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Abstract

A PM10 sampling campaign was carried out on boagedctuise ship Costa Concordia during
three weeks in summer 2011. The ship route wadaveechia-Savona-Barcelona-Palma de
Mallorca-Malta (Valletta)-Palermo-Civitavecchia. @PM10 composition was measured and
utilized to identify and characterize the main PMddurces along the ship route through
receptor modelling, making use of the Positive Maffactorization (PMF) algorithm. A
particular attention was given to the emissionateel to heavy fuel oil combustion by ships,
which is known to be also an important source @badary sulphate aerosol. Five aerosol
sources were resolved by the PMF analysis. Thegpyimontribution of ship emissions to
PM10 turned out to be (12 £ 4)%, while secondarynamium sulphate contributed by (35 *
5)%. Approximately, 60% of the total sulphate was idesdi as secondary aerosol while
about 20% was attributed to heavy oil combustion simp engines. The measured
concentrations of methanesulphonic acid (MSA) iat#id a relevant contribution to the
observed sulphate loading by biogenic sulphatendor by the atmospheric oxidation of
dimethyl sulphide (DMS) emitted by marine phytoam.

Keywords: PM10, ship emissions, Mediterranean Basin, socapp®rtionment
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1. Introduction

The contribution of diverse anthropogenic and rat@missions sources, such as highly
populated and industrial coastal areas, intenge tsffic, forest fire emissions and Sahara
dust outbreaks, together with meteorological andggsphical peculiarities, make the
Mediterranean Basin one of the most polluted regi@mm Earth in terms of ozone
concentrations and aerosol loading (Lelieveld e2@02, Velchev et al, 2011). This is caused
by local emissions as well as transport of airygah from outside the Mediterranean region.
Ship emissions are an important source of polluirothis region and represent significant
and growing contributors to air quality degradationcoastal areas (Van Aardenne et al.,
2013). Emissions of exhaust gases and particles fine oceangoing ships affect the chemical
composition of the atmosphere, climate and regiairajuality (Eyring et al., 2005). In recent
years, particle emissions from ships and harbotivities became a concern for air quality
and object of several scientific investigations (®tw et al., 2010, Becagli et al., 2012, Cesari
et al., 2014, Bove et al., 2014). A number of stadiave shown that ship exhaust particles
contain V and Ni and these elements have been asedarkers to investigate primary ship
emissions using receptor models (Mazzei et al.820ana et al., 2009; Cuccia et al., 2010,
Pandolfi et al.,, 2011, Salameh et al., 2015). To@tJResearch Centre of the European
Commission (JRC, EC) has carried out an air qualibyitoring program from 2006 to 2014,
based on observations from a cruise ship followmgregular route in the Western
Mediterranean. In the framework of a collaboratamreement between the JRC and Costa
Crociere, continuous measurements of atmospheliiataats were carried out on cruise ships
from spring to autumn. During two campaigns in jeatar, in 2009 and 2010, a two-stage
streaker sampler (Formenti et al., 1996) was ilestadn the ship. The elemental composition
of the fine and coarse fraction of PM10, separateljected by the streaker on an hourly
basis, was measured by PIXE analysis (Schembati,e2014). These datasets were used for
an investigation of the influence of ship emissionghe composition of aerosols over the sea
through a source apportionment analysis by PMFealkas by chemical marker compounds.
The ship emissions were found to be an importanirceo of aerosols in the Western
Mediterranean, however a quantification of theipaots by PMF was not obtainethat
experiment did not disentangle primary and secgnsanrces of sulphate and did not resolve
the contribution of primary aerosol from ships, sun@mably because of the insufficient

chemical speciation of PM10. A mixed combustionreepwhich showed evidence of a direct
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connection with ship emissions was found to coantgbby 55%, 63% and 80% to PM10,
Black Carbon and sulphate, respectively (Schenddaai., 2014)In summary, the results of
the previous campaigns indicated a significant ichymd ship emissions to PM levels in the
explored area but were not conclusive. In this ednta new PM10 sampling campaign was
organized in the summer of 2011, to complete tif@mmation of the previous studies and to
get a better description of PM sources. An extengiliaracterisation of PM10 samples,
collected using a sequential filter sampler, wadr@sked; the obtained data were analysed by
PMF and used to identify and characterize the 810 sources met along the route.

