
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Affordance segmentation using tiny networks for
sensing systems in wearable robotic devices

Edoardo Ragusa (Member, IEEE), Strahinja Dosen (Member, IEEE), Rodolfo Zunino, and Paolo Gastaldo

Abstract— Affordance segmentation is used to split object images
into parts according to the possible interactions, usually to drive
safe robotic grasping. Most approaches to affordance segmentation
are computationally demanding; this hinders their integration into
wearable robots, whose compact structure typically offers limited
processing power. The present paper describes a design strategy
for tiny, deep neural networks that can accomplish affordance seg-
mentation and deploy effectively on microcontroller-like processing
units. This is attained by specialized, hardware-aware Neural Ar-
chitecture Search (NAS). The method was validated by assessing
the performance of several tiny networks, at different levels of
complexity, on three benchmark datasets. The outcome measure
was the accuracy of the generated affordance maps and the associated spatial object descriptors (orientation, center
of mass, size). The experimental results confirmed that the proposed method compared satisfactorily with the state-of-
the-art approaches, yet allowing a considerable reduction in both network complexity and inference time. The proposed
networks can therefore support the development of a teleceptive sensing system to improve the semi-automatic control
of wearable robots for assisting grasping.

Index Terms— Embedded Systems, Tiny CNNs, Microcontrollers, Wearable robots, Affordance segmentation, Grasping

I. INTRODUCTION

Affordance segmentation consists in detecting [1] and iden-
tifying potential functional interactions that an object can
afford, and segmenting that object into parts accordingly.
Successful methods for affordance segmentation used RGB
cameras, deep learning (DL), and powerful computing units
[2]–[5]. The literature, however, seems to lack implementa-
tions relying on limited computational resources. This ulti-
mately hinders applications to wearable robots that can assist,
restore or augment grasping function, such as prostheses,
exoskeletons, and supernumerary limbs [6].

These devices are mechatronically advanced systems with
multiple degrees of freedom, but effective user control is
still a challenge. Normally, the user needs to control all
functions of the device by generating explicit commands,
which can be slow and cognitively taxing, and wearable
assistive robots are therefore rarely used outside of the lab
or they are often rejected by their users [7]. One approach
to addressing this challenge is to enhance wearable robots
with teleceptive sensing capabilities (the sensing that occurs
without physical contact with the object being tested [8]).
Teleceptive sensing can be used to implement semiautonomous
control, which can substantially reduce the users’ physical and
mental efforts while controlling these devices [6], [9]. For
instance, a wearable robot (e.g., a prosthesis) can be endowed

E. Ragusa, R. Zunino, and P. Gastaldo are with DITEN, University of
Genoa, Genova, Italy e-mail: edoardo.ragusa@unige.it

S. Dosen is with Department of Health Science and Technology,
Aalborg University, 9220 Aalborg, Denmark

with a camera so that the device can “see” the target object.
An image analyzer then estimates the object properties and
directly configures the robotic hand for grasping, without any
additional input from the user [10]–[12].

Affordance segmentation can be useful in this scenario,
as it can highlight the graspable parts of an object (see
Fig. 1), hence allowing the image analyzer to focus only on
the relevant segments of the object. However, to enable this
application, novel resource-aware methods for affordance seg-
mentation that can be deployed onto the embedded controller
of a wearable robot need to be developed.

The key contribution of this paper lies in applying hardware-
aware neural architecture search (HW-NAS) methods to the
enhancement of teleceptive sensing systems. As a result,
inexpensive, low-resolution cameras integrated with low-
performance computing units can support affordance segmen-
tation using tiny networks. The HW-NAS framework applies
an evolutionary algorithm to perform a block-wise search
in a hardware-friendly search space, to pinpoint the best-
performing network architecture that satisfies the specified
constraints. To address the set of candidate networks com-
patible with the target device, the design approach presented
here relies on an empirical model of the inference time.

The experimental assessment of the developed method on
three established benchmarks [1], [2], [13] demonstrated that
good accuracy was achieved by the resulting networks, even in
the presence of a considerable reduction in the networks’ sizes.
The tiny neural models compared satisfactorily with much
more complex solutions reported in the literature [14], whereas

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

the required computational power for the run-time operation
was reduced substantially. For assessing potential application,
the affordance maps were also used to estimate the relevant
parameters for hand-based grasping, namely, the barycenter
of the graspable area, as well as its size and orientation. The
experiments also addressed the impact of the image resolution
on the estimates of the object properties.

The contribution of the paper can be summarized as follow:
• The development of advanced teleceptive devices sup-

ported by commercial microcontrollers, equipped with
deep neural networks (DNNs) for real-time affordance
segmentation.

• A software-hardware codesign strategy based on HW-
NAS for teleceptive implementations.

• A strategy based on the empirical relationship between
the number of required Flops and the associate inference
time, thus yielding efficient, configurable implementa-
tions of the HW-NAS.

• A set of tiny DNNs for affordance segmentation, hosted
by an stm32f746g-disco board, featuring a latency smaller
than 0.25 s.

• Tests on established benchmarks, confirming the overall
effectiveness of the developed method.

II. RELATED WORKS

A. Grasp Affordance Prediction
Understanding an object’s affordance at the pixel level is

denoted as “affordance segmentation”, “affordance detection”,
or “object part labelling”. It is closely related to grasp selection
[15], in particular, to segmentation-based grasping methods.
The two problems overlap in defining the graspable regions
of the object since a suitable grasp depends on the function
afforded by the object [3]. Convolutional neural networks
(CNNs) are a popular approach to that task [2]. In [2], a deep
learning object detector improved the affordance detection
accuracy by automatically selecting objects within images. The
work presented in [16] considered the intrinsic dependence
of affordance on the task, whereas [17] involved a rank-
based strategy of affordances. Occlusions due to human-
object-robot interactions were modeled in [18], and, with
a generalization to consider unseen objects in [19]. When
applying multitask learning [4], a CNN reconstructed 3D
objects and predicted their affordable parts at the same time.
The research described in [5] introduced a new formulation
of the affordance prediction problem for RGB images with
multiple objects. Likewise, [20] augmented affordance seg-
mentation with keypoint detection. A simulator included in
[21] generated a collection of grasping sequences, while [13]
involved a large dataset with RGBD information. Synthetic
images were also considered in [22]. The approaches discussed
above mostly neglect computational constraints that, however,
can severely limit the inclusion of affordance segmentation in
wearable systems.

