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We consider the theory of spinor �elds in polar form where the spinorial true degrees of freedom
are isolated from their Goldstone states, and we show that these carry information about the frames
which is not related to gravitation so that their propagation is not restricted to be either causal or
local: we use them to build a model of entangled spins where a singlet possesses a uniform rotation
that can be made to collapse for both states simultaneously regardless their spatial distance. Models
of entangled polarizations with similar properties are also sketched. An analogy with the double-slit
experiment is also presented. General comments on features of Goldstone states are given.

I. INTRODUCTION

Quantum Mechanics, as it is developed in the �rst half
of the last century, can claim to be a rather satisfactory
theory, both in its mathematical setting and for the im-
mense number of practical applications. Nevertheless, it
is also characterized, as it became clear in the second half
of last century, by some problems that seem to defy full
compatibility with another theory: Einstein's Relativity.
These problems started with the work of Einstein and

co-workers, culminating in the well known EPR paradox
�rst exposed in [1]. In simple terms, the EPR paradox is
what results from assuming that all the aspects of reality
must be described by quantum mechanics. Because such
an assumption leads to contradiction, Einstein, Podolsky
and Rosen conclude that there must be an intrinsic in-
completeness in the set of observables encoded within the
wave function. Therefore, the wave function contains an
amount of information that is limited. And what is miss-
ing is what will later be known as hidden variables.
Speci�cally, an EPR experiment, in the form suggested

by Aharonov and Bohm [2], consists in considering parti-
cles with opposite spins and taking them apart. Because
opposite spins have to conserve total angular momentum,
the result of any measurement on one particle will deter-
mine the result of the measurement on the other particle
and this transfer of information is instantaneous: as the
two particles have become independent due to the spatial
separation it is not possible that such a transfer of infor-
mation can occur in a space-like way, and so the constant
opposition of spins has to be due to the fact that the two
spin orientations were already chosen. Pre-determination
in the result of an experiment is encoded by the existence
of variables present in the wave function although hidden
from the experimenter. These are the hidden variables.
Some thirty years later, Bell proved that if these hidden

variables do indeed complement the wave function of spin
singlets then there must be a mechanism through which
a measurement can in�uence another measurement even
if the two devices have space-like distances [3]. Roughly
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speaking, Bell showed that the existence of hidden vari-
ables completing the wave function would always imply
some pattern in the results of the measurements. Such a
pattern is given in the form of constraints that are known
as Bell inequalities. As quantum mechanics violates these
inequalities, since the results are statistically distributed,
then measurements cannot have a correlation determined
in the past. Their correlation must be in the present, and
as instantaneous actions for space-like separations are a
non-local character, the theory must display non-locality.

It now becomes easy to assess where the problems with
Einstein relativity arise. Non-locality merely means that
transmission of signals has to violate the causal structure
of the light-cone. It was Bohm who suggested that such a
type of faster-than-light communication does not involve
any transfer of signal and consequently no incompatibil-
ity with relativity emerges [4]. An attempt to circumvent
the problem by writing the de Broglie-Bohm theory in its
relativistic form was by Bohm himself in reference [5].

A further source of concern for a relativistic extension
comes from the subsequent enlargement to multi-particle
states [6]. Since in the de Broglie-Bohm theory particles
are guided by the module of the wave function, which is
determined by the �eld equations, in multi-particle cases
the guiding equation depends on the superposed module
of all particles of the universe, and the fundamental �eld
equations are in con�guration space. The problem of the
con�guration space de�ned for multi-particle states in a
relativistic setting is that in it a universal time for every
particle is incompatible with relativity. Another manner
to show this fact is to observe that the guidance equation
is given in terms of the velocity whereas the theory gives
only the velocity operator so that with the wave function
we can only compute the velocity density.The velocity in
itself can be computed either by integrating the velocity
density over the volume, as in the Ehrenfest theorem, or
by dividing by the density distribution, that is the norm
of the wave function. Volume integrals might be extended
to curvilinear coordinates only for scalar quantities. Then
the density distribution in the relativistic case is ψψ and
is not positive,while a positive density distribution would
be given by ψ†ψ although this is not a scalar [7]. Hence,
neither volume integration nor density quotients preserve
manifest covariance, and the problems with the relativis-



tic extensions of the de Broglie-Bohm formulation persist.
One solution may be abandoning con�guration space,

with progress for the study of spin singlets [8]. However,
non-local actions still ask for non-relativistic treatments.
So another way out may then consist in abandoning the

idea of particles, however many they are. We will not aim
at discussing whether particles can be treated as localized
wave functions. But we shall consider the wave function
as the only object encoding the description of a quantum
mechanical process. To avoid issues of generalizations, we
will consider immediately the relativistic case. And to be
in the most complete situation, we will also consider spin
from the start. That is, we will consider the spinor �eld
theory in its most general case [9]. However we are going
to take it in polar form [10, 11]. In this way, the spinorial
true degrees of freedom are isolated from the components
that can be seen as the spinorial Goldstone states [12�16].
We show these Goldstone states to encode information

as non-local hidden variables for pairs of entangled spins.
Analogies with entangled polarizations are discussed.
Also a parallel with the two-slit experiment is given.

