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ABSTRACT 

The dynamic behaviour of laminated structures with imperfect interfaces is studied by considering 

the propagation of harmonic waves. Interfaces are assumed to allow for relative motion in both the 

tangential and normal directions.  New models are developed for studying basic cases and the 

fundamentals of the problem, a new and efficient zigzag theory is used to analyse laminates with an 

arbitrary number of layers.  This work is applicable to laminated composite structures, sandwich 

structures, laminated glass and other laminated structures.  The work points out the challenges 

associated with modelling laminates with imperfect bonding and the limitations of several existing 

theories, particularly for dynamic problems.   

 

1 INTRODUCTION 

This study is focused on layered beams with imperfect interfaces so that relative motion occurs in 

both the tangential and the normal directions.  To determine the influence of these imperfections on 

the behavior of the beam we examine the propagation of harmonic waves.  This work is applicable to 

laminated composite structures which often have a resin rich zone between layers, sandwich 

structures, laminated glass, and also nano-composites. It is also applicable to these structures in the 

presence of interfacial damage and delaminations.  

Studies in this area started with the work on Newmark et al [1] who considered steel–concrete 

composite beams with an elastic shear connection between the two elastic materials and showed the 

importance of the relative slip between the two portions of the beam.  Several individual pieces of 

lumber can be joined together using adhesives or nails to form a laminated beam.  Typically all the 

layers are assumed to have the same transverse displacement but are assumed to slip at the interface.  

Bohnhoff [2] represents each layer by a conventional frame finite element. Nail elements connecting 

the layers above and below the interfaces are linear springs connecting the neutral axes of those layers 

in the axial direction.  With laminated glass, stiff glass layers are connected by a soft polymeric layer 

and the same kinematic assumption is made: the glass layers have the same transverse displacement 

and curvature and the interlayer provides coupling of the axial displacements of the layers above and 

below.  Some studies consider geometrical nonlinearities by including von Karman type terms in the 

strain-displacement relations (e.g. [3]) or the viscoelastic behaviour of the interlayer (e.g. [4]).  

Generally the transparent elastomeric interlayer is elastic for short duration (less than 60 s) loading  

and viscoelastic under long-duration loading [5][6]. Imperfectly bonded interfaces in laminated 

composite structures have been considered since the late 1990s (e.g. [7][8]).  Zig-zag approaches have 

been proposed, and later perfected [9] to treat problems with a large number of layers and imperfect 

interfaces using the same number of variables of classical single-layer theories.   Adekola [10] was the 

first to consider the relative motion in the direction normal to the interface so that layers above and 

below the interface no longer have the same curvature. 
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Section 2 develops a simple but general approach for elastically connected double beams with 

relative motion in the tangential and normal at the interface. Application to sandwich structures are 

discussed in Section 3 and Section 4 discusses wave propagation in multilayer structures with 

imperfect interfaces modelled using a new and improved zigzag theory. 

 

2 TWO LAYER BEAM WITH ELASTIC INTERFACE 

Consider two elastic beams separated by an elastic interface.  In the following, properties of the top 

and bottom beams are denoted by the subscripts 1 and 2 respectively.  Fig. 1 shows a free body 

diagram of a small segment of length Δx for the top beam.  N1 is the axial force, V1 is the shear force, 

M1 is the bending moment, and TT and TN are forces per unit length in the tangential and normal 

directions. 

 

 

 

 

 

 

 

 

 

Figure 1:  Free body diagram of a small element of the top beam in a two-layer beam 

 

The equations of motion of this beam are 

o
111Tx,1 uATN   111Nx,1 wATV    111T

1
1x,1 IT

2

h
VM    

 

(1-3) 

 

where 
o

1u  is the longitudinal displacement of the neutral axis, w1 is the transverse displacement , and 

1  is the rotation of the cross section.  Using the kinematics of the Timoshenko beam theory, the axial 

displacement at an arbitrary point is given by 1

o

11 zuu  , and the beam constitutive equations are 

 
o

x,1111 uAEN    
x,1111 IEM     x,11111 wAGV   (4-6) 

 

