
locus is the isolated point (0 : 1 : 0 : 0) and the curve x1 = x3 = 0, which passes through the vertex of
Q. We blow up the vertex of Q introducing a copy of P1. The induced automorphism leaves invariant
the exceptional divisor E and fixes the strict transform of the fixed curve B. Since it restricts to an
automorphism of E, it fixes two points on it, one of them is E ∩ B. Above the other fixed point on E
we find two fixed point on S.

The fixed locus of the non-symplectic involution id× ι is the curve x7s+ t(t−s2)(t−λ1s
2)(t−λ2s

2) ⊂
WP(2, 1, 1). This is a curve of genus 9 in WP(2, 1, 1) by [D82, Corollary 3.4.4].

In Table 1 we showed that certain K3 surfaces admitting a non-symplectic automorphism of order
7, can be obtained from the quotient (C1 ×D7)/(g1 × δ7). In the case of the 0-dimensional family the
equation of the curve C1 is w7 = t(t− 1) and the automorphism is g1 : (w, t)→ (ζ3

7w, t). The functions
x := uw2, y := vw7 and t are invariant and gives a (singular) model of the K3 surface S, with equation
y2 = x7s+ t2(t− s2)2 ⊂WP(4, 2, 1, 1)(y:t:x:s).

7.4. Automorphisms of order p = 11. If p = 11, one can obtain an equation for a (singular model)
of S, minimal model of (C1 × D11)/(g1 × τ11), as in cases p = 3, 5, 7: an equation for the curve C1

is w11 = t(t − 1)(t − λ) (where if λ 6= 0, 1 the curve C1 is the one described in line 27 of Table 2, if
either λ = 1 or λ = 0, the curve C1 is the one described in line 28 of Table 2) and the automorphism
g1 : (w, t) → (−ζ5

11, t). An equation of S is y2 = x11s− t(t− s4)(t− λs4) where y := vw11, t, x := uw2

and s are coordinates of the weighted projective space WP(6, 4, 1, 1). As in case p = 7, one shows that
this equation define in fact a singular model W of a K3 surface. The surface W is singular in the point
(1 : 1 : 0 : 0).

The automorphism id×τ11 induces the non-symplectic automorphism (y : t : x : s) 7→ (−y : t : ζ11x : s)
on the surface W whose fixed locus consists of the points (0 : 0 : 0 : 1), (0 : 1 : 0 : 1), (0 : λ : 0 : 1),
(0 : 0 : 1 : 0) (which are all distinct if λ 6= 0 and λ 6= 1).The point (0 : 0 : 1 : 0) is a singular point of type
of the surface.

The automorphism id× δ11 induces the non-symplectic automorphism (y : t : x : s) 7→ (y : t : ζ11x : s)
on the surface W whose fixed locus consists of the point (0 : 0 : 1 : 0) and of the curve y2 = t(t− s4)(t−
λs4) ⊂ WP(6, 4, 1). The well formed expression of this curve is y2 = t(t − s2)(t − λs2) ⊂ WP(3, 2, 1)
which is quasismooth if λ 6= 0, λ 6= 1. In this case the genus of the curve is 1 [Fl00, Theorem 7.2].

The automorphism id× ι induces the non-symplectic involution (y : t : x : s) 7→ (−y : t : x : s) on the
surface W whose fixed locus consists of the curve x11s− t(t− s4)(t− λs4) ⊂WP(4, 1, 1) whose genus is
10, if λ 6= 0, λ 6= 1 [Fl00, Theorem 7.2].

8. Moduli of K3 surfaces

By Theorems 5.1 and 6.1 certain componentsMp
(n,g(C),k+1) of the moduli space of the K3 surfaces with

an automorphism of order p coincide with certain moduli spaces FPQ(C1, Dp) of the K3 surfaces which
are minimal models either of the quotients (C1×Dp)/(g1× δp) or of the quotients (C1×Dp)/(g1× τp).
Since both Dp → Dp/δp ' P1 and Dp → Dp/τp ' P1 are branched in 3 points, the parameters of the
family depend only on the parameters of the curve C1. In particular the dimension of the family of K3
surfaces is r − 3, where r =

∑
ai is the number of ramification points of the cover C1 → C1/g1 ' P1,

cf. Proposition 4.5. Here we describe the relation between the moduli of the curve C1 and the moduli of
the surface S. In particular we relate the variation of the Hodge structure of weight 2 of S with the one
of H1(C1,Q).

A particular case is the one with p = 3 and the quotient (C1×D3)/(g1×δ3). In this case the variation
of the Hodge structure of S (and of a Calabi–Yau 3-fold constructed from S and D3) is described in
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[GvG10]. Moreover, if the family is 1-dimensional, the Picard–Fuchs equation of the surface S is found
from the one of the curve C1 (cf. [GvG10, Section 2.5]).

We now assume S to be the minimal model of (C1 × Dp)/(g1 × δp). By construction S admits a
non-symplectic automorphism gS induced by id × δp. The moduli space of the K3 surfaces S obtained
in such a way is determined by the variation of the period of S in a certain eigenspace H2(S,C)ζjp , cf.

Section 4.3. Indeed, the choice of the period of S determines the Hodge structure of H2(S,C) completely.

Proposition 8.1. Let S be a generic K3 surface in the family FPQ(C1 ×Dp) of the surfaces minimal
models of (C1 × Dp)/(g1 × δp) listed in Table 1. The weight 2 Hodge structure of the transcendental
lattice of S, TS⊗Q, is induced by the weight 1 Hodge structure of H1(C1,Q). In particular, the half twist
(TS ⊗Q)1/2 is H1(C1,Q). As a consequence the dimension of the family FPQ(C1 ×Dp) is 2g(C1)/(p−
1)− 1.

