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A B S T R A C T

IoT repackaging refers to an attack devoted to tampering with a legitimate firmware package by modifying its
content (e.g., injecting some malicious code) and re-distributing it in the wild. In such a scenario, the firmware
delivery and update processes are central to ensuring firmware integrity.

Unfortunately, several existing solutions lack proper integrity verification, exposing firmware to repack-
aging attacks. If this is not the case, they still require an external trust anchor (e.g., signing keys or secure
storage technologies), which could limit their adoption in resource-constrained environments. In addition,
state-of-the-art frameworks do not cope with the entire firmware production and delivery process, thereby
failing to protect the content generated by the firmware producers through the whole supply chain.

To mitigate such a problem, in this paper, we introduce PARIOT, a novel self-protecting scheme for IoT
that injects integrity checks, called anti-tampering (AT) controls, directly into the firmware. The AT controls
enable the runtime detection of repackaging attempts without needing signing keys, internet connection, secure
storage technologies, or external trusted parties. PARIOT can be adopted on top of existing state-of-the-art
solutions ensuring the widest compatibility with current IoT ecosystems and update frameworks. Also, we
have implemented this scheme into PARIOTIC, a prototype to protect C/C++ IoT firmware automatically. The
evaluation phase of 50 real-world firmware samples demonstrated the proposed methodology’s feasibility and
robustness against practical repackaging attacks without altering the firmware behavior or severe overheads.
1. Introduction

The Internet of Things (IoT) paradigm enables the growth of low-
cost embedded devices with network connectivity and real-time capa-
bilities that are now used in many verticals, from logistics to precision
farming and smart homes. Each IoT device is equipped with firmware,
i.e., a bundle that contains all the software needed to ensure the
functioning of the device hardware. Typically, the firmware comprises
a fully-fledged IoT operating system (like RIOT Baccelli et al., 2013 or
Contiki Dunkels et al., 2004) and at least an application that holds the
core functionalities of the thing.

During the building phase, the device manufacturer equips the IoT
device with the first version of the firmware. However, the functional-
ities an IoT device requires at deployment time will likely change. To
this aim, the firmware will need frequent updates for several reasons: to
offer additional functionalities, support new communication protocols,
and patch software bugs (including security vulnerabilities).

As firmware has a central role in the life cycle of an IoT device, its
security has raised serious concerns from the scientific and industrial
community. To this aim, several works were proposed to evaluate the
security of the firmware bundle (e.g., David et al., 2018 and Costin
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et al., 2014 or Costin et al., 2016), enforce the update mechanisms
(e.g., Dejon et al., 2019; Cui et al., 2013 and Langiu et al., 2019), or
patch existing firmware bundles to cope with end-of-life, vulnerable
images. (e.g., Carrillo-Mondéjar et al., 2022; Maroof et al., 2022,
and Christensen et al., 2020).

In particular, the integrity of the firmware delivered through an
update process represents a major security threat, as witnessed by many
real-life examples. For instance, the PsycoB0t (Dronebl, 2008) was the
first router botnet that altered the firmware of approximately 85,000
home routers and resulted in large-scale denial of service attacks. Also,
the Zigbee Worm (Ronen et al., 2017) triggered a chain reaction of
infections, initialized by a single compromised IoT device (light bulb),
using a malicious firmware update image.

An attacker can retrieve the firmware differently, such as obtaining
it from the vendor’s website or community forums, sniffing the OTA
update mechanism, or dumping it directly from the device (Gupta,
2019). Once the original firmware is obtained, the attacker can analyze
it through reverse engineering techniques to extract sensitive informa-
tion such as encryption keys, hard-coded credentials, or internal URLs.
Thanks to such knowledge, an attacker can craft a modified version
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of the firmware and try to re-distribute it in the wild as if it was the
original one (Mtetwa et al., 2019).

This type of attack called repackaging, is well-known in the mobile
ecosystem, where attackers alter and re-distribute thousands of Android
and iOS applications (Merlo et al., 2021). Unfortunately, such a security
threat is barely considered in the IoT ecosystem, especially in low-end
devices where resource constraints limit the applicability of state-of-
the-art mitigation techniques such as remote attestation or signature
verification.

Furthermore, many of the existing solutions for low-end IoT devices
focus only on some parts of the delivery process (e.g., from the up-
date server to the device) or do not perform a proper verification of
the downloaded firmware and hence cannot ensure its integrity. For
instance, Sparrow (SICS, 2018) (used by Contiki) only verifies the CRC
of the image to detect errors during transmissions.

On the other hand, recent firmware update solutions like SUIT (In-
ternet Engineering Task Force (IETF), 2018) or UpKit (Langiu et al.,
2019) need to have an additional trust anchor (e.g., a signing certificate
on the IoT device) or dedicated hardware, like a Trusted Execution
Environment (Asokan et al., 2018), to allow verifying the integrity of
the image. Nevertheless, the impairment of the supply chain or the
delivery mechanism (e.g., the update server or the companion mobile
app) could allow an attacker to inject a crafted firmware into the
delivery pipeline, such as the firmware modification attack reported
on commercial fitness trackers (Shim et al., 2017).

In this work, we investigate the impact of repackaging attacks on
IoT firmware, thereby discussing security threats that harm its integrity.
Also, we systematically review the integrity protection mechanisms
used by state-of-the-art solutions for IoT firmware updates, unveiling
their need to rely on signing keys, internet connection, or trusted
external entities to cope with the integrity of firmware bundles.

Then, we present PARIOT, a novel self-integrity protection mecha-
nism for IoT firmware that automatically spots altered firmware images
without any prerequisite to ensure the integrity of the firmware image
or modification to existing firmware delivery infrastructure.

Briefly, PARIOT focuses on inserting encrypted detection nodes
(called Cryptographically Obfuscated Logic Bombs Zeng et al., 2018) that
embed integrity checks on the content of the firmware. These checks
are known as anti-tampering (AT) controls. The detection nodes are
triggered during the execution of the firmware, and if some tampering
is detected, the firmware is usually forced to crash. The rationale is to
discourage the attacker from repackaging if the likelihood of building
a working repackaged firmware is low.

PARIOT aims at applying the protection scheme on the source code
during the building pipeline to ensure the widest compatibility with
state-of-the-art software update methods (e.g., SUIT) and at minimizing
the use of invasive procedures (e.g., binary rewriting Wenzl et al.,
2019) that may harm/brick the firmware image and, ultimately, the
IoT device.

To experimentally evaluate the feasibility of PARIOT, we imple-
mented it in a tool for C/C++ firmware (i.e., PARIOTIC) that is
compatible with existing firmware update solutions. We tested PARI-
OTIC in a RIOT-based IoT ecosystem with the SUIT update framework
and 50 real-world firmware samples. The tool – publicly available on
GitHub (Computer Security Laboratory, 2022) – achieved a 90% of
success rate and required – on average – only 64.2 s per firmware to
introduce the protections. We performed the runtime evaluation on
an iotlab-m3 board hosted by the FIT IoT-LAB testbed (Adjih et al.,
2015) to verify the resource consumption overhead (in terms of cur-
rent, voltage, and power) introduced by the protection on real IoT
devices. Moreover, we assessed the reliability of PARIOT by testing
the repackaging detection capabilities of the protected firmware at
runtime. The preliminary results showed that our solution ensures
high compatibility with existing firmware generation and delivery
processes, a low resource usage overhead, and a high detection rate
2

of repackaging attacks.
Structure of the paper. In the rest of the paper, we first introduce
the firmware production and delivery process (Section 2). Then, we
focus on the integrity threats concerning the previous steps (Section 3).
Section 4 presents the concept of firmware repackaging in the IoT
ecosystem and discusses state-of-the-art anti-repackaging techniques.
In contrast, Section 5 highlights the limitations of state-of-the-art ap-
proaches.

