
Moving-horizonEstimationWithGuaranteedRobustness for

Discrete-timeLinear Systems andMeasurements Subject to

Outliers

A. Alessandri a, M. Awawdeh a

aDepartment of Mechanical Engineering – University of Genoa, P.le Kennedy Pad. D, 16129 Genova

Abstract

An approach to state estimation for discrete-time linear time-invariant systems with measurements that may be affected by
outliers is presented by using only a batch of most recent inputs and outputs according to a moving-horizon strategy. The
approach consists in minimizing a set of least-squares cost functions in which each measure possibly contaminated by outlier is
left out in turn. The estimate that corresponds to the lowest cost is retained and propagated to the next time instant, where the
procedure is repeated with the new information batch. The stability of the estimation error for the proposed moving-horizon
estimator is proved under mild conditions concerning the observability of the free-noise state equation and the selection of
a tuning parameter in the cost function. Robustness is guaranteed with sufficiently large outliers. The effectiveness of the
proposed method as compared with the Kalman filter is shown by means of a numerical example.
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1 Introduction

In numerous applications there exists the problem of
dealing with large deviations in the measurements be-
cause of sensor malfunctions, wrong replacement of mea-
sures, or large non-Gaussian noises. These abnormal sig-
nals are usually called outliers in many different fields
such as process control [22], heart surgery [21], intrusion
detection [28], environmental monitoring [14], position-
ing [9], cloud management [19], and fault detection [11].
Various filtering methods have been proposed to atten-
uate or detect outliers (see, e.g., [13] and the references
therein). In this paper, a more general problem is ad-
dressed that consists in estimating the state variables
of a linear system by means of measures possibly cor-
rupted by outliers. The estimation is performed by using
a moving-horizon approach, which will be set in such a
way to make it robust to outliers.

? The material in this paper was partially presented at the
53rd IEEE Conference on Decision and Control, December
1517, 2014, Los Angeles, CA, USA. This paper was recom-
mended for publication in revised form by Associate Editor
Giancarlo Ferrari-Trecate under the direction of Editor Ian
R. Petersen.
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The problem of estimating the state variable of a lin-
ear system with output contaminated by outliers can
be treated by using the Kalman filter with some conve-
nient adjustment. As is well-known, under the assump-
tion that initial state and disturbances are white Gaus-
sian stochastic processes, the best estimator in the sense
of the minimization of the expected quadratic estima-
tion error is the Kalman filter. Such an estimator is re-
cursive in that the new output is processed by iterat-
ing the estimate update based on the current residual,
i.e., the output error given by the difference between the
measure and its prediction obtained from the last state
estimate. Thus, one may check abnormal residuals via a
threshold test to skip the Kalman estimate update with
such residuals. This procedure can be motivated from a
theoretical point of view by using the maximum likeli-
hood criterion [2].

The first ideas about what is currently denoted as
moving-horizon estimation (MHE) are presented in [16].
MHE consists in performing state estimation by using a
limited amount of most recent information. The state es-
timates are obtained by minimizing a least-squares cost
function with a batch of the inputs and outputs accord-
ing to a sliding-horizon strategy. Constraints on the state
variables may be easily taken into account since the op-
timization is carried on line. The first results on MHE
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for linear systems [3,24] have been extended to nonlinear
(see, e.g., [5, 7, 8, 15,25]) and large-scale systems [10].

Outliers are particular type of uncertainty that prevent
an estimator from ensuring guaranteed performances
[18]. Robustness is thus a fundamental requirement in
the design of filters for uncertain systems. A method to
enhance the robustness of the Kalman filter in the pres-
ence of outliers is presented in [13]. In [1, 26] statistical
tests are proposed that are less sensitive to abnormal
noises. For the same reasons, an l1 loss function is more
suitable for the the purpose of identification with mea-
sures affected by outliers [17, 27]. The reader is referred
to [23] for a complete review of the most important meth-
ods of regression that account for robustness to outliers.

Based on the preliminary results of [2], here we focus
on MHE for linear discrete-time systems with measure-
ments contaminated by outliers. Toward this end, first
we will prove the stability of the estimation error and,
second, the robustness to outliers. Conditions for the
stability of moving-horizon estimators for uncertain lin-
ear systems are reported in [6], where explicit bounding
sequences are provided thanks to the adoption of worst-
case cost functions. Unfortunately, such cost functions
are not helpful in case of measurements affected by out-
liers, thus a different criterion is proposed here. More
specifically, at each time instant we separately minimize
a set of least-squares cost functions, where the measure-
ments that can be affected by outliers are left out in turn.
Then, we choose the minimizer associated with the low-
est cost, and this estimate is propagated ahead to the
next time instant according to the usual moving-horizon
strategy. Such an estimation criterion ensures robust-
ness to outliers of sufficiently large amplitude.

