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Abstract A theory of learning is proposed, which extends naturally the classic regu-
larization framework of kernel machines to the case in which the agent interacts with
a richer environment, compactly described by the notion of constraint. Variational
calculus is exploited to derive general representer theorems that give a description
of the structure of the solution to the learning problem. It is shown that such solution
can be represented in terms of constraint reactions, which remind the corresponding
notion in analytic mechanics. In particular, the derived representer theorems clearly
show the extension of the classic kernel expansion on support vectors to the expan-
sion on support constraints. As an application of the proposed theory three examples
are given, which illustrate the dimensional collapse to a finite-dimensional space
of parameters. The constraint reactions are calculated for the classic collection of
supervised examples, for the case of box constraints, and for the case of hard holo-
nomic linear constraints mixed with supervised examples. Interestingly, this leads
to representer theorems for which we can re-use the kernel machine mathematical
and algorithmic apparatus.
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1 Introduction

Examples of constraints in machine learning come out naturally in various situa-
tions: constraints may represent, for instance, prior knowledge provided by an expert
(e.g., a physician in the case of a medical application: in such a case constraints may
be expressed in the form of rules which help in the detection of a disease [13, 15]).
The expressive power of constraints becomes particularly significant when dealing
with a specific problem, like vision, control, text classification, ranking in hyper-
textual environment, and prediction of the stock market.

Table 1 provides some examples of constraints that are often encountered in prac-
tical problems arising in different domains. The first example (i) describes the sim-
plest case in which we handle several classic pairs (xκ ,yκ) provided for supervised
learning in classification, where xκ is the κ-th supervised example and yκ ∈ {−1,1}
is its label. If f (·) is the function that the artificial agent is expected to compute, then
the corresponding real-valued representation of the constraint is just the translation
of the classic “robust” sign agreement between the target and the function to be
learned. Example ii is the normalization of a probability density function, whereas
example iii (which refers to a binary classification problem) imposes the coherence
between the decisions taken on S1x and S2x for the object x, where S1 and S2 are
matrices used to select two different views of the same object (see [16]). In the
example iv we report a constraint from computer vision coming from the classic
problem of determining the optical flow. It consists of finding the smoothest solu-
tion for the velocity field under the constraint that the brightness of any point in
the movement pattern is constant. If u(x,y, t) and v(x,y, t) denote the components of
the velocity field and E(x,y, t) the brightness of any pixel (x,y) at time t, then the
velocity field satisfies the linear constraint indicated in Table 1 iv. Finally, example
v in the table refers to a document classification problem, and states the rule that all
papers dealing with numerical analysis and neural networks are machine-learning
papers. Notice that, whereas the first row of example v expresses the rule by a first-
order logic description, in the second row there is a related constraint expressed by
real-valued functions that is constructed using the classic product T-norm [4, 5, 12].

The aim of this chapter is to show how the framework of kernel machines can
be extended to support constraint machines by including prior knowledge modeled
by several kinds of constraints. In particular, we propose a framework in which the
ambient space is described in terms of Reproducing Kernel Hilbert Spaces (RKHSs)
of Sobolev type, which has the advantage, over generic RKHSs, of providing opti-
mality conditions expressed as partial differential equations (see Theorems 1 and 2
in Section 2).

Unlike the classic framework of learning from examples, the beauty and the
elegance of the simplicity behind the parsimony principle - for which simple ex-
planations are preferred to complex ones - has not been profitably used yet for
the formulation of systematic theories of learning in general constrained environ-
ments, although there are some works on learning in specific constrained contexts
[2,6,11,14,20–22]. We propose the study of parsimonious agents interacting simul-
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Table 1 Examples of constraints from different environments. For each entry, both a linguistic
description of the constraint and its real-valued representation are provided.

i κ-th supervised pair for classification
yκ · f (xκ )−1≥ 0

ii normalization of a probability density function∫
X f (x)dx = 1, and ∀x ∈X : f (x)≥ 0

iii coherence constraint (two classes)
∀x ∈X : f1(S1x) · f2(S2x)> 0

iv brightness invariance - optical flow
∂E
∂x u+ ∂E

∂y v+ ∂E
∂ t = 0

v document classification: ∀x : na(x)∧nn(x)⇒ ml(x)
∀x ∈X : fna(x) fnn(x)(1− fml(x)) = 0

taneously with examples and constraints in a multi-task environment with the pur-
pose of developing the simplest (smoothest) vectorial function in a set of feasible so-
lutions. More precisely, we think of an intelligent agent acting on a subset X of the
perceptual space Rd as one implementing a vectorial function f := [ f1, . . . , fn]

′ ∈F ,
where F is a space of functions from X to Rn. Each function f j is referred to as
a task of the agent. We assume that additional prior knowledge is available, defined
by the fulfillment of constraints modeled as

∀x ∈Xi ⊆X : φi(x, f (x)) = 0, i = 1, . . . ,m, (1)

or as

∀x ∈Xi ⊆X : φ̌i(x, f (x))≥ 0, i = 1, . . . ,m, (2)

where φi, φ̌i are scalar-valued functions. Following the terminology in variational
calculus, when the sets Xi are open we call (1) bilateral holonomic constraints and
(2) unilateral holonomic constraints. When the sets Xi are made by finite numbers
of points, we replace the term “holonomic” by point-wise. The constraints above are
called hard if they cannot be violated; constraints that can be violated (at the cost
of some penalization) play the role of soft constraints (this is usually the case for
supervised pairs of the learning set). In this way, any cross-dependence amongst the
functions f j is expressed directly by the constraints.

In this chapter, which is an improved and extended version of [8], we investigate
theoretically and by means of case studies the problem of learning in a constraint-
based environment, taking into account both hard and soft constraints of holonomic
and point-wise types. The focus on holonomic constraints is motivated by the fact
that they model very general prior knowledge, expressed by universal quantifiers.
Examples of learning problems with holonomic constraints are given, e.g, in [5],
where the constraints arise by a suitable representation of prior knowledge expressed
in terms of first-order-logic clauses. We also consider point-wise constraints, which
arise, e.g., in the case of interpolation and approximation problems, given a finite
set of examples. However, the proposed framework can be extended to several other
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kinds of constraints and their combinations (e.g., isoperimetric ones, box constraints
[9, 15], and boundary conditions [10]).

The chapter is organized as follows. In Section 2 we formalize the problems of
learning from soft and hard constraints and we present the corresponding repre-
senter theorems, which provide information on the form of their solutions. Section
3 is devoted to the concepts of reactions of the constraints and support constraint
machines. Section 4 analyzes some practical instances of the proposed framework.
Section 5 is a discussion. Finally, the most technical results are detailed in three
appendices.

2 Learning from constraints and its representer theorems

In this chapter, we assume X to be either the whole Rd , or an open, bounded and
connected subset of Rd , with strongly local Lipschitz continuous boundary [1]. In
particular, we consider the case in which, ∀ j ∈ Nn := {1, . . . ,n} and some positive
integer k, the function f j : X →R belongs to the Sobolev space W k,2(X ), i.e., the
subset of L 2(X ) whose elements f j have weak partial derivatives up to the order k
with finite L 2(X )-norms. So, the ambient space of the class of proposed problems
of learning from constraints is

F := W k,2(X )× . . .×W k,2(X )︸ ︷︷ ︸
n times

.