In Section 6, we describe the PARIOT protection scheme, its distin-
guishing features, and its runtime behavior. Moreover, we provide an
implementation of the methodology (PARIOTIC) in Section 7. Section 8
analyzes the results obtained by applying PARIOTIC on 50 real-world
firmware in a RIOT-based IoT ecosystem. Finally, in Section 9, we
conclude the paper by summing up the main takeaways and putting
forward some considerations for future works.

2. Firmware production and delivery process

Fig. 1 summarizes a typical firmware production and delivery pro-
cess. The first steps are devoted to the production of the firmware
(generation phase), i.e., the building of the software bundle containing
all the software that ensures the functioning of the IoT device.

The firmware supply chain – even for a relatively simple, single-
processor device – consists of many software providers, including chip
and tool vendors and companies that provide different software compo-
nents. In the case of Fig. 1, the software supply chain comprises three
actors providing the OS, the device drivers, and the application, which
delivers device core functionalities, respectively.

The different pieces of software are then composed by the Firmware
Manufacturer (FM), which generates the firmware image and some
metadata information, like a digitally-signed manifest file, used to
evaluate the success of the delivery phase. At the end of the generation
phase, the firmware is released on a centralized repository (e.g., an IoT
Firmware Update Server).

The firmware delivery process (distribution phase) can occur either
manually or by employing an automated firmware update process. In
the first case, users get the firmware from the firmware repository and
distribute it to the IoT devices by using over-the-air (OTA) technologies
(e.g., Bluetooth LE or Wi-Fi) or physical interfaces (e.g., UART or USB
ports). For such a task, the user may also rely on a Mobile Update Agent
(MUA), i.e., a companion mobile app (e.g., Samsung SmartThing1) that
acts as a gateway between the update server and the IoT device. After
receiving an update notification, the MUA downloads the software
update and verifies its integrity, and – once the verification succeeds
– it sends the update to the Firmware Consumer using low-power
radio technologies. As an example of integrity control, the MUA can
verify the consistency between the digitally-signed manifest file and the
software package.

In the automated distribution phase, instead, the firmware is dis-
tributed to the IoT devices by using client–server architectures (e.g.,
Software Updates for Internet of Things — SUIT) or distributed solu-
tions (e.g., Choi and Lee, 2020). If this is the case, the IoT Firmware
update server interacts through an access point with the device.

The last step in the firmware update is the loading phase. An agent
placed on the device (i.e., the Firmware Consumer - FC) receives the
software bundle and the metadata and copies the updated image in the
correct memory address to proceed with the installation. Such a step
may involve a further verification of the correctness of the received
data, e.g., through a hash check or signature verification.

3. Threats to firmware integrity

Security threats involving the integrity of firmware bundles can
occur in all three stages of the production and delivery process. This
section aims to provide information about the threats targeting the
integrity of the firmware bundle, the phase and the entities that are

1 https://www.samsung.com/it/apps/smartthings/.
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Fig. 1. Firmware production and delivery process.
affected, and the mitigation techniques and the requirements that
enable to cope with those threats.

From our analysis, we identified eight distinct security threats harm-
ing the integrity of the firmware updates, with some affecting more
than a phase of the firmware production and delivery process. The rest
of this section provides a brief description of each of them. Table 1
reports the list of all security threats, which can be uniquely identified
by a Thread ID (first column). To do so, we exploited the Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege (STRIDE) approach (Khan et al., 2017) and inte-
grated the contributions of state-of-the-art research in the field (David
et al., 2018; Gupta, 2019; Internet Engineering Task Force (IETF), 2018;
Lanigan et al., 2006).

Modification of firmware before signing . If an attacker can alter the
firmware bundle before it is signed (e.g., by modifying the code of one
of its components) during the generation phase, she can perform all the
same actions as the firmware manufacturer. This allows the attacker to
deploy firmware updates to devices that trust the FM. For example, the
attacker that deploys malware in the building environment of one of
the Producers or the FM can inject code into any binary referenced by
the bundle, or she can replace the referenced binary (digest) and URI
with the attacker’s ones. Possible mitigation techniques are a validation
process of the firmware bundle (e.g., by enforcing vulnerability assess-
ment and penetration testing activities) and using air-gapped building
environments that are protected from external interference.

Overriding critical metadata elements. An authorized actor – but not
the FM – uses an override mechanism during the generation phase to
change an information element in the metadata signed by the FM. For
example, if the authorized actor overrides the digest and URI of the
payload in the manifest file, she can replace the entire payload with
another - properly crafted -one. To mitigate this threat, the firmware
update process should enforce mandatory access control-like mecha-
nism by using access control lists with per-actor rights enforcement of
the FM and the different producers (Internet Engineering Task Force
(IETF), 2018).

Compromission of the intermediate agents. If an attacker succeeds in
compromising an agent in the distribution phase, then she can inject
a malicious/modified firmware bundle into the distribution chain. For
instance, a malicious actor can compromise the MUA to replace the
original firmware with a modified version after the firmware verifica-
tion phase, thus installing a modified firmware on the IoT device: Schüll
(2016) showed a new firmware modification attack against a fitness
tracker, where an adversary manipulated plain HTTP traffic and TLS
proxy between an original gateway and the update server. This threat
can be mitigated by providing a secure distribution environment (e.g., a
3

security-hardened MUA) and implementing a signature verification
process on the FC.

Traffic interception. In such a scenario, an attacker intercepts all
traffic to and from a device with the ability to monitor or modify any
data sent to or received from the device (Mtetwa et al., 2019). This
capability allows an attacker to alter or drop a valid firmware bundle
or its associated metadata during the distribution phase.

This threat can be mitigated by enforcing a secure transmission
protocol and/or encrypting the exchanged data (Nguyen et al., 2015).

Image replacement on the device. In this scenario, the attacker re-
places a newly downloaded firmware after the device finishes verifying
its metadata (e.g., it executes integrity checks on the manifest file),
fooling the device into executing the attacker’s image. This attack likely
requires physical access to the device; however, it can be carried with
another threat that allows remote execution. Common mitigation tech-
niques consist of adopting a verification mechanism of the firmware
bundle (e.g., signature/digest verification) on the FC and storing the
bundle in immutable/protected memory (Internet Engineering Task
Force (IETF), 2018).

Modification of metadata between authentication and use. If an at-
tacker can modify the metadata information after it is authenticated
(Time Of Check) but before it is used (Time Of Use) (Mtetwa et al.,
2019). The attacker can replace any content whatsoever. For instance,
she can replace the URI of the firmware bundle in the update manifest
file after it is validated by the MUA, causing the FC to download and
install a repackaged firmware. This threat can be mitigated by enforc-
ing the verification of the metadata on the FC and not on intermediate
agents (e.g., the MUA).

Exposure of signing keys. If an attacker obtains a key or even indi-
rect access to a key, then she can perform the same actions as the
legitimate user. In the worst case, if the key retrieved by the attacker
is considered trusted by the firmware update chain, the attacker can
perform firmware updates as though they were the legitimate owner of
the key. For example, if the attacker can obtain the Firmware Manufac-
turer’s signing key, she can generate malicious firmware updates and
deliver them through the distribution framework. This threat can be
mitigated by storing the signing keys in a protected/separated storage,
implementing a key rotation mechanism, or using air-gapped devices
to execute the signing process.

