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A B S T R A C T

In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms
of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a
hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated
on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow
rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the
other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of
fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of
fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete
crack is proposed in the spirit of Hill’s indicator for loss of stability of inelastic continua, to effectively evaluate
the most critical direction for further loading in terms of the resulting energy release and crack opening, while
accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the
novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of
the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different
load scenarios are evaluated, and the numerical predictions are compared with experimental data.
1. Introduction

Cement-based composites like concrete are the most widely used
construction materials. A great part of the existing built stock, and
the majority of worldwide infrastructures, are prevalently made of
reinforced concrete. However, they are characterized by a quite low
tensile strength, together with a very fragile response. The addition
of short reinforcements, like fibers, in the cementitious matrix can
basically overcome these deficiencies [1]. FRCCs may offer less brit-
tleness and sometimes behaving with a quasi-ductile response, even
under tensile loading [2]. By adding high fiber percentages, strain-
hardening responses with multiple cracks, and large energy absorption
prior failure, can be achieved under tension and bending [3]. In this
regard, fiber types, materials, and geometric details [4] (i.e., diameters,
lengths, and aspect ratios) can have a huge influence on the resulting
bridging mechanisms, which drive the type of fracture mechanisms of
FRCC. Experimental studies demonstrated that the random dispersion
of short fibers can enhance the response of the composites in the
post-cracking regime, with several advantages [5,6]: i.e., improved
tensile/shear strengths, better post-cracking ductility, higher fracture
energy, etc.
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The incorporation of fibers and their design, also in partial sub-
stitution of classical rebars, grew up considerably in the last thirty
years. Most popular designing EU and international guidelines/codes
including them are, for example, the Austrian guidelines [7], the French
recommendations [8], the German ones [9], the Italian rules [10], the
Spanish codes [11], the Sweden codes [12], the Swiss recommenda-
tions [13] and those provided by the RILEM Committee [14] together
with the worldwide adopted fib Model-Code [15]. The US standards for
FRCC to be mentioned are the [16,17].

Theoretical constitutive models and numerical tools are needed for
describing and predicting the non-homogeneous FRCC cracking onset
and propagation. In this sense, the simulation of cracking processes
in solids and structures is still an open issue and of great interest in
computational mechanics. Traditionally approaches are those based in
classical continuum (namely, Smeared Crack Approaches — SCAs) in
which the failure and cracked zone is considered to be distributed
along a certain region of the solid [18,19]. Clear advantage of SCA
is its simpleness to be implemented in continuous Finite Element (FE)
programs (even commercial ones). However, the main drawback of
SCA is the associated strong FE size dependency of the localization
band, and, consequently, the objectivity loss of their results [20]. Thus,
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opportune regularization procedures need to be considered to avoid
these shortcomings of SCA [21,22]. On the other hand, Discrete Crack
Approaches (DCAs), which incorporate strains and/or displacement
jumps/discontinuities, can represent an alternative approach to de-
scribe cracks and related evolution mechanisms at the fracture front
of the failure process. Many options can be undertaken for concrete
and FRCC in this field, i.e.: zero-thickness interfaces [23], lattice and
particle procedures [24], discontinuous VEM [25], X-FEM [26] and
E-FEM [27]. Among these techniques, the main advantages of using
zero-thickness interfaces are (i) the remeshing is not needed, (ii) the
automatic regularization of the solution, since the discontinuities in
the displacement field is directly account at joints (cracks) level, thus,
there is no need to require localized deformation capabilities of the
continuum elements and (iii) their easy implementation in FEM codes.