We take k > d
2 since, by the Sobolev Embedding Theorem (see, e.g., Chapter 4

in [1]), for k > d
2 each element of W k,2(X ) has a continuous representative, and

under such an assumption F is a RKHS.
We can introduce a seminorm ‖ f ‖P,γ on F via the pair (P,γ), where P :=

[P0, . . . ,Pl−1]
′ is a suitable (vectorial) finite-order1 differential operator of order k

with l components and γ ∈ Rn is a fixed vector with positive components. Let us
consider the functional

E ( f ) := ‖ f ‖2
P,γ=

n

∑
j=1

γ j < P f j,P f j >

=
n

∑
j=1

γ j

(
l−1

∑
r=0

∫
X
(Pr f j(x)Pr f j(x))dx

)
. (3)

Note that we overload the notation and use the symbol P for both the (matrix) dif-
ferential operator acting on f and the (vector) one acting on its components. If we
choose for P the form used in Tikhonov’s stabilizing functionals [23], for n = 1 and
l = k+1 we get

1 The results can be extended to infinite-order differential operators (see the example in Section
4.3).
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‖ f ‖2
P,γ = γ

∫
X

k

∑
r=0

ρr(x)(Dr f (x))2 dx ,

where the function ρr(x) is nonnegative, Pr :=
√

ρr(x)Dr, and Dr denotes a dif-
ferential operator with constant coefficients containing only partial derivatives of
order r. In this work, we focus on the case in which the operator P is invariant
under spatial shift and has constant coefficients. For a function u and a multiin-
dex α with d nonnegative components α j, we write Dα u to denote ∂ |α|

∂x
α1
1 ...∂x

αd
d

u,

where |α| := ∑
d
j=1 α j. So, the generic component Pi of P has the expression

Pi = ∑|α|≤k bi,α Dα , where the bi,α ’s are suitable real coefficients. Then, the formal
adjoint of P is defined as the operator P? = [P?

0 , . . . ,P
?
l−1]

′ whose i-th component P?
i

is given by P?
i = ∑|α|≤k(−1)|α|bi,α Dα . Finally, we define the operators L := (P?)′P

and, using again an overloaded notation, γL := [γ1L, . . . ,γnL]′.

2.1 Soft constraints

We start considering the case of learning from soft constraints, whose representer
theorem has a simpler formulation than in the case of hard ones. The problem of
learning from soft constraints is based on a direct soft re-formulation of (3). We
can associate any holonomic or point-wise unilateral constraint φ̌i(x, f (x))≥ 0 with
φ
≥
i (x, f (x)) = 0, where φ

≥
i (·, ·) is a non-negative function. Similarly, each holo-

nomic or point-wise bilateral constraint can be expressed via a pair of unilateral
constraints. Hence, regardless of bilateral or unilateral constraints, the problem of
learning from soft holonomic or point-wise constraints can be formulated as the
minimization of the functional

Ls( f ) :=
1
2
E ( f )+

m

∑
i=1

∫
X

p(x) 1Xi(x)φ
≥
i (x, f (x))dx , (4)

where p(x) is a (nonnegative) weight function, e.g., a probability density function
(this setting can be extended to the case of a generalized probability density func-
tion). We use 1Xi(·) to denote the characteristic function of the set Xi when Xi
is open. In order to keep the notation uniform, we let 1Xi(·) := δ (·− xi), where δ

denotes the Dirac delta, for a set Xi = {xi}made up of a single element. Finally, for
two vector-valued functions u(1) and u(2) of the same dimensions, u(1)⊗u(2) repre-
sents the vector-valued function v whose first component is the convolution of the
first components of u(1) and u(2), the second component is the convolution of the
second components of u(1) and u(2), and so on, i.e., vi := (u(1)⊗u(2))i := u(1)i ⊗u(2)i
for each index i.

Theorem 1. (REPRESENTER THEOREM FOR SOFT HOLONOMIC AND SOFT POINT-
WISE CONSTRAINTS). Let p(·) be continuous, nonnegative and in L 1(X ), and let
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f o be a local minimizer of the functional (4) over F .

(i) Let also the following hold: ∀i ∈ Nm, Xi ⊆X is open and ∀x ∈Xi, there is
an open neighborhood N of (x, f o(x)) for which φ

≥
i ∈ C 1(N ). Then, f o satisfies

on X

γL f o(x)+
m

∑
i=1

p(x)1Xi(x) ·∇ f φ
≥
i (x, f o(x)) = 0, (5)

where γL := [γ1L, . . . ,γnL]′ is a spatially-invariant operator2, and ∇ f φ
≥
i is the gra-

dient w.r.t. the second vector argument f of the function φ
≥
i .

(ii) Suppose now that the sets Xi are disjoint and each set Xi is made up of a
single point xi, and that φ

≥
i has the form

φ
≥
i (x, f (x)) = ∑

j∈Nn

φ
≥
i, j(x, f j(x)) ,

where φ
≥
i, j(x, f j(x)) := (1− yi, j · f j(x))+, and the yi, j’s belong to the set {−1,1}.

Then, f o satisfies on X (for j = 1, . . . ,n)

γ jL f o
j (x)+

m

∑
i=1

p(x)1Xi(x) ·∂ f j φ
≥
i, j(x, f o

j (x)) = 0 , (6)

where ∂ f j φ
≥
i, j(x, f o

j (x)) is a suitable element of the subdifferential3 ∂ f j φ
≥
i, j(x, f o

j (x)).

(iii) Let the assumptions of either item (i) or item (ii) hold. If, moreover, X =Rd ,
L is invertible on W k,2(X ), and there exists a free-space Green’s function g of L
that belongs to W k,2(X ), then f o can be represented as

f o(·) =
m

∑
i=1

γ
−1g(·) ~⊗ φ

≥
i (·, f o(·)) , (7)

where g ~⊗ φ
≥
i := g⊗ω

≥
i and

ω
≥
i :=↑ φ

≥
i (·, f o(·)) :=−p(·)1Xi(·)∇ f φ

≥
i (·, f o(·))

under the assumptions of (i), while the n components of ω
≥
i are defined as

ω
≥
i, j :=↑ φ

≥
i (·, f o(·)) :=−p(·)1Xi(·)∂ f j φ

≥
i, j(·, f o(·))

under the assumptions of (ii).

2 Here we use again an overloaded notation, as made for the operator P.
3 Let Ω ⊆Rd be a convex set. We recall that the subdifferential of a convex function u : Ω →R at
a point x0 ∈Ω is the set of all the subgradients of u at x0, that is the set of all vectors v ∈ Rd such
that f (x)− f (x0)≥ v′(x− x0).
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Proof. (i) is proved by fixing arbitrarily η ∈ C k
0 (X ,Rn) (the set of functions from

X to Rn that are continuously differentiable up to order k, and have compact sup-
port), then computing

0 = lim
ε→0

Ls( f o + εη)−Ls( f o)

ε

=
∫

X

(
γL f o(x)+

m

∑
i=1

p(x)1Xi(x) ·∇ f φ
≥
i (x, f o(x))

)′
η(x)dx .

The first equality has been derived by the local optimality of f o, whereas the second
one has been derived by exploiting the assumption that ∀x ∈Xi there is an open
neighborhood N of (x, f o(x)) for which φ

≥
i ∈ C 1(N ). Finally, the proof is com-

pleted applying the fundamental lemma of the calculus of variations (for which we
refer, e.g., to Section 2.2 in [7]).

(ii) Let us fix arbitrarily η ∈ C k
0 (X ,Rn), with the additional condition that

η(x) = 0 for all x∈∪m
i=1Xi. Proceeding likewise in the proof of item (i), one obtains

lim
ε→0

Ls( f o + εη)−Ls( f o)

ε
=
∫

X
(γL f o(x))′η(x)dx = 0 . (8)

Since, for each index j = 1, . . . ,n, γ jL f o
j is a distribution, formula (8) implies that

the support of γ jL f o
j is a subset of {x1, . . . ,xm}, which is a set of finite cardinal-

ity. By Theorem XXXV in Chapter 3 of [18], γ jL f o
j is made up of a finite linear

combination of Dirac delta’s and their partial derivatives up to some finite order,
centered on x1, . . . ,xm. Now, all the coefficients associated with the partial deriva-
tives of any order of the Dirac delta’s are 0, as it can be checked by choosing a
function η ∈ C ∞