Unauthenticated images. In the case the IoT device does not verify
the image, an attacker can install a custom firmware on a device
by, for example, manipulating either the payload or the metadata
gaining complete control of the device. This attack can be prevented
by introducing digitally signed metadata that can be verified by the
FC (Internet Engineering Task Force (IETF), 2018).
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Table 1
List of threats affecting the integrity of firmware during the Firmware Production and Delivery Process.

ID Name Phase Involved entities

IMG.MODIFICATION Modification of firmware prior to signing Generation Producers, FM
META.OVERRIDE Overriding critical metadata elements Generation Producers, FM
DIS.AGCOMPR Compromission of the intermediate agents Distribution Access Point, MUA, IoT Client
DIS.MITM Traffic interception Distribution Network, OTA links
IMG.REPLACE Image replacement on the device Distribution, Loading MUA, IoT device
META.TOCTOU Modification of metadata between authentication and use Distribution, Loading MUA, IoT device
KEY.EXPOSURE Exposure of signing keys Generation, Loading FM, IoT device
IMG.NON_AUTH Unauthenticated images Loading IoT device
Fig. 2. Steps of a firmware repackaging attack.
4. Firmware repackaging: Background, attacker model & counter-
measures

The goal of a firmware repackaging attack (Panchal et al., 2018)
is to tamper with legitimate firmware and redistribute the modified
- i.e., repackaged - version to IoT devices to perform further attacks.
Repackaging attacks on IoT firmware are motivated by at least one of
the following reasons:

• Unauthorized access/usage. The attacker modifies the firmware
to bypass the predefined software access control privileges, e.g.,
to gain access to privileged functionalities or classified data.

• Unlicensed clones. The attacker’s goal is to reuse the crucial
firmware processes in some other programs. To this aim, the
attacker can extract and partially reuse part of the firmware
image to craft a clone of the original version (Al-Wosabi et al.,
2015).

• Malware injection. By injecting malicious code, the attacker
aims to breach the firmware integrity, thereby illegally altering
the firmware behavior. In such a case, compromised firmware can
disrupt the trustworthiness of an IoT device (ZDNet, 2016).

• Disrupting the system availability. The attacker aims to reduce
the system availability, injecting code in the firmware image able
to cause system halting (like DoS Attack) or significant delays in
the regular operation of an IoT device.

To carry out a repackaging attack, a malicious actor jointly exploits
the security threats discussed in Section 3. Fig. 2 illustrates the steps
involved in the firmware repackaging attack.

The first step is retrieving the original firmware image (𝑓𝑖𝑟𝑚 in
Fig. 2). Attackers can get hold of the firmware by: (i) dumping it using
the physical/remote access interfaces of an IoT device or an intermedi-
ate agent (Vasile et al., 2018) (DIS.AGCOMPR), (ii) sniffing the package
during an over the air (OTA) update (Gupta, 2019) (DIS.MITM), or
(iii) downloading it from the vendor’s website, support, and community
forums, or public repositories.
4

Then, the attacker analyzes the target firmware (Step 2) using
static and dynamic analysis techniques to inspect its behavior and ex-
tract sensitive information such as encryption keys, hard-coded creden-
tials, or sensitive URLs. Notable tools to perform such analysis include
Binwalk (ReFirm Labs, 2014), Firmware Analysis Comparison Toolkit
(FACT) (Fraunhofer FKIE, 2015), Firmware Modification Kit (brianpow,
2015), and Firmwalker (Craig Smith, 2015). This is a crucial step
that allows an attacker to thoroughly understand the firmware bundle,
exposing the firmware producer to security and privacy issues. The
extracted knowledge will be used in Step 3 to manipulate the original
image to inject custom code (e.g., malware), modify the existing binary
image to alter the legitimate behavior (IMG.MODIFICATION) or over-
ride critical metadata elements (META.OVERRIDE). In this step, the
attacker can exploit binary rewriting techniques (Wenzl et al., 2019)
to produce a crafted version of the firmware, i.e., 𝑅𝐸𝑃𝑓𝑖𝑟𝑚.

Finally, the attacker tests whether 𝑅𝐸𝑃𝑓𝑖𝑟𝑚 works properly (Step
4). If this is the case, in Step 5, the attacker redistributes 𝑅𝐸𝑃𝑓𝑖𝑟𝑚 in
the delivery pipeline (e.g., DIS.AGCOMPR) or installs it directly on a
target device (e.g., IMG.NON_AUTH, or META.TOCTOU). Otherwise,
the attacker further analyzes and modifies the original 𝑓𝑖𝑟𝑚 (back to
Step 2). Steps 2 to 4 are also known as the try and error cycle that
the attacker must keep executing until she gets a working repackaged
firmware.

4.1. Anti-repackaging techniques

Anti-repackaging aims to protect software from being successfully
repackaged. In the context of the IoT update process, anti-repackaging
protects the integrity of the entire firmware to ensure that the IoT
device will download, install, and execute the expected update. From
the attacker’s side, the activities to mount a repackaging attack will
now include two additional steps (i.e., Steps 2 and 3 of Fig. 3) related
to detecting and disabling repackaging protection techniques.

To this aim, an ideal anti-repackaging solution never lets the at-
tacker obtain working repackaged firmware (i.e., moving out from the
try and error cycle). A reliable anti-repackaging solution makes the
repackaging non-cost-effective, i.e., it requires so much time to be
disabled that the attacker gives up on repackaging the target.
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Fig. 3. Steps of a firmware repackaging attack for anti-repackaging protection.
Depending on the type of techniques enforced on the pipeline, we
can distinguish between two categories:

External anti-repackaging . This category includes all the techniques
relying on an external agent to execute anti-tampering checks. Exam-
ples are update agents (Langiu et al., 2019), trusted servers (Asokan
et al., 2018), or even blockchains (Lee and Lee, 2017). For example, the
authors of Perito and Tsudik (2010) propose a Secure Code Update By
Attestation in sensor networks (SCUBA), which can be used to repair
a compromised sensor through firmware updates. SCUBA utilizes an
authentication mechanism and software-based attestation to identify
memory regions infected by malware and transmits the repair update to
replace these regions. However, the attestation technique based on self-
checksumming code heavily relies on consistent timing characteristics
of the measurement process and an optimal checksum function. Due to
these assumptions, SCUBA is not a suitable approach for IoT settings.

To achieve the goal of protection, these techniques face the chal-
lenge of creating a communication channel between the firmware and
the external authority to perform the check. However, such a prerequi-
site may not be feasible in real-world scenarios of IoT ecosystems with
low connectivity or limited computational capabilities. In addition, this
channel has to be protected from repackaging, exposing it as a single
point of failure.

Internal anti-repackaging . This category of techniques aims to protect
software from being successfully repackaged by adding some protection
code – called detection nodes – in the source code before building the
firmware image and delivering it to the distribution phase.

The idea of detection nodes has been put forward in Luo et al.
(2016) and it refers to a self-protecting mechanism made by a piece
of code inserted into the original software, which carries out integrity
checks – called anti-tampering controls (e.g., signature check, package
name check) – when executed at runtime. More specifically, anti-
tampering checks compare the signature of a specific part of the
firmware with a value pre-computed during the building of the original
bundle; if such values differ, then a repackaging is detected, and the
detection node usually leads the firmware to fail, thereby frustrating
the repackaging effort.

To protect detection nodes, anti-repackaging solutions hide them
into the so-called logic bombs (Zeng et al., 2018), which has been
originally conceived in the malware world to hide malicious pay-
loads (Sharif et al., 2008). A logic bomb is a piece of code that is
executed when specific conditions are met. While logic bombs are
widely used by malware to introduce and trigger malicious conditions
inside apparently unarmed code (Fratantonio et al., 2016; Brumley
5

et al., 2008), this technique can also include tampering detection
code (namely, AT checks) inside the activated bomb. In a nutshell,
anti-tampering checks are self-protecting functions that aim to detect
modifications in a piece of software. To this goal, AT checks may
verify at runtime some relevant information of the code or the whole
executable file against precomputed values. Several methods exist to
detect tampering in executable files, as highlighted in Ahmadvand et al.
(2019) and Eldefrawy et al. (2012).