For both diffuse and discrete approaches, localized failure modes
must be analyzed to identify the cracking onset. In the framework of the
SCA, localized failure modes are related to discontinuous bifurcations
of the equilibrium path which leads to the lost of ellipticity of the
equations, that govern the static equilibrium problem. The localized
deformation field exhibits a plane of discontinuity that can be identified
by means of the eigenvalue problem of the acoustic (also known as
localization) tensor [28]. Analytical solutions for the discontinuous
bifurcation condition, based on original works by Hadamard [29],
Thomas [30] and Hill [31], can conduce to the so-called macroscopic
localization condition. In this context, the derivation of the discontin-
uous bifurcation condition for the case of the SCA microplane theory
for FRCC have been obtained by the authors of this work (see [32]),
including the variation of fiber contents and directions influence. The
key contribution of the paper deals with proposing a novel normalized
cracking indicator (CI) for FRCC interface constitutive models based on
the mixture theory. The proposed CI follows the concept of the normal-
ized indicator for diffuse failure by Hill’s condition of stability, typically
built up for continuous-based procedures. This CI provides objective
useful information on the critical directions for further loading regard-
ing the overall energy release due to the degradation mechanisms in
the different mixture components, while at the same time it assesses
the effect of the fiber content and its direction on the expectable energy
release for the whole spectrum of possible loading directions.

After this general introduction section, the paper is structured as
follows. Section 2 summarizes the constitutive formulation of the zero-
thickness interface model for failure behavior of FRCC. Section 3 dis-
cusses the theoretical background of strain localization problems: the
discontinuous bifurcation condition for SCA and later the concept of
failure indicators for the case of zero-thickness interface FRCC models,
proposing a normalized scalar for DCA. Then, numerical simulations
compared against available experimental data are presented in Sec-
tion 4 with the aim to verify the soundness and capabilities of the
methodology. Section 5 presents the failure performance and the 𝐶𝐼
results for mixed modes of fracture and variable fiber contents in terms
of critical failure directions. Finally, some concluding remarks are made
in Section 6.

2. Zero-thickness interface model for FRCC

The present constitutive model for FRCC was inspired to a discrete-
crack approach (see [33]) adding the combination of the fibers, me-
chanically described as beam elements crossing the interfaces. It ac-
counts for three internal constitutive formulations: i. The fracture
energy-based plasticity formulation for plain mortar/concrete joints, as
summarized in Section 2.1; ii. Fiber bond–slip developed in the axial
direction of fibers. Pull-out mechanisms of fibers crossing cracks are
formulated through a 1D elasto-plastic model; iii. Dowel action (only
for metallic fibers) based on elastic beam foundation theory to get the
transversal force–displacement relationship. Both modeling as of points
ii. and iii. are detailed in Section 2.2.
2

Table 1
Overview of the interface constitutive model for concrete.

2.1. Fracture energy-based interface model for concrete

This section describes the fracture-based constitutive model for
cement-based materials implemented into zero-thickness interfaces and
based on a hyperbolic yield surface and a non-associated flow rule.
Table 1 gives its the main features whilst full details are available in
previous contributions by the authors (see for example [23,34]). In
Table 1, 𝐂 represents the uncoupled joint elastic stiffness matrix, 𝐮̇𝑒𝑙
and 𝐮̇𝑐𝑟 the elastic and cracking displacement rate vectors, respectively,
and 𝐭 = [𝜎𝑁 , 𝜎𝜏 ]𝑡 is the joint stress vector. 𝑓 (𝐭, 𝜅) is the hyperbolic
yield condition, based on three main parameters: the tensile strength
𝜒 , the cohesion 𝑐 and the friction angle 𝜙. The cracking displacement
evolution 𝐮̇𝑐𝑟 = [𝑢̇𝑐𝑟, 𝑣̇𝑐𝑟]𝑡 is evaluated by means of a non-associated flow
rule, which defines the inelastic direction 𝐦 through the transformation
operator 𝐴, that affects the associated normal flow derivative, 𝐧 =
𝜕𝑓∕𝜕𝐭. 𝜆̇ is the non-negative cracking multiplier, achieved by means of
the Kuhn–Tucker and consistency conditions. The fracture work rate
𝑤̇𝑐𝑟 is adopted as the internal variable which affects the softening
evolution laws and, consequently, the loading surfaces. Unified decay
functions are considered for each the three internal parameters of the
yield function, 𝜒 , 𝑐 and tan(𝜙), represented alternatively by 𝑝𝑖; where
𝑝0𝑖 symbolized their initial values, 𝑟𝑝𝑝0𝑖 the residual ones and 𝑆[𝜉𝑝𝑖 ] the
scaling functions, being 𝜉𝑝𝑖 the ratio between the current work spent
and the available fracture energy (i.e., in mode I and/or II).