2. Material and methods

2.1 Monitoring campaign

The monitoring station was placed in a cabin atftbet of the top deck of the ship
“Costa Concordia”. It permitted to perform contimgomeasurements of NOSQ, O; and
Black Carbon (BC), the last one by means of an &etheter (AE 21, 2 wavelengths, Magee
Scientific, USA) (Schembari et al., 2014). The aetsampling campaigns were carried out
during three weeks of summer 2011: July 18-25, Audib-22 and September 12-19. PM10
samples were collected on Quartz filters (47mm eiam flow rate 2.3 thh) using a Sven
Leckel Ingenieurburo sequential sampler, placethertop of the cabin where the monitoring
and meteorological station were also located. Emepding was carried out on a variable time
basis: the sampler was started 1 h after the depaftom each harbour and stopped 1 h
before the arrival in the next harbour. Each leg Wen divided in periods of about 4-5 h with
one filter sampled per each period. This resulted variable number of filters per open-sea
leg and in a total number of about 20 filters peeiu

2.2 Analytical methods

All filters were pre-conditioned for two days in @ntrolled room (temperature:
20+1°C, relative humidity: 50+5%) before and afiee sampling and then weighed using an
analytical balance (sensitivity: fug). Field blank filters were used to monitor pobsib
artefacts. The compositional analyses were conducang different methods. The elemental
composition of filters sampled in August and Septemwveeks, were measured by ED-XRF
(Energy Dispersive - X Ray Fluorescence) using &2B00 spectrometer from Oxford
Instruments (Ariola et al., 2006) for S, CI, K, (4, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Ba, Pb.
For technical reasons, the concentrations of theesglements in the samples collected during
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the July cruise were indeed determined by PIXE yamalat the HVEE 3 MV Tandetron
accelerator, installed at the LABEC (LAboratorio iECulturali) laboratory of INFN in
Florence (Calzolai et al., 2006; Lucarelli et 2013). The concentration values of S and K
determined using ED-XRF were corrected for an ayerattenuation factor (Bove et al.,
2014) to determine their mean values, whereas SKQCesulted to be always below their
Minimum Detection Limit when measured by PIXE. TM&imum Detection Limits obtained
for both the techniques are shown Table E1 in the electronic supplementary malkeria
Finally, the analytical uncertainties are the suimthe systematic term on the calibration
standards (5%) and of the statistical fluctuabarpeak areas.

The water-soluble inorganic components of the PMid€re determined by lon
Chromatography (IC) using an ICS-1000 lon Chromaplgy System (Dionex) at the
University of Milan. In particular, for the exttd@n of the PM, a quarter of each filter was
wetted previously and then three times with Milv@ter in an ultrasonic bath for 20 min
(complete recovery, 98% + 3%), renewing the watezaeh step (Piazzalunga et al., 2013).
The extracts were analysed using IC to identifyrtiggor ionic species (i.e., NaNH;", K,
Mg?*, C&*,CI, SQ%, NO3) with an overall 10% uncertainty for the ionic centrations. The
MSA (methanesulfonic acid) concentration valuesena&iso measured by IC with the same
uncertainty. The lack of quantification of low-Zeatents (due to the X-ray self-absorption
and the high Si concentration in the quartz fikevgas partially recovered by lonic
Chromatography analysis which was finally considerere accurate for such elements.

Information on meteorological parameters (wind spaed direction, temperature,
humidity from the meteorological station of the mhand on the ships position, speed and
sailing direction, were also available (in 10 miervals) and used to identify situations
where the PM sampling might be influenced by thassions of Costa Concordia itself.
When the inlets of the measurement station werendomd the ship stack within an angle of
+ 40°, the data were discarded to avoid any riskooftamination.

Air mass back-trajectories were calculated using 5 NOAA HYSPLIT model
(http://ready.arl.noaa.gov/HYSPLIT.php) with GDASetmorological data. For each filter,
five-day back trajectories arriving at 50 m and 9@bove sea level were calculated for the
positions where the filter sampling ended, to eatduhe different air masses arriving over the
sea in the three cruise weeks. During summer 20&lioute of the ship was Civitavecchia-
Savona-Barcelona-Palma de Mallorca-Malta (Valle®alermo-Civitavecchia (see Figure E1
in the electronic supplementary material).
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2.3 Aerosol composition: mass closure

Details on the method to obtain the aerosol caitipa is described in Schembari et
al. (2014). Briefly, concentration values of 8ONH," and NQ were directly retrieved from
the IC analysis, while sea salt and dust were pbtafrom raw data and conversion factors:
sea salt was calculated from Nand CI concentration values, taking into account the
seawater composition (Seinfeld and Pandis, 19983t dias obtained by multiplication of
non-sea-salt calcium nssCécalculated by subtracting from total measured&’ Gae fraction
in sea salt given by multiplication of Nay C&*:Na" ratio in seawater composition, Seinfield
and Pandis, 1998) by 5.6 (the value retrieved btaurRlet al. (2004) for a background site,

would vary for any other kind of station).

