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ABSTRACT 

Combining technological solutions with investment profitability is a critical aspect in designing both 

traditional and innovative renewable power plants. Often, the introduction of new advanced-design 

solutions, although technically interesting, does not generate adequate revenue to justify their utilization. In 
this study, an innovative methodology is developed that aims to satisfy both targets. On the one hand, 

considering all of the feasible plant configurations, it allows the analysis of the investment in a stochastic 

regime using the Monte Carlo method. On the other hand, the impact of every technical solution on the 

economic performance indicators can be measured by using regression meta-models built according to the 

theory of  Response Surface Methodology. This approach enables the design of a plant configuration that 

generates the best economic return over the entire life cycle of the plant. This paper illustrates an 

application of the proposed methodology to the evaluation of design solutions using an innovative linear 

Fresnel Concentrated Solar Power system. 
 

Keywords: Monte Carlo Simulation; Response Surface Methodology; Renewable Energy; Stochastic 

Business Plan; Investment Evaluation; Linear Fresnel Concentrated Solar Power. 
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discounted payback period (DPBP) 

levelized cost of energy (LEC) 

life cycle cost (LCC) 

Monte Carlo method (MCM) 

grid-connected photovoltaic system (GCPVS) 

stand-alone photovoltaic system (SAPVS) 

direct normal irradiance (DNI) 

discounted profitability ratio (DPR) 

return on investment (ROI),  

return on equity (ROE) 

project cover ratio (PCR)  

mean square pure error (MSPE) 

MSPE of the mean (MSPE MED)  

MSPE of the standard deviation (MSPE STDEV)  
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probability density function (pdf) 

face-centred composite (FCC) 

analysis of variance (ANOVA) 

cash flows (OFCF)  

interest rate (WACC).  

 

List of nomenclature 

 

Net Present Value (NPV): is the algebraic sum of the cash flows over several years of the analysis horizon 

discounted at an interest rate. 

Pay Back Period (PBP): is the point of temporal equilibrium of the cash in and cash out discounted at an 

interest rate. 

Discounted Profitability Ratio (DPR): is the ratio between the net present value and the initial investment.  

Internal Rate of Return (IRR): is the interest rate at which the NPV is zero. 

Project Cover Ratio (PCR): is the ratio of the present value of the cash flows over the remaining full life of 

the project to the remaining debt in the period. 

Levelized Electricity Cost (LEC): is the price at which electricity must be generated from a specific source 

to break even over the lifetime of the project.  

Return On Investment (ROI): measures, per period, the rate of return on invested money  

Key Performance Indicators (KPI): is a business metric used to evaluate factors that are crucial to the success 

of an organization. 

Response Surface Methodology (RSM): is a methodology that explores the relationships between 

several explanatory variables and one or more response variables. 

 

 

1. Introduction 

This study is part of the FREeSUN1 project, which is aimed at the design, optimization and construction of 

an innovative linear Fresnel concentrated solar power (CSP) system. 

                                                             
1The FREeSUN project was born in 2009 under the competitive announcement “Industry 2015 – Energetic Efficiency” and financed by the Italian Ministry of 

Economic Development, for a total amount of 12.5 million Euros. The partnership, coordinated by Fabbrica Energie Rinnovabili (FERA), is composed of 

companies, universities and Italian research centers (CNR, Polytechnic of Milan, University of Genoa, University of Catania, and University of Florence). 

http://whatis.techtarget.com/definition/metric
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Response_variable


 

 

The specific mandate for this study consists of a step-by-step economic evaluation of the technical 

solutions proposed by the partners at every project phase. The evaluation must be performed in terms of the 

investment key performance indicators (KPIs), including the stochasticity affecting some of the system 

variables.  

To achieve this goal, the authors created a dynamic and stochastic business plan which, by using the 

Monte Carlo method, analyses the behaviour of the primary economic variables related to the investment 

while varying specific technical and performance parameters.  

Moreover, using the response surface methodology (RSM) technique, different design solutions are 

compared, considered both individually and in combination.  

Consider, for example, two plant components A and B, each one with different possible alternatives (A1, 

A2,…,An and B1, B2,..,Bk), as shown in Fig. 1.  

The proposed approach, unlike typical deterministic analyses, leads to a regression model as follows: 

 ŷ = φ(A, B)  

which is used to describe the behaviour of a single KPI varying the other components. 

Therefore, the proposed approach identifies the solution AiBj that maximizes (or minimizes) the 

economic target KPI. 

In this way, a techno-economic optimization of the plant is derived, in which all of the possible design 

decisions are made considering the economic return of the investment. 

 

 
 

Fig. 1 Factor interaction scheme 

 

Furthermore, the presented methodology is generalized, and therefore applicable to any type of 

innovative plant design. 

 

1.2 Review of the Literature  

 

To date, most techno-economic analyses applied to renewable power plants have focussed on the 

deterministic regime.  

G.C. Bakos et al. performed a techno-economic study of an integrated solar combined-cycle power plant 

in Southern Greece. They determined the yearly cash flows of the investment, considering all of the 

connected direct and indirect costs, and calculated the primary financial indexes, such as the internal rate of 

return (IRR), the net present value (NPV) and the energy production cost. Finally, their paper presented a 

traditional sensitivity analysis on the effect of the contribution rate on the investment profitability [1]. 

M. Chandel et al. examined a solar photovoltaic power plant site at Jaipur (India) and determined the 

primary economic KPIs, such as the IRR, the NPV, the simple and discounted payback period (PBP and 

DPBP), and the levelized cost of energy (LEC) [2]. 

                                                             
 



 

 

M. Horn et al. presented an investment evaluation, determining the NPV and the LEC of an integrated 

solar combined-cycle system in Egypt [3].  

R. Hosseini et al. performed a comparative study of different traditional and solar power plants using the 

levelized electricity cost as the reference metric [4].  

A comparison in terms of the LEC between linear Fresnel and parabolic trough collector power plants 

was performed by G. Morin et al. [5]. 