2.2. Fiber mechanisms: Pull-out and dowel effects

FRCC can be modeled at a meso-scale standpoint by explicitly
considering the effect of fibers crossing active cracks. If the fracture
process is modeled through interfaces and DCA, the transferred stresses
between cracks due to fibers bridging effects can be considered via
1D modeling tools, smeared with the well-known Mixed Theory [23].
The number of fibers crossing the interface is calculated as a function
of the volume fraction and their geometric characteristics. Then, their
mechanical contributions are considered via two plasticity-based con-
stitutive models: for the bond–slip behavior in the axial fibers direction
and for the dowel mechanism in the transversal one.

On the one hand, a one-dimensional plasticity model accounting
for a stress–strain response is employed to describe the fiber bond–
slip response. The main functions of the adopted bi-linear stress–strain
rule (𝜎𝑓 − 𝜀𝑁 ) are summarized in Table 2. It is based on the additive
decomposition of the total strain rate 𝜀̇𝑁 , into elastic and plastic
components, 𝜀̇𝑒𝑙𝑁 and 𝜀̇𝑝𝑙𝑁 , respectively. 𝜎̇𝑓 is the total normal stress
rate while 𝐸𝑓 is the uniaxial elastic modulus which considers both
the uniaxial response of the fiber and the bond–slip effect of the
short reinforcement in concrete substrate. 𝑓𝑓 is the yield condition,
being 𝜎𝑦,𝑓 the initial yield stress and 𝑄𝑓 the dissipative stress in post-
elastic regime. Its evolution law is defined in terms of the incremental
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Table 2
Bond–slip constitutive model for fibers crossing cracks.

Table 3
Dowel constitutive model for fibers crossing cracks.

plastic multiplier 𝜆̇𝑓 and the softening normal module 𝐻𝑓 . On the
other hand, a numerical sub-model for the dowel mechanism has been
also accounted by defining both stiffness and strength of a generic
fiber embedded in the concrete matrix and subjected to a possible
transverse force/displacement at the fracture level. The well-known
Winkler beam theory is used to describe the dowel force–displacement
relationship, which is then transformed in terms of dowel stress vs.
relative displacement, defining the equivalent shear beam stiffness. A
bi-linear shear stress–strain (𝜏𝑓−𝛾𝑇 ) is adopted with the complementary
functions shown in Table 3. The additive decomposition of the total
strain rate 𝛾̇𝑇 , in elastic and plastic parts, 𝛾̇𝑒𝑙𝑇 and 𝛾̇𝑝𝑙𝑇 respectively, is
also adopted. 𝜏̇𝑓 is the total shear stress rate while 𝐺𝑓 is the elastic
modulus which considers the transversal Winkler response of the fibers.
𝑔𝑓 is the yield condition, being 𝜏𝑦,𝑓 the initial yield stress and 𝑅𝑓 the
dissipative stress in post-elastic regime. Its evolution law is defined in
terms of the incremental plastic multiplier 𝜆̇𝑓 and the softening shear
module 𝐾𝑓 . The complete derivation of these two models and theirs
validations against experimental data are proposed in previous works
published by the authors, see [35].

3. Failure indicators for continuum models and discontinuous-
based analysis

This section summarizes the failure indicators for both, SCA and
DCA, that allow the calculation of the failure onset conditions and
the critical post-cracking directions for variable load states and fiber
contents.

