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ON ASYMPTOTIC BOUNDS FOR THE NUMBER OF

IRREDUCIBLE COMPONENTS OF THE MODULI SPACE OF

SURFACES OF GENERAL TYPE

MICHAEL LÖNNE AND MATTEO PENEGINI

Abstract. In this paper we investigate the asymptotic growth of the number of irreducible
and connected components of the moduli space of surfaces of general type corresponding to
certain families of surfaces isogenous to a higher product. We obtain a higher growth then the
previous growth by Manetti [M97].

1. Introduction

It is known that, once two positive integers (y, x) are fixed, the number of irreducible compo-
nents ι(x, y) of the moduli space of surfaces of general type with K2 = y and χ = x is bounded
from above by a function of y. In fact, Catanese proved that the number ι0(y, x) of components
containing regular surfaces, ie. q(S) = 0, has an exponential upper bound in K2, more precisely
[Cat92, p.592] gives the following inequality

ι0(x, y) ≤ y77y
2
.

There are also some results showing how close one can get to this bound from below. In
[M97], for example, Manetti constructed a sequence Sn of simply connected surfaces of general
type with K2

Sn
=: yn, such that the lower bound for the number δ(Sn) of C∞ inequivalent

complex structures on the oriented topological 4-manifold underlying Sn is

δ(Sn) ≥ y
1
5
ln yn

n .

Using group theoretical methods, we are able to describe the asymptotic growth of the number
of irreducible and connected components of the moduli space of surfaces of general type in certain
sequences of surfaces. More precisely, we apply the definition and some properties of surfaces
isogenous to a product of curves and we reduce the geometric problem of finding connected
components into the algebraic one of counting some subfamilies of 2-groups, which can be
effectively computed. Similar methods were first applied by Garion and the second author in
[GP11], see also [P13]. Our main result is the following.

Theorem 1.1. Let h be number of connected components containing surfaces isogenous to a
product of curves of irregularity q(S) = q ≥ 0, admitting a group of order 23s and ramification
structure of type ((0|22s+2), (q|22s−2q+2)). Then for s → ∞ we have

h ≥ 2
2
9

(

lnxs

)3

.

In particular, we obtain sequences ys and xs = ys/8 with

ι0(xs, ys) ≥ y
2
13

(ln ys)2

s .

Let us explain now the way in which this paper is organized.
The next section Preliminaries is divided into three parts. In the first part we recall different

moduli spaces of surfaces of general type that one can consider and how the number of their
irreducible and connected components are related. In the second part we recall the definition and
the properties of surfaces isogenous to a higher product and the its associated group theoretical
data, the so called ramification structures. The third part is purely group theoretical and we
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recall some generating properties of nilpotent groups of Frattini-class 2. In particular we give
the asymptotic growth of the number of certain subfamilies of 2-groups.

In the two successive sections we construct infinitely families of regular (respectively irregular)
surfaces isogenous to a product associated to nilpotent groups.

In the last section we prove the main theorem.

Acknowledgement The authors acknowledge the travel grant from a DAAD-VIGONI pro-
gram. They also thank the Hausdorff Center (HIM) in Bonn for the kind hospitality.

Notation and conventions. We work over the field C of complex numbers. By “surface”
we mean a projective, non-singular surface S. For such a surface ωS = OS(KS) denotes the
canonical class, pg(S) = h0(S, ωS) is the geometric genus, q(S) = h1(S, ωS) is the irregularity
and χ(OS) = χ(S) = 1− q(S) + pg(S) is the Euler-Poincaré characteristic.

2. Preliminaries

2.1. The moduli space of surfaces of general type. It is well known (see [Gie77]) that
once are fixed two positive integers x, y there exists a quasiprojective coarse moduli space My,x

of canonical models of surfaces of general type with x = χ(S) and y = K2
S . We study the

number ι(x, y) (γ(x, y)) of irreducible (resp. connected) components of My,x.
In addition, one can consider different structures on a surface of general type S, for example

we can denote by Stop the oriented topological 4-manifold underlying S, or with Sdiff the
oriented C∞ manifold underlying S, and we can attach to S several integers.