2.4 Receptor model-PMF

Positive Matrix Factorization (PMF) was used toniily and characterize the major
PM10 sources along the ship route. PMF has beecrided in detail by its developers
(Paatero and Tapper, 1994), it has been adopteevieral studies for PM receptor modelling
and has rapidly become a reference tool in thisare$ field (e.g., Qin et al., 2006; Escrig et
al., 2009; Contini et al., 2012; Cuccia et al., 201n this work, the PMF2 program (Paatero,
2010) and the methodology described in Bove dRall4) was used. The PMF analyses were
carried out using the data collected from the thweeks of the summer 2011. The variables
were selected according to the signal-to-noiseeroit (Paatero and Hopke, 2003) and 14
series of concentration values were finally retdifer the PMF study: Ti, V, Fe, Ni, MSA,
CI, NOs, SQ?, Nd', NH,", K*, Mg?*, C&*, BC. The Polissar et al. (1998) procedure was
used to assign concentration data and their asedaimcertainties; the TNO;, Na', Mg?*
uncertainties only were increased of 20% in the RIS for down weighting these elements
which resulted ubiquitous among the factors. Thealmer of samples considered in the PMF
run (55) satisfies the criteria set in Thurston Spengler, (1985). PMF results are affected by
the rotational ambiguity (Paatero et al., 2002) estdtions are directly implemented in the
minimisation algorithm using the FPEAK parameteadtero, 1997). In the analysis, the
parameters obtained from the scaled residual mdivix(the maximum individual column
mean), and IS (the maximum individual column staddieviation), together with Q-values
(goodness of fit parameter) were examined to fimel inost reasonable solution. The best
rotation for each factor was chosen in the FPEAKgeafrom -2 to +2 by discarding the
solutions corresponding to profiles without phykiozeaning (i.e., the sum of elemental

concentrations exceeded 100%) and selecting thesergting concentration ratios between
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the tracer elements of the natural sources (eepn, salt, crustal matter) comparable to

literature values (Bove et al., 2014).

3. Results and discussion

3.1 Meteorological conditions

The sea level pressure composite mean and anonoakesthe Mediterranean basin
during the three campaigns according to the NCERRIReanalysis (Kalnay et al. 1996),
are shown in Figure E2 in the electronic suppleamgntnaterial. While in August and in
September the synoptic conditions were characteribg the expansion towards the
Mediterranean of the Azores Anticyclone, in linettwseasonal climatology (especially in
August, whereas a slightly negative anomaly is ébumSeptember), in July the situation was
very peculiar. In this case, the anticyclonic sysie confined over the Atlantic, favouring the
development of low-pressure systems across Cetralpe and the Mediterranean Basin,
where a strong negative pressure anomaly can e see

The meteorological parameters recorded during lineet cruises by the on-board
instrumentation are reported in Figure E3 in thectbnic supplementary material and
confirm what is suggested by the synoptic analylsigparticular, pressure exhibited lower
average values and larger variability in July, agded to episodes of strong wind and, as a
consequence, rough sea along the route. On theacpnduring the two campaigns in August
and September, more stable conditions were enaeahtevith higher pressure values and
generally lighter winds, apart from the last legtltud September cruise, when the passage of
an Atlantic frontal system determined a suddensanesdrop and wind speed increase.

The meteorological conditions along the ship rodiieing the most relevant strong
wind episodes were also assessed using a 32-yedudst, recently realized at the University
of Genoa by means of simulations with tiMeather Research and Forecasting (WRF,
Skamarock et al. 2008) model on a domain coverimg éntire Mediterranean with a
horizontal grid spacing of 10 km. Details about thedelling system are given in Mentaschi
et al. (2015).