3.1. Failure indicator for SCA

Analytical solutions for the discontinuous bifurcation condition re-
garding SCA are based on original works by Hadamard (1903) [29],
Thomas (1961) [30] and Hill (1962) [31]. They conduce to the macro-
scopic localization condition, such as

det(𝑸𝑒𝑝) = 0 , (1)

being 𝑸𝑒𝑝 the elasto-plastic acoustic or localization tensor, defined as

𝑸𝑒𝑝 = 𝑵 ⋅ 𝑬𝑒𝑝 ⋅𝑵 , (2)
3

𝑐 𝑐 𝑐
Fig. 1. Evaluation of the 𝐶𝐼 : 𝜌 and 𝜃-angles define the initial cracking stage and the
post-cracking direction, respectively.

with 𝑵 𝑐 , the normal direction to the discontinuity surface and 𝑬𝑒𝑝
𝑐 the

elasto-plastic tangent tensor of the continuum SCA model, that can be
expressed in terms of the elastic one 𝑬𝑐 , as

𝑬𝑒𝑝
𝑐 = 𝑬𝑐 −

1
ℎ
𝑬𝑐 ∶

𝜕𝑄
𝜕𝝈

⊗ 𝜕𝐹
𝜕𝝈

∶ 𝑬𝑐 , (3)

whereby the generalized plastic modulus ℎ is defined as

ℎ = 𝜕𝐹
𝜕𝝈

∶ 𝑬𝑐 ∶
𝜕𝑄
𝜕𝝈

+𝐻 , (4)

in terms of the derivatives of the yield function 𝐹 and the plastic
potential 𝑄 respect to the stress tensor 𝝈 and the hardening/softening
variable 𝐻 .

The localized failure condition of Eq. (1) leads to the analysis of the
spectral properties of 𝑸𝑒𝑝, that can be also written as

𝑸𝑒𝑝 = 𝑸 − 1
ℎ
𝒂⊗ 𝒂∗ with 𝑸 = 𝑵 𝑐 ⋅ 𝑬𝑐 ⋅𝑵 𝑐 (5)

and the vectors 𝒂 and 𝒂∗ defined as

𝒂 = 𝜕𝐹
𝜕𝝈

∶ 𝑬𝑐 ⋅𝑵 𝑐 , 𝒂∗ = 𝑵 𝑐 ⋅ 𝑬𝑐 ∶
𝜕𝑄
𝜕𝝈

. (6)

The smallest autovalue of 𝑸𝑒𝑝, with respect to the metric defined by
(𝑸)−1, is

𝜆(1) = 1 −
𝒂(𝑵 𝑐 ) ⋅

[

𝑸(𝑵𝒄 )
]−1

⋅ 𝒂∗(𝑵 𝑐 )
ℎ

. (7)

By replacing Eqs. (4) and (6) into (7), results the localization condition
such as

𝐻𝑐𝑟 +
𝜕𝐹
𝜕𝜎

∶ 𝑬𝑐 ∶
𝜕𝑄
𝜕𝜎

− 𝒂 ⋅
[

𝑸(𝑵 𝑐 )
]−1

⋅ 𝒂∗ = 0 , (8)

that serves as a basis for analytical and numerical evaluations of the
most critical (maximum) hardening parameter 𝐻𝑐𝑟 = max[𝐻(𝑵 𝑐 )] for
discontinuous bifurcation and of their associated localization directions
𝑵 𝑐 .

3.2. Cracking indicators for DCA

The proposed cracking indicator for DCA can be considered to be
in principle similar as the one achieved for continuum-based models
(SCA) as of Section 3.1.

By following the normalized indicator for diffuse failure by Hill’s
condition of stability, employed in SCA as in the previous section [36],
it is proposed the following normalized Cracking Indicator (𝐶𝐼) for
DCA, as for the case of zero-thickness interface models for FRCC, as

𝐶𝐼(𝜃, 𝜌) = 𝑵 𝑡 ⋅ 𝑬𝑒𝑝 ⋅𝑵 , (9)

𝑵 𝑡 ⋅ 𝑬 ⋅𝑵
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Table 4
Critical failure directions for SFRC.
𝜃 𝜌𝑐𝑟,3.0% 𝜌𝑐𝑟,6.0%
90◦ 90◦ 90◦

75◦ 83.15◦ 85.31◦

60◦ 76.65◦ 80.26◦

45◦ 67.99◦ 73.77◦

30◦ 57.17◦ 65.11◦

15◦ 43.47◦ 52.85◦

being 𝜃 the initial cracking direction angle (tan(𝜃) = 𝜎𝑁∕𝜎𝑇 , as shown
in Fig. 1) and 𝑵 a unitary vector defining the normal of a potential
cracking direction, i.e.

