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Abstract

Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and
radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the
endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH
undergo apoptosis via oxidative stress and Protein kinase C (PKC) d activation. In the present study, we transfected PKCd in
NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses,
in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCd activation was monitored by
analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the
subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those
obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that
PKCd induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the
cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCd overexpression enhances the sensitivity of NB cells to
etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a
pro-oxidant role of PKCd that might be exploited to design new therapeutic strategies aimed at selective killing of cancer
cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated
signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches.
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Introduction

Neuroblastoma relapse is caused by a minimal residual disease,

characterized by the presence of a small number of cancer cells in the

blood and/or in the bone marrow that are resistant to conventional

therapies. In this context, drugs capable of inducing apoptosis and the

study of apoptotic mechanisms have generated a particular interest [1].

During programmed cell death, kinases such as p38 mitogen-

activated protein kinase, c-Jun N-terminal kinase (JNK), extracel-

lular signal-regulated protein kinase and protein kinase C (PKC)

are regulated in a cell type-dependent manner [2].

PKC is a family of phospholipid-dependent serine/threonine

kinases that regulate a wide variety of cellular functions [3]. The

PKC family consists of at least eleven members that have been

divided into three groups: conventional or cPKCs (a, bI, bII and

c) requiring calcium and diacylglycerol (DAG) for their activation,

novel or nPKCs (d, e, g and h) dependent on DAG but not on

calcium and finally, atypical or aPKCs (f, l/i) that are not

dependent on either DAG or calcium.

Opposite roles have been described for PKC isoenzymes in

tumor promotion; PKCe has been shown to act as a transforming

oncogene and to confer tumorigenic phenotype in nude mice [4].

By contrast, the suppression of PKCd expression or down-

regulation of its activity is believed to favor a transformed

phenotype [5]. In particular, two PKC isoenzymes play specific

roles in cell survival and apoptosis: PKCa promotes EGF-

transforming activity [6] and is generally described as anti-

apoptotic [7], whereas PKCd has anti-proliferative effects [8],

promoting cell differentiation [9] and mediating pro-apoptotic

events [10]. The tumor suppressor ability of PKCd likely involves

the Ras/Raf/MEK/MAP kinase-signaling pathway [11].

We have previously demonstrated that cell death, triggered

by L-buthionine-S,R-sulfoximine (BSO), a glutathione (GSH)-

depleting agent, is mediated by PKCd activation and reactive

oxygen species (ROS) overproduction [12].

In the present study, we investigated whether PKCd could

sensitize neuroblastoma (NB) cell lines to apoptosis. Our results

indicate that overexpression of PKCd in GSH-depleted cells leads
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to ROS overproduction that is responsible for DNA oxidative

damage and apoptosis, two events efficiently prevented by

diphenyleneiodonium (DPI), a flavoprotein widely used to inhibit

NADPH oxidase. The crucial role of PKCd is also observed in NB

cells exposed to low doses of etoposide, a major anti-tumor agent

used for the treatment of NB [13]. Altogether, our data imply that

nuclear translocation of the functionally-active full-length PKCd is

an early and important step necessary to prime the apoptotic

pathway in response to cytotoxic drugs.

Materials and Methods

[c32P] ATP was from Perkin Elmer Life and Analytical Sciences

(Shelton, CT, USA). Etoposide was from Calbiochem (Merck

KGaA, Darmstadt, Germany). All other chemicals were from

Sigma-Aldrich (St. Louis, Mo, USA).

Cell cultures and transfections
Human NB cell lines ACN, GI-MEN, SH-SY-5Y and SK-N-

BE-2C were purchased from the Bank of Biological Material

Interlab Cell Line Collection, Advanced Biotechnology Center,

Genoa, Italy. Cells were cultured in RPMI 1640 (Euroclone s.p.a,

Pavia, Italy) supplemented with 10% fetal bovine serum (FBS;

Euroclone), 2 mM L-glutamine, 1% penicillin/streptomycin, 1%

sodium pyruvate and 1% of aminoacid solution.

PKCd and Dominant-Negative PKCd cDNA (K376M) [14],

both cloned into pEGFP-N1 vector (Clontech Laboratories Inc,

Mountain View, CA, USA), were kindly provided by Dr. C.

Larsson (University of Malmö, Malmö, Sweden) and Prof. P.

Parker (Cancer Research UK, London, UK), respectively. The

coding sequence of the EGFP gene was removed by cutting the

PKCd plasmid with EcoRI and NotI restriction enzymes (Roche

Diagnostics, GmbH, Mannheim, Germany). The integrity of the

resulting PKCd construct was confirmed by sequencing. Transient

transfections were performed using Lipofectamine 2000 (Invitro-

gen Srl, S. Giuliano Milanese, Italy) at 2.5 ml/mg DNA.

siRNA transfection
Gene silencing by small interfering RNA (siRNA) was carried

out by transfecting cells with a non-targeting pool ‘‘NoT’’, used as

a negative control, and with SMARTpool siRNA oligonucleotides,

used to interfere with human PKCd expression (ON-TARGE-

TEDplus, Dharmacon, Lafayette, CO, USA) employing INTER-

FERinTM (Polyplus Transfection) according to the manufacturer’s

instructions. The cells were then transfected with oligonucleotides

at a final concentration of 5 nM. After 48 h, transfection reagents

were washed out and the cells were stimulated for 24 h with 1 mM

BSO or 0.07 mM etoposide.