B. Semi-autonomous control of grasping
Semi-autonomous control was used to improve performance

and user experience when interacting with a variety of wear-
able robots for assistance or restoration of grasping, including

supernumerary limbs [6], exoskeletons [23] as well as arm and
hand prostheses [24]. This approach makes the devices smart
so that they can accomplish some tasks independently. The
users can therefore perform complex functions by using simple
commands, which improves control and practical utility, while
decreasing the cognitive load.

The application in prosthetics is particularly interesting
for the present paper, as these are compact battery-powered
systems that need to work over a prolonged period (hence, both
physical and computational constraints). RGB cameras [25],
[26], stereopairs [27] and depth sensors [11] were added to or
even integrated [28], [29] into robotic prosthetic hands. Image
and point cloud analysis was then used to estimate object
properties (shape, and size – width and height) and, based on
this information, decide on the convenient grasp strategy using
a simple set of rules (e.g., heuristically constructed decision
trees) [11], [27]. Alternatively, the image data was processed
using CNNs to support grasping classification [30], object
segmentation [28], [29], and hand-pose estimation for biman-
ual interaction [31]. The uncertainty introduced by partial
occlusions was modeled in [10]. A hardware-amenable deep
neural network supported the segmentation of the affordable
parts of objects [14], further extended by object-recognition
abilities in [32].

C. Tiny deep networks

In modern, smart sensors equipped with deep learning,
sensing nodes can mine sophisticated information at the local
level [33]. This requires specialized software-hardware co-
optimization to identify the best CNN architecture. When
applying NAS [34], one should define a search space, namely,
the set of admissible candidate networks. The popular MNAS
was built from the MobileNet [35] design space.

Practical implementation may however exhibit a crucial
issue: networks having the same number of Flops and pa-
rameters [36] may differ in latency values when they are
ported on different devices. This is due to specific inference
engines that may interfere with optimization techniques [37].
If optimization is not matched by hardware resources, this may
even worsen the resulting performances. Likewise, running
models with an arbitrary quantization on microprocessors can
slow down execution, if the instruction set fails to support
that representation [38]. The MCUnet applied a comprehensive
optimization procedure to select the architecture and set up
the computing layer, yielding excellent performances [39]; the
custom software layer, however, made it difficult to use and
customize the model [40].

The major issues when applying NAS stem from its com-
putational cost and the diversity in target platforms, since
effective approaches for designing tiny networks are mostly
tailored to specific devices. Super networks span all the
possible architectures spanned by a search space [41], and
may represent a viable solution to the computational problem.
Conversely, wearable devices host heterogeneous computing
platforms and sometimes embed proprietary software, which
might complicate the formulation of a general strategy. The
approach presented in this paper therefore keeps a high level

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 3

of abstraction, to derive a design procedure for networks that
may comply with heterogeneous computing platforms.

III. MATERIAL AND METHODS

The tiny DNNs run on microcontrollers and work out
affordance segmentation maps from raw RGB images. This
section first describes the smart sensing system, then outlines
the NAS design approach.

A. Smart Sensing Device

Figure 1 illustrates the overall conceptual solution: a general
wearable grasping robot hosts an RGB/RGB-D camera to
allow teleceptive sensing, and a microcontroller. The acquired
frames are stored in the memory of the microcontroller, which
processes raw images, executes the control algorithm to select
the grasp strategy, and prompts the resulting commands to the
embedded actuators.

Electromyography (EMG) signals (not shown in the Figure)
trigger and drive the control pipeline of the semi-autonomous
system, to support volitional control. The EMG-based user
interface prompts a volitional command (muscle contraction)
to indicate the user’s intention to grasp an object. Then the
teleceptive sensor acquires an RGB image of the target, and
the tiny DNN estimates the associated affordance map. The
map allows the system to focus on the object parts that are
labeled as graspable (highlighted in blue), and estimate the
properties relevant for selecting the grasping strategy. For
instance, simple processing can yield the dimensions of the
graspable area, its barycenter (yellow) and orientation (red).
Non-graspable parts are marked in green.

The map information can be directly fed into subsequent
sections of the semi-autonomous control pipeline in combina-
tion with the output of other sensing devices to select the grasp
preshape using, for instance, decision trees [11]. Affordance
maps can be employed to estimate the width and height of
the graspable area, and the previous work showed that this
information can be used for the effective selection of grasp
modality, as explained in Section II.B. The estimate of object
orientation can drive a gripper orientation to properly align the
hand to the object for grasping.

In summary, the result of tiny network processing can
enhance the analysis of data provided by the camera, thus
endowing the smart sensor with the capability of detecting the
position and shape of the graspable object part.

B. Defining a suitable HW-NAS for affordance
segmentation

State-of-the-art approaches to the design of tiny DNNs for
embedded systems use HW-NAS procedures. Existing works
on the deployment of specialized segmentation models require
a co-optimization of the software layer that runs on the
embedded device [39]. The research presented here yields a
HW-NAS strategy for affordance segmentation that does not
involve any tuning of the low-level software layer, yet enables
to deploy effective networks on very constrained devices. This
enhances general applicability and timing effectiveness.

Fig. 1: Overall scheme of the proposed sensing system

Three main aspects characterize any HW-NAS strategy:
the search space, SS, of admissible candidates, the search
algorithm SA, and an evaluation criteria EC. In this paper, the
basic architecture schema relies on the conventional backbone
head structure adopted in the segmentation literature. The
set of possible backbones only includes a linear combination
of parametric building blocks, i.e., a single-branch neural
network [36]. A set of 6 parameters characterizes each building
block, adhering to the MobileNetV2 model. LR-ASSP [42]
supports the segmentation head; it includes a few upsampling
layers and connects to the two layers of the backbone. One
architectural parameter, namely, the number of filters in the last
convolutional layer, does not affect the size of the output mask,
and therefore, only that parameter of the segmentation head
enters the search procedure. In addition to the architecture
blocks, the size of the input image is included in SS, as that
quantity can affect accuracy, memory, and Flops significantly.

A standard evolutionary algorithm supports SA; to explore
candidate architectures, it applies random mutations on a
parent architecture Ap according to a function Rm:

As = Rm(Ap) (1)

Rm() randomly performs one of a set of possible actions:
1) changing the input size, 2) changing the number of building
blocks, 3) altering a building block in one of its parameters
(kernel size, number of filters, expansion factor, activation
function, stride), and 4) changing the number of filters in the
segmentation head.