𝑵 = [cos(𝜌), sin(𝜌)]𝑡 (10)

The angle 𝜌 describe the set of all possible vectors 𝑵 upon the failure
criterion, as highlighted in Fig. 1, while 𝑬𝑒𝑝 represents the constitutive
tangent operator, given by

𝑬𝑒𝑝 = 𝑤𝜌𝑚𝑪
𝑒𝑝 +

𝑛𝑓
∑

𝑓=1
𝑤𝜌𝑓

(

𝐸𝑒𝑝
𝑓

𝑙𝑓
𝒏𝑁 ⊗ 𝒏𝑁 +

𝐺𝑒𝑝
𝑓

𝑙𝑓
𝒏𝑇 ⊗ 𝒏𝑇

)

(11)

which depends on the weighting functions 𝑤𝜌𝑚 and 𝑤𝜌𝑓 , 𝒏𝑁 ⊗ 𝒏𝑁 and
𝒏𝑇 ⊗𝒏𝑇 identify the second order dyadic tensor constructed on the fiber
direction and its orthogonal for a generic fiber with respect to the global
Cartesian reference system. The tangent operators 𝑪𝑒𝑝, 𝐸𝑒𝑝

𝑓 and 𝐺𝑒𝑝
𝑓

are the elasto-plastic operators of the constitutive models of Section 2.
Whereas 𝑛𝑓 and 𝑙𝑓 are the number and length of the fibers crossing
the interface, respectively. Finally, 𝑬 in Eq. 5 is the interface operator
under elastic response, evaluated in terms of the elastic operators 𝑪 ,
𝐸𝑓 and 𝐺𝑓 , similarly as Eq. (11).

The 𝐶𝐼 performance parameter can be thus computed and plotted
in terms of 𝜌-angles (i.e., those between 𝜎𝑁 and 𝜎𝑇 stresses): i.e., 𝜌 = 𝜋

2
indicates the case of pure tensile failure (namely fracture mode I),
while 𝜌 = 0 the direct shear with zero (confinement) pressure. For any
given 𝜃 angle, a particular value for 𝜌 (labeled as the critical one 𝜌𝑐𝑟)
can be numerically evaluated for which the 𝐶𝐼 parameter assumes its
minimum. Under this circumstance 𝜌𝑐𝑟 defines the weakness direction
of the considered composite FRCC interface.

4. Zero-thickness interface model performances

With the aim to demonstrate the soundness and capabilities of the
proposed methodology for cementitious materials, this section proposes
some applications of the zero-thickness interface constitutive model for
FRCC failure analysis. First, numerical simulations against available
experimental data of mixed fracture mode tests for plain concrete are
shown. Then, numerical analyses of the uniaxial tensile test are carried
out on both plain concrete and Steel-FRC (SFRC). Finally, critical con-
dition for localized failure are analyzed by means of numerical analysis
of the proposed 𝐶𝐼 performance. These studies allow to evaluate the
sensitivity of the cracking onset and critical directions on the load state
and fibers orientation.

4.1. Mixed fracture modes

To assess the predictive capability of the proposed interface con-
stitutive model for cementitious composites under mixed-modes of
fracture, the plane concrete panels by [37] are considered. These exper-
imental tests are performed on prismatic concrete specimens of 0.07 ×
0.07 m2 cross section with a 0.015 m deep notch along their perimeter
(see Fig. 2). Both normal and transverse relative displacements are
imposed simultaneously to the two parts of the notched specimen with
the aim to reproducing the cracking processes in concrete under mode
I and II types of failure, depending on the angle between the two
4

Fig. 2. Concrete prisms under mixed fracture modes by [37].

Fig. 3. Numerical predictions vs. exp. data [37]: 𝜎𝑁 vs. 𝑢.

Fig. 4. Numerical predictions vs. exp. data [37]: 𝜎𝑇 vs. 𝑣.

displacement components. First stage of tests, normal displacements are
applied until the peak strength is reached. In a second stage, tensile
displacements are combined with transverse ones, on the upper part of
the notched specimen, defining an 𝜃 angle (tan(𝜃) = 𝜎𝑁∕𝜎𝑇 ).