The relative displacements at the interface between the two beams are o

2

o

1N ww   in the normal 

direction and 2
2

1
1o

2

o

1T
2

h

2

h
uu   in the transverse direction.  The interface forces are 

NNN kT   and TTT kT  .  For the lower beam (beam 2) the equations of motion are 

 

 

o
222Tx,2 uATN   222Nx,2 wATV    222T

2
2x,2 IT

2

h
VM    (7 

 

(7-9) 

 

The constitutive equations for beam 2 are obtained by changing subscripts 1 to 2 in Eqs. 4-6.  These 

equations describe the behavior of two Timoshenko beams coupled by an elastic interface allowing 

motion in both the tangential and normal direction. In the remainder of this section, the dynamic 

behavior of beams on elastic foundation, Timoshenko beams, and elastically connected beams is 

examined. 
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2.1 Bernoulli-Euler beam on elastic foundation 

For a Bernoulli-Euler beam 
x,11 w , 0I11  and, beam 2 being rigid, the motion is governed by 

 

o
111x,1

1o
1T

o
xx,111 uAw

2

h
ukuAE 








  

(10) 

0w
2

h
uk

2

h
wkwAwIE xx,1

1o

x,1T
1

1N111xxxx,111 







   

(11) 

 

Consider three cases: 

1. Case 1: kT=0, Eq. 10 becomes the wave equation  o
111

o
xx,111 uAuAE  and Eq. 11 becomes the 

equation of motion for a beam on a Winkler foundation  0wkwAwIE 1N111xxxx,111   .   

2. Case 2: 0kT  but the top and bottom beams are assumed to be connected at their neutral axes 

(Fig. 2.a) as in [2].  The tangential slip is o
2

o
1T uu   with 0uo

2  for the present case and the 

4
th
 term in Eq. 11 disappears since TT no longer creates a bending moment.  Eq. 10 becomes 

o
111

o
1T

o
xx,111 uAukuAE  and Eq. 11 is that of a BE beam on a Winkler foundation. The axial 

and transverse motions are still uncoupled. 

3. Case 3: fully coupled case (Fig. 1.a) governed by Eqs. (10, 11) 

 

For harmonic waves with frequency ω and wave number k propagating in this rod, 

  tkxiexpUu 1
o
1   and   tkxiexpWw 11  . The wave number is related to the wavelength  

by  /2k  and the phase velocity c= ω /k.  The radius of gyration of the cross section ( A/Ir  ) is 

used in the presentation of the results (Fig. 2).  For a beam on elastic foundation, the presence of the 

foundation affects the bending behavior for long wavelengths (Fig. 2.b) and for the fully coupled case 

both coupling constants affect the behavior even if the results (Fig. 2.c) appear qualitatively similar. In 

Fig. 2.c, the line labelled NF is for the case of a beam with no foundation (kN=kT=0). 

 

 

 

 

 

 

 

 

 

(a)                                                  (b)     (c) 

 

Figure 2: (a) normal and shear coupling for Case 2; (b) effect of foundation modulus on phase 

velocity for beam on Winkler foundation (kN/EA=0, 0.1, 0.5, 1; r=1); (c) fully coupled model 

(kN/EA=kT/EA=1; r=1) 

 

This example shows the effect of assumptions on the coupling between the two beams (Figs. 1.a, 

2.a) and the effect of the two elastic constants kT and kS.  Results show that the effect of the foundation 

is important for long wavelengths. 
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2.2 Elastically connected rods 

With the elastic coupling model used in subsection 2.1 (Fig. 2.a) where 
o

2

o

1T uu  , axial and 

bending motions are uncoupled.  The equations of motion for two coupled rods are 

 

  o

111

o

2

o

1T

o

xx,111 uAuukuAE  ,   o

222

o

2

o

1T

o

xx,222 uAuukuAE   (12) 

for axial motion and for bending, 

  0wwkwAwIE 21N111xxxx,111   ,   0wwkwAwIE 21N222xxxx,222    (13) 

There is an extensive literature on elastically coupled beams governed by these equations.  To cite 

only two references: [11] deals with the longitudinal motion of elastically connected bars and multiple 

beams governed by Eqs. 13 are considered in [12].  Usually all the beams are assumed to be identical.  

