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The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic
stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the
Nrf2 inhibitory protein Keapl inducing the nuclear translocation of the transcription factor which, through its binding to the
antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as
heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour
progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response
mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.

1. Introduction

The availability of intracellular antioxidants is essential in
maintaining redox homeostasis in living cells. In aerobic
conditions, cells are constantly exposed to the generation
of reactive oxygen species (ROS) that can impact proteins,
lipids, and DNA, playing a pathological role in the develop-
ment of various human diseases such as cancer [1]. Therefore,
cells have evolved endogenous defence mechanisms so as
to counteract oxidative stress and to maintain ROS at low
physiological levels, and the redox sensitive transcription
factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2),
acts as a key regulator of antioxidant response, crucially
involved in the preservation of the structure and the func-
tioning of normal healthy cells [2-4]. However, cancer cells,
differently from normal cells, show an increased rate of ROS
generation as by-products of their metabolism [5] and, as
“masters” of adaptation, they take advantage of the overacti-
vation of antioxidant defences, in particular Nrf2-dependent
genes [6-8]. This ability to adapt and survive under condi-
tions of electrophilic, oxidative, and inflammatory stress is
strongly dependent on the expression of a complex network

comprising nearly 500 genes, induced by Nrf2, encoding
proteins with different antioxidant and cytoprotective func-
tions [9]. In particular, heme oxygenase 1 (HO-1) exerts a
strong antioxidant and antiapoptotic effect favouring cancer
cell growth and resistance to therapy. In this review, we focus
our attention on the deleterious properties of Nrf2, and of
its target gene HO-1, in relation to cancer cell growth and
chemoresistance.

2. Nrf2: Structure and Regulation

The nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is
a transcription factor that plays a key role in the regulation
of the cellular redox status. Indeed, Nrf2 controls not only
the expression of antioxidants as well as phase I and phase
II drug-metabolizing enzymes [10, 11], but also multidrug-
resistance-associated protein transporters [12] (Table 1).

The human Nrf2 was first described, cloned, and charac-
terised by Moi and coworkers in 1994 [13] and its cloned gene
is encoded within a 2.2 kB transcript, predicting a protein of
589 amino acids with a molecular mass of 66.1kDa [13].
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TABLE 1: Genes regulated by Nrf2 in mice and humans.
Symbol Name Species  References
Antioxidant genes
Glutamate-cysteine ligase,
GCLC ; : m, h (188, 189]
catalytic subunit
Glutamate-cysteine ligase,
GCLM ; . m, h (188, 189]
modifier subunit
GLRX Glutaredoxin 1 h [190]
GPX2 Glutathione peroxidase 2 m, h [190, 191]
GPX4 Glutathione peroxidase 4 m [16]
GSR1 Glutathione reductase m, h (188, 190]
SLC6A9 Glycine transporter m [16]
SLCTAIL Cysteine/glutamate m h (16, 188]
transporter
PRDX1-6  Peroxiredoxins 1 and 6 m, h [10, 16]
SRXNI1 Sulfiredoxin-1 m, h [11, 188]
TXNI1 Thioredoxin m, h [10, 16]
TXNRD1  Thioredoxin reductase 1 m, h [188,190]
HO-I-related genes
HMOX1 Heme oxygenase 1 m, h [10,188]
BLVRA Biliverdin reductase A h [190]
BLVRB Biliverdin reductase B m, h [16,190]
FECH Ferrochelatase h [188]
FTHI ferritln, heavy polypeptide m h [10]
Ferritin, heavy
FTHLIZ-17 polypeptides 12 and 17 (188, 190]
FTLL Ferritin, light polypeptide m, h [188,190]
Detoxifying enzymes
NAD(P)H:quinone
NQo1 oxidoreductase 1 m, h (188, 150]
Glutathione S-transferase
GSTAIL class Alpha 1 m (192]
Glutathione S-transferase
gstmr 2 A m [192]
GSTPI Glutathione S-transferase m [12]
class Pil
ugTial  UPP glucuronos_yl- h [190]
transferase 1 family
uGTeey  UDP glucuronosyl- mh (16, 190]
transferase 2 family
Drug transporters
ATP-binding cassette,
ABCB6 ( ibfamily BOMDR/TAP) m, h (10, 11]
ATP-binding cassette,
ABCCI subfamily C(CFTR/MRP) m (193]
ATP-binding cassette,
ABCC2 ibfamily C(CFTR/MRP) ™ (193]
ATP-binding cassette,
ABCCS  ibfamily C(CFTR/MRP) ™ h (193]
ATP-binding cassette,
ABCCL  bfamily C(CFTR/MRP) ™ (193]
ATP-binding cassette,
ABCCS  ubfamily C(CFTR/MRP) ™ [194]