Comparative analyses using the LEC among different renewable electricity generation technologies have 

been developed by Varun et al. [6] and by S. Giuliano et al. [7]. 

A. Poullikkas has implemented a parametric study of different parabolic trough solar thermal 

technologies [8]. For this purpose, a simulation software package was used to analyse the investment in 

terms of the NPV, the IRR, the PBP and the LEC. The parameters considered included the plant capacity, 

the capital cost, the operating hours, the CO2 ETS price and the annual land leasing. 

W.T. Chong et al. performed a techno-economic analysis of an innovative wind–solar hybrid renewable 

energy generation system by applying the life cycle cost (LCC) method [9]. They considered the cash flows 

generated by the investment and calculated the NPV for the 25-year lifetime of the system. 

D.L. Talavera et al. presented an investment analysis of PV systems located in buildings or public areas, 

including a sensitivity analysis of the NPV, the DPBP, the IRR and the LEC [10]. 

All of the studies mentioned above, while technically valid, provide evaluations that are not exhaustive 

given the stochasticity that characterizes many of the factors involved. The uncertainty connected to these 

variables has not been considered in the above-mentioned studies. 

For this reason, recently, some researchers have begun to develop studies in the stochastic regime, 

considering, for some of the variables, probability distribution functions rather than deterministic values 

and using Monte Carlo simulations to determine the economic KPIs.  

Falconett et al. have developed a probabilistic model to assess the effects of different governmental 

support mechanisms on the financial return (NPV) of small-scale hydroelectric, wind energy and solar PV 

systems. The model considers 17 random input variables, represented as probability distributions, such as 

the hours of sunshine, the wind regime, the installation cost, and the operating and the maintenance costs. 

The simulations were performed using Monte Carlo techniques [11].                                                                                                                 

Cun-bin et al. have presented an investment risk analysis of a wind farm project in China. The authors 

simulated the NPV using the Monte Carlo method and analysed the investment PBP and the IRR [12]. 

Guanche et al. performed an analysis of the uncertainty that influences wave energy farm financial 

returns. The authors performed a statistical analysis of the IRR, the NPV and the PBP by simulating the 

life-cycle production. The uncertainty sources considered include the climate conditions, the political 

environment and current legislation issues [13].  

E.J. da Silva Pereira et al. presented a methodology that uses the Monte Carlo method (MCM) to estimate 

the behaviour of some economic parameters (NPV and produced energy cost). They applied the 

methodology to analyse a grid-connected photovoltaic system (GCPVS) and a stand-alone photovoltaic 

system (SAPVS). The random variables considered include the total initial cost, the interest rate and the 

value of the energy produced and sold to the grid [14].  

The study presented in this paper belongs to this second research line, i.e., the implementation of the 

economic analysis in the stochastic regime. This approach is supported by the fact that the investment is by 

nature characterized by high uncertainty. However, compared to the previous studies, in the current work, a 

methodology is developed that supports the technical decision makers in the selection of different 

technological solutions in real time according to the overall economic impact.  

An important difference between the previous studies and the current work is that, rather than 

considering a predefined and fixed structure of a plant, this approach optimizes the choice among different 

http://www.sciencedirect.com/science/article/pii/S0038092X11002325


 

 

technological solutions to maximize the economic result. 

Moreover, the cited papers that applied the Monte Carlo methodology did not use a solid scientific 

approach to determine the number of simulation runs to be performed (some made 1,000 runs, others 

100,000 runs and others do not state the number of runs in the publication at all). There was also no 

evidence that they measured the experimental error in the simulation results; therefore, they were unable to 

estimate the tolerance and confidence intervals for the simulation output. 

Finally, there was no published evidence of the application of RSM techniques to economically optimize 

renewable power plants. 

The result of this study is a methodology that retains the original vision of the investment and estimates 

the economic impact of new technological solutions, both singly and combined. The methodology builds 

on previous studies related to both investment under uncertainty [15,16] and RSM techniques [17-21].  

The case study presented in this paper includes the analysis of two specific plant components (the 

reflecting surface and the absorber tube), for which different solutions are proposed by technology partners 

during the design phase. Among all of the feasible technological solutions, the proposed approach leads to 

the selection of the ones that are also economically sustainable. 

 

2. Technical features of the plant 

The studied plant is composed of 16 modules. Each module comprises 160 mirrors organized in 8 rows of 

20 mirrors in each row. The dimensions of each mirror are 0.6 m by 5.85 m. The features of the plant are 

shown in Table 1.  

 

Table 1 

Plant features. 

Electric power peak  1 MWe 

Thermal power peak  6 MWth 

Solar collector field 

area 

 8986 m2 

Total plant area  17500 m2 

Total plant length  500 m 

Total plant width  35 m 

Heat transfer fluid  water 

 

The proposed technology differs from that based on linear parabolic connectors for the use of almost flat 

mirrors arranged in lines. The mirrors concentrate the light on a linear absorber tube located above the solar 

field. To compensate for the angular spread, an additional surface is placed above the absorber tube to re-

concentrate the solar rays (Fig. 2). The annual efficiency of the solar collector (solar to thermal) is 

approximatively 42%. 

 



 

 

 
Fig. 2. Plant representation 

 

 

The heat produced by the solar field is converted to electrical power using an organic Rankine cycle 

(ORC). A dry and spray cooler is used for the cooling part of the cycle. This cooler is equipped with fans 

that are usually powerful enough to ensure the heat removal. However, when the external temperature is 

too high, some of the nozzles spray demineralized water onto the heat exchangers of the cooler to assist in 

lowering the temperature.  

The design temperature for the steam is 270°C at 55 bar (saturated steam). The thermal to electrical net 

efficiency at the design point is 23%, with 25°C/35°C inlet/outlet temperature of the cooling water.  

The storage time is not long; there is a buffer storage of 15 minutes at full load to manage the transient 

behaviour (shut down, short low irradiation period, etc.) 