Let Mtop(S) be the subspace of My,x corresponding to surfaces (orientedly) homeomorphic

to S, and Mdiff (S) be the subspace corresponding to surfaces diffeomorphic to S, we define:

δ(S): number of C∞ inequivalent complex structures on Stop.
γ(S): number of connected components of Mtop(S).
ι(S): number of irreducible components of Mtop(S).
γ(x, y): number of connected components of My,x.
ι(x, y): number of irreducible components of My,x.
ι0(x, y): number of irreducible components of My,x of regular surfaces.

There are inequalities among the numbers above, the ones we need are the following:

(1) δ(S) ≤ γ(S) ≤ ι(S) ≤ ι(x, y), γ(x, y) ≤ ι(x, y).

See also [Cat92]. The union M over all admissible pairs of invariants (y, x) of these spaces is
called the moduli space of surfaces of general type.

2.2. Surfaces isogenous to a product and their moduli.

Definition 2.1. A surface S is said to be isogenous to a higher product of curves if and only
if, equivalently, either:

(1) S admits a finite unramified covering which is isomorphic to a product of curves of
genera at least two;

(2) S is a quotient (C1 × C2)/G, where C1 and C2 are curves of genus at least two, and G
is a finite group acting freely on C1 × C2.

By Proposition 3.11 of [Cat00] the two properties (1) and (2) are equivalent. Using the
same notation as in Definition 2.1, let S be a surface isogenous to a product, and G◦ :=
G ∩ (Aut(C1) × Aut(C2)). Then G◦ acts on the two factors C1, C2 and diagonally on the
product C1 × C2. If G◦ acts faithfully on both curves, we say that S = (C1 × C2)/G is a
minimal realization. In [Cat00] it is also proven that any surface isogenous to a product admits
a unique minimal realization.

Assumptions I: In the following we always assume:

(1) Any surface S isogenous to a product is given by its unique minimal realization;
(2) G◦ = G, this case is also known as unmixed type, see [Cat00].

2



Under these assumption we have.
Proposition 2.2. [Cat00] Let S = (C1 ×C2)/G be a surface isogenous to a higher product of
curves, then S is a minimal surface of general type with the following invariants:

(2) χ(S) =
(g(C1)− 1)(g(C2)− 1)

|G|
, e(S) = 4χ(S), K2

S = 8χ(S).

The irregularity of these surfaces is computed by

(3) q(S) = g(C1/G) + g(C2/G).

Moreover the fundamental group π1(S) fits in the following short exact sequence of groups

(4) 1 −→ π1(C1)× π1(C2) −→ π1(S) −→ G −→ 1.

Among the nice features of surfaces isogenous to a product, one is that they can be obtained
in a pure algebraic way. Let us briefly recall how.

Definition 2.3. Let G be a finite group and let

0 ≤ g′, 2 ≤ m1 ≤ · · · ≤ mr

be integers. A system of generators for G of type τ := (g′ | m1, ...,mr) is a (2g′ + r)−tuple of
elements of G:

V = (a1, b1, . . . , ag′ , bg′ , c1, . . . , cr)

such that the following conditions are satisfied:

(1) 〈a1, b1, . . . , ag′ , bg′ , c1, . . . , cr〉 ∼= G.
(2) ord(ci) = mi for all 1 ≤ i ≤ r, denoting by ord(c) the order of c.

(3) c1 · . . . · cr ·
∏g′

i=1[ai, bi] = 1.

If such a V exists then G is called (g′ | m1, . . . ,mr)−generated.
Moreover, we call the r-tuple (c1, . . . , cr) the spherical part of V and if g′ = 0 a system of

generators is simply said to be spherical.

We shall also use the notation , for example, (g′ | 24, 32) to indicate the tuple (g′ | 2, 2, 2, 2, 3, 3).

We have the following reformulation of the Riemann Existence Theorem.