Apoptosis/necrosis detection assays
For the assessment of apoptosis and necrosis, cells were analysed

as previously described [15]. Briefly, after treatment cells were

incubated with 0.5 mg/ml FITC-labelled recombinant Annexin V

and 0.5 mg/ml propidium iodide (PI; BioVision, Mountain View,

CA, USA). Cells were visualised and counted (4 fields of 200-400

cells) by fluorescence microscopy using a Leica DMIRB

microscope with a dual filter set for FITC and rhodamine. Images

were acquired with a Leica DCF320 camera. Cell death was

expressed as a percentage of Annexin-V and PI positive cells.

Caspase-3 activity assay
The activity of caspase-3 was measured spectrophotometrically

using a 96-well microplate kit (Caspase-3 Cellular Activity Assay

Kit, Calbiochem). Briefly, 10 ml of cell extract and 40 ml assay

buffer (100 mM NaCl, 50 mM HEPES, 10 mM DTT, 1 mM

EDTA, 10% glycerol, 0.1% CHAPS, cholamidopropyl-dimethy-

lammonio-1-propanesulfonate, pH 7.4) were added to the wells

and the microplate was equilibrated at 37uC. The reaction was

initiated by adding the caspase-3 colorimetric tetrapeptide

substrate N-acetyl-Asp-Glu-Val-Asp-p-nitroanilide (DEVD-pNa,

200 mM final concentration). Absorbance was recorded at 7 min

intervals for 3 h at 405 nm using a microplate reader (EL-808,

BIO-TEK Instruments Inc., Winooski, VT, USA). All samples

were analyzed in duplicates and purified activated caspase-3 was

included on each microplate as a positive control.

Specific activity of each sample was evaluated in respect to the

total protein content and was reported as a percentage relative to

the untreated control.

MTT Assay
Cell viability was determined using the dimethylthiazolyl-2-5-

diphenyltetrazolium bromide (MTT, Sigma) staining. In brief,

cells were seeded into 6 well-plates (Corning, Corning Incorpo-

rated, NY, USA), transfected with the empty vector (EV) or PKCd
plasmid and then treated with 1 mM BSO for 24 h. Next, cells

were incubated with 0.5 mg/ml MTT for 3 h at 37uC. After

incubation, the supernatant was discarded, insoluble formazan

precipitates were dissolved in 0.1 ml HCl (0.1 N in isopropanol)

and the absorbance at 570 nm was recorded using a microplate

reader (EL-808, BIO-TEK Instruments Inc.). Each experiment

was performed in triplicate. Values from each treatment were

calculated as a percentage relative to the untreated control.

Immunoblot analysis
Immunoblotting was carried out according to standard methods

[16], using the following antibodies: polyclonal rabbit anti-human

PKCd (Cell Signaling Technology Inc., Danvers, MA, USA and

Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti phospho-

PKCd (Thr505) (Cell Signaling), monoclonal mouse anti-PKCa
and polyclonal rabbit anti-PKCe (Upstate, Lake Placid, NY,

USA), monoclonal mouse anti-b actin (Sigma) and, finally, anti-

mouse and anti-rabbit secondary antibodies coupled with

horseradish-peroxidase (Amersham International, Buckingham-

shire, UK). Proteins were visualized with an enzyme-linked

chemiluminescence detection kit according to the manufacturer’s

instructions (Amersham). Chemiluminescence was monitored by

exposure to film and the signals were analyzed under non-

saturating conditions with an image densitometer and Quantity

One software (Bio-Rad Laboratories, Hercules, CA, USA).

PKC activity assay
After treatment, PKCd was immunoprecipitated with polyclon-

al rabbit anti-human PKCd antibody (Cell Signaling and Santa

Cruz) and protein A/G-sepharose (Santa Cruz) from 50 mg of total

cell extracts. Activity assay was performed as previously described

[15], using H1 Histone as a substrate [17]. The relative intensity of

the phosphorylated substrate was quantified by densitometric

analysis.

Detection of ROS
Detection of ROS was performed as described in a previous

work [15]. Briefly, after treatment, cells were incubated with

20 mM 29-79 dichlorofluorescein-diacetate (DCFH-DA; Sigma)

and the accumulation of dichlorofluorescein (DCF) was measured

by the increase in fluorescence at 530 nm, exciting the samples at

485 nm [18]. The cells were observed and counted (4 fields of

200–400 cells) by fluorescence microscopy using a Leica DMIRB

PKCd and Oxidative Cell Death
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microscope with a standard set of filters for fluorescein. The

images were acquired with a Leica DCF320 camera.

Single cell gel electrophoresis (Comet assay)
Comet assay detects DNA damage at the level of single cells.