Proof. Since S is generic, the transcendental lattice of S carries a weight 2 Hodge structure of type
(1, (p− 1)(m+ 1)− 2, 1). Since the K3 surface S admits a non-symplectic automorphism gS , the Hodge
structure of TS⊗Q is of CM-type with the field K ' Q(ζp) (cf. [vG92]). In order to perform a half twist
on the Hodge structure one has to fix a CM-type, i.e. a set Σ of (p− 1)/2 distinct embeddings of K in C
with the property that no two of them are conjugate. By abuse of notations we put Σ = {ζp, . . . , ζ(p−1)/2

p }.
The eigenspaces decomposition (for the action of δp) of H1(Dp) consists of p − 1 1-dimensional vector
spaces. Therefore K−1/2 ' H1(Dp) as Hodge structure of weight 1, where K−1/2 is the negative half
twist of K (see [vG92, Section 1.4]).
Let us denote by ν : C1×Dp → S the map induced by the quotient map. The pull-back ν∗ maps TS ⊗Q
in the (g1 × δp) -invariants in H1(C,Q)⊗H1(Dp,Q). For dimensional reason

TS ⊗Q ' ν∗(TS ⊗Q) =
(
H1(C,Q)⊗Q H

1(Dp,Q)
)g1×δp

.

Let us consider the half twist of both the members of the above equation:

(10) (TS ⊗Q)1/2 ' (
(
H1(C,Q)⊗Q H

1(Dp,Q)
)g1×δp

)1/2.

In order to compute the second member of (10), we first consider the (g1 × δp)-invariant subspace of
H1(C1,C) ⊗ H1(Dp,C) ⊂ H2(C1 × Dp). We recall that H1,0(Dp)ζip is an eigenspace of dimension 1 if

i ≤ (p− i)/2 and is trivial if i > (p−1)/2. By the fact that pg(S) = 1, the pair (C1,g1) is such that there
exists only one value h̄ such that h̄ > (p−1)/2 and H1,0(C1)ζh̄p is non zero. So the Hodge decomposition of

an eigenspace H1(C1)ζkp is trivial, in the sense that H1(C1)ζkp = Ha,b(C1)ζkp with (a, b) ∈ {(1, 0), (0, 1)},
except for k = h̄. Hence we obtain:

(
(
H1(C,C)⊗H1(Dp,C)

)g1×δp
) =

∑p−1
i=1

(
(H1(C1,C)ζip ⊗H

1(Dp,C)ζp−ip

)
=

= H1,0(C1)ζh̄p ⊗H
1,0(Dp)ζp−h̄p

⊕
∑(p−1)/2
i=1

(
H1,0(C1)ζip ⊗H

0,1(Dp)ζp−ip

)
⊕

⊕ H0,1(C1)
ζp−h̄p

⊗H0,1(Dp)ζh̄p ⊕
∑(p−1)
i=(p+1)/2

(
H0,1(C1)ζip ⊗H

1,0(Dp)ζp−ip

)
.

Now we consider the splitting given by the choice of Σ = {ζp, . . . ζ(p−1)/2
p } and we recall that the action

of gS on TS is induced by the action of δp on Dp. So
(∑p−1

i=(p−1)/2

(
H0,1(C1)ζip ⊗H

1,0(Dp)ζp−ip

))
Σ̄

= 0.

Hence

(
(
H1(C,Q)⊗Q H

1(Dp,Q)
)g1×δp

)1,0
1/2 =

(
H1,0(C1)ζhp ⊗H

1,0(Dp)ζp−hp

)
⊕

(p−1)/2∑
i=1

H1,0(C1)ζip ⊗H
0,1(Dp)ζp−ip

 .

Since H1,0(Dp)ζip ' C if i ≤ (p− 1)/2, we obtain

((
H1(C,Q)⊗Q H

1(Dp,Q)
)g1×δp

)1,0

1/2
' H1,0(C1)ζhp ⊕

(p−1)/2∑
i=1

H1,0(C1)ζip = H1,0(C1).

By conjugacy,
((
H1(C1,Q)⊗Q H

1(Dp,Q)
)g1×δp

)0,1

1/2
= H0,1(C1). Substituting in (10), we obtain (TS ⊗

Q)1/2 ' H1(C1,C) as Hodge structure.
In particular rk(TS ⊗ Q) = 2g(C1) and by the computation of the moduli of the K3 surface S with a
non-symplectic automorphism of order p, it follows m = 2g(C1)/(p− 1)− 1.

�
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Remark 8.2. The eigenspaces decomposition (for the action of g1) of H1(C1,Q) splits this space in
(p−1) equidimensional subspaces and thus (p−1)(dim(H1(C1)ζjp)) = 2g(C1) for every j ∈ {1, . . . , p−1}.
By the previous proposition we have dim(H1(C1)ζjp) = 2g(C1)/(p−1) = m+1 for every j ∈ {1, . . . , p−1}.
Moreover, in the proof of the previous proposition we saw that there exists a unique value h̄ such that
h̄ > p − 1 and H1,0(C1)ζh̄p is non zero. In particular dim(H1,0(C1)ζh̄p ) = 1, because pg(S) = 1. So

m = dim(H1(C1)ζh̄p )− 1 = dim(H1,0(C1)ζh̄p ⊕H
0,1(C1)ζh̄p )− 1 = dim(H1,0(C1)

ζp−h̄p
) = αp−h̄.