3.2 PM10 composition

The average PM10 concentration and its compos#rernreported in Table 1 whereas
in Figure 1 the chemical composition as descrilpe?.3 Section for the three 2011 cruises, is
shown. The nssSO, NOs, sea salt seem to be quite different betweenutyecampaign and
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the other two cruise weeks (Figure 1). Such a émcy is attributable to the peculiar
meteorological conditions occurred in July, as uksed in the previous section. The balance
between nitrate and ammonium sulphate also showsdifferent well defined situations.
During July and for some samples collected in Sepex, ammonium and nitrate ions exactly
balance, this highlighting the lack of ammoniump$idte. On the contrary, in August the sum
of nitrate and sulphate ions are completely baldriyeammonium (Figure 2a). Furthermore,
the ratio (SG + NO3):NH;" shows increases correlated with” €bncentration values
(Figure 2b). Figure 3 shows the anti-correlatiotwleen chlorine and sulphate concentration
values: all these pieces of information point a presence of air masses of two different
origin which affect our samples as also indicatgdack trajectory analysis. The air masses
reaching the ship route in July, had been mainlgr dlie sea for at least the previous 24 h;
during the August and September cruises, the imgaetr masses passed mostly over the
continental areas, suggesting a larger contribdtmm the transport of terrestrial pollutants to
the open sea. An example is shown in Figure Edefetectronic supplementary material. In
conclusion, when the air masses reached the shmmpngofrom the continent, sulphate
concentrations increased and the ratio £S® NO3) :NH;* approached 1. On the contrary,
sulphate concentration values remained low withemy sizeable presence of ammonium
sulphate when the aerosol impacting the ship waslynaf marine origin.

The primary contribution of ship emissions to PMEh be calculated on the basis of
previous research works (Agrawal et al., 2009; Zéiaal., 2013) and using the equation:

Va

PM, =R (1)

Fy HFO

R = 8205.8 is the average ratio of PM2.5 to norneali V emitted (ppm) suggested in
Agrawal et al. (2009), which could be universallgpked to other locations with HFO
burning ship emissions;ais the ambient concentration of V (ng’mwhilst R/, o is a term
indicating the typical V content (in ppm) in HFOsed by vessels. We used the same average
value of F, yro = (65 + 25) ppm, in agreement with Cesari et (@014). According to eq.
(1), the primary PM10 from ship traffic ranged frén¥ to 3.4ug m’>; similar values had been

previously obtained in some port sites (Viana gt24109).

3.3 Sulphate apportionment
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The contributions of different sources to the satghconcentration was evaluated on
the basis of specific markers as described in T&#ein the electronic supplementary
material. The main components of the sulphate legeséa salt sulphate (ss8Y) that is the
amount of sulphate present in sea salt particied,®n-sea-salt sulphate. The non-sea-salt
sulphate (nssSP) is defined as the amount of the sulphate presepérticles in excess of
what expected from sea salt particles, and ha® tboatributions: anthropogenic, biogenic
and crustal nssSO. According to some literature works, methanesudf@eid can be used as
a marker for quantifying the biogenic non-sea salphate (nssS@.). The ratio between
MSA and nssS@ i, depends on the season (Kouvarakis et al., 208@de (Chen et al.,
2012) and temperature (Bates et al. 1992). In g@ique work (Schembari et al., 2014), the
nssSQ i, was estimated starting from the measurement of M&#entration in the samples
through the relation by Bates et al. (1992) evethat equation was obtained during of field
campaign in the eastern Pacific Ocean.

In our data set we identified a sample marked gufd 3, that seems to be affected by
a strong presence of fresh marine aerosols: tie @itNa" = 1.094and Md:Na'= 0.24 are
very similar to those reported in literature foe tihesh marine aerosol, respectively 1.17, and
0.25 (Keene et al., 1986). Furthermore, the iomilatce is fully respected: 162 ne¢f rof
anions vs. 160 neq Tof cations and the sulphate is not fully balanftech ammonium, this
highlighting the presence of a sulphates sourderdiiit from the anthropogenic ones. With
this sample, the direct calculation (details ar@wsh in Table E2b in the electronic
supplementary material) of the nssS$g concentration using the diagnostic ratios reported
in literature work (Keene et al., 1986), is possidhd the MSA:nssSOy;, ratio was found to
be 0.08 against the value of 0.03 which would tesam the Bates’s formula. Finally, we
adopted MSA:nssSPy, = 0.08 for the whole campaign and to derive théphate
apportionment.