Nrf2 has seven functional domains named Nrf2-ECH
homology (Neh) 1-7 (Figure 1(a)) [12, 14, 15]. The Nehl
domain has a basic region leucine zipper structure needed
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for the dimerisation with small Maf and binds to antiox-
idant/electrophile responsive elements (ARE/EpRE) [16].
Neh2 is the main negative regulatory domain which binds
to the Kelch-like ECH-associated protein 1 (Keapl) via the
DLG and ETGE motifs [17]. Neh3 is localised in the C-
terminal region of Nrf2 and acts as a transactivation domain
recruiting the chromo-ATPase/helicase DNA binding pro-
tein family (CHD6) [6], whereas both Neh4 and Neh5 are
transactivation domains that recruit cAAMP response element
binding protein- (CREB-) binding protein (CBP) and/or
the receptor-associated coactivator (RAC) [18]. The Neh6
domain mediates the Keapl-independent degradation of Nrf2
through recruitment by the DSGIS and DSAPGS motifs of
the dimeric 3-transducin repeat-containing protein (3-TrCP)
[19]. Lastly, the Neh7 domain, recently identified by Wang
and coworkers, interacts with the retinoid X receptor alpha
(RXRa), a repressor of Nrf2 [20].

2.1. Keapl-Dependent Posttranscriptional Regulation

2.1.1. Ubiquitination and Proteasomal Degradation of Nrf2.
Under basal conditions, Nrf2 is localised in the cytosol
associated with its negative regulator Keapl, an adaptor
component of Cullin 3-based ubiquitin E3 ligase complex
(Cul3) that promotes Nrf2 constant ubiquitination and pro-
teasomal degradation, maintaining low basal levels [21, 22].
Nrf2 turnover is rapid, less than 20 minutes, and prevents
the expression of Nrf2 target genes under normal conditions
[23]. On exposure to oxidative or electrophilic stress, Keapl is
modified whereas the enzymatic activity of the E3 ubiquitin
ligase is inhibited; Nrf2 is liberated from Keapl, accumulates
in the nucleus, dimerises with small Maf protein, and then
activates, after ARE-sequence binding, the transcription of
its target genes [23, 24]. Thus, Keapl is the main repressor
of Nrf2, having three functional domains, namely, the broad
complex, Tramtrack, and Bric-a-Brac (BTB) domain, the
intervening region (IVR) domain, and the double glycine
repeat (DGR)/Kelch domain [25] (Figure 1(b)).

Keapl acts as a sensor for oxidative and electrophilic
stress through the modification of 27 cysteine residues [26]
(Figure 2). The main three cysteine residues for the regulation
of Nrf2 activity are Cysl51 in the BTB domain and Cys273
and Cys288 in the IVR domain, all of which are targets of
oxidative and electrophilic modifications [27-29]. It has been
shown that cells expressing Keapl Cys151 point mutant pro-
tein show reduced activation of Nrf2 in response to a number
of inducers (e.g., sulforaphane, tert-butylhydroquinone, and
diethyl maleate) in comparison to the wild-type cells [30]
and that Cys273 and Cys288 are critically required for the
basal repression of Nrf2 [31]. In addition, the modification
of a subset of cysteine residues in Keapl, by Nrf2 inducers,
supports the hypothesis of a “cysteine code” which is critical
in the activation of Nrf2 [32].