Remark 8.3. In case S is the minimal model of (C1 ×Dp)/(g1 × τp) one can obtain a result similar to
the one of Proposition 8.1: the half twist of TS ⊗ Q is a sub-Hodge structure of H1(C1,Q) and in fact

the one of
∑p−1
i=1 H

1(C1,C)−ζip . An explicit example is given in [vG92, Section 3.11].

The variation of the period of S is described by the Picard–Fuchs equation of ωS , and so by the
Picard–Fuchs equation of certain holomorphic 1-form on C1. In particular if C1 varies in a 1-dimensional
family, then it admits an equation of type yN = ta(t− 1)b(t− λ)b. The forms of these curves and their
Picard–Fuchs equations are described in [GvG10, Section 2.5] and this immediately gives the Picard–
Fuchs equations of S.

For example the Picard-Fuchs equation of the 1-dimensional family M5
(10,0,2) is the Picard–Fuchs

equation of the 1-holomorphic form ωC of C1 such that g1(ωC) = ζ3
pωC . Since an equation for C1 is

y5 = t(t − 1)(t − λ), the holomorphic form we are interested in is ω1 := dt/y2 and its Picard Fuchs
equation is

λ(1− λ)
∂2

∂λ2
+ (

4

5
− 8

5
λ)

∂

∂λ
− 2

25
=

2

5

t(t− 1)

(t− λ)y2
.
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[CW34] C. Chevalley, A. Weil, Über das Verhalten der Intergrale 1. Gattung bei Automorphismen des Funktionenkorpers.
Abhand. Math. Sem. Hamburg 10 (1934), 358–361.

[Di12] J. Dillies, On some order 6 automorphisms of elliptic K3 surfaces, Albanian J. Math. 6 (2012).
[D82] I. Dolgachev, Weighted projective varieties. Group actions and vector fields (Vancouver, B.C., 1981), 34–71, Lecture

Notes in Math., 956, Springer, Berlin, 1982.
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Appendix. The MAGMA script

Q:=Rationals();

Z:=Integers();

///////////////////////////////////////////

MaxGenus:=function(G)

// Given a cyclic group of order n = p or

// 2*p it returns the max genus

// of a curve C with group of

// automorphisms Z/n, C/Z/n=P1, and

// such that the induced action on H^{1,0}(C)

// has an eigenspace of dimension 1.

// Check if the data are correct.

if not IsCyclic(G) then

return 0;

end if;

if IsCoercible(Z, #G/2) then

x:=#G/2;

y:=Z ! x;

if not IsPrime(y) then

return 0;

end if; end if;

if not IsCoercible(Z, #G/2) then

if not IsPrime(#G) then

return 0;

end if; end if;

R:=PolynomialRing(Q,#G-1);

Preparation:=function(G)

// Given a cyclic group G of order

// 2*p or p it return the matrix of hol.

// Lefschetz.

// WARNING: the eigenspaces have a peculiar

// ordering. The integers are always first.

T:=CharacterTable(G);

if (#G mod 2) eq 0 then

x:=#G/2;

y:=Z ! x;

F:=CyclotomicField(y);

else

y:=#G;

F:=CyclotomicField(#G);

end if;

L:=[];

Append(~L,T[#G]);

if #G ge 5 then

Append(~L,T[#G-3]);

Append(~L,T[2]);

else

Append(~L,T[2]);

Append(~L,T[1]);

end if;

R:=PolynomialRing(F,#G-1);

List:=[];

for i in [1..#G-1] do

List[i]:=R.i;

end for;

v:=Vector(R,List);

g:=[];

for j in [1..3] do

List2:=Eltseq(L[j]);

w:=Vector(R,List2);

g[j]:=&+[w[i+1]*v[i]: i in [1..#G-1]];

end for;

Au:=[];

for k in [1..3] do

C:=Coefficients(g[k]);

TN:=[];

for hh in [1..y-1] do

TN[hh]:=[];

end for;

for i in [1..#G-1] do

pip:=Eltseq(C[i]);

for h in [1..y-1] do

Append(~TN[h],-pip[h]);

end for;

end for;

for kk in [1..y-1] do

Append(~Au,TN[kk]);

end for; end for;

Li:=[];

for i in [1..#G-1] do

for j in [1..#G-1] do

Append(~Li,Au[i][j]);

end for; end for;

M:=Matrix(R,#G-1,Li);

return Li;

end function;

TerminiNoti:=function(G)

R:=PolynomialRing(Q,#G-1);

if IsPrime(#G) then

p:=#G;

else

x:=(#G)/2;

p:=Z ! x;

end if;

sf:=(p-1)/2;

st:=Z ! sf;

F<s>:=CyclotomicField(p);

// First case |G|=p

if IsPrime(#G) then

Li:=[];

for i in [1..p-1] do

Li[i]:=1/(1-s^i);

end for;

P:=[];

List:=[];

for i in [1..p-1] do

List[i]:=Eltseq(Li[i]);

end for;

K<s>:=PolynomialRing(Q,1);

for i in [1..p-1] do

P[i]:=&+[List[i][j]*s^(j-1): j in [1..p-1]];

end for;

ww:=[i*0: i in [1..p-1]];

w:=Matrix(R,1,p-1,ww);

for i in [1..p-1] do

w:=w+R.i*Matrix(R,1,p-1,Coefficients(P[i]));

end for;

v:=[];

v[1]:=-1+w[1,p-1];

for i in [2..p-1] do

v[i]:=w[1,p-i];

end for;

return v;

else

// Second case |G|=2*p

Li:=[];

for i in [1..p-1] do

Li[i]:=1/(1+s^i);

end for;

P:=[];

List:=[];

for i in [1..p-1] do

List[i]:=Eltseq(Li[i]);

end for;