The paper is organized as follows. In Section 2, the pro-
posed MHE method is described. Stability and robust-
ness properties are illustrated in Sections 3 and 4, re-
spectively. In Section 5, simulation results are presented
and discussed. Finally, the conclusions are drawn in Sec-
tion 6.

Let N := {0, 1, 2, . . .}. The minimum and maximum
eigenvalues of a real, symmetric matrix P are denoted by
λmin(P ) and λmax(P ), respectively; in addition, P > 0
means that it is positive definite. Given a generic matrix

M , ‖M‖ :=
(
λmax(M>M)

)1/2
=
(
λmax(MM>)

)1/2
.

For a vector v, ‖v‖ := (v>v)1/2 denotes its Euclidean
norm, and B(r) := {v ∈ Rn : ‖v‖ ≤ r} for r > 0.
Given a sequence of vectors vi, vi+1, . . . , vj for i <

j, let us define vji := col (vi, vi+1, . . . , vj). Moreover,

vji

∣∣∣
k

denotes vji without the k-th element, with

k = 1, 2, . . . , j − i + 1. In other words, vji

∣∣∣
1

:= vji+1,

vji

∣∣∣
k

:= col (vi, vi+1, . . . , vi+k−2, vi+k, . . . , vj) for k =

2, 3, . . . , j − i, and vji

∣∣∣
j−i+1

:= vj−1
i . For the sake of

simplicity, let vji

∣∣∣
0

:= vji . Finally, recall the square sum

bound, namely, given m scalars s1, s2, . . . , sm ∈ R, we
have (

m∑
i=1

si

)2

≤ m
m∑
i=1

s2
i .

2 MHE With Measures Corrupted by Outliers

Let us consider the discrete-time linear system

xt+1 = Axt +B ut + wt (1a)

yt = C xt + vt (1b)

where t = 0, 1, . . . is the time instant, xt ∈ Rn is the
state vector, ut ∈ Rm is the control vector, wt ∈ Rn

is the system noise vector, yt ∈ R is the measure, and
vt ∈ R is the measurement noise.

As to the system disturbance, wt is supposed to be
“small” as compared with the dynamics (i.e., bounded
and taking zero or around zero values). In other words,
we assume the following.

Assumption 1 There exists rw ∈ (0,∞) such that, for
all t = 0, 1, . . ., ‖wt‖ ≤ rw.

The measurement noise, instead, is “small” except on
rare occurrences. More specifically, we assume the fol-
lowing.

Assumption 2 There exist rv ∈ (0,∞), M > rv, and a
nonnegative, strictly increasing sequence {t̄i} such that,
for all t = 0, 1, . . . and i = 0, 1, . . ., (a) |vt| ≤ rv for
t 6∈ {t̄i}, (b) |vt̄i | ∈ (rv,M ].

The assumption above means that the measurement
noises may take abnormal but bounded values at certain
instants t̄i since, of course, M is much larger than rv.
Such time instants correspond to the outliers and they
are unknown. Indeed, we suppose to know rw and rv,
and the reader is referred to [20] for an overview of the
methods to estimate such parameters together with the
underlying model. As will be clearer later, the knowl-
edge of M is not required since it would be sufficient to
assume that the outliers, though large, are bounded. In
Section 4, a lower bound on the absolute value of outliers
will be provided in such way that robustness is ensured
for the proposed MHE method.

The moving-horizon approach consists in
deriving a state estimate at the current
time t by using the information given by
yt−N , yt−N+1, . . . , yt, ut−N , ut−N+1, . . . , ut−1 with the



Fig. 1. Pictorial sketch of the MHE algorithm when moving from time t to t+ 1.

integer N ≥ 1. More specifically, we aim to estimate
xt−N , . . . , xt on the basis of such information and of
a “prediction” x̄t−N of the state xt−N at the begin-
ning of the moving window. We denote the estimates
of xt−N , . . . , xt at time t by x̂t−N |t, x̂t−N+1|t, . . . , x̂t|t,
respectively.

As compared with the previous literature on MHE, here
we consider explicitly the occurrence of outliers in the
measures. In such a setting, a natural criterion to de-
rive the estimator consists in resorting to a least-squares
approach by explicitly trying to reduce the effect of the
outliers. Though in principle we can deal with an arbi-
trary number of outliers, we restrict our attention to the
case of at most only one measurement affected by outlier
in the batch of measures included in the sliding window,
thus assuming what follows.

Assumption 3 The sequence {t̄i} is such that
infi∈N (t̄i+1 − t̄i) > N + 1.