The procedure starts with a preset parent architecture, Ap,
which is initialized to a minimal configuration, holding the
smallest number of blocks to prioritize fast networks [43].
The algorithm completes a fixed number, Ng , of iterations. At
each iteration, a set of Nc children architectures is spawned

Cs = {Ai}, i = 1, ..., Nc;Ai = Rm(Ap) (2)

The architectures in Cs are all trained on a labeled training
set {Xt, Yt}, t = 1, ..., Z, where Xt is the input image and Yt

is the affordance segmentation mask. A penalty function Pf

allows to pinpoint the best child Ab:

Ab = argminPf (Ai), Ai ∈ Cs. (3)

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

The best child, Ab, takes the place of its parent, Ap, in (2)
and spawns the subsequent generation, hence SA can scan a
wide selection of candidates. Eventually, the best architecture,
A∗, is the one that scored the smallest value of Pf from among
all comparisons.

C. Empirical modelling of the computational cost
The evaluation function, Pf , typically includes two penalty

terms: one that considers the error on the validation set, LV ,
and another that penalizes the computational cost LC . Such a
reasonable approach, however, might not best fit the problem
at hand, especially when tight constraints are involved.

A viable solution might lie in modelling the correlation
between latency and network architecture in SS, for the target
embedded system. The general procedure consists in drawing
a set of networks randomly from SS; that set need to be large
enough to ensure a large variability of both quantities. In the
present research, inference time ranged from less than one
second to more than 15 seconds, thus covering any possible
application considered for the target device; the actual values
shall be set depending on the application domain and the
specific HW platform adopted. Then one deploys the DNNs
on the target device and measures the inference time, thus
building an empirical model of the Flops/time relationship.
This analysis can turn the specific NAS design into a decision-
based problem, removing the computational penalty term from
Pf : any network featuring a number of Flops higher than a
threshold can be discarded.

In practice, the designer sets the largest admissible inference
time and retrieves the associate number of Flops by inverting
the experimental modelling relation. The latter quantity sets
the threshold for network candidate rejection, while the ac-
cepted networks can be compared on validation errors only.
The selection constraint enters the generation mechanism (2)
of the set Cs. The procedure avoids to prioritize smaller
networks as soon as the networks meet the constraint.

IV. EXPERIMENTAL SETUP

The experimental setup covered several aspects. A prelimi-
nary analysis completed the modelling of the computational
cost, as described in the previous Section. A subsequent
assessment compared the obtained affordance segmentations
with benchmarks. An additional experiment considered to
what extent the “low resolution” affordance maps affected the
estimation of grasp parameters (object descriptors). A final
empirical session addressed the actual computational perfor-
mance, by measuring the real-time performances obtained after
deploying the created networks on the target microcontroller.

A. Computational cost model
In the case of the STM32F746NG board, the microcontroller

unit (MCU) hosts a single-precision floating-point unit. The
amount of RAM and flash memory in that target device is an
order of magnitude lower than in standard devices, and the
single floating point unit prevents parallelism.

In the analysis described in the previous Section, the in-
ference time constraint proved dominant, as no configuration

0 100 200 300 400

FLOPS(M)

0

10

20

T
IM

E
(s

)

Fig. 2: Relationship between MFlops and inference time when
using Cortex-M7 32-bit RISC core

in the spanned search space ever met the latency constraints,
when involving an excessive memory footprint. Figure 2 shows
the measured relationship between MFlops and inference time.
The markers refer to the values measured for the various
deployments, supporting a linear regression model. Equation
4 expresses the relationship between time and MFlops.

time = (Flops/106) ∗ 0.054 + 0.2648 (4)

That linear relation yielded an estimate of the inference
timing for every candidate DNN, hence one needed not to
optimize the model with the STM32 toolchain. This made
making the selection process much faster and more stable.

A final remark concerns the main aspects determining the
eventual inference time, namely, MAC operations and memory
access. The above analysis only involves external RAMs,
which seems a reasonable assumption when dealing with
portable electronics. Memory access time may therefore show
up larger as compared with cases in which all operations
are supported by on-chip memories. In practice, this trend
becomes an upper bound for small DNNs; moreover, exact
information about internal memory management is not often
available, which greatly affects the general applicability of
design strategies.

B. Generalization Performance

The present paper aims to prove that tiny networks can
support affordance segmentation in the conditions in which the
affordances are well defined. Therefore, the problem at hand
focused on foreground objects with good framing settings. The
UMD [1] is a well-known benchmark that contains 28.843
RGB-D images of 7 categories of objects that fulfill the afore-
mentioned requirements. The dataset includes many framing
angles for each object, providing valuable insights about the
capability of the models to handle the framing issues. Two
additional datasets have been included to evaluate the impact
of factors that may complicate the segmentation, for instance,
more object classes with ambiguous affordance definitions
and heavy occlusions. The MW dataset [13] accounts for
23605 RGB-D images collected using 37 classes of objects.
This dataset contains ambiguous affordances as the collection
contains objects like boxes, balls, and books where the borders
between graspable and non-graspable surfaces are not self-
evident. Finally, the IIT dataset (IIT) [2], which contains 8835
images featuring different framing and resolutions, was used
for the assessment. In summary, the three datasets contain very
different sets of objects, providing de facto three different
benchmarks. The validation sets were generated from the
training set using a standard hold-out procedure. The test

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 5

patterns were never involved in the tuning of any parameters
or hyperparameters.

Following the approach proposed in [14], all the grasping af-
fordances were grouped into a unique class named grasp while
the other affordances were assigned to “do not grasp” class.
The learning problem, therefore, consists of a three-class pixel-
wise classification where the predictor should discriminate
between grasp, do not grasp, and background. The foreground
images of the object were extracted using the corresponding
segmentation masks extracting the bounding box containing
the object. Different objects led to boxes with different eight-
width ratios. The image ratio was adjusted to a square ratio
using 0 padding to fit the network’s input size. After the
processing, training size and test size were 23.708 and 5135
for UMD, 9186 and 1969 for IIT, and 12.401 and 5888 for
MW, respectively.