The ORC developed for this power plant produces low pressure steam with a high conversion efficiency; 

therefore, the strategy is similar to the sliding pressure mode of a steam Rankine turbine, i.e., it is not 

mandatory to maintain a fixed temperature (pressure) at the outlet of the solar field. 

A schematic process flow diagram of the power plant is provided in Fig. 3. 



 

 

 

Fig. 3. Plant schematic 

 

The use of limited temperatures allows the minimization of heat loss and a simultaneous increase in the 

efficiency of the collector. 

Water is used as the heat transfer fluid, instead of oil, to simplify plant safety efforts and to eliminate the 

oil to water heat exchanger, typically implemented in most solar plants, thus reducing costs.  

The Fresnel facets rotate around their own axes. The support mechanism is on a continuous axis on 

which the heliostat rotates. It bears a significantly lighter structure compared with the ones in use for other 

existing technologies. Moreover, the reduced dimensions of each mirror (3.51 m2) offer reduced exposure 

to wind. However, if the wind strength is not in line with the mirror supports, the mirrors go to their stow 

position. 

Because of these technological features, both investment and maintenance costs are strongly reduced 

compared to equivalent parabolic plants. However, the average working efficiency is 5-7 percentage points 

lower than that of parabolic troughs (8-10% versus 15%) [22]. 

Other performance improvements can be made by the design of new materials for the reflecting surfaces 

and the absorber tube, and by the optimization of the sizing parameters of the plant. 

Regarding these aspects, the project focuses on: 

• reflecting surfaces with good reflection features, precision of shape, resistance, and mechanic stability 

at high temperatures (secondary surface). In particular, the duration of the reflective surfaces is studied 

by using superficial coating and protective painting on the reflective parts and glasses; 

• an absorber tube with high absorption properties and low emissivity through the study of a selective 

coating with high resistance and stability at 300°C that does not require a vacuum; and 

• a tracking mechanism with high accuracy and reliability over time, even in adverse environmental 

conditions (in the presence of sand). 

 

3. The proposed business plan model 

The first phase of the study is the design and creation of a flexible and dynamic business plan model 



 

 

using MS Excel. The model is used to compare different design solutions and to identify the best economic 

plant configurations.  

 

Table 2 

Plant costs: Initial assumptions  
Cost Interval UOM 

Reflecting surface 8-16 €/m2 

Mirror supports 30-55 €/m2 

CPC 55-100 €/m 

Absorber tube 120-300 €/m 

Metal structures 13-20 €/m2 

Foundations 15 €/unit 

Tracking system 4000-10000 €/unit 

Power block 1300 €/kWe 

Piping and wiring 120-300 €/m 

 

The model includes drivers such as the regulatory context (the reference country, the amount of 

governmental subsidies, the duration of the subsidies, etc.), the weather-environmental conditions at the site 

(the direct normal irradiance, etc.) and the financial context (the discount rate, loans, the interest rates, etc.). 

 

The following four types of input variables are identified: 

• technical variables: the installed power, the components that are employed, the features of the 

components, the efficiency, etc.; 

• weather-environmental condition variables: the direct normal irradiance (DNI), the parameters 

defining the wind, etc.; 

• regulatory context variables: the amount of governmental subsidies, the duration of the subsidies, 

etc.;  

• economic-financial variables: the cost of the components, the discounted rates, the interest rates, 

etc. (see Tables 2 and 3); 

 

Table 3 

Economic parameters 

Discount rate (%) 4 

Long-term loan (% of capital cost) 30 

Interest rate (%) 6 

Time for loan repayment (yr) 15 

Depreciation coefficient (%) 9 

O&M costs (% of capital cost) 3 

Overhead (% of capital cost) 1.5 

Annual increase in overhead (%) 2 

 

After the input variables are defined in the model, the structures of the income statement, the balance 

sheet and the financial statement are set up to calculate the KPIs for the economic sustainability of the 

investment as the NPV, the PBP, the discounted profitability ratio (DPR), the IRR, the return on investment 

(ROI), the return on equity (ROE), the project cover ratio (PCR) and the LEC (see Appendix A).  

These KPIs from the business plan model are arranged into a decisional dashboard (Fig. 4) with visual 



 

 

alerts to provide the decision maker with an at-a-glance summary of a specific technological choice. 

 

 
Fig. 4. The decisional dashboard 

 

To include the stochasticity related to the input parameters of the model, appropriate statistical 

distributions are defined to describe some of the identified exogenous variables. Such distributions are 

obtained from a historical database, e.g., DNI, or are identified through public databases, e.g., 

macroeconomic trends and interest rates. 

In this study, a Monte Carlo simulation tool, @Risk Software of Palisade Inc., is integrated into the 

business plan model to simulate the behaviour of the input variables and to obtain simulation outputs that 

are more reliable than those derived from a deterministic analysis. Each output value is associated with a 

probability of occurrence, thus allowing the decision maker a significant improvement in the level of detail 

available to use in the decision process. 

An important topic in the experimental phase is the response accuracy. To determine the accuracy of the 

responses, the mean square pure error (MSPE) evaluation method was applied to each financial KPI in 

replicated runs [23]. 

Increasing the number of simulations resulted in a better fit to the statistical distributions. The MSPE 

methodology was used to evaluate both the stabilization phase of the curve and the residual error in the 

results. The error was controlled by increasing the number of runs because the MSPE approaches zero as the 

run size increases.  

Using this methodology, the sample size of the simulation runs is calculated, which provides an unbiased 

estimation of the related population parameters, and the effect of the tolerance interval on the result is 

estimated. For a more detailed analysis, see Appendix B. 

The analysis of the NPV index (Fig. 5) shows that after 4000 runs, the MSPE of the mean (MSPE MED) and 

the MSPE of the standard deviation (MSPE STDEV) do not change.  

After the correct number of simulations for an accurate solution is identified, any scenario can be 

analysed using the model.  