If an outlier corrupts the k-th measure of the batch
1, 2, ..., N + 1, a least-squares cost function that leaves

out such a measure is

Jk
t (x̂t−N ) = µ ‖ x̂t−N − x̄t−N ‖2

+ αk

t∑
i=t−N

i6=t−N+k−1

(yi − Cx̂i)2
(2)

for k = 1, 2, . . . , N + 1, where µ ≥ 0 and αk > 0. The
cost (2) is to be minimized together with the constraints

x̂i+1 = Ax̂i +Bui , i = t−N, . . . , t− 1 . (3)

If no outlier affects the measures of the batch, we may
use all of them:

J0
t (x̂t−N ) = µ ‖ x̂t−N − x̄t−N ‖2

+ α0

t∑
i=t−N

(yi − Cx̂i)2
(4)

where α0 > 0. Of course, also the minimization of (4)
has to be performed with the constraints (3). In practice,
at each time t = N,N + 1, . . . we have to solve N + 2
problems given by

min
x̂∈Rn s.t.
(3) holds

Jk
t (x̂) , k = 0, 1, . . . , N + 1



and compare the optimal costs (2) and (4): the best of
such costs is associated with the estimate (see Fig. 1).
Such a strategy is thus given by

min
k=0,1,...,N+1

min
x̂∈Rn s.t.
(3) holds

Jk
t (x̂) (5)

and, at each time t = N,N+1, . . ., it can be summarized
as follows.

MHE Algorithm

Input: x̄t−N , yt−N , yt−N+1, . . . , yt, ut−N , ut−N+1, . . . ,

ut−1

Output: x̂t−N |t

1: for k = 0 to N + 1 do

compute x̂kt−N |t := argmin
x̂∈Rn s.t.
(3) holds

Jk
t (x̂)

2: endfor

3: choose k∗t ∈ argmin
k=0,1,...,N+1

Jk
t (x̂kt−N |t)

4: set x̂t−N |t = x̂
k∗t
t−N |t

Note that the estimate x̂t−N |t is not unique in general.
To complete the estimation, we have to determine the
remaining estimates at time t by using (3) as follows:
x̂t−N+i+1|t = Ax̂t−N+i|t + But−N+i, i = 0, . . . , N − 1.
If xt belongs to X ⊂ Rn compact, one may take into ac-
count this information by performing the cost minimiza-
tion with such additional constraints, namely x̂t−N+i|t ∈
X, i = 0, 1, . . . , N .

Before solving the minimization problems, we need to
assign x̄t−N , for which various choices can be made. For
example, we can choose the result of the correspond-
ing estimate at previous step, i.e., x̄t−N = x̂t−N |t−1.
Another possibility consists in propagating the value
of x̂t−N−1|t−1 as follows: x̄t−N = A x̂t−N−1|t−1 +
But−N−1. To simplify the stability analysis, we will
adopt this last choice. Of course, it is necessary to select
an a-priori prediction of x0, which will be denoted by x̄0.

Remark 1 In case of multiple outliers in the batch, one
has to deal in general with l = 2, 3, . . . , N + 1 outliers
affecting the batch of measures yt−N , yt−N+1, . . . , yt by
considering all permutations of lmeasures over the entire
set. The number of costs to evaluate is equal to

nl =

(
N + 1

l

)
.

In such a general case, one may resort to a mixed-integer

formulation as follows:

min
x̂t−N∈Rn,βkt−N∈{0,1},

k=0,1,...,N+1

µ ‖ x̂t−N − x̄t−N ‖2

+ β0
t−N α0

t∑
i=t−N

(yi − Cx̂i)2

+

N+1∑
k=1

βk
t−N αk

t∑
i=t−N

i6=t−N+k−1

(yi − Cx̂i)2

s.t.

N+1∑
k=0

βk
t−N = l and (3) hold .

where the binary variables βk
t−N , k = 0, 1, . . . , N + 1

are introduced to the scope [29]. The problem with l = 1
reduces to (5) and there is no computational advantage
as compared with the solution method based on the MHE
Algorithm. Clearly, the problem for l ∈ {2, 3, . . . , N + 1}
is computationally challenging. The use of branch-and-
bound methods may result in some computational savings
as compared with a pure zero-one enumeration technique,
but in general mixed-integer optimization problems with
quadratic cost function are pretty well-known to be NP-
hard [12].

The stability properties of the proposed method are pre-
sented in the next section.

3 Stability of MHE

The collections of measures at time steps t−N, t−N +
1, . . . , t, with the k-th measure left out are given by

ytt−N
∣∣
k

= Fkxt−N +Hkw
t−1
t−N + vtt−N

∣∣
k
,

k = 0, 1, . . . , N + 1

with Fk and Hk for k 6= 0 obtained from F0 and H0 by
deleting the k-th block row, respectively, where

F0 :=


C

C A
...