Formamidopyrimidine DNA glycosylase (fpg)-modified comet

assay [19] was used to evaluate DNA damage of oxidative

nature. This test utilizes the fpg enzyme, a glycosylase that

recognizes and specifically removes the oxidized bases from

DNA, principally 8-OH deoxyguanosine (8-OHdG), producing

apurinic sites converted in breaks by the associated AP-

endonuclease activity. After treatment, cells were trypsinized

and the cell suspensions (1.56104 cells) were mixed with low

melting point agarose and spread on slides covered with a thin

layer of normal melting point agarose. Then, slides were washed

and incubated with fpg (1 mg/ml) in the dark for 30 min at

Figure 1. PKCd overexpression increases ROS production in untreated and BSO-treated NB cells. A, SH-SY-5Y, ACN, GI-MEN and SK-N-BE-
2C cells were transfected with empty vector (EV) or PKCd plasmid. 24 h after transfection, cells were treated with 1 mM BSO for 24 h. Where
indicated, cells were pre-treated with 25 nM DPI for 30 min. ROS analysis was performed as described in Materials and Methods. Histograms
summarize quantitative data of means 6 SD of five independent experiments. * p,0.01 vs. EV transfected cells; u p,0.01 vs. PKCd transfected cells;
1 p,0.01 vs. EV transfected cells +BSO; # p,0.01 vs PKCd transfected cells +BSO. B, Immunoblot of SH-SY-5Y and SK-N-BE-2C protein extracts (10 mg/
lane) was performed with anti-PKCd (left panels) and anti-phosphoThr (505) PKCd (right panels) antibodies. Lanes 1 show the protein extracts from
untreated cells, lanes 2 from BSO-treated cells, lanes 3 from DPI-treated cells and lanes 4 from DPI+BSO-treated cells. Protein extracts from SH-SY-5Y
cells transfected with PKCd and exposed to 100 mM H2O2 (4 h) were used as positive control (lane 5). b-actin signals represent the immunoblot
loading control. PKCd activity was measured by phosphorylation of H1 histone, utilized as a substrate (see Materials and Methods). The immunoblots
shown are representative of five independent experiments.
doi:10.1371/journal.pone.0014661.g001
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37uC. After the electrophoresis at 300 mA for 40 min, the slides

were treated with absolute ethanol and then stained with

ethidium bromide. Comet capture was performed using a Leica

DIMRB fluorescence microscope (excitation filter of 515–

560 nm and a barrier filter of 590 nm) and the images were

acquired with a Leica DCF320 camera. DNA strand breaks

were expressed as tail moment data calculated by measuring the

resulting comets by TriTek CometScoreTM Freeware image

analysis software (TriTek Corporation). At least 4 fields of 25

randomly selected cells pooled from three independent exper-

iments were analyzed.

Detection of PKCd translocation by confocal microscopy
Cells were fixed and permeabilized with cold (220uC) methanol

immediately before being processed for immunofluorescence.

Non-specific antibody binding was blocked by a 30 min incubation

with 5% (v/v) fetal calf serum. Cells were then treated with 2 mg/

ml rabbit anti-human PKCd (Santa Cruz), followed by an Alexa

Fluor488 anti-rabbit secondary antibody (Invitrogen). Nuclei were

identified with PI staining. Mitochondria were labelled with

MitoTraker Deep Red FM (Invitrogen) according to the

manufacturer’s instructions. Images were collected by confocal

microscopy using a Leica TCS SL2 instrument (Leica Wetzlar,

Figure 2. Overexpression of PKCd sensitizes NB cells to BSO-induced apoptosis. A, After transfections and treatments (performed as in Fig.
1), apoptosis was analyzed by fluorescence microscopy using Annexin-V/PI assay (see Materials and Methods). Histograms summarize quantitative
data of means 6 SD of five independent experiments. * p,0.01 vs. EV transfected cells; u p,0.01 vs. PKCd transfected cells; 1 p,0.01 vs. EV
transfected cells +BSO; # p,0.01 vs PKCd transfected cells +BSO. B, Caspase-3 activity was analyzed by Caspase-3 Cellular Activity Assay Kit (see
Materials and Methods) in SH-SY-5Y (left panel) and SK-N-BE-2C cells (right panel). The percentage of living cells was determined by MTT analyses.
Histograms summarize quantitative data of means 6 SD of three independent experiments. * p,0.05 vs. EV transfected cells; ** p,0.01 vs. EV
transfected cells; u p,0.05 vs. PKCd transfected cells; uu p,0.01 vs. PKCd transfected cells.
doi:10.1371/journal.pone.0014661.g002
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Germany), equipped with argon/He-Ne laser sources and an

HCX PL APO CS 63.061.40 oil objective. Excitation and

emission wavelengths were 488 and 522 nm respectively for

Alexa-labelled antibody, 543 and 605 nm for PI staining and 633

and 662 nm for MitoTraker Deep Red FM labelling. Sequential

acquisition was performed to avoid cross-talk between color

channels. Nuclear translocation was analyzed through ImageJ

1.34f software (Wayne Rasband, National Institutes of Health,

Bethesda, MD, USA).

Data analysis
Results were expressed as mean 6 SD from at least three

independent experiments. The statistical significance of parametric

differences among sets of experimental data was evaluated by one-

way ANOVA and Dunnett’s test for multiple comparisons.

Results

Overexpression of PKCd enhances ROS production in NB
cell lines

In the present study, three human NB cell lines, without MYCN

amplification (ACN, GI-MEN, SH-SY-5Y) and a MYCN-

amplified cell line (SK-N-BE-2C) were transiently transfected with

an expression vector encoding PKCd and incubated with 1 mM

BSO for 24 h. Transfection efficiency (percentage of pEGFP-N1-

PKCd positive cells) was about 80–85% in SH-SY-5Y, ACN and

GI-MEN while it was 40–45% in SK-N-BE-2C cells. ROS

production was analyzed by fluorescence microscopy as described

in Materials and Methods and measured as a percentage of DCF

positive cells. SH-SY-5Y, ACN and GI-MEN cells, transfected

with the EV, did not generate ROS under any treatment

conditions, while the same cell lines, transfected with PKCd
expressing vector, showed a 15–18% of DCF positivity that

increased to 55–74% after BSO treatment (24 h). In SK-N-BE-2C

cells transfected with EV, the DCF positivity was already 12% and

increased 4-fold after BSO incubation (Figure 1A). However,

when these cells were transfected with PKCd plasmid, the

percentage of DCF-positive cells was 30%, doubling to 60% after

BSO exposure. Inhibition of NADPH oxidase by diphenyleneio-

donium chloride (DPI), either alone or associated with BSO, was

capable of totally suppressing ROS production (Figure 1A).