The results of such calculations for the threesasiiare reported in Table 2 and Figure
8. Large concentration values of nssS@ere obtained for all the three weeks, while haghe
values of ssS@ and lowest values of nss$Owere observed in July (Figure 1). The latter
were in coincidence with a quite high wind speedparticular during the Savona-Barcelona
and Palermo-Civitavecchia legs. The analysis ofdvepeed and direction, both measured on
board and obtained by hindcast simulations withWF-ARW model (see also Figure E5
and EG6 in the electronic supplementary materiadjhlighted that it blew from the sea and its
velocity increased rapidly during the last parthef routes, close to the Barcelona coast and to

Civitavecchia, respectively. This observation conf the sea salt dependence on the local
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wind speed in the Mediterranean Basin (Bergametl.€1989a) Chabas and Lefévre (2000);
Contini et al., 2010). The main contribution to 86§ was of anthropic origin in August and
September, whereas in July nss&§ was prevailing, probably due to the particular
meteorological conditions that determined high se#t concentrations. The Nss8@inr
contributed to PM10 by 5%, 25% and 18%, in Julygést and September, respectively,
while the nssS@1i, was on average 9%, 5% and 3% of PM10 in the sagnieds. The
nssSQ s as estimated by this approach, remained alwaysdr1% of PM10.

The above-discussed results can be compared vasie ttollected in the similar cruise
in June 2010 (Schembari et al., 2014), also regomie Table 2. The previous sulphate
apportionment showed similar contributions to 2@ata for nssSg¢usiand ssSGF. Indeed,
the meteorological conditions in June 2010 wergegresembling those found in July 2011,
with cool temperatures and intense winds (see Schgrat al. 2014). The nss$@, showed
higher average contributions if compared to vakigsined in the three 2011 cruises. Higher
values of nssS§ i Were also obtained in 2010 with respect to thel 2&impaigns, with the

only exception of the August cruise, when highevels of nssSg3 a.i Were found.

3.4 PMF results

The database used as input to PMF included datnebt by the analysis of filters
sampled along open-sea legs while samples collestezh the ship was manoeuvring or
hotelling in the harbours and when the samplingstavas downwind the ship stack, were
excluded. The database was completed with thegeries of hourly BC concentration values
and PM10 mass concentration.

Five factors were resolved and identified by PMFRM10 obtaining the best solution
with FPEAK =0:Secondary Sulphate, Reacted dust, Biomass burning, Sea salt andHeavy oil
combustion. Source profiles and explained variations (EV) paters are shown in Figure 4,
while the average PM10 apportionment is given guFe 5.

PMF-Factor 1 was identified as the contribution ttuSecondary Sulphate looking at
the high EVs for S& and NH* and the relevance of these compounds in the chepriuiile
(Figure 4). The average concentration ratio for’3®H," in the factor is 2.1 + 0.1, which is
slightly lower than the stoichiometric figure fomenonium sulphate (i.e. SONH, = 2.7).
The average relative contribution of this factothe PM10 mass is (35 * 5)%, with highest
concentrations observed during August and loweslulg as reported in Table Bhe PMF
result is comparable, within its uncertainty, withe direct calculation of the average

abundance of ammonium non-sea-salt sulphate in PMIB9 + 4)%, discussed in Section
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3.2. The quite low concentration value of July mgd in Figure 6 confirms the observations
obtained by the measurements.

PMF-Factor 2 was characterised by high EV valuesTfaand Fe, this suggesting a
contribution by mineral dust, and by a relevanttien of SQ*, NOs;, NH,;" and BC in the
source profile (Figure 4). The mineral particlee@g the atmosphere and then changed their
original composition, getting mixed/coated with angc and inorganic ions (sulphate and
nitrate) and BC (Fairlie et al., 2010). For thiagen, this factor was labelled Reacted dust,
also in agreement with other source profiles oletéhiny PMF in Mediterranean sites (Perrone
et al., 2013, Cesari et al., 2014). The temporatepa of this factor showed highest
concentrations along the Barcelona-Palma legs &ts® Figure 6), in particular near the
Palma coast. Moreover, this source profile is gsieilar to the mineral dust profile obtained
by PMF analysis of the data sampled in a site &mtat Palma de Mallorca (Pey et al., 2013),
which includes anthropogenic dust emissions from liarbour too. For this reason, the
fraction of PM10 attributed by PMF tReacted dust, even if it appears consistent with the
“chemical” apportionment described in Section 2s3,not comparable to the pure dust
composition.