II. PHYSICAL FIELDS IN POLAR FORM

We begin by considering the spinor �eld theory in polar
decomposition: we will not present it as originally done
in references [10, 11] however, but in manifestly covariant
manner [12]. In parallel, we will also consider the vector
�eld in a polar decomposition [13]. That the vectors are
real might suggest that there can not be a polar form in
analogy to the one of spinors since these are complex,but
we will see that such a decomposition is doable for both.

A. Kinematic Quantities

1. Transformation Laws and Fundamental Fields

We begin by assuming the existence of a pair of inverse
metric tensors gµν =gνµ and gµν =gνµ with gµρg

ρα= δαµ
where δαµ is the Kronecker delta. The pair of dual tetrads

ξµa ξ
b
µ=δba ξµa ξ

a
ν =δµν (1)

verify the ortho-normalization conditions

ξaµξ
b
νg
µν =ηab ξµa ξ

ν
b gµν =ηab (2)

with η=ηT =η−1 the Minkowskian matrix. We introduce
also the Cli�ord matrices γa verifying the relations

{γa,γb}=2Iηab (3)

where I is the identity matrix and

1
4 [γa,γb]=σab (4)

such that

2iσab=εabcdπσ
cd (5)

being εabcd the completely antisymmetric pseudo-tensor
and implicitly de�ning the parity-odd π matrix.1

The Greek indices are associated to general coordinate
transformations, or passive transformations. Instead, the
Latin indices are associated to Lorentz transformations,
or active transformations. In fact, these are the transfor-
mations shu�ing vectors within the basis of tetrads and
so this transformation must be a Lorentz transformation
since we need preserve the Minkowskian matrix. We have
that such Lorentz transformations can be written like

(Λ)ij=exp
[
1
2θ
ab(σab)

i
j

]
=exp

[
1
2θ
ab(δiaηjb−δibηja)

]
(6)

where we have that θab=−θba are the parameters of the
transformation. In this form they are in real representa-
tion. Nevertheless, they might also be written in complex

representation. The complex representation of a Lorentz
transformation is given according to

Λ=exp
(
1
2θ
abσab

)
(7)

with σab given by (4) but θab=−θba are the parameters
of the transformation exactly as above. Of both real and
complex representations we can provide an explicit form
by de�ning the following parameters

a=− 1
8θijθ

ij (8)

b= 1
16θijθabε

ijab (9)

from which also

2x2 =a+
√
a2+b2 (10)

2y2 =−a+
√
a2+b2 (11)

and �nally

cos y coshx=X (12)

sin y sinhx=Y (13)(
x sinh x cos y+y sin y cosh x

x2+y2

)
θab +

+
(
x cosh x sin y−y cos y sinh x

x2+y2

)
1
2θijε

ijab=Zab (14)

which verify

X2−Y 2+ 1
8Z

abZab=1 (15)

2XY − 1
16Z

ijZabεijab=0 (16)

as it is easy to check. In terms of these objects, we have

(Λ)ab=
(
X2+Y 2+ 1

8Z
ijZij

)
δab− 1

2Z
akZbk +

+
(
1
2Y Z

ijεijbk−XZbk
)
ηka (17)

as the real Lorentz transformations. We also have

Λ=XI+Y iπ + 1
2Z

abσab (18)

1 This is usually denoted as a gamma with index �ve, but it has no
sense in the space-time and so we use a notation with no index.
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as the complex Lorentz transformations. To see that this
is indeed the case, we can compute the inverse given by

(Λ−1)ij=
(
X2+Y 2+ 1

8Z
cdZcd

)
δij− 1

2ZjcZ
ic −

−
(
1
2Y Z

cdεcdjq−XZjq
)
ηqi =

= ηib[
(
X2+Y 2+ 1

8Z
cdZcd

)
δab− 1

2Z
acZbc +

+
(
1
2Y Z

cdεcdbp−XZbp
)
ηpa]ηaj=ηib(ΛT ) a

b ηaj (19)

that is

(Λ)ak(Λ)biη
ki=ηab (20)

showing that it preserves the Minkowskian matrix and so
it is a real Lorentz transformation. In the complex case
the inverse is given according to the form