For harmonic waves with frequency ω and wave number k propagating in a coupled rod system, 

  tkxiexpUu 1

o

1   and   tkxiexpUu 2

o

2  .  Substituting into Eqs. 12 gives the dispersion 

relation 

 

   0kAkkAEAkkAE 2

T

2

22T

2

22

2

11T

2

11   (14) 

 

When the two bars are identical, there are two wave propagation modes: (a) the first one with 

frequency kco  where  /Eco and 21 UU  so the two bars move in phase; (b) for the second 

mode  A/k2kc T

22

o

2  , 21 UU  , and the bars move in opposite phase.  For long waves the 

cut-off frequency given by A/k2 T

2

co  shows the effect of the elastic coupling.  For short waves 

both modes have essentially the same phase velocity co which is often called the bar velocity. 

Similarly, for two elastically coupled identical beams, substituting   tkxiexpWw 11   and 

  tkxiexpWw 212   into Eqs. 13 gives two types of harmonic waves: (a) for the first mode 

A/kEI 42  and 21 WW  ; (b) for the second mode,   A/k2kEI N

42  and 21 WW  .  

As in the case of axial motion, the two beams move in phase for the first mode and in opposite phase 

for the second mode. 

 

 

2.3. Wave propagation in Timoshenko beams 

Here we study the propagation of harmonic waves in a single isotropic beam modeled using 

Timoshenko’s first order shear deformation theory.  When TN = TT=0, using Eqs. 5,6, the equations of 

motion (Eqs. 2,3) are those from the Timoshenko beam theory.  The dispersion relations for 

Timoshenko beam theories can be written as 

 

   0kEIGAGAkIEIkGAAIA 42224   (15) 

 

For a homogeneous beam, after some algebraic manipulations, in terms of the phase velocity c, 

   0krcckrckrcccckr 222
o

2
s

222
s

222
o

2
s

2422   (16) 

 

where A/Ir  is the radius of gyration of the cross-section,  /Eco  is the bar velocity, 

 /Gcs is the shear wave velocity.  Therefore, rk is a non-dimensional parameter and Eq. 16. can 
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be used to plot c/co as a function of rk (Fig. 3).    2
s

2
o c12c  and a Poisson’s ratio of 0.3 was used.  

The blue line in Fig. 3 is the dispersion relation rkcc o for BE beams.  The dispersion curves for the 

Timoshenko beam (in red) consist of two branches: (1) the lower branch or acoustic branch is initially 

tangent to the dispersion curve of the BE beam and tends to the shear wave velocity cs for short waves; 

(2) the upper branch or optical branch tends to the bar velocity co for short waves and for long waves c 

becomes infinite which correspond to a cut-off frequency r/cI/GA sco  from Eq. 15.  For 

Timoshenko beams, the first mode is known to be a good approximation to the first anti-symmetric 

Lamb mode (Ao mode) for waves propagating in an elastic layer.  However, for short waves the phase 

velocity of the Ao-mode tends to that of Rayleigh waves which is slightly lower than cs.  This is why a 

shear correction factor   is usually used for the shear rigidity  GAGA .  The second mode does 

not approximate the next anti-symmetric mode (A1-mode) which is obvious since it tends to co 

whereas anti-symmetric modes tend to cs.  Studies of the vibration of TBs concluded that “predictions 

above the cut-off frequency should be disregarded” [13].  A discussion of the treatment of the second 

mode of the TB can be found in [14].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Non-dimensional phase velocity c/co versus rk, the product of the radius of gyration r and the 

wave number k for a homogeneous Timoshenko beam.  Blue line: BE beam theory, Red lines: TB 

beam theory. 

 

The phase velocity predicted by the BE beam theory is less than 5% higher that than predicted by 

the TB theory when rk<0.17 or λ>37r.  For a rectangular cross section this means that the wavelength 

should be more than 10.68 times the height of the beam, a result to keep in mind in developing models 

for sandwich structures or laminates with imperfect interfaces. 

 

3 SANDWICH STRUCTURES 

Sandwich structures can be seen as two layers of noble material held together by a much lighter 

and more flexible core.  Many theories assumed that the kinematics of the deformation of the facings 

can be represented by those of the Bernoulli-Euler beam theory or the Timoshenko beam theory.  