0 (X ,Rn) such that only its j-th component η j is different from 0,
and η j(x) = 0 for all x ∈ ∪m

i=1Xi (even though some partial derivatives of some or-
der of η j may be different from 0 for some x∈∪m

i=1Xi). Concluding, γ jL f o
j satisfies

on X

γ jL f o
j (x) =

m

∑
i=1

Biδ (x− xi) , (9)

where the Bi’s are constants. Notice that (9) is of the same form as (6).
Now, we look for lower and upper bounds on the Bi’s. For simplicity of exposi-

tion, in the following we suppose m = 1, so there is only one constant B1 (however,
the next arguments hold also for the case m > 1). We denote by η j+ any func-
tion in C k

0 (X ,Rn) such that only its j-th component η
j+
j is different from 0, and

η
j+
j (x1)> 0. Once η j+ has been fixed, we denote by η j− the function −η j+. The

following possible cases show up.
Case (a): (1− y1, j · f o

j (x1))+ < 0. In this case, one obtains
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lim
ε→0+

Ls( f o + εη j+)−Ls( f o)

ε

=
∫

X
γ jL f o

j (x)η
j+
j (x)dx = B1η

j+
j (x1)≥ 0 , (10)

and

lim
ε→0+

Ls( f o + εη j−)−Ls( f o)

ε

=
∫

X
γL j f o

j (x)η
j−
j (x)dx =−B1η

j+
j (x1)≥ 0 , (11)

then B1 = 0 (since η
j+
j (x1) > 0). Notice that the “≥” in formulas (10) and (11)

follow by the local optimality of f o, whereas the first equalities by the left/right
differentiability4 of the function (·)+.
Case (b): (1− y1, j · f o

j (x1))+ > 0. Similarly, in this case, one obtains

lim
ε→0+

Ls( f o + εη j+)−Ls( f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η
j+
j (x)dx

= (B1− y1, j p(x1))η
j+
j (x1)≥ 0 , (12)

and

lim
ε→0+

Ls( f o + εη j−)−Ls( f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η
j−
j (x)dx

= −(B1− y1, j p(x1))η
j+
j (x1)≥ 0 , (13)

then B1 = y1, j p(x1).
Case (c): (1− y1, j · f o

j (x1))+ = 0 and y1, j =−1. In this case, one obtains

lim
ε→0+

Ls( f o + εη j+)−Ls( f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η
j+
j (x)dx

= (B1− y1, j p(x1))η
j+
j (x1)≥ 0 , (14)

and

4 Depending on the sign of yi, j .
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lim
ε→0+

Ls( f o + εη j−)−Ls( f o)

ε

=
∫

X
γL j f o

j (x)η
j−
j (x)dx =−B1η

j+
j (x1)≥ 0 , (15)

then B1 ∈ [y1, j p(x1),0] = [−p(x1),0].
Case (d): (1− y1, j · f o

j (x1))+ = 0 and y1, j = 1. Finally, in this case, one obtains

lim
ε→0+

Ls( f o + εη j+)−Ls( f o)

ε

=
∫

X
γ jL f o

j (x)η
j+
j (x)dx = B1η

j+
j (x1)≥ 0 , (16)

and

lim
ε→0+

Ls( f o + εη j−)−Ls( f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η
j−
j (x)dx

= −(B1− y1, j p(x1))η
j+
j (x1)≥ 0 , (17)

then B1 ∈ [0,y1, j p(x1)] = [0, p(x1)].
Concluding, one obtains (6) summarizing the results of the analysis of cases (a)-

(d), and applying the definition of subdifferentiability to the function (·)+.

(iii) follows by the Euler-Lagrange equations (5) (resp., (6)) of item (i) (resp.,
(ii)), the definition of the free-space Green’s function g of L as the solution of Lg= δ

(where δ denotes the Dirac delta, centered in 0), and the stated assumptions on L
and g.

ut

Item (i) of Theorem 1 applies, e.g., to the case of a function φ
≥
i that is continu-

ously differentiable everywhere (or at least a function φ
≥
i that is “seen as” a contin-

uously differentiable function at local optimality, in the sense that (x, f o(x)) is not a
point of discontinuity of any partial derivative of φ

≥
i ). However, a function φ

≥
i deriv-

ing from a unilateral constraint may not be continuously differentiable everywhere.
In such a case, one may approximate such a function by a continuously differen-
tiable approximation, or (for certain φ

≥
i ’s) deal directly with the nondifferentiable

case, as shown in Theorem 1 (ii) for a particular choice of such functions. We re-
mark that the classic supervised learning is a degenerate case of Theorem 1 (i), in
which one sets p(x) 1Xi(x) = p(x)δ (x−xi). Such a degenerate case is considered in
Theorem 1 (ii) for the case of a particular nondifferentiable function φ

≥
i , but such a

result can also be extended to other differentiable or nondifferentiable functions φ
≥
i .

Finally, in Theorem 1 (iii) one can recognize both the ingredients of a parsimonious
knowledge-based solution, i.e., the free-space Green’s function g and the functions
ω
≥
i , mixed by convolution. Indeed, note that, by defining ω≥ := ∑

m
i=1 ω

≥
i , formula
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(7) can be re-written as f o = γ−1g⊗ω≥ and that, under the assumptions of Theo-
rem 1 (iii), it follows by such an expression that the Fourier transform f̂ o of f o (by
Fourier transform of a vector-valued function we mean the vector of Fourier trans-
forms of each component) is f̂ o = γ−1ĝ · ω̂≥. Since under the assumptions of Theo-
rem 1 (iii) the operator L is invertible and has g⊗ as its inverse, from f o = γ−1g⊗ω≥

we get also ω≥ = γL f o, which is just a compact expression of the solution (7) to
the Euler-Lagrange equations (5) or (6).

2.2 Hard constraints

We now consider hard holonomic constraints. The following theorem prescribes
the representation of the solution of the associated learning problem. Given a set
of m holonomic constraints (defined, in general, on possibly different open subsets
Xi), we denote by m(x) the number of constraints that are actually defined in the
same point x of the domain. We denote by X̂ any open subset of X , where the
same subset of constraints is defined in all its points, in such a way that m(x) is
constant on the same X̂ . By “cl” we denote the closure in the Euclidean topology.
Finally, recall that a constraint φ̌i(x, f (x))≥ 0 is said to be active in x0 ∈ X̂ at local
optimality iff φ̌i(x0, f o(x0)) = 0, otherwise it is inactive in x0 at local optimality.

Theorem 2. (REPRESENTER THEOREM FOR HARD HOLONOMIC CONSTRAINTS,
CASE OF FUNCTIONAL LAGRANGE MULTIPLIERS). Let us consider the minimiza-
tion of the functional (3) in the case of m< n hard bilateral constraints of holonomic
type, which define the subset

Fφ := { f ∈F : ∀i ∈ Nm,∀x ∈Xi ⊆X : φi(x, f (x)) = 0}

of the function space F , where ∀i ∈ Nm : φi ∈ C k+1(cl(Xi)×Rm). Let f o be any
constrained local minimizer of class C 2k(X ,Rn) of the functional (3). Let us as-
sume that for any X̂ and for every x0 in the same X̂ we can find two permutations
σ f and σφ of the indexes of the n functions f j and of the m constraints φi, such that
φσφ (1), . . . ,φσφ (m(x0)) refer to the constraints actually defined in x0, and the Jacobian
matrix

∂ (φσφ (1), . . . ,φσφ (m(x0)))

∂ ( f o
σ f (1)

, . . . , f o
σ f (m(x0))

)
, (18)

evaluated in x0, is not singular. Then, the following hold.

(i) There exists a set of functions λi : X̂ → R, i ∈ Nm, such that, in addition to
the above constraints, f o satisfies on X̂ the Euler-Lagrange equations

γL f o(x)+
m

∑
i=1

λi(x)1Xi(x) ·∇ f φi(x, f o(x)) = 0, (19)



Learning as Constraint Reactions 11

where γL := [γ1L, . . . ,γnL]′ is a spatial-invariant operator, and ∇ f φi is the gradient
w.r.t. the second vector argument f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . ,γ−1

n g]′. If for all i one has Xi = X = Rd , L is invert-
ible on W k,2(X ), and there exists a free-space Green’s function g of L that belongs
to W k,2(X ), then f o has the representation

f o(·) =
m

∑
i=1

γ
−1g(·) ~⊗ φi(·, f o(·)) , (20)

where g ~⊗ φi := g⊗ωi and ωi(·) :=↑ φi(·, f o(·)) :=−λi(·)1Xi(·)∇ f φi(·, f o(·)).