PKCd protein levels and enzymatic activities are not
influenced by BSO and DPI

NB cells were analyzed after transfection with PKCd expressing

vector in order to test the kinase expression pattern. Since the

results were similar in all the cell lines tested (data not shown), we

have selected SH-SY-5Y cells as the prototype of MYCN-non-

amplified cells, and SK-N-BE-2C as the model of MYCN-

amplified cells. In both cell lines that overexpress PKCd, the

profile of other PKC isoforms, such as a and e, were found to be

unaltered (data not shown). As reported in Figure 1B, treatment of

Table 1. PKCd overexpression is accompanied by DNA damage.

SH-SY-5Y SK-N-BE-2C

Standard (A.U.) fpg (A.U.) Standard (A.U.) fpg (A.U.)

CTR EV 0.000660.0001 0.000460.0001 0.000860.0001 0.000660.0001

PKCd 0.000660.0001 12.11164.632**,uu 0.000960.0001 7.32161.632**,uu

BSO EV 0.000560.0001 0.000560.0001 10.53261.326** 12.56961.315**

PKCd 20.471863.945811 17.519463.990811 20.471863.94581 17.519463.99081

DPI EV 0.000460.0001 0.000760.0002 0.000860.0002 0.000760.0004

PKCd 0.000660.0001 0.000460.0001NN 0.000960.0002 0.000760.0002NN

DPI+BSO EV 0.000360.0001 0.000560.0001 0.000460.000111 0.000460.000111

PKCd 0.000560.0001ee 0.000460.0001ee 0.000660.0001ee 0.000560.0001ee

ACN GI-MEN

Standard (A.U.) fpg (A.U.) Standard (A.U.) fpg (A.U.)

CTR EV 0.002360.0005 0.002360.0004 0.000960.0003 0.000260.0001

PKCd 0.001460.0002 3.04761.0985**,uu 0.000560.0002 8.074062.7906**,uu

BSO EV 0.002260.0005 0.001560.0003 0.000760.0001 0.000560.0001

PKCd 17.765165.485711 12.139565.140611 20.495564.575511 12.368464.872811

DPI EV 0.001260.0002 0.001860.0003 0.000560.0001 0.0004960.0001

PKCd 0.001160.0003 0.000760.0005NN 0.000460.0001 0.000560.0001NN

DPI+BSO EV 0.001760.0011 0.001260.0005 0.000560.0001 0.000460.0001

PKCd 0.000660.0001ee 0.000760.0003ee 0.000460.0001ee 0.000360.0001ee

NB cells, transiently transfected with empty vector (EV) or PKCd plasmid, were treated with 1 mM BSO for 24 h. Where indicated, cells were pre-treated with 25 nM DPI
for 30 min. DNA fragmentation (standard) and oxidation (fpg) were evaluated by comet test. The reported values derive from tail moment analyses.
**p,0.01 vs EV CTR/fpg;
uup,0.01 vs PKCd CTR standard;
1p,0.05 vs EV + BSO;
11p,0.01 vs EV + BSO;
NNp,0.01 vs PKCd CTR fpg;
eep,0.01 vs PKCd+BSO.
doi:10.1371/journal.pone.0014661.t001
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SH-SY-5Y and SK-N-BE-2C cells with BSO and/or DPI did not

change the expression level of PKCd, the basal content of which

was low in both cell lines. PKCd-overexpressing cells showed

Thr505 phosphorylation, a marker of the enzyme activation [9]

and, after BSO and/or DPI incubations, the phosphorylation

status of the PKCd residue was not significantly modified.

Since it is known that PKCd may be activated by proteolytic

cleavage [20,21], the presence of the 40 kDa catalytic fragment

was investigated in both cell lines under all conditions.

Immunoblot analysis showed that neither BSO nor DPI, alone

or together, induced the proteolytic cleavage of PKCd that was,

however, observed in the positive control, represented by PKCd-

transfected SH-SY-5Y cells exposed to 100 mM H2O2 (Figure 1B).

BSO stimulated the PKCd enzymatic activity of SK-N-BE-2C

cells 3-fold, whereas DPI pre-treatment exerted an efficient

preventive effect (Figure 1B). In PKCd-overexpressing cells, the

kinase activity was not modified by BSO and/or DPI exposure

(Figure 1B).

In SH-SY-5Y cells, BSO treatment, alone or associated with

DPI, did not influence the activity of endogenous and exogenous

PKCd (Figure 1B).

PKCd overexpression is crucial for BSO-mediated
apoptotic death

Cell viability was tested by analyzing the rate of Annexin-V/

propidium iodide positive cells. As shown in Figure 2A, treatment

with BSO did not modify the viability of SH-SY-5Y, ACN and GI-

MEN cells, but was able to induce apoptosis in SK-N-BE-2C cells,

evaluated as 22% of Annexin-V positive cells. The transient

transfection with PKCd itself induced a 10–14% of Annexin-V

positivity in all cell lines tested. Moreover, after BSO exposure, a

20–24% of Annexin-V positivity was recorded in all PKCd-

transfected cells except for SK-N-BE-2C, in which the percentage

of apoptosis incremented, and reached a 35% value.