Four cases are evaluated, 𝜃 = 90◦, 75◦, 60◦ and 30◦. The interface
parameters, calibrated upon the experimental data by [37], are 𝑘𝑁 =
500 MPa∕mm, 𝑘𝑇 = 200 MPa∕mm, tan(𝜙0) = tan(𝛽0) = tan(𝜙𝑟) = 0.6, 𝜒0
= 2.8 MPa, 𝑐0 = 7.0 MPa, 𝐺𝐼

𝑓 = 0.08 N∕mm, 𝐺𝐼𝐼𝑎
𝑓 = 10𝐺𝐼

𝑓 , 𝜎𝑑𝑖𝑙 = 15
MPa. The remaining parameters are considered equal to zero. For the
continuum elements, the Young modulus and Poisson’s ratio are 𝐸𝑐 =
25 GPa and 𝜈 = 0.2, respectively.

The tensile stress–displacement (𝜎𝑁 −𝑢) relationship for plain con-
crete by [37] and the corresponding numerical predictions are shown
in Fig. 3. This figure depicts the curves for 𝜃 = 90◦, 75◦, 60◦ and 30◦.
As it can be seen, the combined normal and shear displacements cause
a more pronounced softening branch in post-peak regime. The tensile
strength tends to zero more rapidly and, moreover, changes its sign
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Fig. 5. Numerical predictions vs. experimental data by [38]: SFRC with ‘‘Dramix type I’’ and ‘‘Dramix type II’’ fibers.
ecoming a compressive stress, due to fact that the normal dilatancy
roduced by the applied shear displacements, exceeds the fixed normal
pening rate.

Fig. 4 compares experimental data with the numerical simulations
n terms of shear stresses vs. relative transverse displacements (𝜎𝑇 −𝑣)
or 𝜃 = 75◦, 60◦ and 30◦. Shear strengths increase when 𝜃 decreases. It
s shown a very good agreement regarding peak and residual strengths,
s well as pre- and post-peak responses. The post-cracking stages are
haracterized by a crack-softening behavior which, as a matter of fact,
s well captured through the proposed constitutive model.

.2. Uniaxial tensile tests

The tensile tests on SFRC specimens by Li et al. [38] are considered
n this section. The experimental campaign have been performed on
rismatic specimens with the dimensions 500 ×100 × 20 mm3. Two
ifferent types of steel fibers are considered namely Dramix I and
I, whose fundamental common properties are: Density = 7.8 g∕cm3,
iameter = 0.5 mm, 𝜎𝑦 = 1.2 GPa, 𝐸 = 200 GPa, while the lengths of
ramix I is 30 mm and of II is 50 mm.

The model parameters were adjusted according to the experimental
5

ata given by the authors, being the elastic properties of the rigid

Fig. 6. 𝐶𝐼 at peak stress for 𝜃 = 90◦ considering plain concrete and FRCC with ‘‘Dramix
I’’ with fiber contents of 3.0% and 6.0%.
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Fig. 7. 𝐶𝐼 at peak stress for 𝜃 = 75◦ considering plain concrete and FRCC with ‘‘Dramix
’’ with fiber contents of 3.0% and 6.0%.

Fig. 8. 𝐶𝐼 at peak stress for 𝜃 = 60◦ considering plain concrete and FRCC with ‘‘Dramix
’’ with fiber contents of 3.0% and 6.0%.

Fig. 9. 𝐶𝐼 at peak stress for 𝜃 = 45◦ considering plain concrete and FRCC with ‘‘Dramix
’’ with fiber contents of 3.0% and 6.0%.
6

Fig. 10. 𝐶𝐼 at peak stress for 𝜃 = 30◦ considering plain concrete and FRCC with
‘Dramix I’’ with fiber contents of 3.0% and 6.0%.

