CORRIGENDUM FOR THE PAPER "UNITARY REPRESENTATIONS OF SUPER LIE GROUPS AND APPLICATIONS TO THE CLASSIFICATION AND MULTIPLET STRUCTURE OF SUPER PARTICLES"

C. CARMELI, G. CASSINELLI, V. S. VARADARAJAN, AND A. TOIGO

Professor Hadi Salmasian has drawn our attention a misstatement in Lemma 1 where the correct statement should be $X\mathcal{B} \subset \mathcal{B}$. In the Corrigendum below we insert this correction and a small set of consequent corrections in Lemma 1 as well as Propositions 2 and 3.

We thank professor Salmasian for this.

- (1) P. 222: In item (ii) of Lemma 1, replace "such that $X\mathcal{B} \subset D(X)$ " with "such that $X\mathcal{B} \subset \mathcal{B}$ "
- (2) P. 222: In the last statement of Lemma 1, replace "if we only assume that \mathcal{B} is invariant under H and contains a dense set of analytic vectors" with "if we only assume that $\mathcal{B} \subset D(H)$ and contains a dense set of analytic vectors for H"
- (3) P. 222: In the last paragraph of the proof of Lemma 1, replace "Finally, let us assume that $H\mathcal{B} \subset \mathcal{B}$ and that \mathcal{B} contains a dense set of analytic vectors for H" with "Finally, let us assume that $\mathcal{B} \subset D(H)$ and that \mathcal{B} contains a dense set of analytic vectors for H"
- (4) P. 222: In the last paragraph of the proof of Lemma 1, replace "we have $X^{2n}\psi = H^n\psi \in \mathcal{B}$ and $X^{2n+1}\psi \in D(X)$ by assumption, and" with "we have $\psi \in D(X^n)$ for all n by X-invariance of \mathcal{B} , and"
- (5) P. 226, last paragraph before Proposition 2: In item (b)-(vi), replace " $\rho(X)\mathcal{B} \subset D(\rho(Y))$ for all $X, Y \in \mathfrak{g}_1$ " with " $\rho(X)\mathcal{B} \subset \mathcal{B}$ for all $X \in \mathfrak{g}_1$ "
- (6) P. 227, in the proof of Proposition 2: Before the paragraph beginning with "It remains only to show...", add the following paragraph: "We now prove that, for all $X \in \mathfrak{g}_1$, the operator $\overline{\rho}(X)$ is odd on $C^{\infty}(\pi_0)$. If $P_i : \mathcal{H} \to \mathcal{H}$ is the orthogonal projection onto \mathcal{H}_i , then $P_i\mathcal{B} \subset \mathcal{B}$, and $\rho(X)P_i\psi = P_{i+1 \pmod{2}}\rho(X)\psi$ for all $\psi \in \mathcal{B}$ by item (iii). If $\psi \in C^{\infty}(\pi_0)$ and (ψ_n) is a sequence in \mathcal{B} such that $\psi_n \to \psi$ and $\rho(X)\psi_n \to \overline{\rho(X)}\psi$, then $P_i\psi_n \to P_i\psi$ and $\rho(X)P_i\psi_n = P_{i+1 \pmod{2}}\rho(X)\psi_n \to P_{i+1 \pmod{2}}\overline{\rho(X)}\psi$. Thus we have $\overline{\rho(X)}P_i\psi = P_{i+1 \pmod{2}}\rho(X)\psi$, and the claim follows."
- (7) P. 227, item (i) in the statement of Proposition 2: Replace "so that π , as in Proposition (1), is a representation of \mathfrak{g} in $C^{\infty}(\pi_0)$ " with "so that π , as in Proposition 1, restricts to a representation of \mathfrak{g} in $C^{\omega}(\pi_0)$ "

C. CARMELI, DIPARTIMENTO DI FISICA, UNIVERSITÀ DI GENOVA, AND ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI GENOVA, VIA DODECANESO 33, 16146 GENOVA, ITALY *E-mail address:* claudio.carmeli@gmail.com

G CASSINELLI, DIPARTIMENTO DI FISICA, UNIVERSITÀ DI GENOVA, AND ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI GENOVA, VIA DODECANESO 33, 16146 GENOVA, ITALY *E-mail address:* cassinelli@ge.infn.it

V. S. VARADARAJAN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, BOX 951555, LOS ANGELES, CA 90095-1555, USA *E-mail address:* vsv@math.ucla.edu

A TOIGO, DIPARTIMENTO DI MATEMATICA "FRANCESCO BRIOSCHI", POLITECNICO DI MILANO, PIAZZA LEONARDO DA VINCI 32, 20133 MILANO, AND ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI MILANO, VIA CELORIA 16, 20133 MILANO, ITALY

E-mail address: alessandro.toigo@polimi.it