Five baseline solutions were considered. The version of
MobileNetV3 (MobV3) presented in [14] for affordance seg-
mentation features the lowest computational requirements,
compared to the models used previously [14], while maintain-
ing satisfactory accuracy on the benchmarks. A tiny model
for object segmentation [28] intended for implementation
on prosthetic hands, not designed for affordance segmen-
tation, sets the reference for models developed specifically
for application in prosthetics. Then, two models based on
EfficientNetB0 and VGG16, paired with Unet segmentation
head were selected to provide a reference for large-scale
robotics approaches and related learning problems like grasp
selection. The architecture uses a segmentation head connected
to 4 feature maps corresponding to as many layers of the
backbone. We opted for these two general configurations with
respect to single instances of recent solutions from robotics
literature because their target setup is substantially different
making the comparison unfair [44]. The last baseline was
SegFormer [45]. This model is based on transformer archi-
tectures [46] that are proving to be valuable alternatives to
CNNs for computer vision tasks. Among existing transformer-
based segmenters (e.g., Swin-Transformer, Mask2Former, and
MaskDINO [46]), the SegFormer balances computational costs
and generalization performance and this makes it an interesting
comparison for the proposed approach.

The NAS executed 100 generations for every dataset. Seven
values of the threshold parameter were used. The first one was
13,400K Flops which yielded an expected inference time close
to 1 s. The remaining 6 thresholds were obtained by multiply-
ing this threshold by 6,4, 2, 0.5, 0.33, and 0.25, respectively.
Hereafter, we will call the different models propαS where α
indicates the multiplication factor. As explained before, the
threshold did not necessarily coincide with the inference time
because the selected architecture could have a lower inference
time compared to that given by the threshold. All networks
were trained for 10 epochs following the early stop strategy
[35]. The best architecture as selected by NAS was then
trained for a maximum of 100 epochs with an initial learning
rate of 10−3, the learning rate reduction on the plateau, and
early stopping using the validation loss as the metric. The

generalization performance was measured using the test set1.

C. Estimating grasp relevant parameters
As explained in section III.A, the affordance maps provide

useful information for selecting an appropriate preshape as
they allow focusing the analysis on the graspable surface of
an object. However, the decrease in the complexity of the
networks that predict the affordance map inevitably leads to
a lower accuracy, which can produce errors when estimating
the grasp relevant descriptors (dimensions, barycenter and
orientation). To assess this, we computed the error when
estimating the three descriptors from the generated affordance
maps. This analysis also considered the impact of image
resolution which plays an important role in the quality of
estimation.

The tests were performed using the images extracted from
the UMD dataset. This set was selected because none of
the datasets provided information about the object size in
physical units. The UMD dataset, however, uses a fixed camera
that frames the object always from the same position, and
therefore, in this case, the object’s size could be estimated
with high accuracy using the depth maps. The other two
datasets used different framing angles and positions, making
the reconstruction of the physical properties more challenging.

The first considered descriptor was the barycenter of the
graspable surface, computed as the average position of the
pixels marked as ”graspable”. The second was the physical
dimension of the object including its width (W) and height (H)
computed as the maximum and minimum coordinates of the
pixels classified as belonging to the object, as shown in figure
1. The last descriptor was the orientation estimated as the
angle of the principal component (PC) of the mask containing
the graspable pixels. Figure 1 shows this information using
a red segment superimposed on the image. This descriptor is
useful when the object under analysis has an elongated shape
(e.g. a handle), while the orientation angle is undefined for
approximately spherical objects. The orientation was therefore
computed only for classes of objects containing handles or
having elongated shapes.

D. Deployment
The models generated using the proposed procedure were

deployed on the target board, the stm32f746g-disco. The
deployment was performed in two steps. First, the network was
converted via TFLite; then, the STM32 X-Cube-AI suit was
exploited to optimize the model. The memory indexing was
tuned to use the external memory, when necessary, to host the
tensors during the propagation along the layers of the network.
Data representation was set to 32-bit because STM32 X-
Cube-AI supports 8-bit representation only for fully connected
layers, but the architectures tested do not use these operators.
Eventually, one can consider that the measured performance
corresponds to the worst-case analysis considering that the
quantization can decrease latency. All the measurements were
performed by using the STM32 design suite utility for testing.

1Generated architecture available at: https://github.com/
SEAlab-unige/IEEESensorsJournal2023

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/SEAlab-unige/IEEESensorsJournal2023
https://github.com/SEAlab-unige/IEEESensorsJournal2023


6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

model back. grasp don’t gr. H7 KFlops Params
UMD

Prop1s 0.980 0.827 0.863 ✓ 12.46M 10.8K(10.4K)
Prop0.5 0.989 0.820 0.880 ✓ 7.02M 18.9K(18.5K)
TinySeg 0.99 0.598 0.636 ✓ 63.44M 4K(N.A.)
MobV3 0.985 0.833 0.930 ✓ 0.2GM 196K(184K)
SegFor. 0.979 0.872 0.914 ✗ 8.4G 3.8M(3.4M)

EFF 0.989 0.886 0.941 ✗ 1.32G 13M(4M)
VGG16 0.996 0.825 0.857 ✗ 10.94G 20M(15M)

MW
Prop1s 0.970 0.804 0.618 ✓ 13.65M 50.8K(49.7K)
Prop0.5 0.967 0.813 0.563 ✓ 5.91M 15.5K(14.7K)
TinySeg 0.987 0.853 0.041 ✓ 63.44M 4K(N.A.)
MobV3 0.980 0.857 0.550 ✓ 0.2G 196K(184K)
SegFor. 0.980 0.851 0.777 ✗ 8.4G 3.8M(3.4)

EFF 0.988 0.900 0.810 ✗ 1.32G 13M(4M)
VGG16 0.988 0.862 0.606 ✗ 10.94G 20M(15M)

IIT
Prop1s 0.970 0.459 0.686 ✓ 12.63M 55.3K(54.7K)

Prop0.5s 0.970 0.421 0.654 ✓ 6.66M 27.4K(26.8K)
TinySeg 1 0 0 ✓ 63.44M 4K(N.A.)
MobV3 0.977 0.647 0.808 ✓ 0.2G 196K(184K)
SegFor. 0.981 0.832 0.917 ✗ 8.4G 3.8M(3.4M)

EFF 0.990 0.890 0.953 ✗ 1.32G 13M(4M)
VGG16 0.992 0.856 0.923 ✗ 10.94G 20M(15M)

TABLE I: Generalization performance for UMD, MW and IIT

V. RESULTS

A. Generalization Performance Analysis

Table I reports the results obtained when testing the net-
works on UMD, MW and IIT datasets. The columns indicate
the model, three pixel-wise accuracies for the different classes,
the capability of the target microcontroller to support the
model, the number of Flops, and the number of Parameters
respectively. The last column, between the brackets, reports the
number of parameters of the encoder/backbone summarizing
the distribution of the weights inside the networks. Only the
intermediate thresholds 1s and 0.5s were considered.