(iii) For the case of m < n unilateral constraints of holonomic type, which define
the subset F

φ̌
:=
{

f ∈F : ∀i ∈ Nm,∀x ∈Xi ⊆X : φ̌i(x, f (x))≥ 0
}

of the func-
tion space F , (i) and (ii) still hold (with every occurrence of φi replaced by φ̌i) if one
requires the nonsingularity of the Jacobian matrix (see (18)) to hold when restrict-
ing the constraints defined in x0 to the ones that are active in x0 at local optimality.
Moreover, each Lagrange multiplier λi(x) is nonpositive and equal to 0 when the
correspondent constraint is inactive in x at local optimality.

Proof. The proof adapts to the case of hard holonomic constraints the one of Theo-
rem 1 above. For completeness, it is detailed in Appendix 2.

ut

Notice that, due to the definition of ωi, without loss of generality, one can define
λi(x) := 0 for all x∈X \Xi. Likewise in Theorem 1, by defining ω := ∑

m
i=1 ωi, for-

mula (20) can be re-written as f o = γ−1g⊗ω , and, under the assumptions of Theo-
rem 2 (ii),(iii), one can write f̂ o = γ−1ĝ ·ω̂ . We also mention that a similar result can
be proven for the case of hard point-wise constraints (in which one has discrete sets
Xi composed of the |Xi| elements x(i,1),x(i,2), . . . ,x(i,|Xi|)), and for combinations of
soft and hard constraints (e.g., soft point-wise constraints on supervised examples
mixed with hard holonomic constraints, in which case the Lagrange multipliers are
distributions instead of functions, as detailed in Appendix 2).

3 Support constraint machines

The next definition formalizes a concept that plays a basic role in the proposed
learning paradigm.

Definition 1. The function ω
≥
i in Theorem 1 (iii) (resp., the function ωi in Theorem

2 (ii)) is called the reaction of the i-th constraint and ω≥ := ∑
m
i=1 ω

≥
i (resp. ω :=

∑
m
i=1 ωi) is the overall reaction of the given constraints.

We emphasize the fact that the reaction of a constraint is a concept associated with
the constrained local minimizer f o. In particular, two different constrained local



12 Giorgio Gnecco, Marco Gori, Stefano Melacci, Marcello Sanguineti

minimizers may be associated with different constraint reactions. A similar remark
holds for the overall reaction of the constraints. Loosely speaking, under the as-
sumptions of Theorem 1 (iii) or Theorem 2 (ii),(iii), the reaction of the i-th constraint
provides the way under which such a constraint contributes to the expansion of f o.
So, in this case solving the learning problem is reduced to finding the reactions of
the constraints.

Proposition 1. Under the assumptions of the respective representer theorems (The-
orem 1 (iii) and Theorem 2 (ii),(iii)), the reactions of the constraints are uniquely
determined by the constrained local minimizer f o.

Proof. For the case of soft constraints (Theorem 1 (iii)), the statement follows di-
rectly by the definition of the reactions of the constraints ω

≥
i (·). For the case of

hard constraints (Theorem 2 (ii),(iii)), the proof can be given by contradiction. Let
us assume that there exist two different sets of Lagrange multipliers associated with
the same constrained local minimizer f o: {λi, i = 1 . . . ,m} and

{
λ i, i = 1 . . . ,m

}
,

with at least one λi 6= λ i. According to Theorem 2 (i), f o satisfies the Euler-
Lagrange equations (19). Without loss of generality, for each x ∈ X̂ , one can
re-order the constraints and the associated Lagrange multipliers in such a way
that the first m(x) constraints are the ones actually defined in x ∈ X̂ , and as-
sume that λi(x) = λ i(x) = 0 for all indexes i > m(x), as the corresponding con-
straint reactions are equal to 0 in x due to the definition of ωi. Subtracting the
two expressions of f o in terms of the two sets of Lagrange multipliers, one obtains

∑
m
i=1(λi−λ i)∇ f φi = (λ(D)−λ (D))

′ ∂ (φ1,...,φm(x))

∂ ( f1,..., fm(x))
= 0 , where λ(D) := [λ1, . . . ,λm(x)]′

and λ (D) := [λ 1, . . . ,λ m(x)]
′. Now, distinct multipliers are only compatible with the

singularity of the Jacobian matrix, which contradicts the assumption on the invert-
ibility of (18).

ut

A remarkable difference between the case of soft and hard constraints is the fol-
lowing. For soft constraints, the solution provided by Theorem 1 (iii) is based on the
assumption of knowing the probability density of the data p(·). For hard constraints,
instead (see Theorem 2 (ii),(iii)), one needs to compute the Lagrange multipliers
λi(·) associated with the constraints, and also to check the (hard) satisfaction of the
constraints.

Summing up, and removing the superscript “≥” in φ
≥
i and ω

≥
i when the meaning

is clear from the context, the solution of the learning problem is fully representable
by the reactions ωi of the constraints φi, as it is depicted in Fig. 1, where ∇ f de-
notes the gradient with respect to f , λi(x) is the Lagrange multiplier, and p(x) is
the probability density. Interestingly, in the two cases, each constraint reaction has
exactly the same dependency on the gradient of the constraint with respect to its
second vector-valued argument but, while in the case of hard constraints the La-
grange multipliers need to be determined so as to impose the hard fulfillment of
the constraints, in the case of soft constraints one exploits the probability density of
the data - which comes from the problem formulation - in the representation of the
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Fig. 1 Constraint reactions in the generic point x ∈X corresponding to the cases of hard and soft
constraints, where one can see, resp., the roles of the Lagrange multiplier associated with each
constraint and of the probability density in x. For illustrative purposes, the case n = 2 is considered
here. The reaction of the constraint φi in x is a vector orthogonal to the level lines of φi(x, f o(x)),
interpreted as a function of its second vector-valued argument only.

constraint reactions. Both λi(x) and p(x) play a crucial role in determining the con-
straint reactions. For a given point x, the weights λi(x) need to be computed in such
a way not to violate the constraints at x, whereas in case of soft-fulfillment, p(x) -
which is the typical weight that is high (low) in regions of high (low) data density
- is used to compute the constraint reactions. Now, we introduce the following two
concepts.

Definition 2. A support constraint is a constraint associated with a reaction that
is different from 0 at least in one point of the domain X . A support constraint
machine is any learning machine capable of finding a (local or global) solution to
either of the problems of learning from constraints formulated in Theorems 1 or 2,
when such a solution is expressed by either the representation (7) or the one (20).

So, under the assumptions of Theorem 1 (iii) or Theorem 2 (ii),(iii), the solution
f o can be obtained by the knowledge of the reactions associated merely with the
support constraints. This motivates the use of the terminology “support constraints”
as an extension of the classical concept of “support vectors” used in kernel meth-
ods [19]. Interestingly, support vectors are particular cases of support constraints.
Indeed, the connection with kernel methods arises because, under quite general con-
ditions, the free-space Green’s function g associated with the operator L is a kernel
of a RKHS (see, e.g., [10]). Finally, we mention that for convex problems of learning
from constraints, convex optimization algorithms can be used to find the reactions
of the constraints (hence, to determine the support constraints).
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4 Case studies

4.1 Supervised learning from examples

The classic formulation is based on soft constraints and consists in finding f ? ∈
argmin f∈F Ls( f ), where Ls( f ) is given in formula (4) with p(x)1Xi(x)= p(x)δ (x−
xi) and each set Xi is a singleton. By yi, j we denote a real number for regression
and an element of the set {−1,1} for classification. As before, we denote by f o

a local minimizer (of which a global one f ? is a particular case). There are dif-
ferent possible choices for φ

≥
i (x, f (x)), which typically depend mostly on whether

one faces regression or classification problems. The quadratic loss VQ(u) := 1
2 u2

is associated with the bilateral constraints φi, j( f j(x)) = (yi, j− f j(x)), which origi-
nate5 - in the case of soft constraints - the term φ

≥
i ( f (x)) = ∑ j∈Nn VQ ◦φi, j( f j(x)) =

1
2 ∑ j∈Nn(yi, j− f j(x))2. For every j ∈Nn and x ∈X , by Theorem 1 the j-th compo-
nent of the reaction of the i-th constraint is

ω
≥
i, j(x) = (↑ φ

≥
i ( f o(x))) j =−p(x)1Xi(x)

∂

∂ f j
φ
≥
i ( f o(x))

= −p(x)δ (x− xi)
∂

∂ f j

(
1
2 ∑

h∈Nn

(yi,h− f o
h (x))

2

)
= p(x)(yi, j− f o

j (x))δ (x− xi) .