 



 

 

 

Fig. 5. MSPE evolution curve of the NPV index 

 

In particular, by request of the project leader, two possible plant locations were analysed, one site in 

northern Italy (Savona, Liguria) and one in the south of Italy (Palermo, Sicily), with different DNIs. In Fig. 

6, the yearly DNI profiles (annual average) used for both locations, derived from the database of the Italian 

National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), are 

shown. 

 
Fig. 6. DNI probability density functions (annual average)  

 

For each site, the KPIs related to two possible technical configurations, one with a high conversion 

efficiency and one with a lower efficiency (see Table 4), are evaluated. 

 

Table 4 

Plant configurations. 

Investment  

Cost (€) 

Conversion 

Efficiency (%) 

5.860.079 7,9 



 

 

5.933.183 9,1 

 

Combining the two selected sites with the configurations of Table 2, four economic scenarios are 

generated as follows: 

 Scenario 1: Savona, Low Efficiency 

 Scenario 2: Savona, High Efficiency 

 Scenario 3: Palermo, Low Efficiency 

 Scenario 4: Palermo, High Efficiency 

 

For each of the four scenarios, the business plan model is used to determine the probability density 

function of the economic KPIs. The kWh price used in this model includes governmental subsidies 

provided by the third “Conto Energia”. 

 In particular, as an example, Figs. 7-10 show the probability profiles related to the NPV and the LEC. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7. NPV and LEC for Scenario 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Fig. 8. NPV and LEC for Scenario 2 

 



 

 

  
Fig. 9. NPV and LEC for Scenario 3 

 

 
Fig. 10. NPV and LEC for Scenario 4 

 

In Figs. 7-10, the frequency histograms are derived using the business plan model described in section 5. 

Then, the probability density functions (pdfs), represented by the red curves, are rebuilt. Using a statistical 

fitting model, the pdfs that provide the best fit are chosen from among those that pass the chi-square test.  

The results of the 4 scenarios show that Scenario 4 (Palermo High Efficiency) has the highest NPV 

(mean value € 5,417,000 with a standard deviation € 31,741), a lower LEC (mean value 0.24551 and 

standard deviation 6E-4) and a higher DPR (mean value 0.9130 and standard deviation 0.0053). The 

location of Savona, on the contrary, is not competitive for any of the analysed KPIs. For example, the NPV 

in scenario 2 (high efficiency) has a lower mean value than the one obtained from the low efficiency 

configuration in Palermo (3,725,000 € vs 3,781,000 €). 

The results of the comparative analyses of all of the KPIs show that Palermo is the preferred location for 

the 1 MW experimental plant. Therefore, the remaining analyses refer to the Sicilian site. 

 

4. Technological solution to be analysed 

After the business plan is complete and validated using the MSPE technique, the response surface 

methodology technique is used to compare the available design alternatives. 



 

 

In particular, sensitivity analyses are performed for the following two constructive components:  

 the reflecting surface (Factor A), considering the reflection of different reflective surfaces (e.g., a 

glass mirror at 93% and aluminium coated at 88%) 

 the absorber tube (Factor B), considering the thermal losses of different receivers (e.g., an 

evacuated pipe at -5% and a glass enclosure without a vacuum at -10%) 

Depending on the combination of those parameters, the annual power plant performance is simulated. 

 

4.1 Reflecting surface 

The materials selected for the fabrication of the reflecting surface must have good reflectance, should 

have low superficial micro-roughness and must not graze the protective layer, to avoid diffraction losses. 

The candidate materials are glass and aluminium. To hold the weight, glass is usually matched with 

plastic or steel supports and aluminium is always matched with aluminium supports. 

 

The three technical alternative designs are the following: 

1) a reflecting surface fabricated of thin glass (0.85 mm) with a plastic support; 

2) both the reflecting surface and support fabricated with aluminium;  

3) a reflecting surface fabricated of thick glass (3 mm) with a steel support. 

 

The normal reflectance used during the simulation is 93% for 3-mm glass, 96% for 0.85-mm glass, and 

88% for the aluminium–coated surface. 

 The morphology of the reflective surface for the aluminium-coated or thin glass case is better than for the 

thick glass because of a higher flexibility; the difference, however, is slight, approximately 0,5% between 

the different treatments. 

To aid in achieving the goal of this study, which is to create a new investment choice methodology, the 

technologists have provided a qualitative analysis of the advantages and disadvantages of each type of 

reflecting surface (Table 5). 

 

Table 5 

Advantages and disadvantages of each type of reflecting surface. 

 Advantages Disadvantages 

Glass Highly transparent (low optical loss) 

High performance over time 

Resistant to UV rays 

Relatively hard (resistant to 

abrasion) 

Chemically inactive 

Fragile 

Aluminiu

m* 

Low weight 

Good resistance 

High cost 

* The aluminium used for the reflecting surfaces is anodized aluminium, not treated aluminium, which has a very pliable surface and is 

susceptible to physical damage and to chemical corrosion. 



 

 

 

4.2 Absorber tube 

The absorber tube is one of the most important components of the solar thermodynamic conversion. The 

external pipe diameter is 70 mm and the thickness of the pipe wall is 3 mm. A good absorbing system 

significantly improves the photo-thermal conversion efficiency. The three technical solutions proposed in 

this study are the following: 

1) tube in air with a glass lock (non-evacuated pipe); 

2) tube in air with an annular glass jacket (non-evacuated pipe);  

3) vacuum-sealed tube (evacuated pipe). 

 

The solar absorbance is 96% for the evacuated pipe and 94% for the non-evacuated pipe. 

In the first case (Fig. 11), the absorber tube is surrounded by air contained in the cavity formed by the 

coupling between the secondary reflecting surface and the horizontal glass plate. 