To hide the behavior of a logic bomb, researchers introduced the
concept of the Cryptographically Obfuscated Logic Bomb (hereafter,
CLB). At build time, the content of a logic bomb is replaced by an
encrypted version, which is only decrypted at runtime. In a typical
scenario, to perform encryption, the developer should include (and thus
reveal) the decryption key(s) in the executable. To avoid revealing the
key, the authors in Zeng et al. (2018) proposed a novel form of CLB
that exploits the executable’s logic to hide the key value. In particular,
the use of a CLB (Listing 1) consists in embedding a logic bomb in
a qualified condition (QC) and replacing it with an encrypted form. A
QC is a branch (if statement) containing an equality check where one
of the operands is a constant value (e.g., X == const). Thus, since
inside a QC, the variable (i.e., X) is always equal to the constant value
(i.e., const), X can be used as a decryption key for the content of
the branch. It is worth noting that the CLB is self-contained and does
not require an external or internal thrust anchor: a developer should
not include and expose the decryption key(s), which is automatically
computed by the program at runtime.

To create this kind of CLB, the original condition is transformed
into a new one where the pre-computed hash value of the constant
(i.e., Hconst) is compared with the result of the hash function applied
to variable X plus some salt. Besides, the original content of the qual-
ifying condition is encrypted using the const value as the encryption
key (i.e., encrypted_content). If the triggering condition is met,
then the X value is used to decrypt the encrypted_content and,
thus, launch the bomb.

1 i f (H(X , s a l t ) == Hconst ) {
2 body = decrypt ( encrypted_content , X) ;
3 execute ( body ) ;
4 }

Listing 1: Example of Cryptographically Obfuscated Logic Bomb
(CLB).

Logic bombs rely on the information asymmetry between the de-
veloper and the attacker, i.e., since the attacker has partial knowledge
of the software behaviors, it is unlikely that she can correctly guess the
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Fig. 4. High-level overview of PARIOT protection process and runtime behavior of a protected firmware.
key value used to encrypt the code. The protection of the CLB is granted
by the one-way property of cryptographic hash functions, which makes
it hard for the attacker to retrieve the original const value (i.e., the
decryption key) from its hash.

5. Related works

Operating systems designed explicitly for constrained IoT devices
(e.g., TinyOS Panchal et al., 2018 and Contiki Al-Wosabi et al., 2015)
often embed or can be extended with over-the-air reprogramming
capabilities. Still, many existing solutions focus only on a portion of the
update process or do not properly verify the downloaded firmware and
hence cannot ensure its integrity. This indeed results in OSes without
an update system (e.g., NuttX Foundation, 2018) or with an incom-
plete one. For instance, Sparrow (SICS, 2018) (used by Contiki) and
Deluge (Hui and Culler, 2004) (used by TinyOS) only verify the CRC to
ensure the integrity of the firmware during transmissions, leading to the
possibility of abusing the lack of controls by an attacker (e.g., through
IMG.MODIFICATION, META.TOCTOU, and IMG.NON_AUTH threats).

To this aim, the research community has been working on the
definition of secure IoT update processes (Arakadakis et al., 2020;
El Jaouhari and Bouvet, 2022). For instance, Hyun et al. (2008), Lani-
gan et al. (2006), and Dutta et al. (2006) proposed secure extensions
for Deluge that provide integrity assurance for the firmware image
and resilience against DoS attacks that specifically target firmware
dissemination protocols.

Other solutions, like UpKit (Langiu et al., 2019) or ASSURED
(Asokan et al., 2018), put forward scalable and lightweight approaches
able to perform software updates with end-to-end protection across
different OSes and hardware platforms. Also, the authors in Zandberg
et al. (2019) propose a secure firmware update mechanism for con-
strained IoT devices based on open standards such as CoAP, LwM2M,
and SUIT.

Finally, several works (Lee and Lee, 2017; Hu et al., 2019; Yohan
and Lo, 2018) exploited the blockchain technology to verify the au-
thenticity and integrity of a firmware version and to distribute a
specific version of firmware binary to the connected nodes in the
blockchain network. Notable examples include Firmware-Over-The-
Blockchain (FOTB) (Yohan and Lo, 2020) and CHAINIAC (Nikitin et al.,
2017) that exploit Bitcoin and Ethereum blockchain, respectively.
6

In our work, we reviewed the main state-of-the-art firmware update
solutions to identify the adopted integrity protection mechanisms, the
mandatory requirements to ensure their proper functioning and the
involved entities of the Firmware Production and Delivery Process.
Table 2 reports the results of the analysis.

Unfortunately, most of the existing proposals build the integrity and
authenticity of updates on one or more signing keys, which are prone
to loss (ThreatPost, 2015), theft (FreeBSD, 2012), or misuse (Register,
2022) (i.e., KEY.EXPOSURE threat). Proper protection for signing keys
to defend against such single points of failure is a top priority but
requires secure storage technologies such as hardware security mod-
ules (Asokan et al., 2018). It is worth emphasizing that revoking and
renewing signing keys (e.g., in reaction to a compromise) and informing
all their clients about these changes is usually cumbersome.

Also, some existing techniques face the challenge of creating a com-
munication channel between the IoT device and the external authority
(e.g., the blockchain or a tamper-proof server) to perform the check
(e.g., DIS.MITM, or IMG.REPLACE threats). However, such a prerequi-
site may not be feasible in real-world scenarios of IoT ecosystems with
low connectivity or limited computational capabilities.

To overcome such limitations, in this paper, we will present PAR-
IOT. This first solution ensures the integrity of the firmware update
by relying on a self-protection mechanism that does not require sign-
ing keys, internet connection, secure storage technologies, or external
trusted parties. In addition, our methodology is agnostic w.r.t. the
firmware delivery model and, thus, can be adopted on top of existing
solutions providing an extra layer of security with negligible overhead.

6. PARIOT

The analysis of the threats to the firmware integrity, the definition
of the attacker model, and the evaluation of the main solutions to
ensure the integrity of the IoT firmware during the update process
allowed us to determine that:

1. state-of-the-art solutions are vulnerable to IMG.MODIFICATION,
i.e., an attacker or a malicious FM can repack the content of the
IoT firmware before the signing process in the generation phase;
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Table 2
Analysis of the integrity protection mechanisms adopted by state-of-the-art firmware update solutions.