The hinge loss VH(u) = (u)+ is associated with the unilateral constraint φ̌i, j( f (x)) =
1− yi, j · f j(x), which gives rise to φ

≥
i ( f (x)) = ∑ j∈Nn VH ◦ φ̌i, j( f j(x)) = ∑ j∈Nn(1−

yi, j · f j(x))+. In this case, the reaction of the i-th constraint is given by

ω
≥
i, j(x) = (↑ φ

≥
i ( f o(x))) j =−p(x)1Xi(x)∂ f j φ

≥
i ( f o(x))

= −p(x)δ (x− xi)∂ f j

(
(1− yi, j · f o

j (x))+
)
,

where −∂ f j

(
(1− yi, j · f o

j (x))+
)

is equal to 0 if (1− yi, j · f o
j (x)) < 0 and to yi, j

if (1− yi, j · f o
j (x)) > 0, whereas if (1− yi, j · f o

j (x)) = 0, −∂ f j

(
(1− yi, j · f o

j (x))+
)

denotes an element (to be found) either of the set [0,1], when yi, j = 1, or of [−1,0],
when yi, j =−1.

In both cases, due to the presence of the Dirac delta, we end up with

f o
j (x) =

1
γ j

m

∑
i=1

g⊗ω
≥
i, j(x) =

m

∑
i=1

αi, jg(x− xi), (21)

5 In the following, we write φ
≥
i ( f (x)) instead of φ

≥
i (x, f (x)) since there is no explicit dependence

on x.
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where the αi, j’s are suitable scalar coefficients (different in the case of hinge or
quadratic loss). The classical solution schemes of Ridge Regression and Support
Vector Machines can be applied to find the αi, j’s.

We conclude with a remark on the notion of constraint reaction in the classic
case of supervised learning from examples. In the case of the quadratic loss, it is
clear that there is a non-null reaction whenever the associated hard constraint is not
satisfied. This happens iff yi, j 6= f o

j (xi) for at least one index j. This corresponds to
the well-known fact that usually all the examples are support vectors (apart from the
case of an interpolating solution). On the opposite side, a set of support vectors that
is a proper subset of all the examples usually arises in the hinge loss case.

4.2 Linear constraints with supervised examples available

Let X = Rd and ∀i ∈ Nm, ∀x ∈ X let φi( f (x)) := a′i f (x)− bi(x) = 0, where
ai ∈ Rn and bi(x) is a real-valued function. We consider hard holonomic bilat-
eral constraints that can be written as A f (x) = b(x), where A ∈ Rm,n, and b ∈
C 2k

0 (X ,Rm) is a smooth vector-valued function with compact support. We as-
sume n > m and rank(A) = m. We discuss the solution for the class of so-called
rotationally-symmetric differential operators P, as defined by [10]. These are oper-
ators of the form P := [

√
ρ0D0,

√
ρ1D1, . . . ,

√
ρκ Dκ , . . . ,

√
ρkDk]

′ , where the opera-
tors Dκ satisfy D2r = ∆ r = ∇2r and D2r+1 = ∇∇2r (∆ denotes the Laplacian oper-
ator and ∇ the gradient, with the additional condition D0 f = f , see also [17, 24]),
ρ0,ρ1, . . . ,ρκ , . . . ,ρk ≥ 0, and ρ0,ρk > 0. Such operators correspond via L = (P?)′P
to L = ∑

k
κ=0(−1)κ ρκ ∇2κ , which is an invertible operator on W k,2(Rd) (see, e.g.,

Lemma 5.1 in [10]). In addition, we assume that γ = γ̄ > 0, where γ̄ has constant
and equal components, and again, an overloaded notation is used. We also assume
that md additional supervised pairs (xκ ,yκ) (κ = 1, . . . ,md) induce soft constraints
expressed in terms of the quadratic loss. A slight variation of Theorem 2 (see The-
orem 3, reported for completeness in Appendix 2, and applied here with µ = 1),
implies that a constrained local minimizer f o of the associated functional satisfies
the Euler-Lagrange equations

γ̄L f o +A′λ +
1

md

md

∑
κ=1

( f o(·)− yκ)δ (·− xκ) = 0. (22)

After some straightforward computations (see Appendix 3 for details), one obtains
for the overall constraint reaction (of both hard and soft constraints) the expression

ω(x) = c(x)+ γ̄

md

∑
κ=1

Qα
(ql)
κ δ (x− xκ) ,

where the α
(ql)
κ ’s (κ = 1, . . . ,md) are suitable coefficients to be determined (and

“ql” stands for “quadratic loss”), whereas c(x) := γ̄A′(AA′)−1Lb(x) and Q := In−
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A′[AA′]−1A, where In is the identity matrix of size n. Finally, as a unilateral variation
of this example, we mention the remarkable case of a unilateral constraint f (x)≥ 0
(componentwise), which makes sense when the components of f represent, e.g.,
mass or probability densities.

4.3 Box constraints

To fix ideas, let us consider, as a simple sketch, the case of the constraint defined
by the rule ∀x ∈B ⊂X : f (x)− 1 = 0 [15], with B = [a,b] ⊂ R. As depicted in
Fig. 2(b), after softening the constraint in the way illustrated by [15], the reaction
of the constraint becomes a rectangular impulse, instead of a Dirac distribution as
in the case of supervised learning from point-wise examples. However, the latter
can be still thought as a degenerate case of the rectangular impulse. For the case in
which l in (3) is not finite and the infinite-order differential regularization operator
that corresponds to the Gaussian kernel with width σ is used, Theorem 1 (iii) for a
single box provides for the solution the representation (up to a positive constant)

(g⊗1B)(x) ∝ er f ((x−a)/σ)− er f ((x−b)/σ),

where 1B(·) is the characteristic function of B. This clearly indicates that the solu-
tion can be thought of as the response of a system with a certain free-space Green’s
function g, which we call plain kernel, to a Dirac delta (supervised pair) or to a
rectangular impulse (box constraint). The latter case is just an example to show that
the representation of the solution is not based on the plain kernel anymore, but on
a function that arises from its marriage with the reaction of the constraint. Basi-
cally, the emergence of plain kernels is just a consequence of the degeneration of
the reaction of the constraint to a Dirac distribution.

5 Discussion

We have introduced a general framework of learning that involves agents acting
in a constraint-based environment, for hard and soft constraints of holonomic type
and for soft point-wise constraints. The application of the theory to the chosen case
studies illustrates the generality of the approach, which can be fully grasped as we
acquire the notion of constraint reaction. The theory presented in this chapter ex-
tends the framework of kernel machines to more general hard and soft constraints,
and opens the doors to an in-depth re-thinking of the notion of plain kernel that,
under some assumptions, was proved to be the Green’s function of the differential
operator [10] used in the formulation of the learning problem. Interestingly, the no-
tion of constraint reaction and the corresponding representer theorems show that
the solution to the learning problem is given in terms of new kinds of kernels that,
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Fig. 2 (a) Constraint reactions corresponding to a classic supervised pair (b) and to the (softened)
constraint ∀x ∈ [a,b] : f (x) = 1 (box constraint). In (c) and (d) we can see the emergence, resp., of
the plain and box kernel. Here, the infinite-order differential regularization operator in (3) is such
that the free-space Green’s function of L yields the classic Gaussian kernel.

unlike the plain kernels, also involve the structure of the corresponding constraints:
indeed, they originate from the marriage of the plain kernels with the reactions of
the constraints. Finally, when the probability density of the data is unknown, the
theory suggests to explore the numerical solution of the Euler-Lagrange equations
by using unsupervised data, e.g., to learn the probability density itself.
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Appendix 1

The next lemma, which is a consequence of the Implicit Function Theorem, is ex-
ploited in the proof of Theorem 2 in Section 2.2. For a scalar-valued function u of
various vector arguments, we denote by ∇iu the column vector of partial derivatives
of u with respect to all the components of the i-th vector argument. Instead, for a
vector-valued function u of various vector arguments, ∇iu denotes the matrix whose
h-th row is the transpose of the column vector ∇iuh.