Λ−1 =XI+Y iπ − 1
2Z

abσab (21)

from which

ΛγbΛ−1 =

= (XI+Y iπ+ 1
2Z

pqσpq)γ
b(XI+Y iπ− 1

2Z
ijσij) =

= [(X2+Y 2+ 1
8Z

ijZij)δ
b
a− 1

2ZakZ
bk +

+( 1
2Y Z

ijεijka−XZka)ηkb]γa +

+ i
4 ( 1

4ZijZpqε
ijpqδba+ZbkZijεijka)γaπ =

= [(X2+Y 2+ 1
8Z

ijZij)δ
b
a− 1

2ZakZ
bk −

−( 1
2Y Z

ijεijak−XZak)ηkb]γa=(Λ−1)baγ
a (22)

so that

(Λ)abΛγ
bΛ−1 =γa (23)

showing that this is the complex Lorentz transformation
as we have said above. Let us next check some examples
explicitly. For a single boost with θ03 =ϕ we have that
y=0 and x= |ϕ/2| so that

cosh (ϕ/2)=X (24)

2 sinh (ϕ/2)=Z03 (25)

from which

(ΛB3)ab=δab−(δa3δ
3
b+δa0δ

0
b )(1− coshϕ) +

+(δa3δ
0
b + δa0δ

3
b ) sinhϕ (26)

or component-by-component

ΛB3 =


coshϕ 0 0 sinhϕ

0 1 0 0

0 0 1 0

sinhϕ 0 0 coshϕ

 (27)

as known. The same occurs for every boost. For a single
rotation θ12 =−θ so that x=0 and y= |θ/2| and �nally

cos (θ/2)=X (28)

−2 sin (θ/2)=Z12 (29)

yielding

(ΛR3)ab=δab−(δa1δ
1
b+δa2δ

2
b )(1− cos θ)−

−(δa2δ
1
b − δa1δ2b ) sin θ (30)

or component-by-component

ΛR3 =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 (31)

also as known. The same for each rotation. In the case of
the complex Lorentz transformations, the single boost is

ΛB3 =


e−ϕ/2 0 0 0

0 eϕ/2 0 0

0 0 eϕ/2 0

0 0 0 e−ϕ/2

 (32)

with the same parameter as above. The single rotation is

ΛR3 =


eiθ/2 0 0 0

0 e−iθ/2 0 0

0 0 eiθ/2 0

0 0 0 e−iθ/2

 (33)

againwith the same parameter as above. To conclude, we
highlight that once a complex Lorentz transformation is
given it is possible to combine it with a generic phase as

S=Λeiqα=(XI+Y iπ+ 1
2Z

abσab)e
iqα (34)

and which is the most complete spinorial transformation.
The transformations de�ned above are the basis upon

which to build the fundamental �elds, since in physics
the fundamental �elds are de�ned as what transforms in
terms of a given transformation law. So, any column of
4 real functions transforming according to

V a→(Λ)abV
b (35)

is called vector �eld. Similarly, any column of 4 complex
functions transforming as

ψ→Sψ (36)

is called spinor �eld. De�nitions can include tensors and
spinors in more general cases, but this is all we need now.
It is possible to vertically move indices by means of

Va=ηabV
b V i=ηijVj (37)

which is the transposition of a vector. This procedure is
essential to set V 2 =VaV

a as scalar product. In addition

ψ=ψ†γ0 ψ=γ0ψ
†

(38)
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as the adjunction of a spinor. With such a pair of adjoint
spinors we de�ne the following bi-linear spinor quantities

Σab=2ψσabπψ (39)

Mab=2iψσabψ (40)

Sa=ψγaπψ (41)

Ua=ψγaψ (42)

Θ= iψπψ (43)

Φ=ψψ (44)

which are all real tensors and such that

ψψ≡ 1
4ΦI+ 1

4Uaγ
a+ i

8Mabσ
ab −

− 1
8Σabσ

abπ− 1
4Saγ

aπ− i
4Θπ (45)

as well as

Σab=− 1
2ε
abijMij (46)

with

MabΘ+ΣabΦ=U[aSb] (47)

alongside to

UaS
a=0 (48)

UaU
a=−SaSa=Θ2+Φ2 (49)

as is straightforward to prove and called Fierz identities.