UMD dataset confirms the suitability of tiny models when
framing conditions are good, highlighting small differences
with respect to computationally demanding models from
robotic literature. All models tested on MW exhibited a signif-
icant gap between the performance obtained on the validation
set and that achieved on the test set. This behavior, which
was not observed for other datasets, is probably due to a bias
in the labeling process rather than a limitation of the trained
DNNs. The IIT dataset contains heterogeneous images and in
this case, the labeling also introduced a non-negligible amount
of noise. The results confirm that this dataset was indeed the
most challenging as the gap between larger nets and the tiny
networks is most pronounced. However, the drop in accuracy
is very likely due to features that fall outside the scope
of the paper, for example, occlusions and difficult framing
settings. Nevertheless, this result establishes the boundaries of
the proposed work: the generated tiny networks can support
affordance segmentation on foreground images and can be
useful blocks in the overall control pipelines but should not
be considered as a stand-alone solution. The analysis of pa-
rameters and Flops provides a quantitative characterization of
the distinction between the models supported by the target mi-
croprocessor and the other solutions. This clarifies the gap in

0 0.5 1 1.5 2 2.5 3 3.5 4

Inference time (s)

65

70

75

80

85

90

95

100

C
la

s
s
w

is
e
 p

ix
e
l 
a
c
c
u
ra

c
y
 (

%
)

back. NAS

back. MN3 (12.5S)

back. EFF

grasp NAS

grasp MN3 (12.5S)

grasp EFF

do not grasp NAS

do not grasp MN3 (12.5S)

do not grasp EFF

Fig. 3: Performance for dataset UMD. NAS stands for the gen-
erated networks while MN3 and EFF denote the benchmark.

terms of computing requirements that hinders the deployment
of the latter models. In addition, the distribution of the weights
illustrates the major role played by the encoder/backbone for
the tiny networks.

Figure 3 displays the pixel-wise accuracy versus inference
time for the UMD dataset. The x-axis shows the estimated
inference time for the NAS-generated models. The accuracy
of the benchmark solution (MobV3) is indicated as a constant
(full line) with the inference time written in the legend. Tiny-
Seg is not included because the results are much worse com-
pared to the other options. Between the three unconstrained
solutions, that are not supported by the target platforms, EFF
was selected because it scored better. The y-axis shows the
accuracy for the three classes (background, do not grasp, and
grasp) plotted using different colors.

The results demonstrate that for the classes grasp and
background the inference time can be substantially decreased
(almost 10 times) with respect to the MN3, i.e. the largest
model supported by the target platform, without the noticeable
loss of performance. The drop in accuracy arises only for
the smallest of networks. The accuracy for class do not
grasp, however, remains consistently smaller when using
the tiny networks compared to that achieved with MobV3.
Nevertheless, this class is not relevant for estimating the
grasp parameters. Interestingly, the largest architecture tends
to become sub-optimal, i.e. as shown in the figure for no
grasp class, the largest network does not lead to the best
performance. This result can be explained by the structure of
the proposed SS because the segmentation head is designed to
minimize hardware requirements, which then limits its scaling
capability. In addition, the admissible backbones can have
many layers. However, the proposed search space neglects
those building blocks that could significantly enhance the
performance of medium size networks but are less important
for tiny networks; e.g., skipped connections. Eventually, EFF
sets a gold standard that cannot be achieved using networks
supported by constrained devices.

B. Grasp parameters analysis
Figure 4 shows the average errors in the estimation of the

grasp relevant parameters. The x-axis and the representation

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 7

0 0.5 1 1.5 2 2.5 3 3.5 4
5

10

15

O
rr

. 
E

rr
. 
(d

e
g
re

e
s
)

NAS

MN3(12.5S)

EFF

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

B
a
ry

c
e
n
te

r 
E

rr
.(

%
)

X NAS

X MN3(12.5S)

X EFF

Y NAS

Y MN3(12.5S)

Y EFF

0 0.5 1 1.5 2 2.5 3 3.5 4

Inference time (s)

0

5

10

15

S
iz

e
 E

rr
. 
(%

)

H NAS

H MN3(12.5S)

H EFF

W NAS

W MN3(12.5S)

W EFF

Fig. 4: Performance for grasp parameters. NAS stands for the
generated networks, MN3 and EFF denote the benchmark.

of the performance of MobV3 and EFF are the same as
in figure 3. EFF establishes the performance that one could
reach without considering computational constraints. The first
subplot reports the orientation error, in degrees, defined as
the difference between the angles of the principal component
of the reference graspable mask, i.e. the ground truth mask
provided in the dataset, and the principal component of the
predicted mask. The average error was lower than 16 degrees
for all tiny networks tested and this confirms the suitability of
the proposed approach in retrieving object orientation. Con-
sidering the envisioned application, the estimation of object
orientation is robust to some deviations since they can be
compensated by the user of a wearable robot. For instance,
the user of a prosthesis can slightly rotate the arm from
the shoulder to compensate for some misalignment between
the hand and object orientation. The standard error (SE) has
been computed to evaluate the statistically significant of the
proposed results. The difference between the predictor was
always larger than two times the sum of the SE, confirming
that average error is a reliable estimator.

The central plot is the percent error in estimating the
barycenter position, computed as the error in pixels divided
by the total number of pixels of the image, which depends on
the input resolution of the network selected by the NAS. Two
colors indicate the two coordinates of the barycenter. Overall,
the average estimation error is small (< 7%) and the plots
reveal an interesting trend, where the tiny networks with the
longer inferences time (> 1.5s) score better accuracy (with
a difference larger than the 3 times the sum of the SE) than
the benchmark (MobV3), despite the latter is still the most
demanding architecture. SE analysis confirmed the statistical
significance of the results.

Fig. 5: Examples of the input/output relationship for Prop 1
6S

(left) and MobV3 (right).

The bottom plot shows the relative error in estimating object
dimensions, namely, height (H) and width (W), computed as
the difference between the estimates and the true value re-
trieved by the dataset labels in pixels. The error is normalized
with respect to the number of pixels of the image. The trend
is similar to that obtained for the prediction of the barycenter.
The error difference between the proposals and the baseline
is less than 2% and for the longer inference times, the tiny
networks outperform the benchmark.