C AN



H0 :=



0 0 . . . 0

C 0 . . . 0

CA C . . . 0
...

...
. . .

...

CAN−1 CAN−2 . . . C


.



In the following, we will denote (α0, α1, . . . , αN+1) by α
and let

αmin := min
k=0,1,...,N+1

αk αmax := max
k=0,1,...,N+1

αk

and
h := max

k=0,1,...,N+1
‖Hk‖ .

Based on the aforesaid, we can state the following result
on the stability of the estimation error et−N :=xt−N −
x̂t−N |t.

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold,
Fk is of full rank for all k = 0, 1, . . . , N + 1, and let

δ := min
k=0,1,...,N+1

λmin

(
F>k Fk

)
> 0 . (6)

Then the sequence {ζt} given by

ζ0 = κ (µ, α) (7a)

ζt+1 = a (µ, α) ζt + b (µ, α) , t = 0, 1, . . . (7b)

is such that ‖et−N‖2 ≤ ζt for t = N,N + 1, . . ., where

κ (µ, α) :=
2

µ+ δ αmin

(
2µ ‖x0 − x̄0‖2 + c

)
a (µ, α) :=

8µ ‖A‖2
µ+ δ αmin

b (µ, α) :=
8µr2

w + 2c

µ+ δ αmin

c := 2 (αmin + αmax)
(
N2r2

wh
2 + (Nrv +M)2

)
.

If µ is chosen such that a (µ, α) < 1, the sequence {ζt}
converges to

b (µ, α)

1− a (µ, α)

and is strictly decreasing if

ζ0 >
b (µ, α)

1− a (µ, α)
.

Proof. First, we will derive a useful bound, which will
be used later on. Since

∥∥Hkw
t−1
t−N

∥∥ ≤ ‖Hk‖
∥∥wt−1

t−N
∥∥ ≤

‖Hk‖Nrw and
∥∥vtt−N ∣∣k∥∥ ≤ Nrv +M , from the bound∥∥ytt−N ∣∣k − Fkxt−N

∥∥ =
∥∥Hkw

t−1
t−N + vtt−N

∣∣
k

∥∥
≤
∥∥Hkw

t−1
t−N

∥∥+
∥∥vtt−N ∣∣k∥∥

we obtain∥∥ytt−N ∣∣k − Fkxt−N
∥∥2 ≤ 2

(
N2r2

wh
2 + (Nrv +M)2

)
.

(8)

Consider the optimal cost at time t:

J∗t (x̂t−N |t) = µ ‖ x̂t−N |t − x̄t−N ‖2

+ αk∗t

∥∥∥ytt−N ∣∣k∗t − Fk∗t
x̂t−N |t

∥∥∥2

and hence

J∗t (x̂t−N |t) ≥ µ ‖ x̂t−N |t − x̄t−N ‖2

+ αmin

∥∥∥ytt−N ∣∣k∗t − Fk∗t
x̂t−N |t

∥∥∥2

(9)

where, from now on, J∗t stands for J
k∗t
t . Since

‖Fkxt−N − Fkx̂t−N |t‖ =
∥∥Fkxt−N − ytt−N

∣∣
k

+ ytt−N
∣∣
k

− Fkx̂t−N |t
∥∥ ≤ ∥∥Fkxt−N − ytt−N

∣∣
k

∥∥
+
∥∥ytt−N ∣∣k − Fkx̂t−N |t

∥∥ ,
we have

‖Fkxt−N − Fkx̂t−N |t‖2 ≤ 2
∥∥Fkxt−N − ytt−N

∣∣
k

∥∥2

+ 2
∥∥ytt−N ∣∣k − Fkx̂t−N |t

∥∥2

and hence

∥∥ytt−N ∣∣k − Fkx̂t−N |t
∥∥2 ≥ 1

2
‖Fkxt−N − Fkx̂t−N |t‖2

−
∥∥ ytt−N ∣∣k − Fkxt−N

∥∥2
(10)

for k = 0, 1, . . . , N + 1. Using (8) and ‖Fkxt−N −
Fkx̂t−N |t‖2 ≥ δ ‖xt−N − x̂t−N |t‖2 with δ > 0 since all
the matrices Fk are of full rank by assumption as pointed
out in (6), it follows from (10) for k = k∗t that