Lemma 1. Let Ω ⊆Rd , Y ⊆Rn1 , Z ⊆Rn2 be open subsets, and φ : Ω×Y ×Z →
Rn2 a given function. Let also y : Ω → Y and z : Ω →Z be other given functions,
which satisfy the (vector-valued) holonomic and bilateral constraint
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φ(x,y(x),z(x)) = 0 ,∀x ∈Ω .

Suppose also that φ ∈ C k+1(Ω ×Y ×Z ,Rn2) for some positive integer k ≥ 1 and
that, for each x ∈Ω , the Jacobian matrix

∇3φ(x,y(x),z(x)) :=


∂φ1(x,y(x),z(x))

∂ z1
. . . ∂φ1(x,y(x),z(x))

∂ zn2
. . . . . . . . .

∂φn2 (x,y(x),z(x))
∂ z1

. . .
∂φn2 (x,y(x),z(x))

∂ zn2

 (23)

is nonsingular (possibly after interchanging locally some components of y(x) by an
equal number of components of z(x), and redefining the function φ and the vec-
tors y(x) and z(x) according to such a replacement). Now, let ηy be an arbitrary
function in C k

0 (Ω ,Rn1) with compact support ΩC contained in an open ball of suf-
ficiently small radius, and consider a perturbation ∆y(x) := εηy(x) of the func-
tion y(x), where ε ∈ R is sufficiently small. Then, there exists a unique function
ηz ∈ C k

0 (Ω ,Rn2) with compact support ΩC such that the perturbed holonomic and
bilateral constraint

φ(x,y(x)+∆y(x),z(x)+∆z(x)) = 0 ,∀x ∈Ω

is satisfied for ∆z(x) of the form

∆z(x) = εηz(x)+O(ε2) , (24)

where the “hidden constant” inside the “big O” notation above does not depend6

on x, and ηz(x) has the expression

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) . (25)

Moreover, for each h∈{1, . . . ,k} and i∈{1, . . . ,n2}, one has, for the i-th component
∆zi of ∆z,

∂ h

∂x j1 . . .∂x jh
∆zi(x) = ε

∂ h

∂x j1 . . .∂x jh
ηzi(x)+O(ε2) , (26)

where, again, the “hidden constants” inside the “big O” notations above do not
depend on x.

Proof. Fix x = x0 ∈ Ω . Since φ ∈ C k+1(Ω ×Y ×Z ,Rn2) for k ≥ 1 and the Ja-
cobian matrix (23) is nonsingular, one can apply the Implicit Function Theorem,
according to which, on a suitable open ball B of (0,0) of sufficiently small radius
ε > 0, there exists a unique function u ∈ C k+1(B,Rn2) such that u(0,0) = 0 and

φ(x+∆x,y(x)+∆y,z(x)+u(∆x,∆y)) = 0 , ∀(∆x,∆y) ∈B . (27)

6 In this formula and in the next one (26) there is, instead, a dependence of the hidden constants
on the specific choice of ηy, which may be removed by further assuming ‖ηy‖C k

0 (Ω ,Rn1 ) ≤My for
some given positive constant My.
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Moreover, since7 k+ 1 ≥ 2, each component ui(∆x,∆y) of the function u(∆x,∆y)
has the multivariate Taylor expansion

ui(∆x,∆y) = ∑
|α|=1

Dα ui(0,0)(∆x,∆y)α +O(‖(∆x,∆y)‖2) , (28)

where (∆x,∆y)α := ∏
d
j=1(∆x j)

α j ∏
n1
j=1(∆y j)

αd+ j , and the term O(‖(∆x,∆y)‖2) de-
notes a function of class C k+1(B), infinitesimal at (0,0) with order at least 2,
where the “hidden” constant inside the “big O” notation above depends only on
the local behavior of φ on a neighborhood of (x,y(x),z(x)), and is independent
from x itself, provided that, after the initial choice x0 for x, x varies inside a
compact subset ΩC of the projection of the set8 B + (x0,y(x0)) on Ω . Now, let
ηy ∈ C k

0 (ΩC,Rn1)⊆ C k
0 (Ω ,Rn1) and set ∆x = 0 and ∆y = ∆y(x) := εηy(x). Then,

we define each component ∆zi(x) of the function ∆z(x) as

∆zi(x) := ui(0,εηy(x))

= ∑
|α|=1

Dα ui(0,0)(0,εηy(x))α +O(‖(0,εηy(x))‖2)

= ε ∑
|α|=1

Dα ui(0,0)(0,ηy(x))α +O(ε2) , (29)

where the replacement of the term O(‖(0,εηy(x))‖2) by the one O(ε2) follows by
the fact that ηy(x) is fixed and uniformly bounded. Then, (24) follows by setting

ηz,i(x) := ∑
|α|=1

Dα ui(0,0)(0,ηy(x))α ,

which shows that the function ηz,i is in C k
0 (ΩC,R) ⊆ C k

0 (Ω ,R), likewise ηy is in
C k

0 (ΩC,Rn1)⊆ C k
0 (Ω ,Rn1). Finally, the application of the Implicit Function Theo-

rem shows also that the vector ηz(x) with components ηz,i(x) has the expression

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) .

7 In the lemma, we have made the assumption φ ∈ C k+1(Ω ×Y ×Z ,Rn2 ) instead of the looser
one φ ∈ C k(Ω ×Y ×Z ,Rn2 ) in order to be able to express the remainder in Taylor’s polynomial
(28) by the integral Lagrange’s form, instead, e.g., of the Peano’s form (however, for simplicity
of notation, in formula (28) we have not reported the explicit expression of the remainder in the
integral Lagrange’s form). Considering for simplicity the case of a scalar-valued function u(x) of
class C 2 depending on a scalar argument x, we recall that one has the expression

f (x+∆x) = f (x)+ f ′(x)∆x−
∫

∆x

0
(t−∆x) f ′′(x+ t)dt ,

where the last term is the remainder expressed in the integral Lagrange’s form. This formula can
be generalized to the multivariate case, and such an extension is used to be able to obtain terms of
order O(ε2) in (26).
8 Here, we denote by B+(x0,y(x0)) the translation of the set B by (x0,y(x0)).
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Finally, (26) is derived directly by (24), by computing its partial derivatives of order
h (i.e., exploiting the expression of the remainder of Taylor’s polynomial (28) in La-
grange’s integral form, the rule of differentiation under the integral’s sign, the chain
rule, and the fact that each component of the function ηy is bounded on ΩC, together
with its partial derivatives - up to the order k - with respect to the components of x).

ut

The meaning of Lemma 1 is the following: in order to be still able to satisfy the
holonomic and bilateral constraint, a perturbation ∆y(x) := εηy(x) of the function
y(x) implies a perturbation ∆z(x) := εηz(x) (apart from an infinitesimal of order
greater than ε) of the function z(x), where ηz depends only on ηy and suitable partial
derivatives of φ evaluated at the current solution (x,y(x),z(x)), but does not depend
on ε . The formula (26) shows that also the partial derivatives of ∆z(x) up to the
order k have similar expressions.