Figure 5 shows a few representative examples of in-
put/output (I/O) results. Each row contains 4 figures divided
into pairs. The first column shows the input image and
the affordance map estimated using the smallest network
tested i.e. the network obtained by setting the inference
time threshold to 1

6S. The second column shows the same
information for MobV3. The images were resized in post-
processing to 620x620 for the sake of visualization. The ex-
amples clearly show the different granularity of the input and
output images that the networks use and generate, respectively.
Importantly, despite the low-quality input images, the tiny
networks successfully distinguished the parts of the objects in
the foreground. The output is a low-resolution affordance map
that nevertheless still contains enough information to estimate
the most important geometrical features of the objects. The
spoon in line 3 represents a case where the tiny network
failed to correctly segment the object parts but it nevertheless
successfully recognized the silhouette of the object.

C. Computational performance
Figure 6 summarizes the results of the deployment tests. The

plots are organized in a 2 x 2 grid. The first row contains plots
showing memory occupation in KiB, while the second row
refers to inference time in seconds. The first column comprises
the plots with the total number of parameters on the x-axis,
while the second one shows KFlops on the x-axis.

The four plots aim to show the relationship between the
two features characterizing the network complexity, namely,
the number of parameters and Flops, shown on the x-axis
and computed using standard deep learning tools, and the
three main constraints for real-time performance on embedded

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 0.5 1 1.5 2

Total params 10 5

0

200

400

600

800
K

iB
Flash

RAM

0 2 4 6

Kilo Flops 10 4

0

200

400

600

800

K
iB

Flash

RAM

0 0.5 1 1.5 2

Total params 10 5

0

1

2

3

S
e

c
o

n
d

s

Est.

Meas.

0 2 4 6

Kilo Flops 10 4

0

1

2

3

S
e

c
o

n
d

s

Est.

Meas.

Fig. 6: Relationship between the architectures’ number of
parameters and Flops and hardware occupation.

35 40 45 50

Input Size

0

1

2

3

In
f.
 t
im

e
 (

S
)

35 40 45 50

Input Size

0

200

400

600

F
la

s
h
 (

K
iB

)

35 40 45 50

Input Size

0

100

200

300

R
a
m

 (
K

iB
)

Fig. 7: Relationship between input and hardware measures.

devices, i.e., inference time, RAM, and Flash occupation,
shown on the y-axis. The stars represent the models generated
with the proposed NAS procedure. Blue and red colors indicate
the quantities compared in each subplot, i.e., Flash and RAM
occupation, or estimated and measured inference time.

The figure highlights that the inference time linearly in-
creases with the Flops and the number of parameters in agree-
ment with the model presented in eq. 4. In a few cases, a slight
increase in the number of parameters yields a faster inference.
This somewhat counterintuitive result can be explained by the
fact that the number of Flops is not set only by the number
of parameters in CNNs but depends also on the exact network
architecture, for instance. This confirms that simple models
of the inference time can yield useful apriori measures for
the behavior of a model when deployed on a microcontroller-
like device in combination with the proposed SS. Memory
occupation, however, is less predictable for small models,
while the dependency seems to be linear for larger models.
A second important observation is that the figure confirms
that the model generated with the proposed approach always
satisfies the memory constraints for both Flash and RAM.
Therefore, good results can be obtained without external
memories, thereby reducing power and weight. Similarly, the
measured inference time for the selected models is always
significantly smaller than the upper bound set by the threshold.

Figure 7 investigates the role of input image size on the
hardware measures. The x-axis shows the selected input sizes.
Note that each input size can have several associated archi-
tectures (hence, more points above each size in the plot). The
y−axis shows the measures, i.e. inference time in seconds and
the two memories in KiB. Accordingly, the figure is divided
into three plots, one per descriptor. As shown in the figure, the
NAS procedure opted for small input sizes ranging between 36
and 48 pixels independently of the threshold. The measures do

not show particular trends probably because even though the
input resolution is important, other variables such as network
depth, and kernel size, have a more decisive impact.

VI. DISCUSSION

The present work shows that tiny DNNs generated by a
tailored HW- NAS procedure can run on embedded microcon-
trollers to estimate fine-grained information about target ob-
jects. The resulting affordance masks segment the object into
non-graspable and graspable parts. By estimating the spatial
properties of the graspable segments (orientation, position, and
size), a semi-autonomous control system can select a suitable
grasping strategy. This research, therefore, aims to fill a gap
in the literature, which mostly focuses on large-scale robotics.
When addressing wearable robots, processing capabilities can
in fact be rather limited. An additional important contribution
lies in applying HW-NAS to support specific constraints of
target applications.

The research only considered RGB inputs, although one
might note that in segmentation tasks RGB-D inputs can
improve accuracy [47]. In a recent study about the impact of
depth information on UMD and MW datasets, however, the
results exhibited a negligible improvement when compared
with RGB-only approaches, at the expense of a significant
increment in computational cost [48]. The present work fo-
cused on RGB because that domain seemed to yield the most
convenient scenario. In addition, the available benchmarks
were not really designed to highlight the benefits of RGB-
D inputs. Nevertheless, the described design methodology can
easily cover RGB-D data by extending the structure of the
search space SS accordingly.

The analysis of generalization ability considered three es-
tablished datasets, with various types of images, mostly to get
a comprehensive assessment of the generated network models.
As the main goal was to assess the network’s ability to perform
affordance with limited processing resources, the analysis did
not involve framing, occlusion, and illumination issues, which
anyway remain important tasks for future work. The results
on the IIT and UMD datasets proved that, in the presence
of those issues, the performance of the solutions degraded
with respect to larger networks, which was especially true for
tiny networks. At the same time, one should consider that the
affordance module developed in this research will integrate
into well-designed control pipelines. Those complex systems
typically include components designed to mitigate some of the
above-mentioned issues (e.g., by including an object detector
[32]). These modules would also need to be downscaled and
tuned to the desired inference time.

In the envisioned application of wearable robotics, satisfac-
tory framing quality can be obtained by training the user to use
the system for aiming. It is likely that users can attain effective
framing strategies after short periods of training. The presented
research has shown that effective framing can boost the
performances of tiny networks to benchmark levels, even when
the network complexity and inference time are limited. This
aspect requires further investigation by a specific assessment,
in which participants would use a wearable robot equipped

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 9

with the proposed smart teleceptive module to accomplish
functional tasks. The assumption in the present work was that
the user will position the wearable robot close to and in front
of the object, and therefore, the analysis of the input image
size did not consider the possibility of distant objects.

The results demonstrated that the tiny DNNs can estimate
the affordance map with an accuracy that is comparable to
that of the benchmark, especially regarding the grasp class.
This is an encouraging result as the correct identification of
the graspable part of the object is indeed the most relevant
to decide the grasping strategy. The do not grasp class, for
instance, was estimated with the lowest accuracy but this
information is less relevant for the grasp selection.