2.1.2. Autophagic Degradation of Keapl. Furthermore, other
interacting protein partners, such as the sequestosome-1
protein (p62/SQSTMI1), can modulate Nrf2 activity [33, 34].
p62/SQSTML is a scaffold protein that binds to polyubiquiti-
nated proteins and targets protein aggregates for autophagic
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FIGURE 1: Schematic representation of Nrf2 and Keapl structures. (a) Nrf2 contains seven domains, Nehl-Neh7. The Neh2 domain contains
two binding motifs, DLG and ETGE, responsible for the interaction with Keapl. The Neh4, Neh5, and Neh3 domains are important for the
transactivation activity of Nrf2. The Neh7 domain is critical for RXRa binding. The Neh6 domain regulates Nrf2 degradation by 3-TrCP1. The
Nehl domain has a basic region leucine zipper motif for DNA binding. (b) Keapl contains three major domains. The BTB domain mediates
Keapl homodimerisation and the IVR domain contains critical cysteine residues and together they associate with Cul3. The Kelch/DGR
domain mediates the binding with the Neh2 domain of Nrf2.
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FIGURE 2: Nrf2 activity regulation. In a resting state, Nrf2 is sequestered in the cytoplasm through the binding with Keapl, responsible for
Nrf2 ubiquitination and proteasomal degradation via Cul3. Oxidative/electrophilic stress causes a conformational change in Keapl-Cul3, by
acting on specific cysteine residues in Keapl, leading to Nrf2 dissociation. Thus, free Nrf2 translocates to the nucleus, which dimerises with
small Maf protein and binds to ARE/EpRE sequence within regulatory regions of a wide variety of target genes (e.g., HO-1, GCLC, GCLM,
MRPs, and p62). In cancer cells (blue box), Keapl/Nrf2 mutations and Keapl/Cul3 aberrant hypermethylations as well as Keapl interactions
with ETGE motif-containing proteins lead to an increased Nrf2 activation and induction of target genes.



degradation. p62 contains an STGE-binding motif similar to
the Nrf2 ETGE motif [33] which is needed for the direct
interaction with Keapl [35]. As a consequence, Keapl is
sequestered in autophagosomes and Nrf2 ubiquitination
decreases, leading to a prolonged activation of Nrf2 in re-
sponse to oxidative stress [34, 35] (Figure 2).

2.2. Keapl-Independent Posttranscriptional Regulation. Re-
cently, alternative mechanisms for the degradation of Nrf2
have been identified. For example, a number of studies have
demonstrated that glycogen synthase kinase 3 (GSK-33)
directs the ubiquitination and proteasomal degradation of
various transcription factors, including Nrf2, through the
activation of E3 ubiquitin ligase complex (3-TrCP-Skpl-Cull-
Rbx1) [19, 36]. Indeed, GSK-3f is able to phosphorylate Ser
residues located in the Neh6 domain of Nrf2 which are then
recognised by B-TrCP and, through the binding to Cullin
1 (Cull) scaffold protein, lead to Nrf2 ubiquitination and
degradation in a redox-independent manner [19, 37].

Moreover, a novel E3 ubiquitin ligase, namely, Hrdl, has
been described by Wu and coworkers [36]. They showed
that Hrdl controls the Nrf2 stability by way of an interaction
between the C-terminal domain of Hrdl and the Neh4-5
domains of Nrf2. This Hrdl-mediated ubiquitination of Nrf2
is independent of both Keapl and S-TrCP and compromises
the Nrf2-mediated protection during liver cirrhosis [36].

2.3. Nrf2 Regulation at the Transcriptional Level. Although
strong evidence shows that Nrf2 is primarily regulated at
the protein level, it has also been demonstrated that the
oncogenic KRAS transcriptionally upregulates the mRNA
levels of Nrf2 through a TPA response element (TRE) located
within the Nrf2 promoter. The oncogenic mutation of KRAS,
or KRAS overexpression, indeed, is able to activate the Nrf2-
dependent pathway [38]. In addition, an increase in Nrf2
mRNA levels has been shown to occur in response to the
oncogenic activation of BRAF and C-MYC [39].

3. Nrf2 and Chemoprevention

It is well known that Nrf2 plays a key role in the cellular
adaptation and protection against oxidative stress. The ability
of Nrf2 to activate cytoprotective genes, which code for
detoxifying enzymes, drug transporters, antioxidants, and
anti-inflammatory proteins, plays a crucial role in reducing
electrophiles and ROS, thus decreasing DNA damage and
mutations and preventing genomic instability in normal cells.
Several studies have shown that, in Nrf2 null mice, there
is an enhanced susceptibility to chemical carcinogens, such
as benzo(a)pyrene, compared to wild-type mice, due to a
decreased expression of phase II detoxification and antiox-
idant enzymes [40]. In a similar way, after exposure to N-
nitrosobutyl (4-hydroxybutyl) amine (BBN), Nrf2 knockout
mice develop urinary bladder carcinoma [41] and show
an increased incidence of skin, colorectal, and mammary
tumours [42-44]. Moreover, the protective role of Nrf2
against carcinogenesis is highlighted from studies in humans
on single-nucleotide polymorphism (SNP) in the promoter
region of the Nrf2 gene [45]. As described by Suzuki and
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coworkers, A/A homozygotes of Nrf2 rSNP-617 showed de-
creased expression of Nrf2 and consequently an increased
risk of developing lung cancers, especially in the case of
individuals with smoking habits [46].