TN:=[];

for hh in [1..p-1] do

TN[hh]:=[];

end for;

for i in [1..p-1] do

for k in [1..p-1] do

Append(~TN[k],List[i][k]);

end for;end for;

w:=[];

for i in [1..p-1] do

w[i]:=&+[TN[i][j]*R.j: j in [1..p-1]];

end for;

Li:=[];

for i in [1..p-1] do

Li[i]:=1/(1-s^i);

end for;

P:=[];

List:=[];

for i in [1..p-1] do

List[i]:=Eltseq(Li[i]);

end for;

TN:=[];
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for hh in [1..p-1] do

TN[hh]:=[];

end for;

for i in [1..p-1] do

for k in [1..p-1] do

Append(~TN[k],List[i][k]);

end for;end for;

ww:=[];

for i in [1..p-1] do

ww[i]:=(&+[TN[i][j]*R.((j+j*st) mod p): j in [1..p-1]])

+(&+[TN[i][j]*R.(((j+j*st) mod p)+p-1): j in [1..p-1]]);

end for;

t:=2*p-1;

www:=(&+[R.i: i in [1..p-1]]+R.t)/2;

v:=[];

for i in [1..p-1] do

if i eq 1 then

v[i]:=-1+w[i];

else

v[i]:=w[i];

end if;

end for;

for i in [1..p-1] do

if i eq 1 then

v[p-1+i]:=-1+ww[i];

else

v[p-1+i]:=ww[i];

end if; end for;

v[2*p-1]:=www-1;

end if;

return v;

end function;

// Find the correct eigenspace, which will

// have dimension 1

if IsPrime(#G) then

if #G ge 7 then

p1:=1;

else p1:=#G-1;

end if;

end if;

if not IsPrime(#G) then

if #G ge 7 then

x:=(#G)/2+1;

p1:=Z ! x;

else

p1:=#G-1;

end if;

end if;

// MAIN RUTINE MAXGENUS

z:=#G-1;

Li:=Preparation(G);

v:=TerminiNoti(G);

M:=Matrix(R,#G-1,Li);

v1:=Vector(R,v);

M1:=Transpose(M);

sol:=Solution(M1,v1);

g1:=&+[sol[i]: i in [1..z]];

printf "========================== \n";

printf "The general genus is: \n";

printf "%o, \n", g1;

printf "========================== \n";

printf "\n";

printf "========================== \n";

printf "The dim of eigsp. are: \n";

for i in [1..z] do

printf" %o, \n", sol[i];

end for;

printf "========================== \n";

Coeff:=Coefficients(sol[p1]-1);

ass:=-1/Coeff[1]*(sol[p1]-1-Coeff[1]*R.1);

// Get a bound on g

g:=Evaluate(g1,1,ass);

printf "\n";

printf "========================== \n";

printf "The special genus is: \n";

printf "%o, \n", g;

printf "========================== \n";

printf "\n";

Coefs:=Coefficients(g);

MaxGen:=Coefs[#G-1];

printf "========================== \n";

printf "The max genus is: %o \n", MaxGen;

printf "========================== \n";

printf "\n";

return MaxGen,sol;

end function;

/////////////////////////////////////////////

//

// END OF MAXGENUS

//

/////////////////////////////////////////////

// THE FOLLOWING PART WORKS ONLY FOR THE GROUP Z/pZ

Nram:=function(MaxGen,p)

// Given the genus g(C) genus and a prime p

// returns the number of branch points

// of the cover C -> C/Z/p = P1

x:=2*MaxGen-2;

M:=[p];

y:=p*(-2+#M-1/M[1]);

while x-y gt 0 do

Append(~M, p);

z:=#M/p;

y:=p*(-2+#M-z);

end while;

return #M;

end function;

PossRami:=function(N,NN)

// It returns a seq of seqs of

// #NN, whos sum of elements

// is less or eq to N

S:={1..N};

M:=[];

i:=1;

while i le N do

for h in [1..NN] do

Append(~M,RestrictedPartitions(i,h,S));

end for;

i:=i+1;

end while;

K:=[];

for LL in M do

for i in [1..#LL] do

L:=[];

for j in [1..#LL[i]] do

L[j]:=LL[i][j];

end for;

for k in [#LL[i]+1..NN] do

L[k]:=0;

end for;

Append(~K,L);

end for;

end for;

return K;

end function;

MaybeSur1:=function(s,p)

// Given vectors in H return all possible pairings

// of dim of eigsp. which could give a surface with

// pg=1

PP:=[];

// all possible pairing

for i in [1..#s] do

for j in [i..#s] do

Append(~PP,[s[i],s[j]]);

end for;end for;

GP:=[];

for i in [1..#PP] do

n:=0;

for j in [1..2] do

for k in [1..p-1] do

if PP[i][j]‘EignSpaces[k] eq 0 then n:=n+1;

end if;end for;end for;

if n ge p-2 then Append(~GP, PP[i]);

end if;end for;

return GP;

end function;
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TheSur:=function(MaybeSur,p,RF,sol)

Sur:=[];

for j in [1..#MaybeSur] do

for h in [1..p-1] do

v1:=Rotate(MaybeSur[j][2]‘EignSpaces,h);

if &+[MaybeSur[j][1]‘EignSpaces[k]*v1[k]: k in [1..p-1]]

eq 1 then

for t in [1..p] do

v2:=Rotate(MaybeSur[j][2]‘FixPoints,t);

if IsCoercible(Z,Evaluate(sol[1],v2)) then

w:=rec< RF | EignSpaces := v1, FixPoints:=v2>;

Include(~Sur,[MaybeSur[j][1],w]);

end if;end for;end if;end for;end for;

return Sur;

end function;