αmin

∥∥∥ytt−N ∣∣k∗t − Fk∗t
x̂t−N |t

∥∥∥2

≥ δ αmin

2
‖xt−N

− x̂t−N |t‖2 − c1

where

c1 := 2αmin

(
N2r2

wh
2 + (Nrv +M)2

)
and, using this inequality in (9), that

J∗t (x̂t−N |t) ≥ µ ‖ x̂t−N |t − x̄t−N ‖2 +
δ αmin

2
‖xt−N

− x̂t−N |t‖2 − c1 . (11)

Since

‖xt−N − x̂t−N |t‖ ≤ ‖xt−N − x̄t−N‖+ ‖x̄t−N − x̂t−N |t‖
(12)



and hence ‖xt−N − x̂t−N |t‖2 ≤ 2‖xt−N − x̄t−N‖2 +

2‖x̄t−N − x̂t−N |t‖2, we have

‖x̂t−N |t − x̄t−N‖2 ≥
1

2
‖xt−N − x̂t−N |t‖2

− ‖xt−N − x̄t−N‖2

and, using this inequality in (11), we finally obtain

J∗t (x̂t−N |t) ≥
(
µ

2
+
δ αmin

2

)
‖xt−N − x̂t−N |t‖2

− µ‖xt−N − x̄t−N‖2 − c1 . (13)

Consider the following inequalities, which hold for the
various definitions we have introduced so far:

J∗t (x̂t−N |t) ≤ Jk
t (x̂kt−N |t) ≤ Jk

t (xt−N ) = µ ‖xt−N − x̄t−N‖2

+ αk

∥∥ytt−N ∣∣k − Fk xt−N
∥∥2 ≤ µ ‖xt−N − x̄t−N‖2

+ αmax

∥∥ytt−N ∣∣k − Fk xt−N
∥∥2

for k = 0, 1, . . . , N+1. Using (8), the previous inequality
yields

J∗t (x̂t−N |t) ≤ µ ‖xt−N − x̄t−N‖2 + c2 (14)

where

c2 := 2αmax

(
N2r2

wh
2 + (Nrv +M)2

)
.

It follows from (13) and (14) that(
µ

2
+
δ αmin

2

)
‖et−N‖2 ≤ 2µ ‖xt−N − x̄t−N‖2 + c

(15)

where c := c1 + c2. Since xt−N = Axt−N−1|t−1 +
But−N−1 +wt−N−1 and x̄t−N = Ax̂t−N−1 +But−N−1,
we obtain

‖xt−N − x̄t−N‖2 ≤
∥∥A(xt−N−1|t−1 − x̂t−N−1)

+ wt−N−1

∥∥2 ≤ 2 ‖A‖2
∥∥xt−N−1 − x̂t−N−1|t−1

∥∥2
+ 2 r2

w .
(16)

Summing up, if we combine (15) and (16), it follows that(
µ

2
+
δ αmin

2

)
‖et−N‖2 ≤ 4µ ‖A‖2 ‖et−N−1‖2

+ 4µr2
w + c

and hence that

‖et−N‖2 ≤
8µ ‖A‖2
µ+ δ αmin

‖et−N−1‖2 +
8µr2

w + 2c

µ+ δ αmin

for all t = N,N + 1, . . .. After fixing the initial condi-
tion for t = N in (7a) by using (15), from the above
inequality it is straightforward to set the sequence {ζt}
according to (7b), thus concluding the proof.

Note that Theorem 1 with the choice of a sufficiently
small µ ensures that the estimation error et−N belongs
to the compact set B(re), where

re := max

(
κ(µ, α),

b(µ, α)

1− a(µ, α)

)
from now on.

Remark 2 The stability condition δ > 0 in (6) is to be
ascribed to observability. More precisely, such a condition
corresponds to have full rank for the observability matrix
F0 as well for all the matrices obtained fromF0 by deleting
each row in turn. In other words, the system should be
observable also by excluding each of the measures in the
batch in accordance with what one can expect because of
the leave-one-out moving-horizon strategy proposed here.
The bounding sequence (7) depends on the various system
parameters such as ‖A‖, rw, rv, andM . The smaller such
parameters, the tighter the bound. The choice of µ and
N is more involving and deserves a careful analysis with
some specific tools such as quadratic boundedness [4].

In the next section, we will address the robustness prop-
erty of the moving-horizon estimators.

4 Robustness of MHE

In this section, we will discuss the selection of the design
parameters α0, α1, . . . , αN+1 in such a way to ensure the
rejection of the outliers to improve the performance of
the moving-horizon estimator.