4. The Dark Side of Nrf2 in Cancer Biology

Several studies have shown a deleterious aspect of Nrf2
defined as the “dark side of Nrf2” [47]. Its high and prolonged
activation in cancer cells has been long associated with
progression, metastatic invasion, angiogenesis, and chemo-
and radio-resistance in tumours and is considered a poor
prognostic factor [15, 48]. Indeed, the stable overexpression
of Nrf2 was found in various types of tumours such as lung
[49, 50], breast [51], head and neck [52], ovarian [53], and
endometrial cancer [54].

4.1. Molecular Mechanisms of Nrf2 Activation in Cancer Cells.
Several mechanisms have been shown to be involved in
the constitutive activation of Nrf2 in cancer cells (Figure 2),
mainly gain-of-function mutations in Nrf2 and loss-of-
function mutations in Keapl, leading to an impairment of the
binding to Keapl. This results in the stabilisation of Nrf2 and
in the activation of its target genes, as identified in patients
with lung or head and neck cancer [55, 56], whereas the
loss-of-function mutations of Keapl are mainly located in the
Kelch/DRG domain and in the IVR domain [14] as observed
in gastric, hepatocellular, colorectal, lung, breast, and prostate
carcinomas, as reviewed by Shelton and Jaiswal [57].

In addition, epigenetic modifications in Keapl are respon-
sible for the accumulation and activation of Nrf2. Aberrant
hypermethylation, inhibiting Keapl gene expression, results
in the accumulation of Nrf2, as shown in lung and malig-
nant glioma [58], prostate [59], and colorectal cancer [60].
Moreover, somatic mutations and hypermethylation in CUL3
have been identified as being responsible for Nrf2 activation
[53, 61, 62], as shown in thyroid, head and neck, and ovarian
cancers [63-65].

4.2. Nongenomic Alteration of Nrf2 in Cancer Cells. Increased
levels of Nrf2 in cancer cells can also occur in the absence
of genomic alterations. In fact, much evidence shows that
different proteins can alter the Nrf2-Keapl binding [14].
Nrf2 activity is subject to a positive regulation by p21 [66,
67], which interferes with Keapl-mediated ubiquitination,
interacting with the DLG motif in Nrf2, leading to its
stabilisation. Therefore, Nrf2 expression is significantly lower
in the absence of p21, and conversely it is increased upon p21
overexpression [67].

It is a fact that DJ-1, a protein belonging to the Thi/Pfpl
superfamily, is able to stabilise Nrf2 by preventing its associa-
tion with Keapl, thus reducing ubiquitination and subsequent
proteasomal degradation [68, 69]. DJ-1 in cancer is often
overexpressed and leads to increased detoxification enzymes,
such as NQOJ, providing a survival advantage [68, 70, 71].

As previously described, p62 sequesters Keapl in autoph-
agosomes, leading to Nrf2 activation [72, 73]. Moreover, it
has been shown that p62 contains the ARE sequence in its
promoter region which is responsible for its Nrf2-dependent
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induction in response to oxidative stress, thus generating a
positive feedback loop [73].

The list of proteins which can interact with Nrf2 and
Keapl and, therefore, modulate their regulation is contin-
uously expanding (e.g., WTX, PALB2, and DPP3) [74-76].
All of these proteins contain an ETGF motif, suggesting that
they are capable of upregulating Nrf2 by competing for Keapl
binding and suppressing Keapl-mediated ubiquitination of
Nrf2 [14].

4.3. Nrf2 Activation and Hallmarks of Cancer Malignancy.
Different Nrf2 target genes are associated with cancer cell
proliferation and death. Among these, those genes involved in
the pentose phosphate pathway such as glucose-6-phosphate
dehydrogenase, phosphogluconate dehydrogenase, transke-
tolase, and transaldolase 1 are responsible for NADPH and
purine regeneration and, therefore, accelerate cancer cell
proliferation [14]. Nrf2 may also bind to the ARE sequence
in the promoter region of Notchl, contributing directly to
its expression and leading to a more malignant phenotype
and a more aggressive growth [77]. Moreover, Nrf2 is directly
involved in the basal expression of the p53 inhibitor Mdm?2,
through the binding to the ARE sequence located in the
first intron of this gene. It has been demonstrated that, in
Nrf2-deleted murine embryonic fibroblasts (MEFs), Mdm2
expression is repressed and, compared to wild-type cells, a
high level of p53 is accumulated, favouring cell death [78].