///////////////////////////////////////////////////

//

// Spherical Systems of Generators

// for groups of order p or 2p

//

///////////////////////////////////////////////////

GenSys:=function(G,m);

// Given a group G of order n it returns

// m integers whose sum is a multiple of n.

n:=#G;

H:=[];

L:=[];

M:={};

for i in [1..n-1] do

Include(~M,i);

end for;

for x in [1..m-1] do

y:=n*x-(n*x mod n);

TL:=RestrictedPartitions(y,m,M);

for j in [1..#TL] do

Append(~L,Reverse(TL[j]));

end for;

end for;

return L;

end function;

VecRami:=function(H,G,n)

// Given a cyclic group of order p or 2p it returns

// a list of spherical system of generators of size n

K:=[];

if IsPrime(#G) then

g:=G.1;

else

g:=G.1*G.2;

end if;

for h in H do

L:=[];

for i in [1..n] do

Append(~L,g^h[i]);

end for;

if #sub<G | L> eq #G then

Append(~K, L);

end if;

end for;

return K;

end function;

///////////////////////////////////////////////////

//

// Match the Eigenspaces such that p_g of the surface is 1

//

///////////////////////////////////////////////////

GioCop:=function(H,K,G);

sum:=0;

p:=#G;

for i in [1..p-1] do

sum:=sum+H[i]*K[p-i];

end for;

return sum;

end function;

// Reordering the Eigenspaces only for group

// of order 2p

//

///////////////////////////////////////////////////

EigReorderingp:=function(V,G,sol)

// The eigenspaces are reordered

// w.r.t. -z, -z^2, -z^3, ...

p:=Z ! #G;

L:=[];

for i in [1..p-1] do

L[i]:=p*Coefficients(sol[i])[1];

end for;

NewV:=[i*0: i in [1..#G-1]];

for i in [1..p-1] do

NewV[Z ! L[i]]:=NewV[Z ! L[i]]+V[i];

end for;

return NewV;

end function;

EigReordering:=function(V,G,sol)

// The eigenspaces are reordered

// w.r.t. -z, z^2, -z^3, ...

x:=(#G)/2;

p:=Z ! x;

q1:=(p-1)/2;

q:= Z ! q1;

L:=[];

for i in [1..p-1] do

L[i]:=2*p*Coefficients(sol[p+i])[1];

end for;

NewV:=[i*0: i in [1..#G-1]];

// EigS rel to elm of order 2

NewV[p]:=NewV[1]+V[1];

// EigSs rel to elms of order p

for i in [1..p-1] do

if (Z ! L[i]) le p then

NewV[(Z !L[i])+1]:=NewV[(Z ! L[i])+1]+V[i+1];

else

NewV[(Z ! L[i])-1]:=NewV[(Z ! L[i])-1]+V[i+1];

end if;

end for;

// EigSs rel to elms of order 2p

for i in [1..p-1] do

NewV[Z ! L[i]]:=NewV[Z ! L[i]]+V[p+i];

end for;

return NewV;

end function;

///////////////////////////////////////////////////

//

// Fix points reordering

//

///////////////////////////////////////////////////

FixPointsReorderingp:=function(V, G, tmp)

F:=FiniteField(#G);

g:=G.1;

Gelm:=[];

for i in [1..#G] do

Append(~Gelm, g^i);

end for;

FixPoints:=[i*0: i in [1..#G-1]];

for a in [1..tmp] do

x:=F ! Position(Gelm, G ! V[a]);

y1:=x^-1;

y:= Z ! y1;

FixPoints[y]:=(FixPoints[y]+1);

end for;

return FixPoints;

end function;

FixPointsReordering:=function(V, G, tmp)

// Needed for the calculation of the dim

// of the eigenspaces

p1:=#G/2;

p:= Z !p1;
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F:=FiniteField(p);

g:=G.1*G.2;

Gelm:=[];

// Fixing the one generator G.1*G.2=z we list z,z^2,z^3..

for i in [1..#G] do

Append(~Gelm, g^i);

end for;

OrdGelm:=[];

for h in Gelm do

Append(~OrdGelm, Order(h));

end for;

FixPoints:=[i*0: i in [1..#G-1]];

for a in [1..tmp] do

if Position(Gelm,V[a]) eq p then

FixPoints[#G-1]:=FixPoints[#G-1]+p;

end if;

if IsEven(Position(Gelm,V[a])) then

x1:=(Position(Gelm, V[a]))/2;

x:= F ! x1;

x2:=x^-1;

x3:= Z ! x2;

y:= Z ! p-1+x3;

FixPoints[y]:=FixPoints[y]+2;

end if;

if IsOdd(Position(Gelm,V[a])) then

if Position(Gelm,V[a]) ne p then

x:=F ! Position(Gelm, G ! V[a]);

y1:=x^-1;

y:= Z ! y1;

FixPoints[y]:=(FixPoints[y]+1);

end if;

end if;

end for;

return FixPoints;

end function;

FixPointsReordering2:=function(V, G, tmp)

// The fixpoints are ordered as [-z,-z^2,..][z,z^2,..][z^p]

// V is an ssg, tmp is the number of ramification pts.

p1:=#G/2;

p:= Z !p1;

F:=FiniteField(p);

g:=G.1*G.2;

Gelm:=[];

for i in [1..#G] do

Append(~Gelm, g^i);

end for;

OrdGelm:=[];

for h in Gelm do

Append(~OrdGelm, Order(h));

end for;