Similarly, for plates the assumptions of the Kirchhoff-Love or the Mindlin plate theories are used 

model the facings.  Many levels of approximation are used to describe the deformation of the core.  In 

the following we first examine the dynamic behaviour of sandwich beams with shear flexible cores 

that do not deform in the transverse direction.  Then we discuss how the approach described in section 

2 can be used to analyse cases with cores that are also soft in the transverse direction. 

 
3.1 Sandwich beams with antiplane core 

Sandwich structures have been studied extensively for many years since the concept originated in 

1849 and the first research paper was published by Marguerre in 1944 [15].  Here we compare several 

sandwich beam theories on the basis of dispersion curves for harmonic wave propagation.  Mead [16] 

re-derived and compared several theories including the simplified Yan Dowell (SYD) theory, and the 
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Di Taranto, Mead, Markus (DTMM) theory.  The SYD and DTMM theories assume that the facings 

deform like BE beams and that the core is rigid in the transverse direction.  The kinematics of the 

deformation is given by x,

o

11 zwuu  for the top facesheet, xx,

o

33 zwuu  for the bottom facesheet 

and in the core (layer 2 to follow the notation in [16]) the axial displacement x2 is assumed to vary 

linearly through the thickness.  For the SYD theory, the motion is governed by 

 

     0wmwg/1d/dmwY1EI tt,xxtt,1totxxxx,tot   (15) 

where 321tot hhhd  is the total thickness,   2/hhhd 312  is the distance between the 

midplanes of the facings, 12/hI 3
11  and 12/hI 3

33  are the moments of inertias of the top and bottom 

facings, and tot3311 EIIEIE  .  Kerwin’s “geometric parameter”  3311tot3311
2 hEhEEI/hEhEdY   

and the shear parameter       3311221 hE/1hE/1h/Gg  are defined for convenience.   For harmonic 

waves of the form   tkxiexpWw  , the dispersion relation is 

 

      4
tot

2
1tot

2 kY1EIkg/1d/d1m   (15) 

 

For long wavelengths the dispersion curve (phase velocity versus wave number) is tangent to the line  

  m/Y1EIkc tot  . The dispersion curve tends to the asymptote    md/dgY1EIc tot1tot  for 

short wavelengths.  With the DTMM theory, the motion is governed by a 6
th
 order equation  

 

  0wmgwmwY1gEIwEI tt,1xxtt,xxxx,1totxxxxxx,tot   (16) 

 
and the dispersion relation 

 

    4
1

6
tot1

22 kY1gkEIgkm   (17) 

 

indicates that for long wavelengths, the dispersion curve is tangent to the line   m/Y1EIkc tot  as 

for the SYD theory while for short wavelengths it tends to m/EIkc tot . In other words, for long 

wavelengths the beam works as a single beam and for long wavelengths the two facesheets appear to 

be disconnected. 

 

Backström and Nilsson [17] showed that the well-known sandwich beam theory derived by Nilsson 

results in a 6
th
 order dispersion relation.  The dispersion equation for that theory is bi-quadratic 

equation 0CBA 24  with      cctot
2

totcctot21tot
4

21tot hGkIhGDDDkDDIB 

tottot IA  , and   4
totcc

6
tot21 kDhGkDDDC  .  In their notation, D1 and D2 are the bending 

stiffnesses per unit width of the laminates, Dtot is the total bending stiffness per unit with of the beam, 

Itot is the mass moment of inertia per unit width of the beam, Gc is the shear modulus of the core, hc is 

the thickness of the core, and is the total mass per unit length and width of the beam.  In the following 

example, the facings have a thickness h1=h2=2 mm, an elastic modulus E1=E2=70 GPa and a density

21  =2700 kg/m
3
.   The core has a thickness hc=10 mm, a shear modulus Gc=45 MPa, and a density

c =74 kg/m
3
.   