In addition, elevated levels of Nrf2 have been observed
in various tumours with high metastatic potential [79],
characterised by epithelial-mesenchymal transition (EMT)
and the degradation of extracellular matrix (ECM), exerted
by metalloproteases (MMPs). A major step of EMT is the loss
of E-cadherin and the gain of N-cadherin [80]. It has been
shown that E-cadherin is able to bind to the C terminus of
Nrf2, preventing its nuclear accumulation, and that, during
EMT, the overexpression of N-cadherin reduces the Nrf2
inhibition, thus favouring its activity [81]. Moreover, the
knockdown of the Nrf2 by short hairpin RNA (shRNA)
in esophageal squamous cell carcinoma (ESCC) suppressed
the expression of MMP-2 and enhanced E-cadherin mRNA
levels, resulting in a decreased invasion and migration of
cancer cells [82].

Furthermore, the upregulation of Nrf2 is also related to
angiogenesis which is promoted by HIF-1l«, a transcription
factor that senses oxygen homeostasis and is deregulated in
tumours in hypoxic environments [83]. Under hypoxic con-
ditions, indeed, the O,-dependent regulator prolyl-hydrolase
domain (PHD) is catalytically inactive and increases the
stability of HIF-la. Consequently, the expression of its
target proteins, including the vascular endothelial growth
factor (VEGF), is enhanced [84]. It has been shown that
Nrf2 silencing blocks HIF-la-dependent VEGF expression
in HT29 colon cancer and suppresses tumour growth with
a concomitant reduction in VEGF-induced angiogenesis in
mouse xenograft models [84].

4.4. Nrf2 and Cancer Resistance to Therapies. Several studies
have shown that cancer cells with high levels of Nrf2 are
less sensitive to etoposide, cisplatin, and doxorubicin [14].

Doxorubicin-resistant human cancer cells, such as ovarian
SKOV3 and OV90 and mammary MCEF-7/DOX, have shown
high levels of Nrf2-ARE binding and ARE-driven luciferase
activity, as well as the upregulation of Nrf2 target genes com-
pared to the respective sensitive cell lines A2780 and MCF-7
[85, 86]. Non-small cell lung carcinoma A549 cells, in which
Nrf2 is strongly activated, have shown a higher resistance to
cisplatin compared to NCI-H292 and LC-AI cells [87]. Fur-
thermore, Jayakumar and coworkers have demonstrated the
role of Nrf2 and its dependent genes in the radioresistance of
prostate tumour cells. Specifically, the radioresistant DU145
cells show enhanced levels of Nrf2 and a high GSH/GSSG
ratio in comparison to the radiosensitive PC3 cells which
show a faster depletion of GSH after radiation exposure [88].
It has also been shown that radiotherapy significantly reduces
cancer cell survival when applied in combination with the
Nrf2 inhibitor 4-(2-cyclohexylethoxy)-aniline, IM3829 [89].
Moreover, our own studies demonstrate that Nrf2 activation
plays a key role in the resistance of neuroblastoma cells to
GSH depletion or proteasome inhibition [90, 91].

In addition, Nrf2 activity is related to the upregulation of
several multidrug-resistant efflux pumps, such as the ATP-
binding cassette, subfamily G, member A2 (ABCG2), which
favours drug resistance. It has been shown, indeed, that Nrf2
silencing attenuates the expression of the ABCG2 transcript
and protein and sensitises lung cancer cells to mitoxantrone
and topotecan, two representative chemotherapeutic drugs
effluxed mainly by the presence of ABCG2 [92]. Multidrug-
resistant protein-3 (MRP3), MRP4, and MRP5 are all upregu-
lated by Nrf2 [93, 94]. Upregulation of MRP3 and GSTs leads
to the increased hydrophilicity and excretion of cytotoxic
agents, such as cisplatin, etoposide, and doxorubicin [95].