FixPoints:=[i*0: i in [1..#G-1]];

for a in [1..tmp] do

if Position(Gelm,V[a]) eq p then

FixPoints[#G-1]:=FixPoints[#G-1]+p;

end if;

if IsEven(Position(Gelm,V[a])) then

x1:=(Position(Gelm, V[a]))/2;

x:= F ! x1;

x2:=x^-1;

x3:=x2*2;

x4:= Z ! x3;

y:= Z ! p-1+x4;

FixPoints[y]:=FixPoints[y]+2;

end if;

if IsOdd(Position(Gelm,V[a])) then

if Position(Gelm,V[a]) ne p then

x:=F ! Position(Gelm, G ! V[a]);

y1:=x^-1;

y:= Z ! y1;

FixPoints[y]:=(FixPoints[y]+1);

end if;

end if;

end for;

return FixPoints;

end function;

///////////////////////////////////////////////////

//

// We couple the curves C_1 and C_2 to return

// potential surfaces of the form T=(C_1 x C_2)/Z/(2p)Z

// such that p_g(T)=1.

//

///////////////////////////////////////////////////

Surface:=function(GT,GT3,sol,G,t1,t2)

RF := recformat<SSG, EignSpaces : SeqEnum, FixPoints : SeqEnum >;

Sur:=[];

if IsPrime(#G) then

for i in [1..#GT] do

W21b:=[];

for k in [1..#G-1] do

C:=FixPointsReorderingp(GT[i],G,t1);

W21b[k]:=Evaluate(sol[k],C);

end for;

W21:=EigReorderingp(W21b,G, sol);

for j in [i..#GT3] do

W22b:=[];

for k in [1..#G-1] do

C:=FixPointsReorderingp(GT3[j],G,t2);

W22b[k]:=Evaluate(sol[k],C);

end for;

W22:=EigReorderingp(W22b,G, sol);

if GioCop(W21,W22,G) eq 1 then

s:=[];

Append(~s, rec< RF | SSG:= GT[i], EignSpaces := W21, FixPoints:=

FixPointsReorderingp(GT[i],G,t1)>);

Append(~s, rec< RF | SSG:= GT3[j], EignSpaces := W22, FixPoints:=

FixPointsReorderingp(GT3[j],G,t2)>);

Append(~Sur, s);

end if;

end for;

end for;

else

for i in [1..#GT] do

W21b:=[];

for k in [1..#G-1] do

C:=FixPointsReordering(GT[i],G,t1);

W21b[k]:=Evaluate(sol[k],C);

end for;

W21:=EigReordering(W21b,G, sol);

for j in [i..#GT3] do

W22b:=[];

for k in [1..#G-1] do

C:=FixPointsReordering(GT3[j],G,t2);

W22b[k]:=Evaluate(sol[k],C);

end for;

W22:=EigReordering(W22b,G, sol);

if GioCop(W21,W22,G) eq 1 then

s:=[];

Append(~s, rec< RF | SSG:= GT[i], EignSpaces := W21, FixPoints:=

FixPointsReordering2(GT[i],G,t1)>);

Append(~s, rec< RF | SSG:= GT3[j], EignSpaces := W22, FixPoints:=

FixPointsReordering2(GT3[j],G,t2)>);

Append(~Sur, s);

end if;

end for;

end for;

end if;

return Sur;

end function;

///////////////////////////////////////////////////

//

// Singularities check is needed. First we calculate the contributions

// of each singularity to k^2_S, e(S), and \chi(S). We borrowed this part

// of the program from [BP11].

//

///////////////////////////////////////////////////

ContFrac:=function(s)

CF:=[ ]; r:=1/s;

while not IsIntegral(r) do

Append(~CF, Ceiling(r)); r:=1/(Ceiling(r)-r);

end while;

return Append(CF, r);

end function;

Nq:=func<cf|#cf eq 1 select cf[1] else cf[1]-1/$$(Remove(cf,1))>;

RatNum:=func<seq|1/Nq(seq)>;

// "Wgt" computes the weight of a sequence, i.e., the sum of its

// entries. It bounds strictly from below B of the corresponding

// singular point.

Wgt:=function(seq)

w:=0; for i in seq do w+:=i; end for; return w;

end function;
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// The next script computes all rational number

// whose continuous fraction has small weight,

// by listing all sequences (modulo

// "reverse") and storing the corresponding rational number.

RatNumsWithSmallWgt:=function(maxW)

S:={ }; T:={}; setnums:={RationalField()| };

for i in [2..maxW] do Include(~S, [i]); end for;

for i in [1..Floor(maxW/2)-1] do

for seq in S do

if #seq eq i then

if maxW-Wgt(seq) ge 2 then

for k in [2..maxW-Wgt(seq)] do

Include(~S,Append(seq, k));

end for; end if; end if;

end for; end for;

for seq in S do

if Reverse(seq) notin T then Include(~T,seq);

end if; end for;

for seq in T do Include(~setnums, RatNum(seq)); end for;

return setnums;

end function;

// The next two scripts compute the invariants

// B and e of a rational number (i.e., of

// the corresponding singular point).