The MHE strategy (5) guarantees outlier rejection if

Jk
t

(
x̂kt−N |t

)
< J i

t

(
x̂it−N |t

)
, k = 1, 2, . . . , N + 1,

i = 0, 1, . . . , N + 1, i 6= k (17)

with the k-th measure in the information batch affected
by outlier, i.e.,

yt−N+i−1 = F̄ixt−N + H̄iw
t−1
t−N + vt−N+i−1 ,

i = 1, 2, . . . , N + 1 (18a)

|vt−N+i−1| ≤ rv , i = 1, 2, . . . , N + 1, i 6= k (18b)

r̄v < |vt−N+k−1| (18c)

for some r̄v > 0 with F̄i and H̄i denote the i-th rows of
F0 and H0, respectively. More specifically, the following
result holds.



Theorem 2 Under the assumptions of Theorem 1 and
having chosen α0, α1, . . . , αN+1 all equal to any strictly
positive constant and µ > 0 such that a(µ, α) < 1, (18)
implies (17) if the absolute values of outliers are strictly
larger than

r̄v =

√
3
(
F̄i∗e∗ + H̄i∗w∗ + v∗

)2
+ 3f̄2r2

e + 3h̄2Nr2
w

(19)
where

f̄ := max
k=1,2,...,N+1

∥∥F̄k

∥∥ h̄ := max
k=1,2,...,N+1

∥∥H̄k

∥∥
(e∗, w∗, v∗, i∗) ∈ argmax

e∈B(re),w∈B(
√
Nrw),|v|≤rv,i∈{1,...,N+1}

(
F̄ie

+ H̄iw + v
)2

(20)

with
r̄v > rv . (21)

Proof. Instead of proving (17) directly, we will consider
the stronger but more easily tractable condition

Jk
t (x̂t−N |t) < J i

t (x̂t−N |t) , k = 1, 2, . . . , N + 1,

i = 0, 1, . . . , N + 1, i 6= k , ∀x̂t−N |t ∈ Rn

(22)

since it is straightforward to verify that (22) implies (17).
We will consider first (22) for i = 0 and later on the
remaining cases, namely, for i = 1, 2, . . . , N + 1.

Case analysis for i = 0

To ensure Jk
t (x̂t−N |t) < J0

t (x̂t−N |t) for k = 1, 2, . . . , N+
1 and all x̂t−N |t ∈ Rn, consider the following:

v2
t−N+k−1 =

(
F̄ket−N + H̄kw

t−1
t−N + vt−N+k−1

− F̄ket−N − H̄kw
t−1
t−N

)2 ≤ 3
(
yt−N+k−1

− F̄kx̂t−N |t
)2

+ 3
(
F̄ket−N

)2
+ 3

(
H̄kw

t−1
t−N

)2
≤ 3
(
yt−N+k−1 − F̄kx̂t−N |t

)2
+ 3

∥∥F̄k

∥∥2 ‖et−N‖2

+ 3
∥∥H̄k

∥∥2 ∥∥wt−1
t−N

∥∥2 ≤ 3
(
yt−N+k−1 − F̄kx̂t−N |t

)2
+ 3f̄2r2

e + 3h̄2Nr2
w (23)

where the first inequality was obtained by using the
square sum bound. Thus, the term yt−N+k−1−F̄kx̂t−N |t
is nonnull and hence(

yt−N+k−1 − F̄kx̂t−N |t
)2
> 0 (24)

if
v2
t−N+k−1 > 3f̄2r2

e + 3h̄2Nr2
w . (25)

Using (24), we easily derive

αk

t∑
i=t−N

i6=t−N+k−1

(
yi − Cx̂t−N |t

)2
< α0

t∑
i=t−N

(
yi − Cx̂t−N |t

)2
as, by assumption, α0 = αk. After adding µ‖x̂t−N |t −
x̄t−N‖2 to both sides of such an inequality, we obtain
(22) for i = 0.

Case analysis for i = 1, 2, . . . , N + 1

We will adopt a reasoning quite similar to the previous
case. First, note that, since we assume that all the cost
parameters α1, α2, . . . , αN+1 are equal to some strictly
positive value, (22) restricted to i = 1, 2, . . . , N+1 holds
if (

F̄iet−N + H̄iw
t−1
t−N + vt−N+i−1

)2
<
(
F̄ket−N

+ H̄kw
t−1
t−N + vt−N+k−1

)2
(26)

for i = 1, 2, . . . , N + 1. Toward this end, we will get an
upper bound on the l.h.s. and a lower bound on the r.h.s.
of (26) and then combine these bounds in such way to
satisfy the inequality. The former is simply given by(
F̄ket−N + H̄kw

t−1
t−N + vt−N+k−1

)
≤
(
F̄i∗e

∗ + H̄i∗w
∗

+ v∗
)2

(27)

where the maximizer defined in (20) exists for the Weier-
strass theorem. The latter stems from (23), which yields

v2
t−N+k−1

3
− f̄2r2

e − h̄2Nr2
w ≤

(
F̄ket−N + H̄kw

t−1
t−N

+ vt−N+k−1

)2
. (28)