The primary assumptions for this case are as follows: 

 the temperature in the absorber tube is assumed constant: The solar power plant under study is a direct 

steam generation (DSG) plant, wherein the water is boiled directly in the receiver tubes; therefore, 

most of the pipe is involved in the evaporation stage with a constant temperature along the receiver; 

 the thermal flux carried by the primary and the secondary reflecting surfaces is uniformly distributed 
on the external surface of the absorbing tube; 

 the motion of the air is induced by buoyancy; 

 the absorber tube exchanges heat, even by radiation, with the secondary reflecting surface and with the 
glass plate;  

 the boundary surfaces of the system exchange heat, by convection and by radiation, with the external 
environment. 

 

 

Fig. 11 Tube in air with a glass lock 

 

In the second configuration (Fig. 12), the absorber tube is surrounded by air contained in a coaxial pipe 

made of glass. 

The primary assumptions for this case are as follows: 

 the temperature in the absorber tube is assumed constant; 

 the thermal flux carried by the primary and the secondary reflecting surfaces is assumed to be 

uniformly distributed on the external surface of the absorber tube; 

 the motion of air into the blue circular ring is caused by the thermal floating; 



 

 

 the absorber tube exchanges with the glass jacket by radiation; 

 the boundary surface of the system (glass jacket) exchanges heat through convection and radiation with 

the external environment. 

 

 

Fig. 12 Tube in air with a glass jacket 

 

In the third case (Fig. 13), the absorber tube is contained in a coaxial pipe (jacket) made of glass and the 

annular cavity is maintained at a vacuum. 

 

 

Fig. 13 Vacuum-sealed tube 

 

The primary assumptions for this case are as follows: 

 the temperature of the internal surface is constant; 

 the thermal flux through the primary and the secondary reflecting surfaces is uniformly distributed on 

the external surface of the absorber tube; 

 the absorber tube exchanges heat with the glass jacket by radiation only; 

 the boundary surface of the system (glass jacket) exchanges heat with the external environment 
through convection and radiation. 

 

 

5. Economic assessment based on RSM 

Using data from the stochastic business plan model, RSM was used to investigate the behaviour of the 

primary economic KPIs, varying the different plant configurations related to the two components 

mentioned above.  

The first step is the choice of the most suitable experimental design to verify the significance of the two 

components (and their potential interaction). A two-level factorial design with two factors, reflecting 

surface (A) and absorber tube (B), was chosen. This type of design is called a 22 factorial design. Four extra 

central points are added to evaluate the experimental error and to conduct appropriate statistical tests to 

validate the model (test for lack of fit, pure quadratic curvature, etc.) [24]. The scheme of the experimental 



 

 

design is shown in Fig. 14.  

 

 

 
Fig. 14 Scheme of the two-level factorial design 

 

To assign the lower level (-1), the central level (0), and the higher level (+1) to the factors, cost analyses, 

with application of the different technologies, are conducted (see Tables 6 and 7). Levels are then assigned 

based on the cost of the adopted solution. For example, in the case of the reflecting surface, the low level 

corresponds to the lowest cost, while the opposite is true for the absorber tube, as shown in Table 8. 

 

Table 6 

Reflecting surface: Cost assumptions and the resulting impact on efficiency. 

Reflecting Surface €/m2 
Efficiency 

losses (%) 

Glass + Steel 48 9.5 

Alum. + Alum. 70 12.5 

Glass + Plastic 81 7.5 

 

Table 7 

Absorber tube: Cost assumptions and the resulting impact on efficiency. 

Absorber Tube €/m2 
Efficiency 

losses (%) 

Vacuum-sealed tube  39.3 5 

Tube in air with a glass jacket 32.6 14 

Tube in air with a glass lock 27 10 

 

Table 8 

Factor levels. 
 Reflecting 

Surface 

Absorber 

Tube 

Lower level (-1) Glass + Steel Vacuum-sealed tube  

Central level (0) Alum. + Alum. Tube in air with a 

glass jacket 

Higher level (+1) Glass + Plastic Tube in air with a 

glass lock 

 

A regression model for the NPV, the LEC and the DPR was then applied. 

The results from the experimental campaign conducted on the business plan model provide, for each 

configuration, the KPIs shown in Table 9. 



 

 

 

Table 9 

22 factorial design: Experimental data. 

A: 

reflecting 

surface 

B: 

absorber 

tube 

NPV 

(€) 

LEC   

(€/kWhe) 

DPR 

(%) 

(-1) (-1) 5.904.500 0.2280 1.097 

1 (-1) 7.328.830 0.2144 1.241 

(-1) 1 4.799.640 0.2492 0.878 

1 1 6.223.280 0.2324 1.039 

0 0 2.966.490 0.2982 0.5112 

0 0 2.966.610 0.2978 0.5118 

0 0 2.966.340 0.2989 0.5110 

0 0 2.966.320 0.2994 0.5080 

 

To find the regression model for each dependent variable, the software Design Expert, by Stat Ease, Inc., 

is used. The 22 factorial design provides a first-order meta-model, which does not describe the existing 

relations between the economic variables and the various technological solutions (see Appendix C).  

The following step fits a second-order meta-model using a face-centred composite (FCC) design (see 

Table 10). 

 

Table 10  

FCC design: Experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scheme of FCC design the reported in Fig.15. 

 

 

 

 

A: 

reflecting 

surface 

B: 

absorber 

tube 

NPV 

(€) 

LEC 

(€/kWhe) 

DPR 

(%) 

(-1) (-1) 5.904.500 0,228 109,7 

1 (-1) 7.328.830 0,2144 124,1 

(-1) 1 4.799.640 0,2492 87,8 

1 1 6.223.280 0,2324 103,9 

(-1) 0 3.992.830 0,2655 73,8 

1 0 5.416.430 0,2455 91,3 

0 (-1) 4.885.860 0,253 84,52 

0 1 3.780.730 0,2784 64,5 

0 0 2.966.490 0,2982 51,12 

0 0 2.966.610 0,2978 51,18 

0 0 2.966.340 0,2989 51,10 

0 0 2.966.320 0,2994 50,80 



 

 

 
Fig. 15 Scheme of the FCC design 

 

 

 

The FCC results for the three variables show that second-order meta-models correctly describe their 

behaviour. For example, in Fig. 16, the analysis of variance (ANOVA) for the NPV results show that both 

Fisher’s regression tests pass. 