Proposition 2.4. A finite group G acts as a group of automorphisms of some compact Rie-
mann surface C of genus g if and only if there exist integers g′ ≥ 0 and mr ≥ mr−1 ≥
· · · ≥ m1 ≥ 2 such that G is (g′ | m1, . . . ,mr)−generated for some system of generators
(a1, b1, . . . , ag′ , bg′ , c1, . . . , cr), and the following Riemann-Hurwitz relation holds:

(5) 2g − 2 = |G|(2g′ − 2 +
r
∑

i=1

(1−
1

mi
)).

If this is the case, then g′ is the genus of the quotient Riemann surface C ′ := C/G and the
Galois covering C → C ′ is branched in r points p1, . . . , pr with branching numbers m1, . . . ,mr

respectively. Moreover if r = 0 the covering is said to be unramified or étale.

Definition 2.5. Two systems of generators V1 := (a1,1, b1,1, . . . , a1,g′1 , b1,g′1 , c1,1, . . . , c1,r1) and

V2 := (a2,1, b2,1, . . . , a2,g′2 , b2,g′2 , c2,1, . . . , c2,r2) of G are said to have disjoint stabilizers or simply
to be disjoint, if:

(6) Σ(V1) ∩Σ(V2) = {1},

where Σ(Vi) is the set of elements in G that stabilize a point in C,

Σ(Vi) :=
⋃

h∈G

∞
⋃

j=0

ri
⋃

k=1

h · cji,k · h
−1.

We notice that in the above definition only the spherical part of the system of generators
plays a rôle.
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Remark 2.6. From the above discussion we obtain that the datum of a surface S isogenous to a
higher product of curves of unmixed type together with its minimal realization S = (C1×C2)/G
is determined by the datum of a finite group G together with two disjoint systems of generators
V1 and V2 (for more details see e.g. [BCG06]).

Remark 2.7. The condition of being disjoint ensures that the action of G on the product of
the two curves C1 × C2 is free.

Indeed the cyclic groups 〈c1,1〉 , . . . , 〈c1,r1〉 and their conjugates provide the non-trivial sta-
bilizers for the action of G on C1, whereas 〈c2,1〉 , . . . , 〈c2,r2〉 and their conjugates provide the
non-trivial stabilizers for the action of G on C2. The singularities of (C1 × C2)/G arise from
the points of C1×C2 with non-trivial stabilizer, since the action of G on C1×C2 is diagonal, it
follows that the set of all stabilizers for the action of G on C1 × C2 is given by Σ(V1) ∩ Σ(V2).

Definition 2.8. Let τi := (g′i | m1,i, . . . ,mri,i) for i = 1, 2 be two types. An (unmixed) rami-
fication structure of type (τ1, τ2) for a finite group G, is a pair (V1,V2) of disjoint systems of
generators of G, whose types are τi, and which satisfy:

(7) Z ∋
|G|(2g′i − 2 +

∑ri
l=1(1−

1
mi,l

))

2
+ 1 ≥ 2,

for i = 1, 2.

Remark 2.9. Note that a group G and a ramification structure determine the main numerical
invariants of the surface S. Indeed, by (2) and (5) we obtain:

(8) 4χ(S) = |G| ·

(

2g′1 − 2 +

r1
∑

k=1

(1−
1

m1,k
)

)

·

(

2g′2 − 2 +

r2
∑

k=1

(1−
1

m2,k
)

)

=: 4χ(|G|, (τ1, τ2)).

The most important property of surfaces isogenous to a product is their weak rigidity prop-
erty.
Theorem 2.10. [Cat03b, Theorem 3.3, Weak Rigidity Theorem] Let S = (C1 × C2)/G be a
surface isogenous to a higher product of curves. Then every surface with the same

• topological Euler number and
• fundamental group

is diffeomorphic to S. The corresponding moduli space Mtop(S) = Mdiff (S) of surfaces (orient-
edly) homeomorphic (resp. diffeomorphic) to S is either irreducible and connected or consists
of two irreducible connected components exchanged by complex conjugation.