Using (27) and (28), it follows that (26) holds if

(
F̄i∗e

∗ + H̄i∗w
∗ + v∗

)2
<
v2
t−N+k−1

3
− f̄2r2

e − h̄2Nr2
w

or, after a little algebra,

v2
t−N+k−1 > 3

(
F̄i∗e

∗ + H̄i∗w
∗ + v∗

)2
+ 3f̄2r2

e

+ 3h̄2Nr2
w . (29)

Let us now combine the two cases. Since
(
F̄i∗e

∗+H̄i∗w
∗+

v∗
)2 ≥ 0, the r.h.s. of (25) is less than or equal to the

r.h.s. of (29), it is straightforward to conclude that (22)
holds by choosing r̄v as in (19).



Proof of (21)

We proceed by a contradiction argument and hence let
us suppose r̄v ≤ rv. Thus, (20) yields

r2
v ≥ r̄2

v ≥ 3
(
F̄ie+ H̄iw + v

)2
+ 3f̄2r2

e + 3h̄2Nr2
w (30)

for all e ∈ B(re), w ∈ B(
√
Nrw), v : |v| ≤ rv, and

i = 1, 2, . . . , N+1. If we choose e = 0, w = 0, and v such
that |v| = rv, (30) results in a contradiction and hence
we conclude that (21) holds.

Remark 3 Theorem 2 deserves a special comment
since, in principle, one may deduce a less conservative
condition for robustness by means of the direct use of (17)
instead of (22). The condition (17) may facilitate the
selection of the parameters α0, α1, . . . , αN+1 but it re-
quires the introduction of additional assumptions on the
boundedness of the state trajectories. Indeed, the stronger
condition (22) enables to deal only with estimation error
and disturbances, thus taking advantage of the results of
Theorem 1 and allowing for a simple choice of such pa-
rameters, as detailed later on.

Remark 4 The robustness of the proposed method in
case of multiple outliers is difficult to be proved. Despite
the single outlier case, the combinatorial nature of the
problem prevents one to find suitable upper and lower
bounds on the l.h.s. and r.h.s. of (26), respectively, and
hence to fix the minimum amplitude of the absolute value
of the outliers for which rejection is ensured. The proof
of robustness in the sense of Theorem 2 is thus nontriv-
ial under the assumption of multiple outliers, though the
stability property of Theorem 1 holds.

Based on the results presented so far and without loss
of generality, we adopt the following cost functions:

J0
t (x̂t−N ) = ρ ‖ x̂t−N − x̄t−N ‖2 +

t∑
i=t−N

(yi − Cx̂i)2

(31a)

Jk
t (x̂t−N ) = ρ ‖ x̂t−N − x̄t−N ‖2 +

t∑
i=t−N

i6=t−N+k−1

(yi − Cx̂i)2
,

k = 1, 2, . . . , N + 1 (31b)

where the scalar ρ = µ/α ≥ 0 is to be suitably chosen, as
the minimization of (31a) and (31b) depends just only
on the value of the ratio µ/α. Likewise, the stability
properties of Theorem 1 depend only on µ/α and not
separately on µ and α.

Theorem 2 claims that robustness is guaranteed in case
of occurrence of outliers with absolute value larger than
r̄v. Clearly, the dependence of r̄v on M is such that an

increase of M determines a larger B(re) and hence a
larger r̄v. Thus, we may reduce r̄v by decreasing M as
much as possible, which can be accomplished by solving
an optimization problem that takes into account the var-
ious relations between M and r̄v. Toward this end, we
explicitly point out the dependence on M in some pre-
vious definitions by redefining them with a little abuse
of notation as follows:

κ(ρ,M) :=
4
(
ρ d2

0 +N2h2r2
w + (Nrv +M)2

)
ρ+ δ

(32)

a(ρ) :=
8ρ ‖A‖2
ρ+ δ

(33)

b(ρ,M) :=
8
((
ρ+N2h2

)
r2
w + (Nrv +M)2

)
ρ+ δ

(34)

where d0 is an upper bound on ‖x0 − x̄0‖. Note that
in (33) there is no dependence on M , which indeed af-
fects both (32) and (34). Thus, let us choose ρ such that
a(ρ) < 1 (i.e., the stability result of Theorem 1 holds)
and consider the following minmax problem:

min max
i=0,1,...,N+1

fi(e, w, v, re,M) (35a)

e>e− r2
e ≤ 0 (35b)

w>w −Nr2
w ≤ 0 (35c)

v2 − r2
v ≤ 0 (35d)

rv −M ≤ 0 (35e)

re −max

(
κ(ρ,M),

b(ρ,M)

1− a(ρ)

)
= 0 (35f)

with unknowns e ∈ Rn, w ∈ Rn×N , v ∈ R, re ≥ 0, and
M ≥ 0 and where

fi(e, w, v, re,M) :=


M2 , for i = 0

3
(
F̄ie+ H̄iw + v

)2
+ 3f̄2r2

e

+3h̄2Nr2
w , for i = 1, 2, . . . , N + 1.