2. Polar Decompositions

Because the fundamental �elds are de�ned in terms of
their transformation laws, it is possible to employ these
transformations to write the �elds in ways that are some-
what special. To see how, let us start by considering the
vector �eld in its most general form. It is possible to see
that one can always write the vector according to

V a=φva (50)

where φ is a real scalar �eld and the only degree of free-
dom, known as module. Notice that we can have all cases
given by v2 =1, v2 =0 or v2 =−1 in general. For a spinor
�eld in its most general form it is possible to demonstrate
a similar result. When Θ2+Φ2 6=0 we have that one can
always write the spinor according to the form

ψ=φe−
i
2βπL−1


1

0

1

0

 (51)

in chiral representation, with L a Lorentz transformation
and with φ and β real scalar and pseudo-scalar �elds and
the only degrees of freedom, known as module and chiral

angle. In this form the bi-linear spinor quantities are

Σab=2φ2(cosβu[asb]−sinβujskε
jkab) (52)

Mab=2φ2(cosβujskε
jkab+sinβu[asb]) (53)

with

Sa=2φ2sa (54)

Ua=2φ2ua (55)

and

Θ=2φ2 sinβ (56)

Φ=2φ2 cosβ (57)

from which

ψψ≡ 1
2φ

2e−iβπ(eiβπ+uaγ
a)(e−iβπ−saγaπ) (58)

and

uas
a=0 (59)

uau
a=−sasa=1 (60)

are the normalized velocity vector and spin axial-vector,
as well known. Written in polar form, the 8 real compo-
nents of the spinor can be rearranged in such a way that
the 2 real scalar degrees of freedom are isolated from the
6 real components that can always be transferred into the
frame through the 6 parameters of the Lorentz transfor-
mation. Thus L encodes the spinorial Goldstone states.2

Readers interested in a more detailed discussion might
have a look at [13] and speci�cally for spinors at [12].

3. Covariant Derivatives

In what we have done until now,we have considered all
transformations local and �elds point-dependent. Hence,
we should expect some gauge connection to appear in the
covariant derivatives. To see how let us then set the form
of the covariant derivative as given by

∇µV a=∂µV
a+ΩabµV

b (61)

in terms of the spin connection. Analogously we have

∇µψ=∂µψ+ 1
2Ωijµσ

ijψ+iqAµψ (62)

in terms of spin connection and gauge potential. General
de�nitions can be taken from fundamental textbooks [9].

4. Tensorial Connections

We now consider again the above transformation laws
in their explicit form. With a straightforward calculation

2 When the special situation Θ2+Φ2≡0 occurs an analogous polar
decomposition can be done, although this case is constituted by
the singular spinor �elds which are proven to be pure Goldstone
states [15]. Because this might mean that these speci�c �elds are
non-physical, we are not going to consider them here.
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and considering the identities 8X2−8Y 2+ZabZab=8 and
32XY −ZijZabεijab=0 one can see that we can write

(Λ)ik∂µ(Λ−1)kj=∂µξ
i
j (63)

for some ξij de�ned to be the Goldstone state. Similarly

L−1∂µL= iq∂µξI+
1

2
∂µξ

abσab (64)

where ξ and ξab are the Goldstone states.
When the covariant derivatives are taken for the �elds

in polar form, and these de�nitions are used, it is easy to
see that upon introduction of

∂µξ
i
j−Ωijµ≡Rijµ (65)

we can write

∇µV a=(δab∇µ lnφ−Rabµ)V b (66)

for the vector �eld. Analogously, de�ning

∂µξij−Ωijµ≡Rijµ (67)

q(∂µξ−Aµ)≡Pµ (68)

we can write

∇µψ=(− i
2∇µβπ+∇µ lnφI−iPµI− 1

2Rijµσ
ij)ψ (69)

for the spinor �eld. Notice that the Goldstone states are
absorbed by spin connection and gauge potential as the
longitudinal components of Pµ and Rjiµ which are a real
vector and tensor respectively. As such, they encode the
same information of gauge potential and spin connection
but they are gauge invariant and covariant. In the rest of
the presentation, we will call these tensorial connections.
To conclude this sub-section, we notice that

∇µva=Rbaµv
b (70)

holds as a general identity. And analogously

∇µsi=Rjiµs
j (71)

∇µui=Rjiµu
j (72)

is also a general identity. In spite of being valid for di�er-
ent �elds, the similarities of these identities are profound.
Readers interested in details may see [13] and [12].