 

 

 
Fig. 16 FCC design: ANOVA results for the NPV 

 

 

 

 

6. Results and discussion 

The second-order meta-models and the related response surfaces of the NPV (Fig. 17), the LEC (Fig. 18) 

and the DPR (Fig. 19) are as follows:  

                                



 

 

 

NPV= 2.966E006+7.119E005A-5.526E005B-170.69AB+1.738E006A2+1.367E006B2-35.73A2B-

7423.68A2B2             (1) 

 

DPR=0.51+0.087A-0.10B+4.25E-003AB+0.32A2+0.24B2-5.15E003A2B-0.011AB2   (2) 

 

LEC=0.30-8.40E-003A+0.013B-0.043A2-0.033B2-2.90E-003A2B+8.375E-003A2B2   (3) 

 

 

 
Fig. 17 Response surface of the NPV 

 

 
Fig. 18 Response surface of the LEC 

 

 



 

 

 
Fig. 19 Response surface of the DPR 

  

The regression meta-model results show that, from the economic point of view, the best technological 

configuration is the glass reflecting surface with plastic supports and the vacuum-sealed tube. This 

configuration yields the highest NPV, the highest DPR and the lowest LEC. 

It is the high conversion efficiency (10,4%) that most positively influences the result. 

On the contrary, the less favourable configuration is one that was recommended by the technologists, i.e., 

the aluminium reflecting surface with aluminium supports and the tube in air with a glass jacket (see Table 

12 for the related results). That particular solution is less expensive if only the cost of the components is 

considered. However, a lower conversion efficiency (7,4%) drastically impacts the total production, thus 

impacting the overall economic result. 

The confidence intervals are calculated for all of the regression models (see Tables 11-13). 

 

Table 11 

NPV confidence interval 95% 

 

 

 

 

 

 

 

 

Table 12 

A: 

reflecting 

surface 

B: 

absorber 

tube 

NPV 

(€ ) 

NPV 

inferior 

limit 

NPV 

superior 

limit 

(-1) (-1) 5.904.500 5.904.140 5.905.000 

1 (-1) 7.328.830 7.328.340 7.329.100 

(-1) 1 4.799.640 4.799.270 4.800.130 

1 1 6.223.280 6.222.790 6.223.650 

(-1) 0 3.992.830 3.992.340 3.993.070 

1 0 5.416.430 5.416.190 5.416.920 

0 (-1) 4.885.860 4.885.410 4.886.310 

0 1 3.780.730 3.780.280 3.781.170 

0 0 2.966.490 2.966.210 2.966.660 



 

 

LEC confidence interval 95% 

 

 

 

 

 

 

 

 

Table 13 

DPR confidence interval 95% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 shows the interval for the LEC in the median section of the domain with the B factor set to the 

central level (tube in air with a glass jacket).The data show that the size of the confidence interval on the 

average response is sufficiently stationary along the entire variability range of factor A (reflecting surface). 

 

A: 

reflecting 

surface 

B: 

absorber 

tube 

LEC 

(€/kWhe) 

LEC 

inferior 

limit 

LEC 

superior 

limit 

(-1) (-1) 0,228 0,226 0,232 

1 (-1) 0,2144 0,2097 0,2158 

(-1) 1 0,2492 0,2462 0,2522 

1 1 0,2324 0,2294 0,2354 

(-1) 0 0,2655 0,2609 0,2669 

1 0 0,2455 0,2441 0,2501 

0 (-1) 0,253 0,2493 0,2567 

0 1 0,2784 0,2747 0,2820 

0 0 0,2982 0,2963 0,2999 

A: 

reflecting 

surface 

B: 

absorber 

tube 

DPR (% ) DPR 

inferior 

limit 

DPR 

superior 

limit 

(-1) (-1) 109,7 109,1 110 

1 (-1) 124,1 123,6 124,5 

(-1) 1 87,8 87,3 88,1 

1 1 103,9 103,4 104,3 

(-1) 0 73,8 73,5 74,3 

1 0 91,3 91,0 91,8 

0 (-1) 0,8452 0,842 0,851 

0 1 0,645 0,642 0,650 

0 0 0,5112 0,508 0,512 



 

 

 

 Fig. 20. Confidence intervals for the mean response of the LEC.   

 

 

7. Conclusions 

The paper identifies a methodology for the renewable energy investment evaluation which allows the 

designer to choose the plant components in accordance with the investment. 

In fact the designer, trying to identify the most technologically advanced solution, often the designer is 

unable to take into account the consequences of the choices on the economic parameters, penalizing the 

investment overall results. 

Consequently, disagreements between designers/construction companies and lenders arise once the plant 

is built. 

Applying the proposed methodology, the designer can protect both himself and the investor in the 

certainty of achieving the best balance between the plant cost and the technical/economic result. 

The Authors have realized that operating in stochastic regime the result precision level is significantly 

higher than in deterministic regime. 

So the Monte Carlo method is used in this methodology. A probability density function and, 

consequently, the occurrence probability for each possible value of the variability interval, are determined 

for every economic and financial index. The results are efficaciously organized in a dashboard to provide to 

the decision makers, at a glance, a complete vision of the investment profitability. 

 In addition to this phase of preliminary investigation, an economic and comparative analysis of the 

technological alternatives is performed based on the RSM technique. 

Contrary to the traditional sensitivity analysis, the sensitivity analysis in this study investigates the 

variability of more elements at the same time, by considering each single factor and their interactions. 

The case study (the linear Fresnel CSP of the new concept) validates the proposed approach and 

demonstrates that the technical solution identified by the technology partners would, if implemented, 

generate a decrease in the investment parameters. 
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Appendix A 

Economic parameters for the evaluation of the investment 

The economic parameters used in this study for the evaluation of the investment are listed and defined 

below. These parameters are calculated in stochastic regime using the business plan model.  