Because of the continuity of the functions fi, the problem
(35) admits a solution.

In the next section, simulation results will be presented
and discussed.

5 Numerical Example

We compared the Kalman filter with estimate update en-
abled on residual check (KF) and the proposed method
(denoted by MHF, moving-horizon filter) about the esti-
mation of the state variables of a second-order oscillating
system by using only the measures of the first variable,
possibly corrupted by outliers. Such an autonomous sys-
tem with damping ratio ξ and (undamped) natural pul-
sation ω is described by a discrete-time linear equation



with

A =

[
1 T

−Tω2 −2ωξT + 1

]
C = [ 1 0 ]

with ξ = 0.2, ω = 0.5 rad/s, and sampling pe-
riod T = 0.5 s. The initial states were generated as
white Gaussian noises with mean [1 1]> and covari-
ance P0 = diag(2, 2). White Gaussian processes with
means equal to zero and covariances Q = diag(1, 1), and
r = 0.01, 0.1, 1.0 (except in case of outlier) were chosen
as system and measurement disturbances, respectively.
For each simulation run, we computed the correspond-
ing values of rv and rw and finally of r̄v by solving (35).
The number of time steps between one outlier occur-
rence and the next one was randomly generated between
N+1 and 2 (N+1). The outlier amplitudes were chosen
according to a zero-mean, white Gaussian distribution
with dispersion equal to r̄v and thus with a probability
of having an outlier amplitude for which the rejection of
the MHF is not ensured of about 68% (see Theorem 2).

The KF was designed by using P0, Q, and r according
to the simulation setting and different thresholds σt to
enable the estimate update based on the current output
error. (i.e., only in case the absolute value of such an er-
ror is less than σt). We considered different choices of
σt by scaling the covariance of the output error, namely,
st = r + CPt|t−1C

>, where Pt|t−1 is the “a priori” co-
variance of the KF. Specifically, we choose σt equal to√
st, 2
√
st, 5
√
st, and 10

√
st. The estimates of the MHF

were obtained according to (5) by using the cost func-
tions (31) with different choices of ρ such that the sta-
bility condition α(ρ) < 1 is satisfied.

To compare the performances of all the estimators, we
will show the mean computational time (MCT, in s) and
the root mean square error (RMSE). The MCT is just
the mean duration of the computation that is required
to generate an estimate of MHF or KF at each time
instant. The RMSE is defined as follows:

RMSE(t) =

(
L∑

i=1

‖et,i‖2
L

)1/2

where et,i is the estimation error at time t in the i-th
simulation run, and L is the number of simulation runs.
The initial states of KF and MHF were initialized with
[1 1]> in all the simulation runs.

The result of a simulation run is presented in Fig. 2. Fig.
3 shows the boxplots of the RMSEs for both MHFs and
KFs with different choices of ρ and σt, respectively. Ta-
bles 1-4 illustrate the results concerning tests over 100
simulation runs with zero-mean, Gaussian measurement
noises having different dispersions. More specifically, Ta-
ble 1 and 2 report the RMSE medians separately for the

first and second state variable, respectively. As compared
with the KF, the MHF performs much better in terms
of RMSE with an MCT that is about three times that of
the KF on average, as shown in Table 3. Moreover, the
performances of the MHF turn out to be quite similar
over large variations of ρ, whereas, by contrast, the KF
performs badly in case of wrong choice of the threshold.
Table 4 shows that the MCT of the MHF grows almost
linearly with the increase of N (i.e., with the number of
measures of the batch).

6 Conclusions

We have addressed the problem of state estimation for
linear systems with measurements affected by outliers
by devising a novel approach based on a moving-horizon
strategy, for which stability and robustness have been
established. We have verified the effectiveness of the pro-
posed approach via simulations, where the higher esti-
mation precision and enhanced robustness to outliers is
paid in terms of a moderate increase of computational
burden as compared with the Kalman filter with esti-
mate update driven by a threshold test on the output
error.

Future work will concern the extension of the proposed
method to estimation in the presence of multiple out-
liers and for nonlinear systems. The use of heuristics to
reduce the computational effort will be another topic to
investigate.
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