Recently, it has been proven that Nrf2 also plays a critical
role in the drug resistance of cancer stem cells [96-98].
The resistance of glioblastoma is due to the presence of
glioblastoma stem cells (GSCs) which confer tumourigenic
potential and a survival advantage against chemotherapy
[99]. Moreover, it has been shown that while knocking down
Nrf2 decreases the self-renewing activity of GSCs [100, 101],
the enhancement of Nrf2 levels and of its downstream genes,
that is, HO-1, GCLM, and NQOJI, is related to increased
tumourigenic activity of the human mammospheres in com-
parison to their adherent counterparts, MCF-7 and MDA-
MB-231 cells [102].

5. HO-1 as a Key Effector of Nrf2 Upregulation
in Tumour Progression

Heme oxygenase 1 (HO-1) is considered one of the main
effectors of Nrf2-dependent cell responses [48]. HO-1 is the
inducible form of heme oxygenase, the first rate-limiting
enzyme in the degradation of heme into biliverdin/bilirubin,
carbon monoxide (CO), and ferritin induced by free iron
release [103-105] (Figure 3). It is a 32kDa stress protein
present at low levels in most mammalian tissues [106] and
its expression is induced by a wide variety of stress stimuli,
including its substrate, as well as heavy metals [107], UV
irradiation, ROS [108], nitric oxide [109], and inflammatory
cytokines [110]. HO-1and its metabolic products are involved
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release.

in the maintenance of cellular homeostasis and they play
a key role in the adaptive response to cellular stress as
well as in the protection of healthy cells, preventing them
from being transformed into neoplastic cells by counteracting
ROS-mediated carcinogenesis [111-115].

However, HO-1 has been widely recognised as playing
an important role in the malignant transformation of cancer
cells. High levels of HO-1 have been found in various human
tumours, inducing survival advantage, aggressiveness, and
poor outcome [116-122]. HO-1 overexpression has been con-
sidered to be involved in invasive and metastatic mechanisms
[123-125], and “in vitro” and “in vivo” studies, including
clinical data, have shown that the inhibition or silencing of
HO-1 inhibits this behaviour [125-128]. Moreover, a proan-
giogenic role of HO-1 in cancer has been reported “in vitro”
and “in vivo” [123, 124, 127-130]. Finally, HO-1 has been
shown to be correlated with resistance to chemo-, radio-, and
photodynamic therapies [116, 119, 131-136] and its inhibition
is able to sensitize cancer cells to death [90, 91, 137-139].

However, the role of HO-1 in cancer biology is not com-
pletely understood and some disputes in literature remain
about its role in tumour progression, especially with regard to
different types of tumours. It should be taken into consider-
ation that several studies have reported that HO-1 activation
prevents breast cancer proliferation [140] and prostate cancer
angiogenesis [141] and mediates the anticancer activity of
some drugs such as andrographolide by reducing the MMP-9
expression in breast cancer cells [142]. Moreover, considering
the complex cross talk between HO-1 activity and cellular
metabolic pathways, reviewed in depth by Wegiel and coau-
thors [143], it would seem conceivable that HO-1 can be
subject to different modulations in different tumours, since
the various metabolic statuses of cancer cells may influence
how HO-1 activity modulates tumour growth. Therefore, it
is important to note that HO-1 expression is controlled by
other transcription factors other than Nrf2. Indeed, specific
consensus sequences for both NF-kB and AP-1 are present
in the promoter region of HO-1 [144-148] which, then,
may be activated in response to different stimuli through
the activation of different intracellular signaling pathways,
as widely reviewed in [136, 149-151], suggesting a highly
complex regulation which, up to now, is far from being fully
understood.

However, what seems most interesting is the association
between the upregulation of Nrf2 and the activation of
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TABLE 2: Nrf2 and HO-1 upregulation in tumours.

Type of tumor Nrf2 HO-1 Reference
Glioblastoma stem cells

(GSCs) T B [101]
Lung cancer (NSCLC) T — [92, 94]
Ovarian carcinoma T — (85]
Bladder cancer — [121]
Chronic myeloid leukemia — [139]
Colon adenocarcinoma — [135]
Colorectal cancer — [118]
Fibrosarcoma — [131]
Gastric cancer — [138]
Hepatocellular carcinoma

(HE 0 — [127]
Kaposi sarcoma — [128]
Lung cancer (NSCLC) — [120, 122, 134, 137]
Melanoma — [123,131]
Oral squamous cell _ [125]

carcinoma

Pancreatic cancer [119, 124, 126, 133]