Remark 2.11. Thanks to the Weak Rigidity Theorem, we have that the moduli space of
surfaces isogenous to a product of curves with fixed invariants — a finite group G and a type
(τ1, τ2) — consists of a finite number of irreducible connected components of M. More precisely,
let S be a surface isogenous to a product of curves of unmixed type with group G and a pair
of disjoint systems of generators of type (τ1, τ2). By (8) we have χ(S) = χ(|G|, (τ1, τ2)), and
consequently, by (2) K2

S = K2(|G|, (τ1, τ2)) = 8χ(S), and e(S) = e(|G|, (τ1, τ2)) = 4χ(S).
Moreover, recall that the fundamental group of S fits into the exact sequence (4) and the
subgroup π1(C1)× π1(C2) of π1(S) is unique, see [Cat00].

Let us chose a pair (τ1, τ2) of types. Denote by M(G,(τ1,τ2)) the moduli space of isomorphism
classes of surfaces isogenous to a product, which have a minimal realization (C1 × C2)/G that
is given by a ramifications structure of type (τ1, τ2) for the finite group G. This moduli space
is obviously a subset of the moduli space MK2(|G|,(τ1,τ2)),χ(|G|,(τ1,τ2)). With y := K2(n, (τ1, τ2))
and x := χ(n, (τ1, τ2)) we get:

Lemma 2.12. Given a positive integer n and a pair (τ1, τ2) of types, then ι(x, y) is bounded
from below by

#{G , G is a group of order n with a ramification structure of type (τ1, τ2)}
/

iso.
4



Proof. It remains to prove that non-isomorphic group lead to distinct irreducible components of
the moduli space. Indeed, the fundamental groups of the minimal realizations fit into sequences
as given in Prop.2.2(4), with non-isomorphic quotients. On the other hand any isomorphism of
the fundamental groups descends to the quotients since the subgroups are preserved thanks to
the minimality of the realizations. So our claim follows. �

2.3. Enumerating p-groups.

Proposition 2.13. [H60, S65] If f(k, p) is the number of groups of order pk, p a prime, and if
A = A(k, p) is defined by

(9) f(k, p) = pAk3 ,

then

(10)
2

27
− ǫk ≤ A ≤

2

15
− ǫk,

where ǫk is a positive number, depending only on k, which tends to 0 as k tends to ∞.

We are interested in the constructive part of the proof, where a sufficient number of groups
is given, all of them nilpotent of Frattini-class 2, i.e. their Frattini subgroups are central and
elementary abelian. Such groups are given by the following presentation. Let r and s be positive
integers with s+ r = k and b(i, j), 1 ≤ i ≤ r, 1 ≤ j ≤ s, and c(i, i′, j), 1 ≤ i < i′ ≤ r, 1 ≤ j ≤ s,
be integers between 0 and p− 1. Then the relations

(1) [gi, gi′ ] = h
c(i,i′,1)
1 · . . . · h

c(i,i′,s)
s , 1 ≤ i < i′ ≤ r,

(2) [gi, hj ] = 1, 1 ≤ i ≤ r, 1 ≤ j ≤ s,
(3) [hj , hj′ ] = 1, 1 ≤ j < j′ ≤ s,

(4) gpi = h
b(i,1)
1 · . . . · h

b(i,s)
s 1 ≤ i ≤ r,

(5) hpj = 1, 1 ≤ j ≤ s,

on g1, . . . , gr and h1, . . . hs define a group of order pk.

Remark 2.14. We can make the following two restrictions which won’t change the asymptotic
number of p−groups considered.

• To prove Proposition 2.13 is enough to consider groups with r = 2s.
• We can change (4) to gpi = 1, and consider only groups which are generated by elements
of order p. This means that the b(i, j)’s are set to zero. This is allowed since their
proportion among all choices is negligible compered to the number of c(i, i′, j)’s as s
goes to infinity.

• We can consider only those groups which are generated by the gi’s only. Indeed, such
groups are characterized by the property that the s vectors cj with entries ci,i′,j are
linearly independent. So the number of possible choices is

s−1
∏

l=0

(p(
r
2 ) − pl).