InvB:=func<r|Wgt(ContFrac(r))+r+RatNum(Reverse(ContFrac(r)))>;

Inve:=func<r|#ContFrac(r)+1-1/Denominator(RationalField()!r)>;

// Here is the invariant k of the basket:

Invk:=func<r|InvB(r)-2*Inve(r)>;

kappa:=function(p)

KK:=[];

for i in [1..p-1] do

KK[i]:=-Invk(i/p);

end for;

return KK;

end function;

EuleR:=function(p)

CC:=[];

for i in [1..p-1] do

CC[i]:=Inve(i/p);

end for;

return CC;

end function;

///////////////////////////////////////////////////

//

// The program for singularities for surfaces with

// group Z/pZ

//

///////////////////////////////////////////////////

TypeSing:=function(Sur, p)

count:=0;

F:=FiniteField(p);

KK:=kappa(p);

CC:=EuleR(p);

for k in [1..#Sur] do

L:=[i*0: i in [1..p-1]];

for i in [1..(p-1)] do

for j in [1..(p-1)] do

x:= F ! i;

y:= F ! j;

z1:=x*y^-1;

z:= Z ! z1;

if z ne 0 then

L[z]:=L[z]+Sur[k][1]‘FixPoints[i]*Sur[k][2]‘FixPoints[j];

g1:=&+[Sur[k][1]‘EignSpaces[h]: h in [1..p-1]];

g2:=&+[Sur[k][2]‘EignSpaces[h]: h in [1..p-1]];

end if;

end for;

end for;

K2:=8*(g1-1)*(g2-1)/p+&+[L[t]*KK[t]: t in [1..p-1]];

chi:=4*(g1-1)*(g2-1)/p+&+[L[t]*CC[t]: t in [1..p-1]]+K2;

if chi eq 24 then

printf "========================== \n";

printf"there is a surface with curves %o \n", Sur[k];

printf"with singularities: \n" ;

for h in [1..p-1] do

printf"%o x 1/%o(1,%o) \n", L[h],p,h;

end for;

printf "the minimal resolution has at least %o -1-curves \n", -K2;

printf "the minimal model has 12*chi = %o \n", chi;

printf "========================== \n";

printf "\n";

count:=count+1;

end if;

end for;

return count;

end function;

///////////////////////////////////////////////////

//

// The program for singularities for surfaces with

// group Z/2pZ

//

///////////////////////////////////////////////////

Singulp:=function(V,W,p)

F:=FiniteField(p);

L:=[i*0: i in [1..p-1]];

for i in [1..(p-1)] do

for j in [1..(p-1)] do

x:= F ! i;

y:= F ! j;

z1:=x*y^-1;

z:= Z ! z1;

if z ne 0 then

L[z]:=L[z]+V[i]*W[j];

end if; end for; end for;

return L;

end function;

Singul2p:=function(V,W,p)

F:=FiniteField(p);

L:=[i*0: i in [1..p-1]];

for i in [1..(p-1)] do

for j in [1..(p-1)] do

x:= F ! 2*i;

y:= F ! j;

z1:=x*y^-1;

z:= Z ! z1;

if z ne 0 then

L[z]:=L[z]+V[i]*W[j];

end if; end for; end for;

return L;

end function;

Singul2p2:=function(V,W,p)

F:=FiniteField(p);

L:=[i*0: i in [1..p-1]];

for i in [1..(p-1)] do

for j in [1..(p-1)] do

x:= F ! 2*i;

y:= F ! j;

z1:=x^-1*y;

z:= Z ! z1;

if z ne 0 then

L[z]:=L[z]+V[i]*W[j];

end if;end for;end for;

return L;

end function;

///////////////////////////////////////////////////

//

// We check if the surfaces given in Sur are potential

// K3 calculating the invariants of (C_1 x C_2)/G

//

///////////////////////////////////////////////////

CheckSing:=function(Sur,G)

x:=#G/2;

p:= Z ! x;

count:=0;

Super:=[];

Sing:=[];

os:=#Sing;

Singolar:=[];

for k in [1..#Sur] do

VA:=[];

WA:=[];

VB:=[];

WB:=[];
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for i in [1..p-1] do

VA[i]:=Sur[k][1]‘FixPoints[i];

WA[i]:=Sur[k][2]‘FixPoints[i];

VB[i]:=Sur[k][1]‘FixPoints[i+p-1];

WB[i]:=Sur[k][2]‘FixPoints[i+p-1];

end for;

// Calculate the singularities divided in 3 types

// first the ones of the form 1/#G (1,*)

// then the ones of the form 1/p (1,*)

// and in the end of the form 1/2 (1,1)

Singolar[1]:=Singulp(VA,WA,p);

Singolar[2]:=[];

for t in [1..p-1] do

Append(~Singolar[2], Z ! (Singulp(VB,WB,p)[t]+

Singul2p(VA,WB,p)[t]+Singul2p2

(WA,VB,p)[t])/2);

end for;

Singolar[3]:=

[Z ! (Sur[k][1]‘FixPoints[#G-1]*Sur[k][2]‘FixPoints[#G-1]+

&+[Sur[k][2]‘FixPoints[#G-1]*Sur[k][1]‘FixPoints[h]:

h in [1..p-1]]+

&+[Sur[k][1]‘FixPoints[#G-1]*Sur[k][2]‘FixPoints[h]:

h in [1..p-1]])/p];

// We calculate the genera of the curves

g1:=&+[Sur[k][1]‘EignSpaces[h]: h in [1..#G-1]];

g2:=&+[Sur[k][2]‘EignSpaces[h]: h in [1..#G-1]];

Include(~Sing,Singolar);

ns:=#Sing;

// Calculate K^2

kcontrn:=[];

kcontrp:=[];

RR:=quo< Z | #G>;

U1:=[];

for i in [1..#G-1] do

x:=RR ! i;

if IsUnit(x) then

Append(~U1,x);

end if;

end for;

for i in [1..p-2] do

if IsOdd(i) then

kcontrn[i]:=Invk((i)/#G)*Singolar[1][i];

else

kcontrn[i]:=Invk((i+p)/#G)*Singolar[1][i];

end if;

kcontrp[i]:=Invk(i/p)*Singolar[2][i];

end for;

kappa2:=8*(g1-1)*(g2-1)/#G-&+[kcontrn[t]: t in [1..p-2]]-

&+[kcontrp[t]: t in [1..p-2]];