PMF-Factor 3 was assigned Boomass burning because it was characterized by high
contributions of BC, S&, NH,;" and K in the source profile (Figure 4) and by high EV
values for BC and Kin agreement with other works which adoptedas tracer of biomass
burning (Belis et al., 2011). High concentratiotues were detected along the Malta-Palermo
leg, both in August and September (see also Figutdaximum values were observed with
high wind speed and prevailing direction from thelan coast and from the city of Palermo.
The contribution of the source, on average (27 % ®f PM10, seems to be excessive
considering the summer period in which the measenesnwere performed. Actually, this is
not a pure profile because includes the mixing vather sources like re-suspended dust
coming from the continents nearby. This aspectoisfimmed also by the presence of’Ca
element, which instead is absent in the “Reacted’ guiofile.

PMF-Factor 4 was identified &ga salt since it was characterized by high EV values
for NOg, CI, Na', Mg>" and MSA (Figure 4). The CNa' ratio in the profile is equal to 0.2,
which is much smaller than both the 0.9 mean ralitained in the 2009 and 2010 cruises
(Schembari et al ., 2014) and the 1.17 ratio aflfreea salt particles (Keene et al., 1986). This
can be due to evaporation of HCI to the atmospldreh occurs in marine air samples
(Perrone et al., 2013, Cuccia et al., 2013). Thd-Rilgorithm could not distinguish fresh and

aged sea salt: in tHéea salt source profile (Figure 4), the presence of thesédary nitrates
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and MSA due to the oxidation of dimethyl sulphide emittedm the sea suggested the
mixing with secondary components of PM10. The ayerfaaction of PM10 attributed to this
factor was (19 * 4)%, in agreement with the (27)% Yalue obtained as the sum of Sea salt
and Nitrates components obtained evaluated by datranalysis (Section 2.3). The sea salt
concentration was higher in July than in August 8egtember as highlighted in Table 3: this
confirms the occurrence of sea salt events durimg $avona-Barcelona and Palermo-
Civitavecchia legs as described in Section 3.2.

PMF-Factor 5 was finally identified ableavy oil combustion because it was
characterized by high EV values for V and Ni, tgbidracers of heavy oil combustion
(Mazzei et al., 2008, Viana et al., 2009). The Vcdhincentration ratio in the source profile is
2.6 £ 0.1, in agreement with the 2.9 + 0.4 valu¢amed by PMF during the previous
campaigns (Schembari et al., 2014) and with thelasions of several other literature works
which recognized such value as typical of ship smors (Agrawal et al., 2008, Mazzei et al.,
2008, Cuccia et al., 2010, Pandolfi et al., 201dydBet al., 2014). The source profile was
enriched in sulphate with S&V = 67 + 4. The initial SG ™V ratio in the particulate exhaust
(PM2.5) of the main engine of different oceangowogtainer vessels is reported to be in the
range 11-27 (Agrawal et al., 2008). However, thewm of SQ* in the air mass is expected
to grow fast due to SQOconversion into sulphate; this conversion is faste high UV
radiation and high humidity conditions (Restadletl®98, Becagli et al., 2012). Actually, the
measured S§:V ratio (similar to the S@:V ratio in the profile) is lower in July than the
other two cruise weeks, confirming the higher iaflae of marine air masses as observed in
Section 3.2 and, therefore, of the ship emissidoisgathe route. Ship emissions contributed
on average to (12 £+ 4)% of PM10. This figure isgreement with the (16 + 11)% percentage
evaluated considering the measured V as a markahé&combustion in ship engines (3.2
Section).

The apportionment of single PM10 species is giverrigure 7. Notably, N©was
mainly associated witBea salt (on average 95%) supporting the nature of agethmaource
(Cuccia et al., 2013), whereas NHwvas primarily associated with one of the secondary
components of PM10, i.&econdary Qulphate (on average: 80%). On average, (23 + 9)% of
the SQ* was attributed tddeavy oil combustion. The Sulphate apportionment resolved by
PMF appears to be different in the three cruises @dso Figure 8). The apportionment seems
to be quite similar in August and September whildrcrease of the total SO attributed to
Heavy oil combustion in association with the Sea salt events (3.3 &ertivas observed in

July. The latter can be explained by the possiblgamination in theédeavy oil combustion
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profile of the biogenic fraction of the sulphatéise( measured biogenic sulphate was much
larger than the anthropogenic one in July); thispisbably due to the influence of
meteorological conditions and air masses which meathover the sea for several hours,
producing the association of both sources. Moreaer average measured MSA: ns§SO
ratio for the three cruise weeks is the same viluad in theHeavy oil combustion factor

obtained by PMF analysis to support the biogenitamination of the sulphate in the profile.