Fig. 4 compares the dispersion curves obtained from the Bernoulli Euler (BE), Timoshenko (T), 

and the Backström-Nilsson (BN) theories in three parts.  Fig. 4.a shows the results for long 

wavelengths (k<50).  The straight line is the dispersion curve for the BE theory and the other two are 

for the first mode of the T and BN theories.  As expected the BE theory is applicable only for very 
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long wavelengths.  In this case, k<4 which corresponds to a  > 1.57 m or more than 112 times the 

total thickness of the beam.  For the first of the Timoshenko theory, the phase velocity c tends to the 

limit A/GA  =197.5 m/s while for the first mode of the BT, c appears to increase linearly with k as 

k increases.    

From Eq. 18 we can show that, as k increases, the phase velocity tends to   tot211 /DDkc   

for one mode and to tottot2 I/Dc  for the other.  Fig. 4b shows that for the first mode of the BT 

theory the dispersion curve is initially tangent to that for the BE theory with a bending stiffness equal 

to Dtot and then it tends to that obtained from the BE theory with a bending stiffness equal to 21 DD  .  

This indicates that for short wavelengths the coupling provided by the core is ineffective.  Finally, Fig. 

4.c shows the interactions between the two modes of the BT theory as curve veering occurs.  This 

phenomenon occurs for wavelengths of the order of 1mm which is smaller than the thickness of the 

facings suggesting that the model is no longer valid at that extreme of the spectrum.  The two modes 

of the Timoshenko beam are also shown for comparison. 

 

 
(a)                                                (b)    (c) 

 

Figure 4: Dispersion relations for the BE, T, and BN beam theories (Phase velocity in m/s versus wave 

number in m
-1

). 

  

 
Figure 5: Comparison of five sandwich beam theories (BE, T, BN, SYD, DTMM) on the basis of 

harmonic wave propagation. 

 

Fig. 5 compares the simpler SYD and DTMM theories to the theories examined previously in Fig. 

4.  These two theories produce the same results for long wavelengths and then diverge as k increases.  

The SYD behaves as the lower branch of the Timoshenko theory with a higher value of the asymptotic 

limit.  Results for the DTMM theory are similar to those obtained using the BN theory. 

 

3.2 Sandwich beams with transversely deformable cores 

The equations of motion for two identical BE beams elastically connected in the tangential and 

normal directions given by Eqs. 1-6 can be written in terms of displacements.  The equations simplify 
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when written in terms of o
2

o
1a uuu  , 

o
2

o
1d uuu  , 21a www  , 21d www  .  Two of the 

equations are uncoupled 

 

tt,axx,a uAuEA  , 0wk2wAwEI dNdxxxx,d    (18) 

 

and the other two are coupled 

  tt,dx,adTxx,d Auhwu2kuEA      0w
2

h
uhkwAwEI o

xx,a
o

x,dTaxxxx,a 







   (19) 

 

Eqs. 19 govern the bending motion of the sandwich beam. The variable wa represents the transverse 

displacement of the beam and ud is a measure of the rotation of the cross section.  For sandwich 

beams, the constants kN and kT can be derived in terms of the properties of the core.  The simplest 

assumption for the deformation of the core is to assume that both the axial and transverse 

displacements vary linear through the thickness.  This leads to the determination of kN and kT in terms 

of the material properties of the core.  Then the dispersion relation is a bi-quadratic equation with 

terms up to k
6
 like in the BN theory.  For a more refined description of the deformation of the core, 

additional degrees of freedom are needed.  Further results will be presented later. 

 

4 LAMINATES WITH IMPERFECT INTERFACES 

Laminated structures have been studied extensively since the nineteen seventies when the early 

papers by Pagano and Kulkarni and Pagano [18,19] first highlighted the limitations of equivalent 

single-layer theories, such as classical plate theory or higher-order plate theories, in modelling thick 

highly-anisotropic structures. Among the many models proposed in the literature, the zig-zag theories 

assume special relevance (e.g. [20]), since they accurately describe the complex zig-zag fields, which 

arise due to the multi-layered structure, using the same number of variables of equivalent single-layer 

theories. Early applications of the zig-zag concept to laminates with imperfect purely-elastic interfaces 

with 0TT   and 0N   were presented in [7],[8]; the theories were later corrected, to make them 

energetically consistent, and extended to beams and plates with mixed-mode cohesive interfaces 

characterized by piece-wise linear tractions described by affine branches, T T T TT k t   and 

N N N NT k t  , in [9],[21]. In the next sections, the model in [21] will be briefly recalled and some 

examples will be presented. 