Next, we have also demonstrated that the estimated affor-
dance maps allow extracting the “physical” dimensions of
the object with good accuracy, as the difference between the
estimation error of the proposed networks and the baseline for
position and object size were all lower than a few percent.
Correctly estimating object orientation was, however, more
challenging but this parameter is also less sensitive as the
errors can be tolerated. The angle of the hand does not need
to be perfectly aligned with the object tilt for successful
grasping and the potential discrepancy can be corrected easily
by the user through compensatory motion. The simple phys-
ical descriptors estimated in the present study were selected
because they can be calculated using low computational cost.
Even the extraction of the principal component (orientation
descriptor) has a computational cost that is negligible with
respect to that involved in evaluating the CNNs. In addition,
similar descriptors were already used to inform the grasp
type selection in semi-autonomous control [27]. Overall, the
methods proposed in this work can lead to the development of
a smart teleceptive system that can make the semi-autonomous
control pipeline more precise and versatile. By focusing the
processing on the graspable segment of an object, the grasp
type selection can be responsive to the finer details of the
object morphology. For instance, instead of modelling the
object as a whole, the computer vision system enhanced with
the affordance mask can focus the processing on the relevant
part of an object (e.g., the handle in Fig. 1). This processing
could be based on the RGB image, as demonstrated in the
present study, but one could also analyze the point cloud
“hidden” behind the affordance mask. The latter analysis could
provide 3D measures, enabling thereby a more sophisticated
approach to grasp selection.

The deployment results confirm that the network generated
using the proposed algorithm can be executed in real-time on
the target device. The smallest generated network achieved
an inference time of 0.21 s. In this context, we considered
real-time inference duration smaller than 0.5 s because the
actual timing constraints are application dependent. We think
that this delay is a good starting point for a large set of
semi-autonomous control applications, where some additional
latency in the system response can be tolerated in exchange
for a decreased cognitive load on the user. As expected, the
measured inference time is always lower than the estimated
value because the generated network did not require external
RAM usage. We opted to maintain this possibility because

the same exact methodology could be applied to many related
problems. Some applications could require a larger input
resolution. Empirical evidence confirms that external RAM
memories are required for larger input sizes.

The previous studies [14] used a hardware accelerator
or high-range portable microprocessor. The empirical model
related to the number of Flops developed in the present study
could be as well used in these cases, but it needs to be updated
considering the peculiarities of the deployment tools ranging
from the software libraries to the physical organization of the
memories and cores. All the models generated would achieve
a very high frame rate when deployed in this kind of device.
As highlighted by figure 3, the proposed search space could
be suboptimal in this case. A reasonable strategy, if possible,
would be to switch to a larger SS including more building
blocks or branches in the architecture ensuring better feature
extraction capabilities.

VII. CONCLUSION

The paper presented a novel approach to the design of
tiny convolutional neural networks (CNNs) for affordance
segmentation. The resulting neural models can fulfil the
hard constraints imposed by the micro-controllers that are
typically embedded in wearable robotic devices (prostheses,
exoskeletons, and supernumerary limbs). A tailored HW-
NAS procedure generated the networks while relying on an
empirical model to express the relationship between network
complexity and inference time. The experiments confirmed
that the resulting tiny DNNs showed accuracy comparable
to those attained by existing solutions, but could run on
microcontrollers and complete their task in less than 250ms.

Future research steps will include a thorough treatment of
the framing issue, as well as the integration of affordance
detection within the full semi-autonomous control pipeline
equipped with other sensing sources (e.g., depth camera).
Clinical campaigns will investigate how the user framing skills
can impact performance, and if these skills can be improved
by dedicated training sessions.

REFERENCES

[1] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, “Affordance
detection of tool parts from geometric features,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 1374–1381.

[2] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Object-based affordances detection with convolutional neural networks
and dense conditional random fields,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
5908–5915.

[3] M. Hassanin, S. Khan, and M. Tahtali, “Visual affordance and function
understanding: A survey,” ACM Computing Surveys (CSUR), vol. 54,
no. 3, pp. 1–35, 2021.

[4] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies between
affordance and geometry: 6-dof grasp detection via implicit representa-
tions,” arXiv preprint arXiv:2104.01542, 2021.

[5] E. Corona, A. Pumarola, G. Alenya, F. Moreno-Noguer, and G. Rogez,
“Ganhand: Predicting human grasp affordances in multi-object scenes,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 5031–5041.

[6] Z. Tang, L. Zhang, X. Chen, J. Ying, X. Wang, and H. Wang, “Wearable
supernumerary robotic limb system using a hybrid control approach
based on motor imagery and object detection,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1298–1309,
2022.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

[7] S. Salminger, H. Stino, L. H. Pichler, C. Gstoettner, A. Sturma, J. A.
Mayer, M. Szivak, and O. C. Aszmann, “Current rates of prosthetic
usage in upper-limb amputees–have innovations had an impact on device
acceptance?” Disability and Rehabilitation, vol. 44, no. 14, pp. 3708–
3713, 2022.

[8] N. E. Krausz and L. J. Hargrove, “A survey of teleceptive sensing for
wearable assistive robotic devices,” Sensors, vol. 19, no. 23, p. 5238,
2019.

[9] Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl, “Real-time
radar-based gesture detection and recognition built in an edge-computing
platform,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10 706–10 716,
2020.

[10] B. Zhong, H. Huang, and E. Lobaton, “Reliable vision-based grasping
target recognition for upper limb prostheses,” IEEE Transactions on
Cybernetics, 2020.

[11] M. N. Castro and S. Dosen, “Continuous semi-autonomous prosthesis
control using a depth sensor on the hand,” Frontiers in Neurorobotics,
vol. 16, 2022.

[12] J. Zheng, J. Zhang, K. Yang, K. Peng, and R. Stiefelhagen, “Mater-
obot: Material recognition in wearable robotics for people with visual
impairments,” arXiv preprint arXiv:2302.14595, 2023.

[13] Z. O. Khalifa and S. A. A. Shah, “Towards visual affordance learning: A
benchmark for affordance segmentation and recognition,” arXiv preprint
arXiv:2203.14092, 2022.

[14] E. Ragusa, C. Gianoglio, S. Dosen, and P. Gastaldo, “Hardware-aware
affordance detection for application in portable embedded systems,”
IEEE Access, vol. 9, pp. 123 178–123 193, 2021.