Again the deviation to p(
r
2 )s can be subsumed into ǫk.

Assuptions II: We assume from now on that:

(1) Let r = 2s.
(2) p = 2. Nevertheless, what follows can be easily extended to p > 2;
(3) All the groups G have a presentation as above with condition (4) changed into gpi = 1.
(4) All the groups G are generated by the gi.

As seen in the previous section to give a surface isogenous to a product it is enough to give a
finite group G and a ramification structure of G. In this section we give one of the two systems
of generators of a ramification structure that we keep fixed in the next two sections. We will
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complete the ramification structure of G with a second system of generators, once in order to
obtain regular surfaces and then to have irregular ones.

We consider the following system of generator of size 2s + 2 for a group of order 2k = 23s.

(11) T1 := (g1, . . . , gs, ḡs, gs+1, . . . , g2s, ḡ2s),

where ḡs = (g1 · · · gs)
−1, ḡ2s = (gs+1 · · · g2s)

−1. By construction we have < T1 >∼= G,
g1 · . . . · gs · ḡs · gs+1 · . . . · g2s · ḡ2s = 1G, and the orders of each element is 2. This gives an action
of a group G of order 2k on some curve C1 of genus

(12) g(C1) := 23s−1
(

− 2 +
2s+2
∑

l=1

(1−
1

2
)
)

+ 1 = 23s−1(s− 1) + 1.

Moreover, C1 → C1/G ∼= P
1 branches in 2s+ 2 points. In terms of Euler numbers we have:

e(C1) = 23s
(

e(P1)−
2s+2
∑

l=1

(1−
1

2
)
)

= 23s(1− s).

Now we give a criterion to see if two systems of generators are disjoint. Let denote by
H(G)⊳G the subgroup of G generated by the hj ’s and Φ: G → G/H(G).

Lemma 2.15. Let T1 and T2 be the two spherical parts of two systems generators V1 and
V2 of G. Moreover, let Bi = {Φ(x)|x ∈ Ti, x /∈ 〈hj〉} and B′

i = {x|x ∈ Ti, x ∈ 〈hj〉}. If
B1 ∩B2 = B′

1 ∩B′
2 = ∅ then Σ(V1) ∩ Σ(V2) = 1G.

Proof. Since the order of every element is 2, it is enough to prove that

A1 ∪A2 :=
(

⋃

t∈G

⋃

x1∈T1

tx1t
−1
)

∩
(

⋃

t∈G

⋃

x2∈T2

tx2t
−1
)

= ∅.

Since the kernel of Φ is H(G) and the image is abelian, the images of the two sets A1 and A2

are exactly B1 and B2. By hypothesis B1 ∩B2 = ∅, so

Σ(V1) ∩ Σ(V2) =
(

Σ(V1) ∩H
)

∩
(

Σ(V2) ∩H
)

=
(

B′
1 ∪ 1G

)

∩
(

B′
2 ∪ 1G

)

= 1G.

�

3. Regular Surfaces

As said before, we give the second system of generators of a ramification structure for a group
G as above which yields a regular surface isogenous to a product. Let
(13)
T2 := (g1g2, g2g3, . . . , gs−1gs, gsg2g3, (g1g2g3)

−1, gs+1gs+2, . . . , g2sgs+2gs+3, (gs+1gs+2gs+3)
−1),

One can see that < T2 >∼= G and by construction the product of the elements in T2 is 1G. This
yields a second G-Galois cover of P1 ramified in 2s+2 points. And again the genus of the curve
is

(14) g(C2) = 23s−1(s− 1) + 1.

Moreover, the set B2 := {Φ(x)|x ∈ T2} is disjoint from B1 := {Φ(x)|x ∈ T1} so by the Lemma
2.15 the pair (T1, T2) is a ramification structure for G. The associated surface isogenous to a
product S has irregularity q(S) = 0.

This ramification structure can be given to any 2-group as above.