 

4.1 Multiscale modeling  

The multiscale model formulated in [9][21] couples an equivalent single-layer first order shear, 

first order normal deformation theory and a discrete-layer cohesive-crack model, in order to efficiently 

describe the global behaviour of the structure and the perturbations of the local fields generated by the 

discontinuities of the elastic constants at the layer interfaces and the presence of imperfections. 

Homogenized field equations are obtained through the imposition of a-priori continuity conditions on 

the tractions at the layer interfaces and Hamilton principle of elastokinetics.  

In [22] the model has been particularized to study the free vibrations of simply supported beams 

with rectangular cross section of thickness h  and unit width, n layers and n-1 imperfect, purely 

elastic, interfaces. The interfacial traction law 
i i i

T T TT  = k δ  relates the interfacial tractions at the i 

interface to the relative sliding displacement, 
i

Tδ , with 
i

Tk  the stiffness of the ith interface (
i

Nδ =0, for i=1..n-1).  

The macro-scale displacements in the kth layer of the beam are: 

 

 o

k x Sku (x,z,t)=u (x,t)+zψ(x,t)+ w, (x,t)+ψ(x,t) R (z)  

kw (x,z,t)=w(x,t)  

(20)
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with: 

 
k-1 i

1 j j+1i1 i i+1 i+1
Sk i

i=1 j=1i i+1 T j j+1

G (G -G )G (G -G ) G
R (z)= z-z + 1+

G G k G G

  
   
   

  , 
(21)

 

 
iz  the coordinate of the i

th
 interface and iG  the shear modulus of the layer i. SkR (z)  vanishes in 

unidirectionally reinforced beams with fully bonded layers, when the model coincides with 

Timoshenko beam theory. The displacement field of Eq. (20) satisfies continuity of the shear tractions 

at the layer interfaces and the interfacial tractions law; the field depends on the global variables, axial 

and transverse displacements and bending rotation, u ,w,ψ . Using the notation applied in this paper, 

the dynamic equilibrium equations for the beam in the absence of surface and body loads are: 

 

 
0

x xN, +I =0  (20)
 

1

x g xM, -V +I =0  (21)
 

0

g x zV , +I =0  (22)
 

 

where  N  and M  are the normal stress resultant and bending moment and gV  is a generalized 

transverse shear force, which accounts for the inhomogeneous structure and the imperfect interfaces 

(see [21]) and equates the classical transverse shear force, gV =V , in a unidirectionally reinforced 

laminates with fully bonded layers;  0 1 0

x x zI ,I ,I  are inertia terms which depends on the second time 

derivatives of the generalized displacements, ou ,w,ψ , the mass density, material/geometrical 

properties and the stiffness of the interfaces; in a unidirectionally reinforced beam with no 

imperfections and when the reference system is centroidal, the inertia terms become 
0 o 1 0

x x zI =-ρhu , I =-ρIψ, I =-ρhw  and the equilibrium equations are those of classical Timoshenko beam 

theory. 

 

4.2 Dispersion curves in unidirectionally reinforced beams with elastic interfaces  

 

The results in [22] are used here to define the dispersion equation of a unidirectionally reinforced 

beam with elastic constants E and G, n layers and n-1 imperfect interfaces, with 
i

T Tk =k  for  

1 1i ,...,n  . The dispersion equation is: 

 
2 4 2 2 2

2 1ω E ω Θ E ω E Θ
- - + Γ + Γ =0

k ρ k k ρ k ρ k

              
             
                 

 

(25)
 

 

with: 

                   
2 2

2

1 2
2

2 2

T

(k +a)k
Θ =

ρ 1 (n -1) G
k + - a+

r k n k h

E

b
  
  

  

,           
2 2

2

2 2

E (k +ac)k
Θ =

ρ k +Ebh
 

(26)
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2

T

2

2
2

2

1 (n -1) 1
Γ= k + - a+

r k n k h

G
b

k +b

  
  

  
,         

22

T

2 2

T

1 G n hk
= +(n-1)

Er E hk -1 G
a

n

G

   
   

  
, 

2

2 S S

2 2

1 2 K h 1 K h
b= n 1+ +

r n n -1G G

  
     

,    
2

T

n -1 G
c=1+

n k h
 

 

where   is a shear correction factor.  