5. Curvatures

As a �nal remark, we can see, via some straightforward
computation of the commutators of covariant derivatives,
that the Riemann curvature and Maxwell strength are

Rijµν =−(∇µRijν−∇νRijµ+RikµRkjν−RikνRkjµ) (73)

qFµν =−(∇µPν−∇νPµ) (74)

identically. These expressions are important because they
show that there is a direct link between tensorial connec-
tions and their curvatures. Speci�cally, one can consider
the problem of asking if conditions Rijµν =0 and Fµν =0
have non-zero solution, and the answer is yes [12]. Hence
it is possible to have situations in which physical e�ects
are non-trivial albeit determined by sourceless �elds. The
situation thus described might look anomalous, but actu-
ally there already are examples of physical circumstances
in which this naturally happens. For instance, the widely
known Aharonov-Bohm e�ect is precisely one of them.

B. Dynamical Coupling

1. Field Equations

Having introduced the kinematic quantities, it is now
time to have them coupled. The dynamics of the vector
is assigned in terms of the Proca equations

∇σ(∂V )σµ+M2V µ=Γµ (75)

with (∂V )σµ=∂σVµ−∂µVσ and Γµ being a generic exter-
nal source. The dynamics of the spinor is determined by
the Dirac equations given by

iγµ∇µψ−XWµγ
µπψ−mψ=0 (76)

withWµ axial-vector torsion and X torsion-spin coupling
added to be in the most general situation possible [9].

2. Polar Form

Writing the above equations in polar form is now im-
mediately done. For the Proca equations we have

(gαν∇2φ−∇ν∇αφ−
−Rνµµ∇αφ+Rνασ∇σφ+Rν[ασ]∇σφ+

+∇σRν[ασ]φ+Rσ[απ]Rνσπφ+M2gανφ)vν =Γα (77)

as was shown in [13]. For the Dirac equations

Bµ−2P ιu[ιsµ]+(∇β−2XW )µ+2sµm cosβ=0 (78)

Rµ−2P ρuνsαεµρνα+2sµm sinβ+∇µ lnφ2 =0 (79)

with R a
µa =Rµ and 1

2εµανιR
ανι=Bµ and because these

are merely two Gordon decompositions together implying
the Dirac equations, then they are equivalent to the Dirac
equations themselves. These are 8 real equations exactly
as the pair of vector equations given by (78-79) above.
Readers interested in details �nd them in [12, 13].

III. GOLDSTONE STATES

A. Entangled Observables

Having converted the theories in polar form, it is time
to see the advantages of such a formalism by looking for
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speci�c solutions. And particularly interesting for us will
be the solutions with the structure shown in [12]. Hence
the tensorial connection is selected in the following form

Rrθθ=−r (80)

Rrϕϕ=−r|sin θ|2 (81)

Rθϕϕ=−r2 cos θ sin θ (82)

Rrtt=−2ε sinhα (83)

Rϕrt=2εr sin θ coshα (84)

Pt=m (85)

with ε constant such that m>ε>0 giving zero Riemann
curvature and zero Maxwell strength. A spin axial-vector
and a velocity vector compatible with the above are

sθ=−r (86)

ut=coshα (87)

uϕ=r sin θ sinhα (88)

with sinhα=
√
ε(2m−ε)/(m−ε) as necessary constraint

on the α constant. In fact in this way we can see that

β=0 (89)

φ2r2 sin θ=K2e−2r
√
ε(2m−ε) (90)

withK a generic integration constant. All these elements
concur to have the polar equations (78-79) veri�ed, as it
can easily be checked with a straightforward substitution.
We will now have the above solution written according

to the usual spinorial form. However, it is possible to see
that the same solution in polar form generates a two-fold
multiplicity of solutions in the usual spinor form. In fact
we have that one solution can be written according to

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)


1

0

1

0

 (91)

with tetrads

ξt0 =coshα ξt2 =− sinhα (92)

ξr1 =−1 (93)

ξθ3 = 1
r (94)

ξϕ0 =− 1
r sin θ sinhα ξϕ2 = 1

r sin θ coshα (95)

giving spin connection

Ω13θ=−1 (96)

Ω01ϕ=− sin θ sinhα (97)

Ω03ϕ=cos θ sinhα (98)

Ω12ϕ=− sin θ coshα (99)

Ω23ϕ=− cos θ coshα (100)

with zero Riemann curvature. All these elements concur
to have the Dirac equation (76) veri�ed. As is clear, such
solution corresponds to the spin-up case. Nevertheless, an
alternative solution can be written according to

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)


0

1

0

1

 (101)

with tetrads

ξt0 =coshα ξt2 =− sinhα (102)

ξr1 =1 (103)

ξθ3 =− 1
r (104)