The blocking of ROS production by DPI protected all PKCd-

overexpressing cells and also EV-transfected SK-N-BE-2C cells

from apoptosis. Under all conditions, PI positive cells were not

detected (data not shown), demonstrating the absence of necrotic

events.

To understand the mechanism of the enhanced apoptotic

process triggered by BSO exposure and PKCd overexpression,

caspase-3 activity and MTT analyses were carried out. As shown

in Figure 2B, BSO treatment did not affect the activity of caspase-

3 measured in EV-transfected SH-SY-5Y cells. Conversely, when

the same cells were transfected with PKCd, the activity of caspase-

3 increased by 50%, when compared to EV-transfected cells, and

further increased by 33% after BSO exposure. In SK-N-BE-2C

cells, the caspase-3 activity was comparable in EV- and in PKCd-

transfected cells. However, BSO treatment of EV- and PKCd-

transfected cells led to a significant increase in caspase-3 activity by

70% and 146% respectively.

These results were further supported by a MTT assay

(Figure 2B) which showed that the viability of SH-SY-5Y cells

overexpressing PKCd was reduced by 28% after BSO incubation.

This latter treatment was seen to lower the viability of SK-N-BE-

2C cells by 16% and by 24% after PKCd overexpression.

PKCd overexpression leads to oxidative DNA damage
DNA damage was analyzed under all experimental conditions

using comet assay. As shown in Table 1, the DNA from EV-

transfected SH-SY-5Y, ACN and GI-MEN cells was found not to

be damaged neither after BSO treatment nor DPI pre-treatment,

whereas in SK-N-BE-2C, a marked DNA damage was recorded

after BSO exposure, with DPI preventing the genotoxic effect.

Apparently, PKCd overexpression, in all cell lines tested, did not

affect the integrity of DNA, which was impaired after BSO and

protected by DPI. In order to verify whether the observed DNA

damage was of an oxidative nature, the same analysis was

performed in the presence of fpg (see Materials and Methods). In

fact, this approach revealed that PKCd overexpression per se was

responsible for DNA oxidation that became more pronounced after

BSO treatment and was efficiently prevented by DPI (Table 1).

The susceptibility to etoposide or BSO of PKCd
overexpressing cells is prevented by rottlerin

Considering the role of PKCd in the induction of oxidative cell

death, we then investigated whether the kinase overexpression could

increase the susceptibility of NB cells to etoposide, a drug widely

used in the therapy of neuroblastoma. For this purpose, wild type

SH-SY-5Y cells were exposed for 24 h to a range of etoposide

concentrations (0.07, 0.1, 0.4, 0.8, 1.25 mM) compatible with those

used in clinical practice [22]. The lowest etoposide dose (0.07 mM)

caused a slight but significant increase in the rate of apoptosis

without inducing necrosis. Conversely, higher etoposide doses had a

marked necrotic effect (data not shown). Next, we evaluated the

effect of 0.07 mM etoposide on the DNA of EV-transfected SH-SY-

5Y cells using comet assay. As shown in Table 2, etoposide alone

caused oxidative damage to DNA which was suppressed by

rottlerin, an inhibitor of novel PKCs [23]. When the cells were

transfected with PKCd, exposure to either etoposide (0.07 mM) or

BSO (1 mM) induced DNA fragmentation and oxidation. More-

over, under the same conditions, the number of apoptotic cells was

significantly increased (20-22% vs 12% of untreated PKCd-

overexpressing cells; Figure 3). Rottlerin pre-incubation prevented

apoptosis (Figure 3) and oxidative damage to DNA (Table 2), both

Table 2. PKCd overexpression amplifies the genotoxic effects
of etoposide.

SH-SY-5Y

Standard (A.U.) fpg (A.U.)

CTR EV 0.000660.0001 0.000460.0001

PKC d 0.000660.0001 12.11164.632**,uu

BSO EV 0.000560.0001 0.000560.0001

PKC d 20.471863.945811 17.519463.990811

ETOPO EV 0.000460.0001 9.012163.5361**,11

PKC d 22.082564.147911 16.137363.542311

ROT EV 0.000460.0002 0.000460.0001

PKC d 0.000560.0002 0.000360.0001NN

ROT+BSO EV 0.000460.0001 0.000360.0001

PKC d 0.000460.0001ee 0.000360.0002ee

ROT+ETOPO EV 0.000560.0003 0.000260.0001##

PKC d 0.000360.0002ee 0.000360.0002ee

SH-SY-5Y cells, transiently transfected with empty vector (EV) or PKCd plasmid,
were treated with 0.07 mM etoposide or 1 mM BSO for 24 h. Where indicated,
cells were pre-treated with rottlerin for 30 min. DNA fragmentation (standard)
and oxidation (fpg) were evaluated by comet test. The reported values derive
from tail moment analyses.
**p,0.01 vs EV CTR/fpg;
uup,0.01 vs PKCd CTR standard;
11p,0.01 vs EV + BSO/ETOPO;
##p,0.01 vs EV ETOPO fpg;
NNp,0.01 vs PKCd CTR fpg;
eep,0.01 vs PKCd+BSO/ETOPO.
doi:10.1371/journal.pone.0014661.t002
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having been triggered by etoposide or BSO, and in addition

suppressed the effects caused by the PKCd overexpression itself.