The first root of Eq. (25) defines the natural frequency, 
oω=c k , with oc = E/ρ , associated to 

a spectrum of uniform axial vibrations of the laminate as a whole. The second and third roots, define 

flexural modes with frequencies: 
 

2

1
2

II III 2

2
2

2

E Θ
4 Γ

Θ E 1 1 ρ k
ω ,ω =k + Γ ± 1-

k ρ 2 2 Θ E
+ Γ

k ρ

 
 

   
 
    

  
   

 

(27) 

 

In a unidirectionally reinforced beam with no interfacial imperfections (fully bonded limit), Tk   

and i

Tδ 0  for 1 1i ,...,n  , the dispersion equation (25) becomes that of Timoshenko beam theory, 

Eq. (15), and the flexural phase velocities are those depicted in Figure 3. For Tk 0  (fully debonded 

limit), a perturbation analysis of the dispersion equation (25), shows one flexural and two axial 

propagation modes: (a) the flexural mode of a Rayleigh beam of thickness h/n  with frequency 

2 2 2

0ω=c k rk (n +rk ) ; (b) uniform axial in-phase vibrations of the n sub-beams with 
oω=c k ; (c) 

and a thickness shear mode [11] with zero mean value of the axial displacements over the thickness, 

characterized by shear deformations and interfacial sliding, with oω=c k .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Figure 5: Non-dimensional phase velocities c/co versus rk, the product of the radius of gyration r 

and the wave number k, for a undirectionally reinforced beam with n=6 layers and 5 imperfect 

interfaces. (a) first flexural spectrum; (b) second flexural spectrum. The curves correspond to 

Tk h/G=  (solid),  20 (dashed),  5 (dash-dot), 1 (dashed), 0 (solid) . Note the different scales used for 

the two spectra. 
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Figure 5 depicts the dispersion curves for different values of the dimensionless interfacial stiffness, 

including the two asymptotic limits. The dispersion curves are limited from above by the solution of a 

fully bonded beam (Timoshenko, in red Fig. 5a,b), which coincides with the solution presented in Fig. 

3. From below, the curves are limited by the fully debonded solution (Rayleigh for the first spectrum, 

in blue, Fig. 5a; thickness-shear mode for the second spectrum in red, Fig. 5b). The cut-off frequency 

of the second flexural mode, which has already been discussed in Section 2.3 for a Timoshenko beam, 

progressively decreases on decreasing the interfacial stiffness from the fully bonded solution,  

coω = κGh/ρI  (Timoshenko beam), to the fully debonded solution, 
coω =0 , which would also 

correspond to a Timoshenko beam with vanishing shear stiffness. The reduced value of the cut-off 

frequency of the second flexural mode in beams with imperfect interfaces, highlights the possible 

relevance of the mode in dynamic problems.   

Dispersion relations for beams with arbitrary lay-ups, which include the special case of sandwich 

beams with shear flexible cores that do not deform in the transverse direction, wk(x, z, t) = w(x, t ), 

have been derived in [22] and results will be presented at the meeting. A more refined description of 

the deformations of the core, which accounts for the transverse deformability at the first-order, uses 

the extended model presented in [21]. Further results will be presented later. 

 
5 CONCLUSIONS 

The dynamic behaviour of multilayer structures with imperfect bonding has been examined by 

considering the propagation of harmonic waves.  This work is applicable to laminated composite 

structures, sandwich structures, laminated glass, and both adhesively bonded and nailed wooden 

structures.  Both tangential and normal relative displacements at the interfaces are considered while 

the existing literature usually considers tangential slip only.  This study points out the challenge 

presented by this type of structure and the limitations of some of the existing theories.  A new and 

improved zigzag theory is used to handle cases with many layers and imperfect interfaces. 
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