Fig. 11. 𝐶𝐼 at peak stress for 𝜃 = 15◦ considering plain concrete and FRCC with
‘Dramix I’’ with fiber contents of 3.0% and 6.0%.

ontinuum elements 𝐸𝑐 = 37 GPa and 𝜈 = 0.2; whereas the parameters
of the inelastic interface result in 𝑘𝑁 = 1000 MPa∕mm, 𝑘𝑇 = 200
MPa∕mm, tan(𝜙0) = tan(𝛽0) = tan(𝜙𝑟) = 0.6, 𝜒0 = 4 MPa, 𝑐0 = 7.0

Pa, 𝐺𝐼
𝑓 = 0.12 N∕mm, 𝐺𝐼𝐼𝑎

𝑓 = 10𝐺𝐼
𝑓 , 𝜎𝑑𝑖𝑙 = 10 MPa. The remaining

nterface parameters are considered equal to zero. Some of the relevant
iber parameters are derived from their main mechanical properties,
hile the others arise from a calibration procedure, as 𝐸𝑑 = 𝐸𝑠, 𝜎𝑦,𝑑 =
8%𝜎𝑦,𝑠, 𝑘𝑐 = 440 N∕mm3, 𝛼𝑓 = 7.7 and 𝐻𝑓 = 𝐾𝑓 = 0.

The comparison between model predictions and the experimental
data by Li et al. [38] for the uniaxial tensile test in terms of stress-
opening cracking diagrams (𝜎 - 𝑢) are reported in Fig. 5, regarding
SFRC with uniformly distributed Dramix type II steel fibers and fiber
contents 𝜌𝑓 = 3.0%, 3.5% and 4.0% on the left hand side, while the
graphics on the right hand side show the model predictions for panels
with Dramix type I fibers and fiber contents 𝜌𝑓 = 6.0%, 7.0% and 8.0%.
The numerical predictions for the uniaxial tensile tests demonstrate that
the proposed constitutive model reproduces the increment of toughness
and strength with increasing fiber content and hence their ductility rise
and higher released energy values are obtained.



Mechanics Research Communications 129 (2023) 104088A. Caggiano et al.
Fig. 12. 𝐶𝐼 polar plots for 𝜃 = 15◦ and 𝜃 = 30◦ (fracture mixed modes with prevalent shear).
Fig. 13. 𝐶𝐼 polar plots for 𝜃 = 45◦ and 𝜃 = 60◦ fracture mixed modes.
5. Failure performance and cracking indicators

This section is aimed at analyzing the influence of both stress
states and steel fiber amounts on the failure modes and post-cracking
performance of the SFRC. The numerical results for the dimensionless
𝐶𝐼 presented in this section are based on the numerical analysis
explained in Section 3.2. The 𝐶𝐼 has been computed for variable fibers
qualities and load (fracture) scenarios. Peak stresses are applied on
three different SFRC, i.e. plain concrete, Dramix I steel fibers FRCC
with 3.0 and 6.0%. All the numerical predictions refer to the model
parameters calibrated in Section 4.2.

It is worth remembering that the Cracking Indicator 𝐶𝐼 for DCA
varies as a function of two fundamental angles, i.e. 𝜃 defining the stress
state (lying upon the loading surface), and 𝜌 indicating all possible
directions of the discontinuity surface. The minimum 𝐶𝐼 value for
each 𝜙-angle determines the weakness direction of the considered
interface/joint.

A set of six interface stress states are selected and analyzed for each
◦
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SFRC type: (i) Uniaxial tension: 𝜃 = 90 (namely pure mode I); (ii)
Tension–shear with prevalence of tensile stress: 𝜃 = 75◦ and 𝜃 = 60◦;
(iii) Tension–Shear mixed mode I/II of fracture: 45◦. (iv) Tension–Shear
with prevalence of shear stresses: 𝜃 = 30◦ and 15◦.

The results of these analyses are shown between Figs. 6 to 11,
while from Figs. 12 to 14 they are represented via polar plots. Critical
values of the 𝜌𝑐𝑟-angle, representing those stress levels at which 𝐶𝐼 has
reached its minimum, are summarized in Table 4.