PKCd is required to induce the oxidative death and the
genotoxic effects triggered by etoposide and BSO

To confirm the direct involvement of PKCd in BSO- and

etoposide-induced effects, SK-N-BE-2C and SH-SY-5Y cells, after

transfection with both non-targeting siCONTROL RNA and PKCd-

specific siRNA, were respectively treated with BSO or etoposide for

24 h. As shown in Figure 4A, in both cell lines, PKCd levels were

markedly reduced (9067.2%) by the specific silencing and the

treatments with etoposide or BSO did not change the protein levels.

Moreover, the treatment with non-targeting siCONTROL RNA

(NoT) did not affect the amount of PKCd (Figure 4A).

Figure 3. PKCd overexpression increases the pro-apoptotic effects of etoposide. SH-SY-5Y cells, transiently transfected with empty vector
(EV) or PKCd, were treated with etoposide (0.07 mM) or BSO (1 mM) for 24 h. Where indicated, cells were pre-treated with rottlerin (3 mM) for 30 min.
After treatments, cells were processed for Annexin V assay. Data is expressed as means 6 SD of three independent experiments. * p,0.01 vs
untreated EV or PKCd-transfected cells; 1 p,0.01 vs. EV or PKCd-transfected cells treated with etoposide; # p,0.01 vs PKCd-transfected cells treated
with BSO.
doi:10.1371/journal.pone.0014661.g003
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As shown for pre-treatment with rottlerin, silencing of PKCd
efficiently prevented apoptosis (Figure 4B), ROS overproduction

(Figure 4C) and also oxidative DNA damage (Table 3) observed in

etoposide-treated SH-SY-5Y cells. Similarly, silencing of PKCd
was able to markedly protect SK-N-BE-2C cells from BSO-

induced effects (Figure 4B, C and Table 3).

BSO and etoposide induce early translocation of PKCd to
the nucleus

In unstimulated cells, PKCd resides in the cytosol and, upon

treatment with the appropriate agonists, translocates to membrane

compartments [24]. Therefore, we investigated, by confocal

microscopy, the subcellular localization of PKCd soon after

BSO or etoposide treatment. As shown in Figure 5A, BSO (3 h)

and etoposide (1 h) induced the partial translocation of PKCd to

the nucleus, as indicated by the overlapping of green fluorescence

(PKCd) with the red nuclear counterstain. It should be noted that

PKCd did not translocate to mitochondria, as demonstrated by the

absence of the overlapping of green fluorescence (PKCd) with

MitoTraker Deep Red FM labelling. To investigate whether the

nuclear translocation is dependent on the activation of PKCd, SH-

SY-5Y cells were transfected, in parallel experiments, with PKCd
and with Dominant Negative PKCd (PKCd-DN) plasmid, the

resulting overexpressing cells then being treated either with BSO

or etoposide. Since the results obtained, by labelling cells with the

PKCd antibody or by observing the localization of PKCd-GFP,

were similar, the comparison between localization of PKCd and

PKCd-DN, at the time in which the kinase moves to the nucleus,

was done using both plasmids carrying GFP. As shown in

Figure 5B, both PKCd and PKCd-DN were distributed into the

cytosol of untreated cells. Surprisingly, after BSO (3 h) and

etoposide (1 h) treatment, PKCd partially translocated to the

Figure 4. PKCd silencing prevents apoptosis and ROS over-production triggered by etoposide and BSO. Down-regulation of
endogenous PKCd was obtained using the technique of RNA silencing, as described in Materials and Methods. After 48 h transfection, SH-SY-5Y (left
panels) and SK-N-BE-2C cells (right panels) were stimulated for 24 h with 0.07 mM etoposide or 1 mM BSO. A, Immunoblots of SH-SY-5Y and SK-N-BE-
2C protein extracts (20 mg/lane) were performed with anti-PKCd and anti-b actin antibodies. Lanes 1 show the protein extracts from untreated cells,
lanes 2 from etoposide/BSO-treated cells, lanes 3 from untreated cells transfected with PKCd siRNA, lanes 4 from cells transfected with PKCd siRNA
and then treated with etoposide/BSO, lanes 5 from cells transfected with siCONTROL RNA (NoT), lanes 6 from cells exposed to the agent used for
silencing (INT, INTERFERinTM) and lanes 7 from the positive control (as detailed above). The immunoblots shown are representative of five
independent experiments. B, After silencing and treatments, apoptosis was analyzed by fluorescence microscopy using Annexin-V/PI assay (see
Materials and Methods). C; ROS analysis was performed as described in Materials and Methods. Histograms summarize quantitative data of means 6
SD of five independent experiments. * p,0.01 vs. untreated cells; u p,0.01 vs. cells treated with etoposide/BSO.
doi:10.1371/journal.pone.0014661.g004
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nucleus (21610%) whereas PKCd-DN remained localized in the

cytosol (Figure 5B). Immunoblot analysis excluded the formation

of PKCd catalytic fragments and showed that the transfected

PKCd was phosphorylated at the Thr505 residue (pThr505)

(Figure 5C). Interestingly, after incubation (1, 3 and 6 h) with BSO

or etoposide, PKCd-overexpressing cells were viable (Figure 5D)

and DNA was neither fragmented nor oxidized (data not shown).