B e T T T S T T T T T P e S e e e T T T

Breast cancer T [86]
Cervical cancer T [152]
Chronic myeloid leukemia 1 (136]
EsoPhageal squamous 1 [82]
carcinoma

Gallbladder cancer T [79]
Glioblastoma T [100, 155]
Glioblastoma stem cells

(GSCs) ! [100]
Hepatoma T [152]
Lung cancer (NSCLC) T [87, 89, 152]
Malignant B lymphocytes T [154]
Mammosphere stem cells

(MSO) P 7 [102]
Multiple myeloma T [153]
Neuroblastoma T [90, 91]
Ovarian carcinoma cells T [156]
Prostate cancer T (88]
Renal cancer T [17]

HO-1 in tumour progression which correlates with cancer
aggressiveness and malignancy. Interestingly, for instance,
in human samples from gallbladder cancers, the upreg-
ulation of both Nrf2 and HO-1 correlates with tumour
aggressiveness and a poor clinical outcome [79]. Moreover,
Nrf2/HO-1association has been widely reported, for instance,
in non-small lung cancer, cervical cancer, hepatoma [152],
esophageal squamous carcinoma [82], and multiple myeloma
[153] (Table 2). In particular, malignant transformations have
been associated with Nrf2-dependent HO-1 activation in
B lymphocytes exposed to prostaglandin J2 [154]. There-
fore, the gain of metastatic phenotypes is correlated with
the overexpression of Nrf2 in association with the activation
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of HO-1, as shown in osteopontin-induced glioma cell inva-
siveness [155]. Furthermore, resistance to therapies has been
related to the activation of Nrf2 together with HO-1, as shown
by our group in neuroblastoma cells after GSH depletion
or bortezomib exposure [90, 91] and by others in cisplatin-
treated ovarian carcinoma cells [156] and in doxorubicin-
resistant breast cancer cells [86].

Therefore, HO-1 activation provides tumour cells with
strong survival advantage exerted by the antioxidant and
antiapoptotic properties of its metabolic products. More-
over, when HO-1 activation is dependent on Nrf2 activity,
generally this leads to highly aggressive cancer phenotypes.
This can also account for the parallel activation of other
Nrf2-dependent genes which can contribute to the prosur-
viving effect, for instance, by inducing HIF« [82], increasing
multidrug-resistance-related proteins [79], or increasing the
synthesis of GSH [8]. Unpublished data from our laboratory
show that HO-1-dependent bilirubin generation and increas-
ing amounts of GSH are key factors in inducing resistance to
bortezomib in high-risk neuroblastoma.

6. Pharmacological Modulation of Nrf2/HO-1
Axis as a Strategy in Anticancer Treatment

The role of Nrf2/HO-1 axis in protecting cells by overcoming
environmental stresses has already been demonstrated and
compounds that are able to modulate this activity are well
worth being considered. The activation of this pathway
in normal cells can prevent tumour formation while its
inhibition can be useful in improving cancer therapies.

As far as cancer prevention is concerned, different
activators of Nrf2 have been proposed and have been in-
tensively reviewed over the past 10 years [42, 157-166].
Many of these compounds are plant-derived phytochemicals,
such as sulforaphane, curcumin, epigallocatechin-3-gallate,
resveratrol, cinnamoyl-based compounds, garlic organosul-
fur compounds, and lycopene. These molecules have been
considered to be chemopreventive due to their ability to
induce antioxidant/detoxification enzymes, including HO-1,
and xenobiotic transporters, through the activation of Nrf2
[18, 41, 50, 167-170]. On the other hand, the pharmacological
inhibition of Nrf2/HO-1 axis has also recently emerged as a
promising approach for cancer therapy.

Starting from the modulation of HO-1, the major effector
of the pathway considered, several “in vivo” studies have
confirmed the usefulness of the HO-1 competitive inhibitor
zinc (II) protoporphyrin IX, ZnPPIX, in the reduction
of hepatoma, sarcoma, lung cancer, and B-cell lymphoma
growth in mice [129, 171]. Moreover, the PEG conjugation of
ZnPPIX, which increases water solubility of the inhibitor, is
able to improve its clinical application [172]. Another highly
water-soluble micellar form of ZnPPIX, the amphiphilic
styrene maleic acid copolymer (SMA-ZnPPIX) with a potent
antitumour activity both “in vitro” and “in vivo,” has been
additionally proposed [173].