Work Year Integrity protection mechanism Requirements

Lanigan et al. (2006) 2006 ECDSA signature verification of each
transmitted block

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Dutta et al. (2006) 2006 RSA signature verification of each transmitted
block

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Hyun et al. (2008) 2008 Merkle hash tree signature verification
of each transmitted block

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Samuel et al. (2010) 2010 Signature verification with multiple roles – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Aschenbruck et al. (2012) 2012 Elliptic Curve Cryptography (ECC) signature
verification

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Salas (2013) 2013 Biometric-aided ECC cryptosystem – Dedicated Hardware (IoT devices)
– Secure Storage Technology (IoT devices)

Doroodgar et al. (2014) 2014 Merkle hash tree signature verification
of each transmitted block

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Chandra et al. (2016) 2016 No integrity verification –

Karthik et al. (2016) 2016 Signature verification with multiple roles – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Doddapaneni et al. (2017) 2017 Signature Verification of FOTA Objects – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Nikitin et al. (2017) 2017 Collective signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)
– Secure connection with the Blockchain (IoT device)

Lee and Lee (2017) 2017 Signature verification of the metadata file
stored in the Blockchain

– Storage space for the Blockchain (IoT devices)
– Secure connection with the Blockchain (IoT device)
– Pub Keys (nodes)
– Secure Storage Technology for Private Key (nodes)

Teng et al. (2017) 2017 Signature verification stored in Trusted
Platform Modules

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Doddapaneni et al. (2017) 2017 Signature and Encryption of Secure Object
Format

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Prada-Delgado et al. (2017) 2017 Encrpytion using shared keys of the update
payload

– Physically Unclonable Functions (IoT Devices)

Asokan et al. (2018) 2018 RSA signature verification of the firmware
metadata

– Hardware Security Module (all)

Yohan and Lo (2018) 2018 FMart Contract signature verification of the
firmware

– Secure connection with the Blockchain (IoT device)
– Pub Keys (nodes)
– Secure Storage Technology for Private Key (nodes)

Kumar et al. (2018) 2018 Signature and Encryption using AES and RSA
keys

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)
– Secure Storage Technology for Shared Key (all)

Zandberg et al. (2019) 2019 Elliptic Curve Cryptography (ECC) signature
verification of manifest metadata

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Hu et al. (2019) 2019 FMart Contract signature verification of the
firmware

– Hardware Security Module (all nodes)
– Secure connection with the Blockchain (IoT device)

Gupta and van Oorschot (2019) 2019 Elliptic Curve Cryptography (ECC) signature
verification of software update

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Mbakoyiannis et al. (2019) 2019 Multi-trust signature verification of manifest
metadata

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Langiu et al. (2019) 2019 Double signature on the update image – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Dhobi et al. (2019) 2019 Hardware-based signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology (IoT devices)
– Dedicated Hardware (IoT devices)

Kerliu et al. (2019) 2019 Hardware-based signature verification – Secure Storage Technology (IoT devices)
– Dedicated Hardware (IoT devices)

Pillai et al. (2019) 2019 Verification of Hash Chain – Storage space for the Blockchain (IoT devices)
– Secure connection with the Blockchain (IoT device)
– Pub Keys (nodes)
– Secure Storage Technology for Private Key (nodes)

Dhakal et al. (2019) 2019 Integrity verification executed in the Blockchain
Server

– Tamper-proof Blockchain server
– Secure connection with the Blockchain Server (IoT device)

(continued on next page)
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Table 2 (continued).
Witanto et al. (2019) 2019 Peer-to-peer update with Smart Contract

signature verification of the firmware
– Secure connection with the Blockchain (IoT device)
– Pub Keys (nodes)
– Secure Storage Technology for Private Key (nodes)

Yohan and Lo (2020) 2020 Peer-to-peer verification process through
consensus

– Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Anastasiou et al. (2020) 2020 Smart Contract signature verification of the
firmware

– Hardware Security Module (all nodes)
– Secure connection with the Blockchain (IoT device)

Sahlmann et al. (2020) 2020 Digest signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Falas et al. (2021) 2021 Hardware-based signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

Tsaur et al. (2022) 2022 Smart Contract signature verification of the
firmware

– Storage space for the Blockchain (IoT devices)
– Secure connection with the Blockchain (IoT device)
– Pub Keys (nodes)
– Secure Storage Technology for Private Key (nodes)

Ghosal et al. (2022) 2022 Digest signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)

de Sousa et al. (2022) 2022 Digest signature verification – Pub Keys (IoT Devices)
– Secure Storage Technology for Private Key (FM)
2. All solutions based on the signature of the firmware bundle or
the associated metadata are vulnerable to the KEY.EXPOSURE
and META.TOCTOU threats thereby vanishing the adopted en-
forcement mechanisms; the only way to cope with such threats
is to adopt secure storage technologies or hardware security
modules that may not be compatible with low-end IoT devices;

In this section, we introduce the basics of PARIOT (Pervasive Anti-
Repackaging for IoT), the first solution of internal anti-repackaging for
oT firmware that can extend existing software update solutions to en-
ure resilience against repackaging attacks in the whole production and
elivery process. PARIOT does not require signing keys, secure storage
echnologies, or hardware security modules to ensure full compatibility
ith low-end IoT devices.

PARIOT protects an IoT firmware by injecting self-protecting code
irectly inside the firmware code. The methodology exploits the use of
ryptographically obfuscated Logic Bombs (Zeng et al., 2018) (CLB) to
ide anti-tampering (AT) checks in the firmware executable. Such CLBs
ill be triggered (i.e., explode) in case of any tampering is detected.
oreover, to defuse an AT check inside a CLB, the attacker would need

o execute the CLB, retrieve the value of the decryption key to decrypt
ts content, and then bypass or remove the AT checks injected in the
ody of the qualified condition.

This section details the PARIOT protection scheme and its runtime
ehavior.

.1. Protection scheme and runtime behavior

The PARIOT protection scheme is based on the dissemination in
he IoT firmware of CLBs that hide a set of AT checks. To minimize
he complexity, each CLB embeds a single AT check that performs a
ignature verification of a portion of the IoT firmware executable. Still,
t is worth noticing that PARIOT supports the definition of other AT
hecks as well as different CLB schemes.

Fig. 4 shows a high-level overview of the proposed technique’s pro-
ection process and the runtime behavior. PARIOT starts the protection
rocess from the source code of the IoT firmware. In detail, it parses the
ource code (Step 1) to identify the set of suitably qualified conditions
Step 2). In Step 3, these conditions are transformed according to
he CLB schema. During this process, the equality check of the QC
s transformed into the cryptographically obfuscated form (Step 3.1).
hen, PARIOT extracts the body of the qualified condition (Step 3.2),

njects the AT code (Step 3.3), and adds the logic to decrypt and
xecute the new body once in the encrypted form (Step 3.4). The
hoice of injecting the CLBs directly into the source code allows for
inimizing invasive procedures (e.g., binary rewriting) that may break
8

the compatibility with existing firmware update frameworks or disrupt
the firmware image.

Depending on the implemented AT controls, the scheme could com-
pute some digest values (e.g., the hash code for some executable code),
storing their values inside the corresponding bombs. To do so, PARIOT
triggers the firmware compilation process to complete the protection.
This process depends on the firmware being protected: PARIOT simply
invokes its original build system. In Steps 4–5, the computed values
are the expected results of each AT, which executes the integrity check
by comparing a runtime computed value with the digest stored in the
bomb.

Finally, PARIOT encrypts each CLB with their constant values
(const) to obtain the protected firmware.

At runtime, the code of the CLBs is executed iff the value of the
variable in the QC (plus a salt) is equal to the constant value (i.e., if
its hash matches Hconst - Step 6). If this is the case, the body of the
CLB is decrypted using the const value as the decryption key (Step
7), and the corresponding code is executed. This behavior triggers the
AT check (Step 8) that computes the digest of a portion of the firmware
executable and compares it with the stored one. If these values match,
the execution can proceed normally (Step 9a). Otherwise, the AT
reports a tampering attempt and executes an action, like sending an
alert to the Firmware Manufacturer or triggering a Security Exception
and aborting the execution (i.e., the case of Step 9b).

7. PARIOTIC

To demonstrate the applicability and the feasibility of PARIOT, we
developed PARIOTIC (i.e., PARIOT for Integrated C-based firmware) to
support the protection of IoT firmware designed in C/C++ program-
ming language. The tool is publicly available on GitHub at Computer
Security Laboratory (2022).