Appendix 2

This appendix reports the complete proof of Theorem 2 in Section 2.2.

Proof. (i) Let f o be a constrained local minimizer over F of the functional E ( f ) =
‖ f ‖2

P,γ defined in formula (3). Fix x0 ∈ X̂ and a compact subset XC ⊂ X̂ con-
tained in an open ball of sufficiently small radius, and containing x0, and, after
performing the permutations σφ and σ f , re-order the constraints (and the compo-
nents of f , resp.) in such a way that the ones with indexes σφ (1), . . . ,σφ (m(x0))
(σ f (1), . . . ,σ f (m(x0)), resp.) are the first m(x0) ones. Due to an application of
Lemma 1 in Appendix 1, if one fixes arbitrarily the functions ηi ∈ C k

0 (XC) for
i = m(x0)+ 1,m(x0)+ 2, . . . ,n, then, for every sufficiently small |ε| > 0, the bilat-
eral holonomic constraints are met for a function f whose components f j have the
following expressions:

f1 = f o
1 + εη1 +O(ε2) ,

f2 = f o
2 + εη2 +O(ε2) ,

. . .

fm(x0) = f o
m(x0)

+ εηm(x0)+O(ε2) ,

fm(x0)+1 = f o
m(x0)+1 + εηm(x0)+1 ,

fm(x0)+2 = f o
m(x0)+2 + εηm(x0)+2 ,

. . .

fn = f o
n + εηn , (30)

where the functions ηi ∈ C k
0 (XC), for i = 1, . . . ,m(x0), are still determined by

Lemma 1. In particular, by setting y(x)= [ f o
m(x0)+1(x), f o

m(x0)+2(x), . . . , f o
n (x)]

′, z(x)=
[ f o

1 (x), . . . , f o
m(x0)

(x)]′, φ = [φ1, . . . ,φm(x0)]
′, ηy = [ηm(x0)+1,ηm(x0)+2, . . . ,ηn]

′, and
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ηz = [η1, . . . ,ηm(x0)]
′, one has

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) . (31)

Moreover, due to (26), the partial derivatives, up to the order k, of the first m(x0)
components of f , have expressions similar to (30), and contain terms of order O(ε2).
This implies that E ( f ) can be written as

E ( f ) =
n

∑
j=1

γ j < P( f o + εη) j,P( f o + εη) j >+O(ε2)

=
n

∑
j=1

γ j < P f o
j ,P f o

j >+2ε

n

∑
j=1

γ j < P f o
j ,Pη j >

+ε
2

n

∑
j=1

γ j < Pη j,Pη j >+O(ε2)

=
n

∑
j=1

γ j < P f o
j ,P f o

j >+2ε

n

∑
j=1

γ j < P f o
j ,Pη j >+O(ε2) .

Moreover, by an application of Green’s formula (see, e.g., Proposition 5.6.2 in [3]),
we have

< P f o
j ,Pη j >=< (P?)′P f o

j ,η j >=< L f o
j ,η j >,

where P? is the formal adjoint of the operator P. Now, we define locally the row
vector function λ (x) as follows:

λ (x) := −[γ1(L f o)1(x), . . . ,γm(x0)(L f o)m(x0)(x)](∇3φ(x,y(x),z(x)))−1 . (32)

Then, with such a definition, and exploiting formula (31), one obtains

m(x0)

∑
j=1

γ j < P f o
j ,Pη j > =

m(x0)

∑
j=1

γ j < L f o
j ,η j >

=
∫

X
λ (x)(∇2φ(x,y(x),z(x)))ηy(x)dx .

Summing up, one has

E ( f )−E ( f o) = 2ε

∫
X

(
[γm(x0)+1(L f o)m(x0)+1(x), . . . ,γn(L f o)n(x)]

+λ (x)(∇2φ(x,y(x),z(x)))
)

ηy(x)dx+O(ε2) .

Now, since E ( f )−E ( f o) ≥ 0 for |ε| > 0 sufficiently small due to the local opti-
mality of f o, and ηy ∈ C k

0 (XC,Rn−m(x0)) is arbitrary, by applying the fundamental
lemma of the calculus of variations (see, e.g., Section 2.2 in [7]) we conclude that

[γm(x0)+1(L f o)m(x0)+1(x), . . . ,γn(L f o)n(x)]+λ (x)(∇2φ(x,y(x),z(x))) = 0



22 Giorgio Gnecco, Marco Gori, Stefano Melacci, Marcello Sanguineti

on XC. This, together with the definition (32) of λ (x), shows that (19) holds on XC.
Finally, by varying the point x0, one obtains (19) on the whole X̂ .

(ii) follows by (19), the definition of the free-space Green’s function g of L as the
solution of Lg = δ (where δ denotes the Dirac delta, centered in 0), and the stated
assumptions on L and g.

(iii) For the case of unilateral constraints, of course the constraints that are in-
active in x0 at local optimality are not taken into account locally, so the condition
about the nonsingularity of the Jacobian matrix has to be referred only to the con-
straints that are active in x0 at local optimality. Moreover, all the arguments used
to derive (i) and (ii) still hold (of course, restricting the analysis to the active con-
straints in x0 at local optimality, and replacing the φi’s by the φ̌i’s), since, for every
sufficiently small |ε|> 0, a function f constructed as in the proof of (i) still satisfies
with equality the active constraints in x0 at local optimality.

Finally, we show that each Lagrange multiplier function λi(x) is nonpositive.
Without loss of generality, we can restrict the analysis to the points of continuity
of λi(x). Suppose by contradiction that there exists one such point x̂0 ∈ X̂ such
that λi(x̂0) > 0. Then, by continuity λi(x) > 0 on a sufficiently small open ball
centered on x̂0. For simplicity of notation, we also suppose that all the constraints
defined on x̂0 are active in x̂0 at local optimality. Then, due to the condition about the
nonsingularity of the Jacobian matrix, there is a vector u = [u1, . . . ,um(x̂0)]

′ such that
∇3φ̌(x̂0,y(x̂0),z(x̂0))u= ei, where ei is a column vector of all 0’s, with the exception
of the i-th component, which is 1. Then, by an application of the Implicit Function
Theorem (likewise in the proof of Lemma 1), for every sufficiently small ε > 0
(but in this case, not for every sufficiently small ε < 0) one can construct a feasible
smooth perturbation f (x) of f o(x) such that its components f j satisfy

f1(x) = f o
1 (x)+ εη1(x)+O(ε2) ,

f2(x) = f o
2 (x)+ εη2(x)+O(ε2) ,

. . .

fm(x̂0)(x) = f o
m(x̂0)

(x)+ εηm(x̂0)(x)+O(ε2) ,

fm(x̂0)+1(x) = f o
m(x̂0)+1(x) ,

fm(x̂0)+2(x) = f o
m(x̂0)+2(x) ,

. . .

fn(x) = f o
n (x) , (33)

for suitable functions η1, . . . ,ηm(x̂0) ∈ C k
0 (XC) such that η1(x̂0) = u1, η2(x̂0) = u2,

. . . , ηm(x̂0)(x̂0) = um(x̂0), and such that E ( f )−E ( f o), apart from an infinitesimal of
order O(ε2), is directly proportional to

ε[γ1(L f o)1(x̂0), . . . ,γm(x0)(L f o)m(x̂0)(x̂0)]u =−ελ (x̂0)ei =−ελi(x̂0)< 0 ,



Learning as Constraint Reactions 23

which contradicts the local optimality of f o. Then, one has λi(x̂0)≤ 0.
ut

The following theorem is a slight variation of Theorem 2, and is exploited in the
example in Section 4.2.