// Calculate e the Euler number

econtrn:=[];

econtrp:=[];

RR:=quo< Z | #G>;

U:=[];

for i in [1..#G-1] do

x:=RR ! i;

if IsUnit(x) then

Append(~U,x);

end if;end for;

for i in [1..p-1] do

if IsOdd(i) then

econtrn[i]:=Inve(i/#G)*Singolar[1][i];

else

econtrn[i]:=Inve((i+p)/#G)*Singolar[1][i];

end if;end for;

for i in [1..p-1] do

econtrp[i]:=Inve(i/p)*Singolar[2][i];

end for;

econtr12:=Inve(1/2)*Singolar[3][1];

euler:=4*(g1-1)*(g2-1)/#G+&+[econtrn[t]: t in [1..p-1]]+&

+[econtrp[t]: t in [1..p-1]]+econtr12;

// Calculate \chi

chi:=(euler+kappa2)/12;

// Only potential K3s survive the two tests below

if chi eq 2 then

if os ne ns then

Append(~Super,Sur[k]);

printf "========================== \n";

printf"there is a surface with curves %o \n", Sur[k];

printf"with singularities: \n" ;

for i in [1..p-1] do

if IsOdd(i) then

printf"%o x 1/%o(1,%o) \n", Singolar[1][i],#G,i;

else

printf"%o x 1/%o(1,%o) \n", Singolar[1][i],#G,(i+p);

end if;end for;

for i in [1..p-1] do

printf"%o x 1/%o(1,%o) \n", Singolar[2][i], p, i;

end for;

printf"%o x 1/2(1,1) \n", Singolar[3][1];

printf "the minimal resolution has at least %o -1-curves \n", -kappa2;

printf "the minimal model has chi = %o \n", chi;

printf "========================== \n";

printf "\n";

count:=count+1;

end if; end if;

os:=#Sing;

end for;

return count, Super;

end function;

///////////////////////////////////////////////////

//

// MAIN ROUTINES and COMMANDS

//

///////////////////////////////////////////////////

//

// For ANY surfaces with group Z/(p)Z

//

///////////////////////////////////////////////////

Surfacesp:=function(G,c)

// Set c=true to perform the calculation of Eigenspaces and max

// genus only.

// Set c=false to get a list of possible K3, in this case the

// algorithm is not optimal and for p >=11 could be extremly slow!

p:=Z ! #G;

R:=PolynomialRing(Q,p-1);

MaxGen,sol:=MaxGenus(G);

Nrami:=Nram(MaxGen,p);

printf "========================== \n";

printf "The max n. of rami is: %o \n", Nrami;

printf "========================== \n";

printf "\n";

if c then return 0;

end if;

K:=PossRami(Nrami,p-1);

printf "========================== \n";

printf "Starting comb calc fom: %o \n", #K;

printf "It will be very very slow... \n";

printf "========================== \n";

printf "\n";

S:={1..p-1};

To:=[];

t:=#K;

StS:=SetToSequence(Permutations(S));

for i in [1..t] do

for j in [1..#StS] do

C:=[];

for k in [1..p-1] do

C[k]:=K[i][StS[j][k]];

end for;

Append(~To,C);

end for;end for;

Tot:=SetToSequence(Seqset(To));

printf "========================== \n";

printf "Finish transposition \n";

printf "Starting cyclic permut.... \n";

printf "========================== \n";

printf "\n";

printf "========================== \n";

printf "The n. of Tot. is: %o \n", #Tot;

printf "========================== \n";

printf "\n";

ops:=0;
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RF := recformat< EignSpaces : SeqEnum, FixPoints : SeqEnum >;

s:=[];

H:=[];

printf "========================== \n";

for i in [1..#Tot] do

W22:=[];

for j in [1..p-1] do

Append(~W22, Evaluate(sol[j],Tot[i]));

end for;

OS:=#H;

if W22[1] eq 1 then

Include(~H,W22);

Append(~s, rec< RF | EignSpaces := W22, FixPoints:= Tot[i]>);

NS:=#H;

if ops eq 0 then

if #H eq 1 then

ops:=ops+1;

end if;

end if;

end if;

end for;

printf "========================== \n";

printf "\n";

printf "========================== \n";

printf"We have %o curves \n", #s;

printf "========================== \n";

printf "\n";

MaybeSur:=MaybeSur1(s,p);

Sur:=TheSur(MaybeSur,p,RF,sol);

printf "\n";

printf "========================== \n";

printf"We have %o possible Surfaces \n", #Sur;

printf "========================== \n";

printf "\n";

c:=TypeSing(Sur, p);

printf "\n";

printf "========================== \n";

printf"We have %o Surfaces \n", c;

printf "========================== \n";

printf "\n";

return Sur;

end function;

///////////////////////////////////////////////////

//

// For t1-t2 points ramifications surfaces

// with group either Z/(p)Z or Z/(2p)Z

//

///////////////////////////////////////////////////

t1t2PtsSurfaces:=function(G,t1,t2)

R:=PolynomialRing(Q,#G-1);

MaxGen,sol:=MaxGenus(G);

GTT:=GenSys(G,t1);

GT:=VecRami(GTT,G,t1);

GTT3:=GenSys(G,t2);

GT3:=VecRami(GTT3,G,t2);

Sur:=Surface(GT,GT3,sol,G,t1,t2);

if IsPrime(#G) then

count:=TypeSing(Sur,#G);

else

count, Super:=CheckSing(Sur,G);

end if;

printf "\n";

printf "========================== \n";

printf"We have %o possible Surfaces \n", count;

printf "========================== \n";

printf "\n";

return count;

end function;
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