ξϕ0 =− 1
r sin θ sinhα ξϕ2 = 1

r sin θ coshα (105)

giving spin connection

Ω13θ=−1 (106)

Ω01ϕ=sin θ sinhα (107)

Ω03ϕ=− cos θ sinhα (108)

Ω12ϕ=sin θ coshα (109)

Ω23ϕ=cos θ coshα (110)

with zero Riemann curvature. All these elements concur
to have the Dirac equation (76) veri�ed. And as is clear,
this solution corresponds to the spin-down case. The fact
that we have generated a pair of solutions with opposite
spin orientation is the consequence of the double-helicity
structure of the spinor �eld encoded in its very de�nition.
Nevertheless, this is not the full amount of information

we can extract. Additionally, in fact, one can also have

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)


cos ζ/2

− sin ζ/2

cos ζ/2

− sin ζ/2

 (111)

with tetrads

ξt0 =coshα ξt2 =− sinhα (112)

ξr1 =− cos ζ ξr3 =− sin ζ (113)

ξθ1 =− 1
r sin ζ ξθ3 = 1

r cos ζ (114)

ξϕ0 =− 1
r sin θ sinhα ξϕ2 = 1

r sin θ coshα (115)

and spin connection

Ω13t=−ω (116)

Ω13θ=−1 (117)

Ω01ϕ=− sin (θ+ζ) sinhα (118)

Ω03ϕ=cos (θ+ζ) sinhα (119)

Ω12ϕ=− sin (θ+ζ) coshα (120)

Ω23ϕ=− cos (θ+ζ) coshα (121)
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with ζ=ωt and ω constant and verifying the Dirac equa-
tions identically. And analogously we also have that

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)


sin ζ/2

cos ζ/2

sin ζ/2

cos ζ/2

 (122)

with tetrads

ξt0 =coshα ξt2 =− sinhα (123)

ξr1 =cos ζ ξr3 =sin ζ (124)

ξθ1 = 1
r sin ζ ξθ3 =− 1

r cos ζ (125)

ξϕ0 =− 1
r sin θ sinhα ξϕ2 = 1

r sin θ coshα (126)

and spin connection

Ω13t=−ω (127)

Ω13θ=−1 (128)

Ω01ϕ=sin (θ+ζ) sinhα (129)

Ω03ϕ=− cos (θ+ζ) sinhα (130)

Ω12ϕ=sin (θ+ζ) coshα (131)

Ω23ϕ=cos (θ+ζ) coshα (132)

always with ζ=ωt and ω constant and verifying the Dirac
equations identically. Hence, while still maintaining their
spin opposition, the two spinors have their spin axis also
displaying a rotation with angle ζ=ωt and ω constant.
Nevertheless, any observation that breaks the rotation

�xing ω=0 has an e�ect. In fact, suppose the observation
is performed at a time such that ωt≈2nπ then the solu-
tion (111-121) are given by (91-100) plus the Ω13t =−ω
condition and (122-132) are (101-110) plus the Ω13t=−ω
condition. If now the system were disturbed so that ω=0
then the rotation would stop, simultaneously locking the
�rst solution to the spin-up state and the second solution
to the spin-down state. If instead it is ωt≈(2n+1)π then
solution (111-121) would be (101-110) plus the Ω13t=−ω
condition and (122-132) are (91-100) plus the Ω13t=−ω
condition. If now the system were disturbed so that ω=0
then the rotation would stop, simultaneously locking the
�rst solution to spin-down states and the second solution
to spin-up states. Either way, any observation that stops
the rotation has the e�ect of making both spinors locked
to either one of the two de�nite spin-states concurrently.
The simultaneous collapse of both spinors does not de-

pend on this particular type of solution. In fact, the two
solutions (111-121) and (122-132) are what results after
applying to the two solutions (91-100) and (101-110) the
rotation given in its complex representation according to

R−1 =


cos ζ/2 sin ζ/2 0 0

− sin ζ/2 cos ζ/2 0 0

0 0 cos ζ/2 sin ζ/2

0 0 − sin ζ/2 cos ζ/2

 (133)

and in its real representation according to

(R−1)ab=


1 0 0 0

0 cos ζ 0 − sin ζ

0 0 1 0

0 sin ζ 0 cos ζ

 (134)

where ζ=ωt and ω a generic constant. This allows for a
generalization of the previous analysis. In fact, one could
see that already for the spinors in their most general form
(51) it is possible to specify only the rotation as