3.3.1 Sources comparison

The new study provided more complete and clearrimétion than the analysis
performed in the past years (Schembari et al., R@de to the lack of a complete chemical
speciation, only four sources were resolved in 28i@ in particular the PMF did not resolve
secondary and primary sources of sulphateCdmbustion source only, which showed
evidence of a contribution by ship emissions, vaam#fl to contribute by (55 + 4)% to PM10.
The main scope of the 2011 experiment was to segharquantify the contribution of ship
emissions and of secondary sulphate to PM10. Thjsctive was achieved: in 2011 the
Secondary Sulphate andHeavy oil combustion were found to account for (35 + 5)% and (12 +
4)% of PM10, respectively. Theéombustion factor identified in the previous campaigns is
comparable with the sum &condary Sulphate andHeavy oil combustion sources in 2011.
Moreover, the sourcéot identified by PMF in 2009-2010 was recognized Bi®mass
burning with the 2011 dataset since it is characterizetiteaced by high contributions of BC
and K. For Sea salt andReacted dust a similar mean contribution to PM10 was obtained i
2010 and 2011.

The names given to the sources of the five PMFofacbbviously represent a
simplification; it is clear that there must be seadditional minor sources that have
contributed to the observed aerosol composition;particular, land-based traffic and
industrial sourcesThus, the five source profiles are not represenipuge’ sources and the
names given to them will only reflect what is beéd to be the principal source contributing
to this profile.

4, Conclusions
PM10 aerosol samples collected during three campaig board a cruise ship from

July to September 2011 were analysed to deterntiee¢ themical composition and to

improve the source apportionment obtained duringvipus studies performed on board
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cruise ships in the Western Mediterranean. The dnimg fraction of the sulphate was
prevailing during the July campaign, together vaithigher contribution of the ship emissions,
probably due to the influence of predominantly imaair masses along the ship route. Five
sources were resolved and identified by PMF amalysth the new data setSecondary
Sulphate, Reacted dust, Biomass burning, Sea salt and Heavy oil combustion. Heavy oil
combustion by ship engines was identified usingnd &li as tracers. Secondary ammonium
sulphate was found to be an important source absaérin Western Mediterranean. The
experiment allowed the identification of a conttiban of primary ship emissions to PM10.
This contribution turned out to be (12 = 4)%, whiéecondary ammonium sulphate
contributed by (35 + 5)%Approximately 60% of the total sulphate was attréol to
secondary sources and around 20% was attributétkday oil combustion considering the
measuring campaigns not influenced by strong déasnts.
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FIGURE AND TABLE CAPTIONS

Figure 1. PM10 chemical composition obtained from raw datd conversion factors during
July (top), August (centre) and September (bottaarhpaigns. PM10 gravimetric values,
which were affected by large uncertainties, ar® alsown in each panel as 1-sigma band
delimited by the two dashed lines.

Figure 2. @) lonic balance for the three cruise campaigns inméd) the ratio between the
sum of NQ and SQ* with NH," is compared with the Ctoncentration.

Figure 3. Scatter plot between $&and Cl concentrations. When the @oncentrations are
high (greater than 10 neq¥nthe SQ* concentrations are low. The marked data is theokam
used to calculate the MSA/nssSg ratio.

Figure 4. PMF profiles (left axis, coloured bars) and ekpda variation factors, EV (right
axis, white circles) of the PM10 sources resolvedli the three cruise weeks in summer
2011.

Figure 5. Average source apportionment obtained by the RNHtysis of the PM10 data sets
collected during the summer 2011.

Figure 6. Average apportionment of elements/compounds cdret@n obtained by PMF

analysis calculated with the PM10 data sets ofithele field campaign.

Figure 7. Time trends of the five pollutant sources (fasjabtained by PMF analysis during

the three cruise weeks in summer 2011.