However, it is important to note that pharmacological
HO-1inhibitors, as well as HO-1activators, are responsible for
strong HO-1 independent activities due to some nonspecific
properties of these compounds [174, 175] and therefore the

employment of siRNA could be more specific. Indeed, this
approach is able to induce apoptosis of colon carcinoma
cells [176, 177] and to diminish proliferation, growth, and
angiogenesis in orthotopic hepatocellular tumours in mice
[127].

As already discussed in the previous paragraph, there is
also some evidence that HO-1 activation, induced by cobalt
protoporphyrin IX (Co PPIX) or heme [140], as well as
the overexpression of HO-1 can block tumour growth and
invasion in “in vitro” studies, and this seems to be dependent
on the cancer cell type and experimental model used.

Furthermore, the inhibition of Nrf2, acting upstream
from HO-1 activation and involving also other downstream
targets in addition to HO-1, could be a successful therapeutic
approach.

Unfortunately, only a few inhibitors of Nrf2 have been
developed so far. Among them, brusatol, extracts from Brucea
javanica growing in Southeast Asia and Northern Australia, is
able to decrease Nrf2 protein levels as well as decreasing the
expression of its target genes, thus enhancing the cytotoxic
effect of several chemotherapeutic agents, both “in vitro” and
“in vivo” [178, 179].

In addition, flavonoid luteolin (3',4’,5,7-tetrahydroxyfla-
vone) found at high concentrations in celery, green pepper,
parsley, perilla leaf, and chamomile tea has been shown
to be another strong and selective Nrf2 inhibitor, which
is able to reduce the constitutive expression of NQOLI in
HepG2, Hepalclc7, and RL-34 cells in a time- and dose-
dependent manner [180]. At physiological concentrations,
luteolin inhibits Nrf2 activity by enhancing Nrf2 mRNA
turnover, and it has been shown to sensitise NSCLC A549
cells to therapeutic drugs [181]. Similar results have been
observed in the sensitisation of colorectal cancer cell lines to
oxaliplatin “in vitro” [182] and “in vivo” in the chemotherapy
of non-small cell lung cancer, NSCLC. Moreover, its oral
administration, either alone or combined with an intraperi-
toneal injection of cisplatin, is seen to greatly inhibit the
growth of xenograft tumours from the NSCLC cell line A549
in athymic nude mice [183].

Furthermore, all-trans-retinoic acid (ATRA) is able to
suppress the Nrf2 pathway [184]. ATRA like other agonists of
RA receptor a (RAR«) and retinoid X receptor « (RXR«) was
shown to inhibit the basal and the inducible activity of Nrf2
both “in vitro” and “in vivo” [12, 185]. After ATRA treatment,
Nrf2 forms a complex with RAR«. This complex is unable
to bind to the ARE sequences, thus decreasing the ability
of Nrf2 to activate its target genes [15]. In acute promye-
locytic leukaemia cells, the cytotoxic drug arsenic trioxide
(ATO) induces an antioxidant response characterised by Nrf2
nuclear translocation and enhances the transcription of its
downstream target genes such as HO-1, NQO1, GCLM, and
ferritin. It has been shown that, after cotreatment of ATO plus
ATRA, the Nrf2 nuclear translocation is prevented and the
cytotoxic effects of ATO treatment are enhanced [186].

Lastly, a recent paper shows that metformin, which
was previously associated with a better survival of diabetic
patients with pancreatic cancer [187], exerts its antitumour
activity by suppressing HO-1 expression in cancer cells. In
this paper, metformin is reported to inhibit Nrf2 through



a Keapl-independent mechanism by inactivating Raf and
ERK signaling [152]. The excellent therapeutic index of
metformin, with few side-effects associated even with long-
term treatment, could increase the chances of its application
in cancer therapy.

7. Conclusions

The activation of Nrf2/HO-1 axis plays a central role in
cellular adaptive responses to oxidative stress and cytotoxic
insults representing a crucial point in the prevention of
carcinogenesis. On the contrary, in tumour tissues, a pro-
longed activation of Nrf2 and HO-1 contributes to the gain of
malignant phenotypes. Consequently, the Nrf2/HO-1 axis can
be used by cancer cells to promote their growth advantage,
metastatic potential, and resistance to therapy. Therefore, the
therapeutic usefulness of inhibitors of Nrf2, and of its target
gene, HO-1, especially in combination with conventional
antineoplastic therapies, may well represent a potential and
promising approach in the fight against cancer.
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