PARIOTIC consists of two main modules:

• CLB Injector. This module works directly on the firmware source
code and is responsible for parsing of the source code, detect the
QCs, and build of CLBs (Steps 1–3 of the protection process).

• CLB Protector. This module processes the compiled IoT firmware
and is responsible for computing the signature-verification digests
of the AT checks and encrypting the CLBs (Steps 4–5 of Fig. 4).

7.1. CLB Injector

CLB Injector is built using the Python language and leverages the
Clang library2 to pre-process the C/C++ source code.

2 https://github.com/llvm-mirror/clang/tree/master/bindings/python.

https://github.com/llvm-mirror/clang/tree/master/bindings/python
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During this phase, CLB Injector scans the source code to obtain the
list of qualified conditions that can host a logic bomb. In the current
implementation, CLB Injector supports if-then-else statements with an
equality condition of the form of X == const. If we consider the source
code of Listing 2 as an example, CLB Injector would detect one QC at
row 7.

1 i n t funA ( i n t val ) ;
2

3 void funB ( i n t val ) {
4 i n t a = 0;
5 [ . . . ]
6 /∗ QC ∗/
7 i f ( a == CONST) {
8 /∗ or_code ∗/
9 i n t re s = funA ( val ) ;
0 p r i n t f ( " The r e s u l t i s %d " , re s ) ;
1 }
2 [ . . . ]
3 }

Listing 2: Example of a C source code.

After the QC detection phase, CLB Injector converts each QC in the
corresponding CLB. To do so, the tool computes the hash of the constant
value of the QC, generates a 4-bytes random salt, and modifies the if
ondition to match the form if(H(X,salt) == Hconst). Then, it
reates a new function (𝑒𝑥𝑡_𝑓𝑢𝑛) that encapsulates the QC original body
nd accepts – as input parameters – all the variables used inside the
ody. Moreover, during this phase, the module adds an AT control in
𝑥𝑡_𝑓𝑢𝑛 (Step 3.3 of Fig. 4). In the current implementation, the AT con-
rol evaluates the hash signature of a portion of the compiled firmware
nd raises a security exception in case of a signature mismatch.

Since CLB Injector works directly on the source code, it injects
hree placeholder values into the source code that will be updated by
LB Protector before the encryption phase. In detail, the module adds
hree variables, i.e., offset, and count to identify the part of the

executable to evaluate in the AT control, and control_value for
the expected result of the verification.

Finally, CLB Injector injects the functions to decrypt and execute
𝑒𝑥𝑡_𝑓𝑢𝑛 in the body of the CLB.

Listing 3 reports the processing result of CLB Injector on the exam-
ple code of Listing 2. Starting from the QC located in 𝑓𝑢𝑛𝐵, CLB Injector
creates a new function (𝑒𝑥𝑡_𝑓𝑢𝑛𝐵) that contains the original body of the
QC (rows 23–33). Then, it injects an anti-tampering control (row 29)
that verifies a portion of the executable file (identified by offset and
count - rows 25 and 26) against the expected hash value (i.e., the
variable control_value - row 27). Finally, CLB Injector replaces
the original body of the QC with the code to decrypt and execute the
original function (rows 40 and 41).

1 i n t funA ( i n t value ) ;
2

3 /∗ pt r to s t a r t of the firmware ∗/
4 u i n t 8 _ t ∗pt r ;
5

6 void at _check ( o f f _ t o f f s e t , s i z e _ t count , i n t
cont ro l _va lue , u i n t 8 _ t ∗pt r ) {

7 i n t i ;
8 u i n t 8 _ t ∗buf = malloc ( s i z e o f ( u i n t 8 _ t ) ∗ count ) ;
9 /∗ Read the bytes to con t ro l ∗/
0 i f ( i = 0; i < count ; i ++) {
1 buf [ i ] = pt r [ o f f s e t+i ] ;
2 }
3 /∗ I n t e g r i t y check ∗/
4 i f ( hash ( buf ) != con t ro l _ va lue ) {
5 puts ( "∗Aborting : Secur i ty Exception (

Repackaging detected ) " ) ;
6 f r e e ( buf ) ;
7 e x i t (123) ;
9

8 }
9 f r e e ( buf ) ;
0 re turn ;
1 }
2

3 void ext _ funB ( i n t ∗ val ) {
4 /∗ Placeholders ∗/
5 o f f _ t o f f s e t = 0x0ff53701 ;
6 s i z e _ t count = 0xb17e5010 ;
7 i n t con t ro l _ va lue = 0x4559ffff ;
8 /∗ AT check ∗/
9 at _check ( o f f s e t , count , cont ro l _va lue , p t r ) ;
0 /∗ or_code of funB ∗/
1 i n t re s = funA ( val ) ;
2 p r i n t f ( " The r e s u l t i s %d\n " , r e s ) ;
3 }
4

5 void funB ( i n t val ) {
6 i n t a = 0;
7 [ . . . ]
8 /∗ CLB ∗/
9 i f ( hash ( a , s a l t ) == Hconst ) {
0 decrypt (& ext_funB , &a ) ;
1 ext _ funB (& val ) ;
2 }
3 [ . . . ]
4 }

Listing 3: Output code produced by CLB Injector.

7.2. CLB Protector

CLB Protector is a Java command-line tool that processes the com-
piled IoT firmware to (i) update the control values of the AT checks
and (ii) encrypt the content of the CLBs. The module receives from CLB
Injector the list of CLBs, the functions that need encryption (i.e., the list
of 𝑒𝑥𝑡_𝑓𝑢𝑛 methods), and their corresponding encryption keys (i.e., the
𝑐𝑜𝑛𝑠𝑡 values).

For each CLB, the tool exploits nm3 to locate in the firmware
executable the corresponding 𝑒𝑥𝑡_𝑓𝑢𝑛 and the position of the embedded
control values (i.e., offset, count, and control_value). Also,
the module identifies the portion of code that the AT checks will
evaluate. The current version of CLB Protector selects all the compiled
code (the content of the .text elf section). From the selected code, the
module computes: (i) the starting position (offset), (ii) the number of
bytes (count), and (iii) the hash of the selection (control_value).
Then, CLB Protector replaces the placeholder values with the obtained
results (Step 4 of Fig. 4). Finally, CLB Protector encrypts the bytes of
the 𝑒𝑥𝑡_𝑓𝑢𝑛 using the 𝑐𝑜𝑛𝑠𝑡 value as the encryption key (step 5).

Fig. 5 shows the protection applied by CLB Protector on the part
of the executable file containing 𝑒𝑥𝑡_𝑓𝑢𝑛𝐵 of Listing 3. In detail, the
tool locates the control values (Fig. 5(a)), computes and updates their
values (Fig. 5(b)) and, then, encrypts the entire function (Fig. 5(c)).

8. Experimental evaluation

We empirically assessed the applicability of PARIOT by apply-
ing the PARIOTIC protection on 50 real-world samples for resource-
constrained IoT devices in a RIOT-based ecosystem with the SUIT
update framework.

RIOT is an open-source OS designed for resource-constrained IoT
devices that have gained the scientific community’s attention in the
last few years (Baccelli et al., 2018). RIOT allows for standard C and
C++ application programming, provides multi-threading and real-time
capabilities, and only requires a minimum of 1.5 KB of RAM. RIOT

3 https://linux.die.net/man/1/nm.

https://linux.die.net/man/1/nm
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Fig. 5. CLB Protector protection process on the part of the executable file containing 𝑒𝑥𝑡_𝑓𝑢𝑛𝐵 of Listing 3.
consists of a microkernel architecture with core functionalities and
pluggable modules that support multiple network stacks, libraries, and
utility (RIOT OS, 2022b).