ψ=φe−
i
2βπe−iqα


cos ζ/2

− sin ζ/2

cos ζ/2

− sin ζ/2

 (135)

giving s3 =cos ζ as well as

ψ=φe−
i
2βπe−iqα


sin ζ/2

cos ζ/2

sin ζ/2

cos ζ/2

 (136)

giving s3 =− cos ζ and so that the two spin-states are in
constant opposition, and with uniform �ipping over time.
As is clear from this analysis, the speci�c spinor is not

determinant, and what is important is only the structure
of the complex rotation R−1 in general. Because

R−1∂tR=−ωσ13 (137)

we have that (64) yields

∂tξ13 =−ω (138)

as the Goldstone states. Since Ω13t=∂tξ13 we get

Ω13t=−ω (139)

as the additional component of the spin connection, as it
was found above, showing that the additional component
(116-127) of the spin connection does not depend on the
special solution, it is a general character of (133). Notice
that the Goldstone states are not observable states as is
expected in any gauge covariant theory, and as is known
from the standard model of particle physics. Fundamen-
tally important is that the termR−1∂νR cannot give rise
to any curvature and as such it cannot be determined by
any �eld equation. Having no propagation, it will not be
constrained by neither causality nor locality restrictions.
Any measurement interrupting the �ipping of the spin

makes both spinors locked to a de�nite spin-state even if
the two spinors have space-like separation, as Goldstone
states are made to vanish everywhere simultaneously.
This model of entangled spins for spinor �elds may as

well be enlarged to incorporate an analogous model of a
number of entangled polarizations for photons. In order
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to see how this is possible, we will consider the formalism
presented in [13] and recalled above. Considering a vector
�eld Aν that is solution of Maxwell equations in vacuum,
we have that it generally consists of a plane wave with an
oscillation that could be taken to have place in the plane
orthogonal to the second axis, for example picking Ax as
the only non-zero component. The electric and magnetic
�elds would oscillate in such a plane. A rotation of type
(134) would then give rise to the following expression

Aa=Ax

(
0 cos ζ 0 sin ζ

)
(140)

where we have set ξx1 =1 for simplicity. Both electric and
magnetic �elds now display a rotation in the same plane.
The mechanism is identical to the one above, and it is

important to specify that both for the spin in the spinor
case and for the potential in the vector case, it is not the
coordinate vector (Greek indices) but the Lorentz vector
(Latin indices) that is taken as observable quantity. Since
observable quantities are described by invariants under a
passive transformation, such a di�erence is fundamental.

B. Quantum Potentials

Having described a possible mechanism explaining the
feasibility of entangled spins and polarizations in terms of
the Goldstone states of spinors and vectors,we now move
to a related subject, namely the quantum potentials.
Let us then re-write the Dirac equations in polar form

(78-79) according to the expressions

Yµ−P ιu[ιsµ]+msµ cosβ=0 (141)

Zµ+P ρuνsαεµρνα−msµ sinβ=0 (142)

where 2Yk=(∇β−2XW+B)k and −2Zk=(∇ lnφ2+R)k
are what we will call quantum potentials. To see why, let
us �rst combine the Dirac equations in polar form to get

P ρ=muρ cosβ+(Y ·ugρα−Y αuρ+Zµuνε
µνρα)sα (143)

showing that this is in fact the momentum of the �eld in
its most general expression. In it, we �nd the kinematic
momentum muρ and a number of corrections. One is due
to the chiral angle cosβ expressing the e�ects of internal
dynamics [12]. The others, proportional to the spin, are
given in terms of the Yν and Zµ potentials. These contain
external contributions ofWα (torsion) and Rijα (gravity)
plus the derivatives of the β and lnφ2 and as such, they
are indeed the quantum potentials in relativistic version
with spin. The fact that they are at �rst-order di�erential
is consequence of the relativistic essence and the existence
of a second quantum potential is the consequence of the
internal structure that comes from the presence of spin.
Because (143) is simply the relation tying the compo-

nents of the momentum to the derivatives of the degrees
of freedom of the spinor, it is merely the Hamilton-Jacobi
equation in relativistic form with spin. Thus, it describes
the motion of the ensemble of the trajectories, precisely

as it is supposed to do within the known de Broglie-Bohm
formulation. The di�erence is that while in the dBB form
the module is supposed to guide the particle, which have
to be taken as additional entities a posteriori postulated,
here we would like to postulate no entity so to allow the
interpretation of the particle as the peak of the localized
module, and then show that even with no information on
the module there can still be guidance. The condition of
having a localized module could be easily accommodated
in a theory in which the spinor interacts with torsion in
its e�ective approximation [9]. Then, having the module
localized means that we can conceal within the material
distribution all information about internal dynamics and
therefore we may require β and the spin to vanish. Hence
we have P ρ=muρ as guidance. With no electrodynamics