In order to investigate whether the observed genotoxic action of

PKCd was a direct consequence of the sole increase in its protein

levels or if it was due to its activity, SH-SY-5Y cells, transfected

with PKCd-DN and exposed to either BSO or etoposide for 24 h,

were analyzed in terms of DNA damage. Standard comet assay

demonstrated that the transfection with the PKCd-DN had not

induced DNA damage, as demonstrated by analyzing the tail

moments of the comets (0.000560.0001 in untreated PKCd-DN

cells; 0.000660.0001 and 0.000460.0001 in BSO or etoposide

exposed cells, respectively). The fpg-modified comet assay revealed

that the transfection with PKCd-DN induced a pattern of DNA

damage similar to that observed in EV-transfected cells

(0.000560.0001 in untreated and in BSO-treated PKCd-DN cells

and 8.53264.658 in etoposide exposed cells).

These data suggest that the functionally active PKCd is able to

sensitize NB cells to BSO and etoposide by inducing ROS

overproduction and DNA damage.

Discussion

Pharmacological GSH depletion by BSO highly sensitizes

tumor cells to apoptosis induced by chemotherapeutic agents

[25,26]. Recently, it has been found that GSH deficiency is

associated with elevated levels of 8-OHdG and DNA single strand-

breaks in cell cultures [27]. Moreover, the lack of GSH induces

DNA deletions in mice [28] and DNA oxidative modifications in

rabbits [29].

Our previous studies have shown that MYCN-non-amplified NB

cell lines are more resistant to apoptosis induced by BSO, compared

with MYCN amplified cells [30]. In recent literature, it has been

reported that human NB cells with MYCN amplification are selectively

resistant to oxidative stress by transcriptionally up-regulating glutamate

cysteine ligase [31]. These findings could explain, in part, the major

vulnerability of MYCN-amplified NB cells following treatment with

BSO, an irreversible inhibitor of GSH biosynthesis.

In this study, we provide evidence that PKCd overexpression

sensitizes MYCN-non amplified-NB cell lines to GSH depletion,

inducing DNA oxidative damage and cell death. In SK-N-BE-2C,

chosen as a model of MYCN-amplified cells, PKCd overexpres-

sion is capable of potentiating the cytotoxic effects induced by

BSO.

It has been established that ROS can act through several

signaling molecules such as calcium, phospholipases, MAP kinases

and PKC isozymes [32,33]. PKCs are particularly important as

they are part of the cell signaling machinery and contain regions,

rich in cysteine residues, that are susceptible to redox modifica-

tions, both in the N-terminal regulatory domain and in the C-

terminal catalytic domain [34,35]. In particular PKCd, a major

isoenzyme ubiquitously expressed in most mammalian cells, is

known for its apoptotic properties [36] and is involved in the

cellular response to DNA damage and oxidative stress [37].

In the present study, we demonstrate that overexpression of

active PKCd, phosphorylated at Thr505, plays an essential role in

the ROS signaling pathway leading to DNA damage and

apoptosis of neuroblastoma cells. In fact, the blocking of ROS

production by DPI prevented apoptosis of PKCd-overexpressing

cells depleted of GSH. Since DPI is a NADPH oxidase inhibitor

[38] and several studies have demonstrated that PKC has a central

role in the regulation of NADPH oxidase [39,40], modulating the

phosphorylation and activation of p67phox [41] and p47phox

components [16], it is reasonable to assume that PKCd acts

upstream of ROS production, DNA oxidation and apoptosis.

However, the possibility that free radicals are required for the

activation of PKCd cannot be completely excluded, even though

neither PKC phosphorylation at Thr505 nor histone phosphor-

ylation are significantly modified by BSO and/or DPI incubations.

Only in SK-N-BE-2C wild-type cells, which have an increased

basal level of free radicals, BSO exposure stimulates the kinase

activity, as previously reported [30].

The initiating role of active PKCd in the commitment to

apoptosis of NB cells is suggested by the enhanced sensitivity of

PKCd-overexpressing cells to etoposide, and confirmed by the fact

that rottlerin, which inhibits PKCd by competing with ATP [42],

effectively suppresses apoptosis and DNA damage in the same

cells. Since rottlerin has been described as a factor having both

PKCd-dependent and -independent effects [43,44], we were

prompted to apply targeted PKCd mRNA silencing to clarify the

Table 3. Silencing of PKCd prevents the genotoxic effects triggered by etoposide and BSO in SH-SY-5Y and in SK-N-BE-2C cells,
respectively.

SH-SY-5Y SK-N-BE-2C

standard (A.U.) fpg (A.U.) Standard (A.U.) fpg (A.U.)