Theorem 3. (REPRESENTER THEOREM FOR HARD HOLONOMIC CONSTRAINTS
MIXED WITH SOFT QUADRATIC POINT-WISE CONSTRAINTS, CASE OF DISTRI-
BUTIONAL LAGRANGE MULTIPLIERS). Let us consider the minimization of the
functional

L ′
s ( f ) :=

1
2
‖ f ‖2

P,γ +
µ

md

md

∑
κ=1

n

∑
j=1

VQ(yκ, j− f j(xκ))

=
1
2

n

∑
j=1

γ j < P f j,P f j >+
µ

2md

md

∑
κ=1

n

∑
j=1

(yκ, j− f j(xκ))
2 (34)

(a particular case of the functional (4)), where µ ≥ 0 and md is the number of
supervised examples, in the case of m < n hard bilateral constraints of holonomic
type, which define the subset

Fφ := { f ∈F : ∀i ∈ Nm, ∀x ∈Xi ⊆X : φi(x, f (x)) = 0}

of the function space F , where ∀i∈Nm : φi ∈C ∞(cl(Xi)×Rm). Let f o ∈FC be any
constrained local minimizer of (34), and let the holonomic constraints be defined in
such a way that either L f o ∈ C 0(X ,Rn) or they are of the form A f (x) = b(x),
where A ∈ Rm,n with m < n and rank(A) = m, and b ∈ C 2k

0 (X ,Rm). Let us assume
that for any X̂ and for every x0 in the same X̂ we can find two permutations σ f
and σφ of the indexes of the n functions f j and of the m constraints φi, such that
φσφ (1), . . . ,φσφ (m(x0)) refer to the constraints actually defined in x0, and the Jacobian
matrix

∂ (φσφ (1), . . . ,φσφ (m(x0)))

∂ ( f o
σ f (1)

, . . . , f o
σ f (m(x0))

)
, (35)

evaluated in x0, is not singular. Suppose also that (35) is of class C ∞(X̂ ,Rn). Then,
the following hold.

(i) There exists a set of distributions λi defined on X̂ , i ∈ Nm, such that, in
addition to the above constraints, f o satisfies on X̂ the Euler-Lagrange equations

γL f o +
m

∑
i=1

λi1Xi(·) ·∇ f φi(·, f o(·))+ µ

md

md

∑
κ=1

( f o(·)− yκ)δ (·− xκ) = 0, (36)

where γL := [γ1L, . . . ,γnL]′ is a spatially-invariant operator, and ∇ f φi is the gradi-
ent w.r.t. the second vector argument f of the function φi.
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(ii) Let γ−1g := [γ−1
1 g, . . . ,γ−1

n g]′. If for all i one has Xi = X = Rd , L is invert-
ible on W k,2(X ), and there exists a free-space Green’s function g of L that belongs
to W k,2(X ), then f o has the representation

f o(·) =
m

∑
i=1

γ
−1g(·) ~⊗ φi(·, f o(·))− µ

md

md

∑
κ=1

( f o(·)− yκ)γ
−1g(·− xκ) , (37)

where g ~⊗ φi := g⊗ωi and ωi(·) :=↑ φi(·, f o(·)) :=−λi(·)1Xi(·)∇ f φi(·, f o(·)).

(iii) For the case of m < n unilateral constraints of holonomic type, which define
the subset F

φ̌
:=
{

f ∈F : ∀i ∈ Nm,∀x ∈Xi ⊆X , φ̌i(x, f (x))≥ 0
}

of the func-
tion space F , (i) and (ii) still hold (with every occurrence of φi replaced by φ̌i)
if one requires the nonsingularity of the Jacobian matrix (see (35)) to hold when
restricting the constraints defined in x0 to the ones that are active in x0 at local op-
timality. Moreover, each Lagrange multiplier λi is nonpositive and locally equal to
0 when the correspondent constraint is locally inactive at local optimality.

Proof. For µ = 0 (or equivalently, when no supervised examples are available) and
an additional smoothness assumption on f o, the theorem reduces to Theorem 2. For
the general case µ ≥ 0, one can show that the differences with respect to the proof
of Theorem 2 are the following:

• there is an additional term µ

md
∑

md
κ=1( f o(x)− yκ)δ (x− xκ) in the Euler-Lagrange

equations, due to the presence of the supervised examples;
• in general, the Lagrange multipliers λi(·) are not functions, likewise in Theorem

2, but distributions, obtained by a variation of formula (32), which is well-defined
in a distributional sense since the Jacobian matrix (35) is locally invertible and
infinitely smooth, and since either L f o ∈ C 0(X ,Rn) or A f (x) = b(x) hold (with
the stated assumptions on A and b). More precisely, formula (32) is replaced by

λ :=− [γ1(L f o)1, . . . ,γm(x0)(L f o)m(x0)](∇3φ(·,y(·),z(·)))−1

+

(
µ

md

md

∑
κ=1

[(yκ,1− f o
1 ), . . . ,(yκ,m(x0)− f o

m(x0)
)]

δ (·− xκ)

)
(∇3φ(·,y(·),z(·)))−1 , (38)

where now λ is a row vector distribution;
• differently from Theorem 2, additional smoothness of f o is not required, since

only (35) is required to be infinitely smooth.
ut
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Appendix 3

This appendix reports the complete derivations for the determination of the con-
straint reactions in the example of Section 4.2.

Let us determine the vector of distributional Lagrange multipliers λ . We start
noting that

AL f (x) = A
k

∑
κ=0

(−1)κ
ρκ ∇

2κ f (x)

=
k

∑
κ=0

(−1)κ
ρκ A∇

2κ f (x)

=
k

∑
κ=0

(−1)κ
ρκ ∇

2κ A f (x)

=
k

∑
κ=0

(−1)κ
ρκ ∇

2κ b(x)

= Lb(x) ,

where Lb ∈ C 0
0 (X ,Rm) has compact support. Hence, from (22) we get

γ̄Lb(x)+A

[
A′λ (x)+

md

∑
κ=1

( f o(x)− yκ)

md
δ (x− xκ)

]
= 0 .

So, the Lagrange multiplier distribution λ is given by

λ =−[AA′]−1
(

γ̄Lb+
1

md

md

∑
κ=1

A( f o(·)− yκ)δ (·− xκ)

)
.

Now, if we plug this expression for λ into the Euler-Lagrange equations (22), we
get

γ̄L f o(x) = c(x)+
1

md

md

∑
κ=1

Q(yκ − f o(x))δ (x− xκ),

where c(x) := γ̄A′(AA′)−1Lb(x) and Q := In−A′[AA′]−1A. Let α
(ql)
κ := 1

md
γ̄−1(yκ−

f o(xκ)). By inverting the operator L, we get

f o(x) = γ̄
−1
∫

X
g(ζ )c(x−ζ )dζ +

md

∑
κ=1

Qα
(ql)
κ g(x− xκ). (39)

So, the overall constraint reaction (of both hard and soft constraints) is

ω(x) = c(x)+ γ̄

md

∑
κ=1

Qα
(ql)
κ δ (x− xκ) .
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The coefficients α
(ql)
κ can be determined by the following scheme. Denote by

y := [y1, . . . ,ymd ] ∈ Rn,md the matrix of targets, where the κ-th column is associ-
ated with the corresponding example xκ , and α(ql) := [α

(ql)
1 , . . . ,α

(ql)
md ] ∈ Rn,md . By

the definition of α(ql) we get

γ̄mdα
(ql)+Qα

(ql)G = y− γ̄
−1
∫

X
g(ζ )H(ζ )dζ ,

where G is the Gram matrix of the input data and the kernel g, and H : X → Rn,md

is the matrix-valued function whose κ-th column is given by the function c(xκ −·).
The existence of a solution α(ql) to the linear system above follows by a slight
modification of Theorem 1 in [10] (since for ρ0 > 0, ‖ · ‖P,γ̄ is a Hilbert-space norm
on W k,2(Rd) by Proposition 3 in [10], and the square loss is convex and continuous)
and the nonsingularity of the Jacobian matrix (35) associated with the set of hard
constraints A f (x) = b(x).

We conclude discussing the admissibility of the obtained solution (39). By an
application of Theorem 3 in [10] about the smoothness properties of free-space
Green’s functions, it follows that, for this problem, g ∈W k,2(Rd). This implies that
f o ∈F , L ′

s ( f o) is finite, and f o is a constrained global minimizer, too (thanks to
the convexity of the problem).
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