 

Net Present Value (NPV) 

The net present value is the algebraic sum of the cash flows (OFCF) over several years of the analysis 

horizon discounted at an interest rate (WACC) as follows:  

 

𝑁𝑃𝑉 = ∑
𝐹𝐶𝐹𝑂𝑡

(1 + 𝑊𝐴𝐶𝐶)𝑡

𝑛

𝑡=0

− 𝐹𝐶𝐹𝑂0 

Pay Back Period (PBP) 

The investment pay-back period is the point of temporal equilibrium of the cash in and cash out 

discounted at the WACC rate as follows: 

 

∑
𝐹𝐶𝐹𝑂𝑡

(1 + 𝑊𝐴𝐶𝐶)𝑡
− 𝐹𝐶𝐹𝑂0 = 0

𝑃𝐵𝑃

𝑡=1

 

where the PBP index must be determined. 

 

Discounted Profitability Ratio (DPR) 

The discounted profitability ratio is the ratio between the net present value and the initial investment. It 

provides the percentage return of the investment expenditure for the lifetime of the project as follows: 

 

𝐷𝑃𝑅 (%) =
𝑁𝑃𝑉

𝐹𝐶𝐹𝑂0
× 100 

 

Internal Rate of Return (IRR) 

The internal rate of return is the interest rate at which the NPV is zero. It is determined using the following 

equation:  

 

∑
𝐹𝐶𝐹𝑂𝑡

(1 + 𝐼𝑅𝑅)𝑡

𝑛

𝑡=0

− 𝐹𝐶𝐹𝑂0 = 0 

 Project Cover Ratio (PCR) 

The PCR is the ratio of the present value of the cash flows over the remaining full life of the project to 

the remaining debt in the period as follows:  

 

𝑃𝐶𝑅𝑡 =
∑ 𝐹𝐶𝐹𝑂𝑡

𝑛
𝑡

𝐷𝑒𝑏𝑡𝑡
 



 

 

 

Levelized Electricity Cost (LEC)  

The LEC is the price at which electricity must be generated from a specific source to break even over the 

lifetime of the project. It includes all costs over the project lifetime: the initial investment, operations, 

maintenance, cost of fuel, and capital costs. 

 

𝐿𝐸𝐶 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 + 𝑂&𝑀 + 𝐹𝑢𝑒𝑙

Annual electricity generation (𝑘𝑊ℎ𝑒 𝑦𝑒𝑎𝑟⁄ )
 

 

Return On Investment (ROI) 

The ROI metric measures, per period, the rate of return on invested money as follows:  

 

ROI (%) =
Net profit

Investment
×  100 

 

 

Appendix B 

Role of the mean square pure error in the definition of the correct number of runs for the Monte 

Carlo simulation 

The “goodness” of a Monte Carlo model depends not only on the construction of the model, i.e., the system 

analysis, the data survey, and the logic transcription, but also on performing a complete experimental 

activity, which should include the measurement of the experimental error, which is generally a normal 

distribution (NID (0, σ2)) (Box et al. 1987, Myers et al. 1985, Montgomery 1997). 

The value of σ2, which can be estimated using Cochran’s theorem (Montgomery 1997) through the 

measurement of the mean square pure error (MSPE), its unbiased estimator, is an intrinsic characteristic of 

each model and is strictly connected to the investigated reality because it is directly dependent on the 

overall stochasticity of which this reality is affected. In other words, any object system displays its own 

level of stochasticity conditioning the behaviours of the output variables and entering in the simulation 

model, by producing a characteristic error which cannot be set aside. In the experimental phase, the real 

problem is not the background error, which cannot be eliminated because it is chromosomal in each 

stochastic system, but the possibility to add to it a second important error source, which, contrariwise, can 

be controlled  and, if necessary, even eliminated. This second source is represented by a number of 

extractions from random variable distributions in the model inadequate to obtain, in the simulation phase, 

the whole adherence to the actual probability distributions. 

The MSPE trend in the simulated time, for all systems displaying a time evolution characterized by a 

sufficiently high number of extractions from the model frequency distributions, shows that the real system 

error can be separated from the total error, with all of the subsequent positive consequences reliability 

analysis on the model output results. 

http://en.wikipedia.org/wiki/Cost_of_capital


 

 

On the contrary, there are object systems that cannot be managed in the experimental phase according to 

the MSPE evolution scheme in the simulated time. 

This problem occurs each time that the number of extractions from the frequency distributions that 

characterize the model is limited to a single value or, in any case, to a limited sample not adequate to obtain 

an effective description of the above-mentioned distributions. 

This class includes all of the economic-financial models such as the one described in this paper. 

In this case, particular variables, characterizing any following accounting period, are assigned to the form 

of frequency distributions displaying an uncertainty character growing in time (costs of raw materials, 

personnel, and services; sale proceeds; transfers; investments; etc.) from those, in the experimental phase, it 

will be selected, at worst, a single value destined to characterize any specific activity.  

The primary difference between this methodology and the evolution time methodology is that, in this case, 

both the variance of the mean response (MSPEMED) and the variance of the standard deviation 

(MSPESTDEV) must be monitored. Using these two parameters, the optimal number of runs to obtain an 

unbiased evaluation of the experimental error afflicting the objective function can be chosen. 

Common sense indicates that a larger sample yields a better description of the population. With this 

methodology, it is possible to graphically illustrate the evolution of the variance of the experimental error 

as a function of the sample size. In this way, the experimenter will be able to choose the best ratio between 

experimental cost and expected results. 

In conclusion, the proposed methodology identifies the number of replicated runs required to minimize the 

error generated by inadequate overlapping of the probability density functions of the variables, with Monte 

Carlo extraction, according to the needs of the experimenter. 