[15] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-
scale benchmark for general object grasping,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 444–11 453.

[16] P. Ardón, E. Pairet, R. P. Petrick, S. Ramamoorthy, and K. S. Lohan,
“Learning grasp affordance reasoning through semantic relations,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 4571–4578, 2019.

[17] F.-J. Chu, R. Xu, L. Seguin, and P. A. Vela, “Toward affordance detection
and ranking on novel objects for real-world robotic manipulation,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 4070–4077, 2019.

[18] L. Liu, W. Xu, C. Lu et al., “Fpha-afford: A domain-specific benchmark
dataset for occluded object affordance estimation in human-object-
robot interaction,” in 2020 IEEE International Conference on Image
Processing (ICIP). IEEE, 2020, pp. 1416–1420.

[19] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma,
O. Taylor, M. Liu, E. Romo et al., “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain image
matching,” The International Journal of Robotics Research, vol. 41,
no. 7, pp. 690–705, 2022.

[20] R. Xu, F.-J. Chu, C. Tang, W. Liu, and P. A. Vela, “An affordance
keypoint detection network for robot manipulation,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2870–2877, 2021.

[21] F. Vasile, E. Maiettini, G. Pasquale, A. Florio, N. Boccardo, and
L. Natale, “Grasp pre-shape selection by synthetic training: Eye-
in-hand shared control on the hannes prosthesis,” arXiv preprint
arXiv:2203.09812, 2022.

[22] F.-J. Chu, R. Xu, and P. A. Vela, “Learning affordance segmentation for
real-world robotic manipulation via synthetic images,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1140–1147, 2019.

[23] M. A. Vélez-Guerrero, M. Callejas-Cuervo, and S. Mazzoleni, “Arti-
ficial intelligence-based wearable robotic exoskeletons for upper limb
rehabilitation: A review,” Sensors, vol. 21, no. 6, p. 2146, 2021.

[24] J. W. Sensinger and S. Dosen, “A review of sensory feedback in upper-
limb prostheses from the perspective of human motor control,” Frontiers
in Neuroscience, vol. 14, 2020.

[25] S. Došen and D. B. Popović, “Transradial prosthesis: artificial vision
for control of prehension,” Artificial organs, vol. 35, no. 1, pp. 37–48,
2011.

[26] P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, “Designing
prosthetic hands with embodied intelligence: The kit prosthetic hands,”
Frontiers in Neurorobotics, vol. 16, 2022.

[27] M. Markovic, S. Dosen, D. Popovic, B. Graimann, and D. Farina,
“Sensor fusion and computer vision for context-aware control of a multi
degree-of-freedom prosthesis,” Journal of neural engineering, vol. 12,
no. 6, p. 066022, 2015.

[28] F. Hundhausen, D. Megerle, and T. Asfour, “Resource-aware object
classification and segmentation for semi-autonomous grasping with
prosthetic hands,” in 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids). IEEE, 2019, pp. 215–221.

[29] J. Starke, P. Weiner, M. Crell, and T. Asfour, “Semi-autonomous
control of prosthetic hands based on multimodal sensing, human grasp
demonstration and user intention,” Robotics and Autonomous Systems,
vol. 154, p. 104123, 2022.

[30] G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour,
“Deep learning-based artificial vision for grasp classification in myoelec-
tric hands,” Journal of neural engineering, vol. 14, no. 3, p. 036025,
2017.

[31] E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo, “Data-driven video
grasping classification for low-power embedded system,” in 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). IEEE, 2019, pp. 871–874.

[32] T. Apicella, A. Cavallaro, R. Berta, P. Gastaldo, F. Bellotti, and
E. Ragusa, “An affordance detection pipeline for resource-constrained
devices,” in 2021 28th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS). IEEE, pp. 1–6.

[33] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning for
microcontroller-class hardware-a review,” IEEE Sensors Journal, 2022.

[34] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang, “A comprehensive survey on hardware-aware neural
architecture search,” arXiv preprint arXiv:2101.09336, 2021.

[35] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[36] L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, “Fast hardware-
aware neural architecture search,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2020, pp. 692–693.

[37] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708–727, 2020.

[38] C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu, Y. Wang,
and Y. Lin, “Hw-nas-bench: Hardware-aware neural architecture search
benchmark,” arXiv preprint arXiv:2103.10584, 2021.

[39] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-
device training under 256kb memory,” in Annual Conference on Neural
Information Processing Systems (NeurIPS), 2022.

[40] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commodity
microcontrollers,” Proceedings of Machine Learning and Systems, vol. 3,
pp. 517–532, 2021.

[41] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” in
European conference on computer vision. Springer, 2020, pp. 544–
560.

[42] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1314–1324.

[43] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 4154–4165, 2020.

[44] Y. Li, P. Wang, R. Li, M. Tao, Z. Liu, and H. Qiao, “A survey of multi-
fingered robotic manipulation: Biological results, structural evolvements
and learning methods,” Frontiers in Neurorobotics, p. 53, 2022.

[45] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in Neural Information Processing Systems,
vol. 34, pp. 12 077–12 090, 2021.

[46] X. Li, H. Ding, W. Zhang, H. Yuan, J. Pang, G. Cheng, K. Chen, Z. Liu,
and C. C. Loy, “Transformer-based visual segmentation: A survey,”
arXiv preprint arXiv:2304.09854, 2023.

[47] X. Hu, K. Yang, L. Fei, and K. Wang, “Acnet: Attention based network
to exploit complementary features for rgbd semantic segmentation,”
in 2019 IEEE International Conference on Image Processing (ICIP).
IEEE, 2019, pp. 1440–1444.

[48] E. Ragusa, M. P. Ghezzi, R. Zunino, and P. Gastaldo, “Affordance
segmentation using rgb-d sensors for application in portable embedded
systems,” in Applications in Electronics Pervading Industry, Environ-
ment and Society: APPLEPIES 2022. Springer, 2023, pp. 109–116.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3308615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	Related works
	Grasp Affordance Prediction
	Semi-autonomous control of grasping 
	Tiny deep networks

	Material And Methods
	Smart Sensing Device
	Defining a suitable HW-NAS for affordance segmentation
	Empirical modelling of the computational cost

	Experimental Setup
	Computational cost model
	Generalization Performance
	Estimating grasp relevant parameters
	Deployment

	Results
	Generalization Performance Analysis
	Grasp parameters analysis
	Computational performance

	Discussion
	Conclusion
	References