Theorem 3.1. Let h be number of connected components of regular surfaces isogenous to a prod-
uct of curves admitting a group of order 23s and ramification structure of type ((0|22s+2), (0|22s+2)),
as above. Then for s → ∞ we have

(15) h ≥ 2Bs3 ,
6



where 2− ǫ′s ≤ B ≤ 18
5 − ǫ′s, and lim

s→∞
ǫ′ = 0. All these surfaces are regular, i.e. q(S) = 0 and

(16) χ(S) = 23s−2(s− 1)2.

Proof. For fixed group order 23s the number of groups with this order is 227As3 by Proposition
2.13. For each of these groups we found a ramification structure (T1, T2). By Lemma 2.12, the

number of surfaces isogenous to a product associated to those data is at least 2Bs3 , where B is
as in the claim. By (12) and (14) the holomorphic Euler characteristic of S is

χ(S) =
(g(C1)− 1)(g(C2)− 1)

|G|
= 23s−2(s − 1)2.

�

4. Irregular Surfaces

Let us consider the irregular case i.e. q(S) = q > 0. Let h := [gs, g2s]·[gs−1, g2s−1] · · · [gs−q+1, g2s−q+1]
and recall that the commutators are in the center of the group G. Moreover, let

T ′
2 := {g1g2, g2g3, . . . , gs−qgs−q+1, gs−q+1g1, gs+1gs+2, . . . ,

g2s−qg2s−q+1, g2s−q+1gs+1h}

the spherical part of the generating vector

V2 := {T ′
2, gs, g2s, gs−1, g2s−1, . . . gs−q+1, g2s−q+1}

It holds < V2 >∼= G and and by construction the product of the elements in V2 is 1G.
Moreover, by Proposition 2.4 this yields an action of a group G of order 23s on some curve C2

of genus

g(C2) := 23s−1(2q − 2 + (s− q + 1)) + 1 = 23s−1(s+ q − 1) + 1

with g(C2/G) = q.
By construction and by Lemma 2.15 T1 and T ′

2 are disjoint and so (T1,V2) is a ramification
structure for the groups as above. These data give us a surface isogenous to a product S :=
(C1×C2)/G, where G is a group of order 23s, which satisfies the assumption above. The number

of these surfaces is at least 227As3 . Then the following theorem is proven in analogy to Theorem
3.1.

Theorem 4.1. Let h be number of connected components of the moduli space of surfaces of
general type isogenous to a product of curve admitting a group of order 23s and ramification
structure of type ((0|22s+2), (q|22s−2q+2) as above. Then we have

h ≥ 2Bs3 ,

where 2−ǫ′s ≤ B ≤ 18
5 −ǫ′s, and lim

s→∞
ǫ′ = 0. All these surfaces are irregular and have irregularity

q(S) = q. Finally, The holomorphic Euler characteristic of S is

χ(S) :=
(g(C1)− 1)(g(C2)− 1)

|G|
= 23s−2(s− 1)(s + q − 1).

5. Proof of Theorem 1.1

We give the proof for regular surfaces only, the irregular case being analogous.
We start with (16) and we write

xs = 23s−2(s− 1)2.

Since xs is strictly monotonically increasing with s, there is a well defined inverse function
s = s(x). From log2 xs = 3s− 2 + 2 log2(s− 1) we decuce

s(x) =
1

3
(1 + ηxs) log2 xs

7



with ηxs → 0 for xs → ∞. Substituting s(x) into the inequality (15) we get

h ≥ 2
B
27

(log2 xs)3(1+ηxs )
3
.

For xs large enough this is bounded from below by 2
2
9
(lnxs)3 , thanks to 0 < 27(ln 2)3 < 9.

We use the identity xf(x) = ef(x) lnx = 2f(x)
1

ln 2
lnx to derive

h ≥ x
( 2
27(ln 2)2

(lnxs)2)
1

ln 2
lnx2

s = x
2
13

(lnxs)2

s ,

thanks to 0 < 27(ln 2)2 < 13. Since ys is a constant multiple of xs the asymptotic is the same.
This concludes the proof of the theorem.
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