Figure 8. Average apportionment of the total sulphate {retavalues) obtained by PMF
(right histograms) and by the chemical approacleriesd in Section 3.3 (left histograms) for
the three cruises of the 2011 campaign.

Table 1. Average PM10 composition and BC obtained by Aethater for the three
campaigns in summer 2011: average (A) and standiewdhtion (St. Dev) of concentration
values were calculated with the samples (reportedparcentage frequency, F) with
concentration values above their Minimum Detectionit (MDL). For Cl, K and Ca both the

total concentration by ED-XRF and the soluble fiactby IC are reported.
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Table 2. Contributions to the total SO concentration in absolute values, for the thregser
weeks in 2011 and for the previous campaign in 2OED determined with the method

described in Section 3.3.

Table 3. Average source apportionment obtained by the RNHysis of the PM10 data sets
collected during the summer 2011 separately forthnee cruise campaigns. The average

source apportionment is reported in absolute aladgive values.

Electronic supplement material
Figure E1. Route of Costa Concordia during the three campaigaammer 2011.

Figure E2. Sea level pressure composite mean (left) and amesn@ght) with respect to the
1981-2010 climatology for the July (top panel), Aag (center) and September (bottom)
campaigns, obtained from the NCEP/NCAR Reanalysimades provided by the
NOAA/ESRL Physical Sciences Division, Boulder Caldo, from their web site at

http://www.esrl.noaa.gov/psd/).

Figure E3. Times series of temperature, relative humiditg pressure (top), and wind speed
(bottom) recorded by the meteorological instrumimtaon board the ship during the three

campaigns.

Figure E4. Air mass back trajectories calculated using théSHLIT model, related to 21
July (right) and 16 August 2011 (left).

Figure E5. Time trends of sea salt component of PM10 obtaasedescribed in Section 2.3
and correlation between wind velocity (km/h) (tagufe) and wind prevalent direction
(bottom) along the open sea tracks considered.

Figure E6. 10-m wind fields simulated by the non-hydrostatiesmscale model WRF-ARW
relative to the sea salt events: Savona-Barcelmatwkd of the July 18 (top) and Palermo-

Civitavecchia tracks of the July 24 (bottom).

Table E1. Minimum detection limits for each species in EBX and PIXE analysis; PIXE
analysis have been used for the samples relatielyoveek only.

Table E2. a) Relations used to calculate the different contrdng to the total S§) sea salt

sulphate and not sea salt sulphate, divided ifrapbgenic, biogenic and crustal. A value of
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0.498 was used for the ratio between, %@d Mg in seawater (Keene et al., 1986). Based on
the sulphur content in crustal material (Seinfighdi Pendis, 1988), the ratio between, 8ad

Ca in dust was estimated to be 0.097 g/g. Sedsalvas obtained as ssCa = 0.0437 *Na (
Keene et al., 198a8)) details of the calculation to extract the nsgp@oncentration in a

sample influenced by fresh marine air (see textiiGe 3.3).
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ngm 2010 2011 2011 2011
June 7-14 July 18-25 August 15-22 September 12-19
totSO4~ 4550 1760 4820 3100
ssSO4~ 280 420 150 250
NssSO4% ¢ usal 30 30 60 40
NssSO4” biogenic 1290 870 750 400
NsSSO 4~ anthr opogenic 2950 440 3850 2410




Sour ce July 18-25 August 15-22 September 12-19

(ng ni%) (%) (ng nt) (%) (ng n?) (%)
Secondary Sulphate 730+ 170 14 +3 5730 + 72( 41 £5 3730 + 50D I+
Reacted dust 650 + 40 12+1 980 + 80 7+1 250 + 40 3+1
Biomass burning 540 + 200 10+4 3890 + 60( 28 £ 4 3170 + 490D B+
Sea salt 2260 + 330 43+6 1740 + 44( 13 +3 1420 + 38D 5+
Heavy oil combustion | 1110 150 21+3 1470 + 41( 11 + 4 910 + 41( W+
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HIGHLIGHTS

* A conclusive PM10 sampling campaign on a cruisp slas performed in summer 2011
* PMF analysis allowed evaluating the main PM10 sesiroet along the ship route

» Large marine biogenic sulphur production was idettias function of strong winds

» The study disentangles primary ship emissions andrglary sulphates

* Primary ship emissions contributed on average 2a+(4)% of PM10