uµ=
q

m
∂µξ=

1

m
∂µS (144)

showing that the motion of particles follows trajectories
that are guided by the gradient of the phase, or the action
functional, recovering the results of the de Broglie-Bohm
theory. Consequently the superposition of actions would
entail the pattern of interference, precisely as is necessary
to obtain the results of double-slit experiments. And for
situations in presence of electrodynamics magnetic �elds
a�ect interference as seen in the Aharonov-Bohm e�ect.
Again, this action functional, that is the phases of the

spinorial �elds, is what accounts for the information that
can be transferred to the gauge and as such it is just the
Goldstone state of the unitary transformations.

IV. COMMENTS

So far, we have seen that when a spinor �eld or a vector
�eld are written in their polar form, the various compo-
nents are re-arranged in such a way that the true degrees
of freedom remain isolated from the components that can
be transferred into the frame or the gauge and which as
such are recognized to be the Goldstone states for these
�elds. Combined to spin connection and gauge potentials
these Goldstone states become longitudinal components
for the Rjiµ and Pµ objects. These are proven to be a real
tensor and a gauge invariant vector, so that they possess
the same information of both spin connection and gauge
potential while being generally covariant as well as gauge
invariant. These tensorial connections are demonstrated
to encode information about physical e�ects although not
determined by any �eld equation with external sources.
The general form of a spinor is therefore given by (51)

in terms of module and chiral angle and with the L ma-
trix containing Goldstone states. In the subsequent sec-
tion, we have henceforth used these Goldstone states for
the description of a mechanism in terms of which a pair of
spinors having opposite spin orientations were connected,
or correlated in terms of (133) with ζ=ωt and ω being a
generic parameter. So a mechanism of spin entanglement
was presented, where the spin-states exhibited a uniform
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rotation until the moment of measurement but upon the
observation the �ipping would stop making both spinors
locked to either one of the two spin-states simultaneously,
thus acting as non-predetermined hidden variables. That
these variables are hidden is understood by the fact that
Goldstone states are known not to be observable in gauge
covariant theories, and that these Goldstone states have
no determined propagation is the reason of the fact that
they do not have to obey locality restrictions. Therefore,
the collapse of spinors to either of the de�nite spin-states
may occur non-locally with no violation of any relativistic
principle, and the model of non-predetermined non-local
hidden variables compatible with relativity is given. This
model was then extended to the case of polarization en-
tanglement, in the case of vector �elds. This, too, had to
be expected, since the real and complex Lorentz transfor-
mations are de�ned in terms of the very same parameters
and as such the Goldstone states are the same whether a
spinor or a vector �eld is considered. Finally we recalled
how in the usual formulation of the dBB theory one may
explain double-slit experiments by means of interference
of action functionals, that is in terms of phases of spinor
�elds, so the Goldstone states of abelian transformations.

V. CONCLUSION

In this work, we provided a model of spin entanglement
in which the Goldstone states of Lorentz transformations
are used as non-predetermined non-local hidden variables
compatible with relativity, and we extended it to the case
of polarization entanglement. We also recalled that in the
dBB theory the explanation of double-slit experiments is

achieved by exploiting the Goldstone states of the abelian
transformation instead. Either way, there appears to be
some remarkable application for the Goldstone states of
fundamental �elds in quantum mechanical experiments.
These Goldstone states are already present in the most

general mathematical description of fundamental �elds as
additional variables and they are not observable as it is
expected in any gauge covariant theory. And they are not
bound by restrictions of locality since their propagation
is not determined by any �eld equation, so that they are
fully compatible with relativity. In the present model we
can see how non-locality is compatible with relativity by
considering that even if locality pertains to a �eld that
is solution of relativistic �eld equations, nevertheless not
all �elds are solutions of �eld equations. For example, the
spinor �eld is written in terms of L, φ and β and whereas
L remains undetermined, the φ and β are determined as
solutions of �eld equations. Of these, φ and β constitute
the objective elements so that Lmust be thought as what
completes the wave function. In this sense L may be seen
as what Einstein, Podolsky and Rosen thought to be the
missing element of quantum mechanics. Nevertheless, we
retain inaccurate to say that L has to be included within
the wave function because it is already there in the most
general case. It would just be su�cient not to neglect it.
What the present toy model points out is the potential

usefulness of the Goldstone states in assessing problems
related to the use of non-local hidden variables in exper-
iments regarding the nature of quantum physics.
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