In detail, the experimental campaign applied the tool on each
firmware to evaluate the distribution of the protection controls and the
introduced size overhead. Each firmware is built using RIOT OS version
2021.05 and a different RIOT app (as detailed in Section 8.1) for two
different boards, i.e., native (RIOT OS, 2022c) and iotlab-m3 (RIOT OS,
2022a). Hereafter, we refer to each firmware with the name of the
contained application.

The building and protection phase was performed on a virtual
machine running Ubuntu 20.04 with four processors and 16 GB RAM.

Then, we evaluated the reliability of the protection scheme at
runtime. First, we executed the protected firmware images to check the
proper functioning. Then, we tested the solution against actual repack-
aging attacks by attempting to repackage each protected firmware and
testing the tampered file. The runtime evaluations were executed on
a real iotlab-m3 board hosted by the FIT IoT-LAB testbed (Adjih et al.,
2015). The iotlab-m3 board has an STM32 MCU, 32-bit Cortex M3 CPU,
64 KB of RAM, and 256 KB of ROM.

8.1. Dataset

The preparation of the dataset consisted of the following steps.
First, we scraped GitHub (GitHub, 2022) looking for recent repositories
(i.e., since January 2019) that contain the words ‘‘RIOT OS’’ and
‘‘IoT’’ and at least one of the following keywords: {‘‘app’’, ‘‘appli-
cation’’, ‘‘firmware’’, ‘‘code’’} (e.g., query RIOT OS IoT firmware
site:github.com after:2019-1-1). The analysis resulted in the
10
identification of 150 unique public GitHub repositories matching our
criteria. From these, we manually examined the collected repositories
to retain only the ones that contain IoT apps compatible with recent
RIOT OS versions (i.e., at least ≥ 2021.05) and support the IoT boards
included in the experimental evaluation (i.e., native and iotlab-m3). Af-
ter the review process, we obtained a set of 50 different apps distributed
across 16 GitHub repositories (∼10% – 16∕150). Table A.3 in Appendix
reports the name of each app, the link to the GitHub project, and the
subfolder that contains the source code. Finally, we built each firmware
using RIOT OS version 2021.05 and a different RIOT app for the native
and iotlab-m3 boards.

It is important to notice that the low availability of open-source and
working apps for the RIOT OS directly influenced the magnitude of the
dataset. Still, we obtained a representative collection of samples as the
apps come from heterogeneous scenarios and use different RIOT mod-
ules. Notables examples are the museum app, which is part of the ARte
(Augmented Reality to educate) project, and the election_master
app. The former leverages the MQTT protocol (Stanford-Clark and
Nipper, 2022) relying on the emcute RIOT module to improve the in-
teraction between visitors and artworks with the COVID-19 restrictions.
The latter implements a custom leader election algorithm on RIOT OS
nodes connected through the network and includes the modules for the
routing protocol (i.e., gnrc_rpl, and auto_init_gnrc_rpl). We
reported in Table A.4 in Appendix a detail of the RIOT modules used
in each app of the dataset. Finally, It is worth empathizing that large-
scale analysis is out of the scope of this work: our evaluation aims
to demonstrate the effectiveness and the enforceability of PARIOTIC
regardless of the features (i.e., included RIOT OS modules) of the RIOT
apps.
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Fig. 6. Number of CLBs injected in the RIOT firmware samples of the dataset.
.2. Protection evaluation

PARIOTIC was able to apply the protections over the entire dataset
n nearly 53 min (i.e., 3208 s) for iotlab-m3 board and 46 min (2818 s)
or the native board. The protection of a single firmware took, on
verage, 64.2 s.

PARIOTIC worked successfully in 90% (45/50) of the cases, i.e., it
enerated valid protected firmware. The remaining 10% (i.e., 5
irmware images based on decho, dsock, gnrc_brouter,
nanocoap, and ndn apps) failed due to errors in the building phase.
We manually investigated such problems to discover that the build pro-
cess failed due to the presence of at least an ext_fun with (i) unsupported
instructions (e.g., goto statements to undefined portions of code), or
(ii) undefined variables. These problems are mainly attributable to the
parsing of the source code (i.e., Step 1 of Fig. 4) that leads to incorrect
identification of the body of the QCs by the Clang python extension.

Fig. 6 shows the number of logic bombs distributed in each pro-
tected RIOT firmware for the two boards. PARIOTIC injected, on av-
erage, 10.9 CLBs (st. dev. 8.1) on firmware images for iotlab-m3 and
43 CLBs (st. dev. 11.9) on the ones compatible with the native board.
The significant difference in injected bombs reflects the peculiarities of
the two target devices regarding the codebase, compatible APIs, and
external modules included by default. In particular, the native board
encloses additional code and, consequently, more QCs to apply the
protection scheme concerning the Cortex-based counterpart. Finally, it
is worth noting that 12 executables for iotlab-m3 boards have few CLBs
(i.e., less than 3) since they include a basic app (e.g., similar to hello
world), thereby exacerbating such a gap.

Fig. 7 shows the percentage size overhead introduced by the protec-
tion on the firmware executable. The graph reflects the expected trend
following the number of injected CLBs for each firmware: the average
size overhead is higher in the native w.r.t. the iotlab-m3 board. In the
first case, the average size overhead is 11.3% with a standard deviation
of 2.8%; in the latter case, it remains within the 5% range (avg. 3.52%,
st. dev. 1.32%). In terms of absolute size, the actual increase consists of
a few kilobytes. The native board has an average growth of 134.3 KB
and a standard deviation of 46.7 KB. The size of the iotlab-m3 board
firmware increased to 82.9 KB on average, with a standard deviation
of 34.4 KB. Also, it is worth noting that the size overhead is always less
than 15.8%, even when PARIOTIC injects more than 60 CLBs, thereby
corresponding to a maximum growth of 197.9 KB for the native board
and 160.3 KB for the iotlab-m3.
11
Then, we empirically tested the protected firmware at runtime
to verify that the introduced protections did not harm the normal
functioning of the software bundle.

In detail, the runtime evaluation consisted of 5 test runs for each
protected firmware; each app has been stimulated for 2 min with a
sequence of manual inputs obtained from the help command of the
app or extracted from the documentation (where available). Including
the iotlab-m3 physical board (among the most used in the FIT IoT-LAB
testbed) in the experimental campaign allowed us to demonstrate the
solution’s applicability in real-world environments. The experimental
evaluation reported that all the protected firmware samples executed
correctly, i.e., they did not crash nor trigger exceptions.

8.3. Protection overhead

This set of experiments aims to evaluate the runtime overhead
introduced by the CLBs in a real IoT device. To do so, we leveraged
the consumption monitoring tool (RIOT OS, 2023) provided by IoT-
LAB. It allows to measure the energy consumption of a node in terms of
current (Ampere), voltage (Volt), and power (Watt), through an INA226
hardware component. INA226 has a programmable conversion times
(CT), which allows it to be configured to optimize the available timing
requirements in a given application. Along with the CT, the averaging
mode (AV) allows the INA226 to be more effective in reducing the noise
component during the measurement. Thus, the periodic measure (PM)
(or sampling period) is given by the formula

𝑃𝑀 = 𝐶𝑇 ∗ 𝐴𝑉 ∗ 2

We created a monitor profile with a CT of 8244 μs and AV of 4, resulting
in a sampling rate of almost 66 ms.

We executed both the original and the protected version of the
45 firmwares in an iotlab-m3 node with the consumption monitoring
enable. It is worth noticing that each firmware is tested under the same
input commands sequence.

Fig. 8 shows the overall mean and standard deviation for power,
voltage, and current consumptions for both the original and the pro-
tected firmware.