As it can be observed, 𝐶𝐼 assumes negative values only for the
analysis cases of plain concretes. This is due to the typical post-cracking
softening responses of the zero-thickness interface model, under all
cases of fracture in mode I, mode II and mixed cases for plain concrete.
Contrarily, positive values of 𝐶𝐼 are characterizing all the SFRC speci-
mens, with either 3.0% or 6.0% of fiber contents. With these amounts
of fibers, the post-cracking behavior of the joint model is characterized
by an hardening post-cracking response, consequently all the CIs have
values greater than zero. In case of the uniaxial tensile test (𝜃 = 90◦),
the critical 𝜌𝑐𝑟-angle (numerically evaluated) is equal to the initial load
angle 𝜃 for both, plain concrete and all SFRCs. In other words 𝜌𝑐𝑟 = 𝜃

◦
= 90 .
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Fig. 14. 𝐶𝐼 polar plots for fracture mixed modes with prevalent normal failure 𝜃 = 75◦ and pure mode I 𝜃 = 90◦.
It is interesting to note that when the analysis of 𝐶𝐼 is moving
from pure mode I towards modes II (i.e. from 𝜃 = 90◦ towards 𝜃 =
75◦, 𝜃 = 60◦, 𝜃 = 45◦, 𝜃 = 30◦ and 𝜃 = 15◦), the 𝜌𝑐𝑟 (indicating the
minimum values for 𝐶𝐼 analysis) assumes a value always lower than
the initial loading angle 𝜃: i.e., 𝜌𝑐𝑟 < 𝜃 always in mixed modes I/II. The
difference 𝜃 − 𝜌𝑐𝑟 reaches its maximum for the case of mixed fracture
with prevalence of shear stresses and the minimum of null value for
pure mode I. This is a clear indicator the weakest and ‘‘preferred’’ path
for cracking mechanisms for both plain concrete and SFRC is the pure
mode I.

The influence of the fiber content is also relevant in all cases.
Fiber contents clearly affect both the indicator value and critical failure
directions, much more in mixed fracture mechanisms that for the tensile
one. The 𝐶𝐼 values them self are barely influenced. Interesting is the
analysis of the difference 𝜃−𝜌𝑐𝑟 between plain concrete and SFRC with
3.0% or 6.0% of fiber contents (see Table 4). Looking at the same initial
𝜃 value, the difference 𝜃 − 𝜌𝑐𝑟 becomes bigger for SFRC with higher
amounts of fiber contents. This is a clear message that the fiber bridging
mechanisms clearly enhance the mode I fracture toughness of the SFRC
joint (see Fig. 14).

It is worth finally noticing that the proposed DCA failure indicators
explicitly incorporate the influence of fibers and the content of them
on the failure directions. Unlike the SCA approach for which the failure
direction is only determined by the more brittle phase that plasticizes,
and only depending on the cementitious matrix, it is not influenced by
the fiber content (see Vrech et al. [32]).

6. Concluding remarks

In this work, a fracture-based interface constitutive theory, aimed
at predicting the failure behavior of FRCC, has been developed. The
formulation is founded on a DCA and considers the well-known Mix-
ture Theory to smear the fibers effects. Bridging interactions of fibers
crossing cracks are modeled in the form of fiber-to-concrete bond–slip
and dowel mechanisms. In addition, a novel concept was presented for
evaluating the most critical direction for further loading by means of
a so-called normalized Cracking Indicator (CI) which was formulated
in this work for the FRCC interface model. The CI accounts for the
mechanical degradation in all different constituents of the mixture
and, consequently, allows to evaluate the dependence on the fibers
direction and content of the energy release evolution and how these
8

parameters affect the most critical direction for further loading. The
numerical analyses demonstrated that the constitutive proposal cap-
tures the fundamental features of the FRCC mechanical behavior. Very
good agreements between numerical results against experimental data,
available in scientific literature, have been achieved in terms of peak-
strength and post-cracking toughness for uniaxial tensile and fracture
mixed modes tests. Finally, the performance of CI, proposed in this
work as an extension of the normalized indicator for diffuse failure by
Hill’s condition of stability and now suitable for DCA approaches, was
demonstrated that can correctly predict the crack onset and the critical
directions for further loading in terms of the fiber contents and different
fracture scenarios.
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