CTR NoT 0.000660.0001 0.000460.0001 0.000860.0001 0.000660.0001

siPKCd 0.000660.0001 0.000760.0001 0.000960.0001 0.000860.0001

ETOPO NoT 0.000460.0001 8.35262.8754**,11 - -

siPKCd 0.000660.0001 0.000460.0001## - -

BSO NoT - - 11.32562.184¤¤ 13.21561.969**

siPKCd - - 0.000760.000111 0.000660.0001##

NB cells, silenced for PKCd, were treated with 0.07 mM etoposide (SH-SY-5Y) and 1 mM BSO (SK-N-BE-2C) for 24 h. DNA fragmentation (standard) and oxidation (fpg)
were evaluated by comet test. The reported values derive from tail moment analyses.
**p,0.01 vs NoT CTR fpg;
¤¤p,0.01 vs NoT CTR standard;
11p,0.01 vs NoT + ETOPO/BSO standard,
##p,0.01 vs NoT ETOPO/BSO fpg.
doi:10.1371/journal.pone.0014661.t003
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Figure 5. PKCd subcellular localization and cell viability in NB cells treated with BSO or etoposide. A, Confocal microscopy images of
SH-SY-5Y cells transiently transfected with PKCd and treated with etoposide (0.07 mM) or BSO (1 mM) for 1, 3 and 6 h. After treatment, cells were
fixed, permeabilized and stained with anti-PKCd antibody (green), propidium iodide (red) and MitoTraker (blue). B, Confocal microscopy images of
SH-SY-5Y cells transfected with pEGFP-PKCd/pEGFP-PKCd-DN plasmid and treated with 1 mM BSO (3 h) or 0.07 mM etoposide (1 h). After treatment,
cells were fixed and labelled as detailed above. C, Immunoblots of PKCd–transfected SH-SY-5Y protein extracts (10 mg/lane) were performed with
isoform specific anti-PKCd and anti phospho-PKCd (Thr505) antibody (see Materials and Methods). D, Fluorescence microscopy images of PKCd–
transfected cells, treated as indicated and labelled with FITC-conjugated Annexin V/PI. The figures shown are representative of experiments
performed in triplicate.
doi:10.1371/journal.pone.0014661.g005
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direct role of PKCd in the sensitization of neuroblastoma cells to

the employed drugs. Our results show that PKCd gene silencing,

obtained by siRNA, completely blocked the induction of oxidative

death and genotoxicity, observed in etoposide-treated SH-SY-5Y

and in BSO-treated SK-N-BE-2C cells. In addition, we demon-

strate that the overexpression of PKCd-DN is incapable of

potentiating the genotoxic effects induced by BSO and etoposide.

Collectively, these molecular approaches (siRNA and PKCd-DN)

give independent evidence confirming that neuroblastoma cells

need a functionally active PKCd in order to become sensitive to

these drugs. In fact, we have previously demonstrated [30], and

confirmed here, that BSO induced apoptosis only in neuroblas-

toma cells in which it activates PKCd.

In line with our data, other studies have shown that PKCd
deficient cells are impaired in their response to genotoxic agents,

and that this kinase is required in order to trigger apoptosis after

stress stimuli [45,46].

Insight into how PKCd may regulate apoptosis has been gained

from studies that have investigated its subcellular localization in

apoptotic cells. TPA, a well-known oxidant tumor promoter [47]

induces translocation of PKCd from the cytoplasm to mitochon-

dria and this translocation results in the release of cytochrome c

and the activation of caspase-3 [48]. Moreover, PKCd translocates

to the nucleus in response to ionizing radiation and chemother-

apeutic agents [49].

Recent studies have shown that nuclear translocation of full-

length PKCd is required for the initiation of apoptosis induced by

etoposide [50] and that apoptosis of SK-N-AS neuroblastoma

cells, by caspase-dependent cleavage of PKCd, is promoted by

highly cytotoxic concentrations of etoposide [51].

In our study, treatment of NB cells with a low dose of etoposide

causes oxidative DNA damage that is increased after PKCd
overexpression. Treatment with etoposide and BSO (1, 3 and 6 h)

induces, in PKCd-overexpressing cells, an early and transitory

translocation of active full-length PKCd to the nuclear compart-

ment. This event, that preceded the appearance of apoptosis, is

required to induce the late DNA damage. In fact, when cells were

transfected with PKCd-DN, the BSO or etoposide exposure did

not cause the nuclear localization of PKCd and there was no

evidence of DNA damage. This demonstrates that it is only the

catalytically competent kinase that is able to translocate to the

nucleus and induce or amplify the genotoxic damage. Moreover,

incubation with etoposide and BSO (1, 3 and 6 h) is not

accompanied by the appearance of the catalytic fragment of

PKCd. Therefore, our results show that PKCd-nuclear transloca-

tion is an essential key step to prime the sequence of molecular

events which culminate in the late caspase 3 activation and in the

irreversible commitment of cells to apoptosis. Accordingly, it has

been demonstrated that nuclear accumulation of PKCd is caspase-

independent and occurs prior to activation of the components of

the apoptotic pathway [52].

Numerous PKCd targets and substrates are nuclear proteins

that function in apoptotic cell death, such as the nuclear DNA-

dependent protein kinase (DNA-PK) which plays an essential role

in the repair of DNA double-strand breaks [53]. It has been

demonstrated that activated PKCd phosphorylates DNA-PK and

induces its dissociation from DNA, inhibiting DNA repair and

enhancing DNA fragmentation [54]. These findings are in

agreement with the role of PKCd overexpression in the DNA

damage in consequence to BSO or etoposide treatment.

In this context, a thorough understanding of how PKCd
regulates apoptosis, in particular when cancer cells acquire

resistance to chemotherapeutic drugs, could significantly improve

the efficiency of cancer therapy.

Altogether, our data provides information for a potential PKCd-

based therapy that, in combination with chemotherapeutic agents,

could act as a chemo-sensitizer, reducing drug dosages and relative

periods of treatment and preventing the development of

chemoresistance.

In conclusion, to tailor a specific therapy, we believe that

analyses of ROS-mediated survival pathways, taking account of

the tumor type and stage, might be helpful.
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