The technique for the MSPE study in the replicated runs can be divided into the following phases: 

 fix a number K>2 of simulations, performed in parallel, in which the independent model variables 

are maintained at the same level, modifying only the triggering seeds of the random numbers. In the 

case of a single replication factorial experiment or central composite design application, K is equal 

to the central runs used in the experimental design (recall that the variance of the pure experimental 

error must be constant in each point of the operability region and therefore in the centre as well as at 

the boundary). 

 

 for each simulation, establish a number N >>1 of replications 
ijy  with i=1...N, j=1…K  

 

 for each of the K runs, calculate N means ijy  with i=1,..n..N, where 

 n

y
y

n

i ij

nj

  1

 (B.1) 

 

 calculate N means of the means iY  with i=1..n..N as follows: 



 

 

K

y
Y

K

j nj

n

 


1

 (B.2) 

 

 calculate N values of MEDMSPE  as follows: 

 

1

)(
)(

1

2





 

K

Yy
iMSPE

K

j iij

MED

 (B.3) 

 

where 1 ≤ j ≤ K and 1 ≤ i ≤ N. 

 

The results, transferred onto the plane (i, MSPEMED), show the mean square pure error curve trend in the 

replicated runs. So it is possible to know the error variance that impacts each objective function step-by-

step. 

According to Cochran’s theorem, MSPEMED represents the best estimators of the experimental error 

variance σ2 and, consequently, gives a measure of the experimental error in the mean value of the 

distributions of the means. 

Figure B.1 shows the MSPEMED concept as a dependent variable dispersion measure:  

for each of the K runs, given N replications, a frequency distribution is obtained 

with a mean j Ny ; 

the K means, j Ny  where 1 ≤ j ≤ K, opportunely sampled, produce the mean frequency distribution with a 

mean of NY  and unbiased variance estimate by MSPEMED.  

 

 

Fig. B.1 (MSPEMED generation display) 

 



 

 

The same approach is also valid for the standard deviation. For each of the K runs, N standard deviations 

are calculated 
ijstdev (

jy1
,

jy2
, …

ijy ) where 1 ≤ i ≤ N from which N means of standard deviation are 

obtained as follows: 

 

K

stdev
stdev

K

j nj

n

 


1

. (B.4) 

 

 Then, N MSPESTDEV are calculated as follows: 

 

1
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1

2





 

K

stdevstdev
iMSPE

K

j iij

STDEV

 (B.5) 

 

where 1 ≤ j ≤ K and 1 ≤ i ≤ N. 

 

Each MSPE carries knowledge that yields important inferences as to the behaviour of the actual 

experimental responses because, according to Cochran’s Theorem, this identifies the interval in which there 

is a 99.7% probability that the value y* from a single simulation lies in it.  

In the time-based evolution systems, usually managing small samples (the K for parallel runs in simulation 

problems is seldom greater than ten), the generic expression of this interval is as follows: 

 

MEDMED MSPEyyMSPEy 3*3 
 (B.6) 

 

In the runs-based evolution systems, the following holds: 

 

STDEVMED MSPEVARMSPEy   33  *y  
33  MEDMSPEy STDEVMSPE VAR

 (B.7) 

where VAR  is the square of 
Nstdev . 

 

Moreover, when each of the experimental responses resulting from K parallel runs would have a 

sufficiently great wideness to allow an exhaustive description of the population behaviour, contrary to what 

happens for the temporal evolution MSPE, the two MSPE values evolving in the simulations would crash 

on the axis of the abscissa (MSPE = 0). In this way, the entire stochastic description of the real system, and, 

consequently, in the model, is represented by the experimental response variance as follows: 

 

lim N→∞ MSPEMED =  lim N→∞ MSPESTDEV = 0 

 

for which 



 

 

VARyyVARy MEDMED 3*3  

 (B.8) 

 

For the experimenter, the problem is not to obtain a theoretical MSPE = 0, but to limit the number of runs 

N through a careful check of the experimental error evolution in terms of both magnitude and convergence, 

to also limit its impact on y* to acceptable values. 

As previously shown, for each replication, the parameter N influences the number of runs to perform in the 

calculation of the statistical parameters (mean, etc.) of the dependent variable and the number of R survey 

points of the dependent variable MSPE calculation.  

With respect to the number K runs performed in parallel, the interest to choose a high K can be correct. As 

K increases, the sample for that operation becomes wider. Therefore, the size of K necessarily affects the 

accuracy of the mean of the dependent variable mean/variance distribution. In many cases, therefore, in 

spite of the computational power availability, it could happen that, as K increases, the MSPE calculation 

time rapidly becomes heavy. 

To correctly evaluate both the stochastic effect on the experimental response and the characteristic error, it 

is important to choose N of 104 or greater. With respect to K, most importantly, when it would be 

impossible to reuse the collected information, for example during the central runs of a composite design, 5-

6 replications seem, generally, more than sufficient for a correct estimation of the MSPE evolution and thus 

of the response confidence interval.  

 

Appendix C 

The primary point of the RSM philosophy is to adapt to the problem regression meta-models at an order 

as low as possible. For this reason, the first adaptation hypothesis is that the reality can be described with a 

first-order meta-model. This condition must be subsequently verified using the F-test on the regression and 

the lack of fit F-test. The experimental design which can provide the best-performing first-order meta-model 

is the 2k factorial design. In this case, none of the three objective functions taken into account could be 

described with first-order models as shown, for example, in the analysis of the ANOVA table for the DPR 

(Fig. C.1). 

 

Fig. C.1 First-order DPR ANOVA table 

 



 

 

In the far right column, the terms "not significant" and "significant" indicate the failure of the F-test on 

regression and thus the failure of the lack of fit F-test. These data show that a first-order meta-model is not 

the correct model to describe the objective functions. 

Therefore, it is necessary to use a second-order meta-model, formed by adding the four additional design 

points (the axial points). 

The second-order face-centred composite design (used in chapter five) is a good adaptation for all three 

objectives in this study. 
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