The results highlight that the introduced protections do not signifi-
cantly impact resource usage, even if the CLBs are decrypted during the
firmware’s executions. In particular, the voltage and current consump-
tions are comparable between the original and the protected versions,
which on average are 3.30 (st. dev. 0.0070) vs. 3.31 (st. dev. 0.0071)
for the voltage and 2.75 (st. dev. 0.8) vs. 2.8 (st. dev. 0.82) for the
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Fig. 7. Distribution of the size overhead over the protected RIOT apps.
Fig. 8. Average and standard deviation of the current, voltage, and power usage for the original and protected firmware samples.
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urrent user. However, we noticed a clear but still limited difference in
he power consumption. The protected firmware consumes on average
.2 mW more compared to their respective originals.

.4. Efficacy of the protection scheme

The last set of experiments aims to evaluate the efficacy of the
rotections introduced by PARIOT. To do so, we automatically ex-
loited a real repackaging attack on each of the firmware of the
ataset. In detail, we built a script that modifies a set of random values
n the compiled firmware. For instance, in Fig. 9, the repackaging
cript replaced the original string (i.e., RIOT native interrupt-
/signals initialized) with a custom one (i.e., RIOT has been
epackaged!).

We repackaged all the protected firmware samples (i.e., 45 exe-
utables) and repeated the execution with the same set of inputs of
he previous phase on an iotlab-m3 board hosted in the FIT IoT-LAB
atacenter in Lille. The experiments showed that 69% of the firmware
amples (i.e., 31/45) successfully detected the repackaging attempt. In
articular:

• 23 apps detect the repackaging at the startup;
• 8 apps detect the repackaging during the execution of the user

inputs, i.e., when a specific input is sent to the firmware;
• 14 apps do not detect the repackaging within the end of the test.

The results suggest a high repackaging detection rate. However,
1% of the tested apps failed to detect firmware modification. In the
revious phase, we highlighted how 12 firmware images of the dataset
ontain only a few CLBs (i.e., less than 5). In fact, most of the failed
etections are related to basic firmware samples that include an app
ith few lines of code. For instance, Listing 4 shows the main function
12

of the twp RIOT app. i
1 i n t main ( void ) {
2 x t i m e r _ t i c k s 3 2 _ t last_wakeup = xtimer_now ( ) ;
3 while (1) {
4 xt imer_per iodic_wakeup (& last_wakeup ,

INTERVAL) ;
5 p r i n t f ( " s l e p t u n t i l %" PRIu32 " \n " ,

x t imer _u s e c _ f r om_ t i ck s ( xtimer_now ( )
) ) ;

6 }
7 re turn 0;
8 }

Listing 4: Example of elementary app.

The main function and the invoked ones (i.e., xtimer_now,
printf, and xtimer_usec_from_ticks) do not contain any QC
r complex statements, resulting in a lack of CLBs injected in the app
ode. In addition, the simplicity of the app’s logic limited the range
f potential inputs that can trigger the other CLBs included in the OS
ernel, resulting in a lack of detection. Nonetheless, for the sake of
his paper, our experimental setup has been sufficient to prove that
he protection scheme is reliable. Such a consideration is supported by
ositive detection in the case of firmware samples with real-world apps.

.5. Prototype limitations

The experimental campaign identified some limitations of PARI-
TIC that will be discussed below. In the current implementation,
LB Injector injects the functions to decrypt and execute 𝑒𝑥𝑡_𝑓𝑢𝑛 as
tatic methods in each file that contains at least a CLB. Such a choice
emoves any dependency from third-party libraries that may not be
atively supported by the firmware (e.g., AES) or included in the
irmware bundle at the cost of introducing potentially redundant code.
oreover, this technique allows using decryption and hashing functions

ndependently from the part of the code that contains the CLB, which
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Fig. 9. Steps of the security evaluation of PARIOTIC on a firmware sample.
may not have access to the corresponding decryption library (e.g., a
CLB in the startup code). PARIOTIC implements a xor-based cipher
algorithm to encrypt the CLBs to guarantee that the encrypted payload
would have the same size/offset, thus avoiding potential misalignment
or overrides during the binary rewriting process.

The experimental results also highlighted a direct correlation be-
tween the complexity of the 𝑐𝑜𝑛𝑠𝑡 value used as the encryption key and
the hiding capability offered by the CLBs. For instance, we discovered
that many constant values in the RIOT OS are 2 bytes, thus limiting
the resiliency of PARIOTIC against brute force attacks to guess the
encryption key and bypass the CLBs. To overcome this limitation,
PARIOTIC could be extended to detect different types of logic bombs,
such as QCs containing a string comparison function like strcmp()
and strncmp().

Also, it is worth noticing that even if PARIOT supports generic
firmware images, either packed in a single executable or a package
(e.g., OpenWRT Holt and Huang, 2014), we focused our work on
firmware bundles assembled as an executable file, such as the RIOT
firmware. Thus, PARIOTIC implements AT controls to verify a set of
properties of the executable file, albeit they can be extended to check
the integrity of other executables or non-code files (e.g., a configuration
file).

Finally, it is worth noting that each processor provides a different
set of capabilities. For instance, in the native board, we can leverage the
13
memory management APIs of the host processor (e.g., mprotect Linux,
2021) to alter the memory protection bits and modify the content of the
executable section (.text). In the case of the ARM Cortex CPU and
the iotlab-m3 board, these APIs are not available, thereby requiring a
change in the implementation of the decryption logic (e.g., execute/-
modify some methods on the .data section). In other words, the
PARIOT methodology can be applied to generic IoT devices, but its
implementation (i.e., PARIOTIC) may require slight changes depending
on the target board and hardware/software constraints.

9. Conclusion

In this work, we proposed PARIOT, a self-protection mechanism
that ensures the resiliency of IoT firmware images against repackag-
ing attacks through the entire production and delivery process. The
methodology exploits the use of CLBs to hide anti-tampering checks in
the firmware executable that will trigger (i.e., explode) in case of any
tampering is detected.

Furthermore, we implemented PARIOT in a tool for protecting
C/C++ firmware, called PARIOTIC, that is publicly available on GitHub
(Computer Security Laboratory, 2022). PARIOTIC modifies the
firmware source code to inject CLBs and AT controls and the compiled
binary to build the CLBs by encrypting specific binary portions. It is
worth emphasizing that the integrity controls do not rely on external
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Table A.3
List of RIOT apps composing the dataset.
App name GitHub Repo Folder

asym_mqttsn RIOT-OS/RIOT examples/asymcute_mqttsn
ccn_lite RIOT-OS/RIOT examples/ccn-lite-relay
cord_ep RIOT-OS/RIOT examples/cord_ep
cord_epsim RIOT-OS/RIOT examples/cord_epsim
cord_lc RIOT-OS/RIOT examples/cord_lc
default RIOT-OS/RIOT examples/default
decho RIOT-OS/RIOT examples/dtls-echo
dsock RIOT-OS/RIOT examples/dtls-sock
dwolfssl RIOT-OS/RIOT examples/dtls-wolfssl
em_mqttsn RIOT-OS/RIOT examples/emcute_mqttsn
filesystem RIOT-OS/RIOT examples/filesystem
gcoap RIOT-OS/RIOT examples/gcoap
gnrc_brouter RIOT-OS/RIOT examples/gnrc_border_router
gnrc_net RIOT-OS/RIOT examples/gnrc_networking
gnrc_net_mac RIOT-OS/RIOT examples/gnrc_networking_mac
lua_basic RIOT-OS/RIOT examples/lua_basic
lua_REPL RIOT-OS/RIOT examples/lua_REPL
micropython RIOT-OS/RIOT examples/micropython
nanocoap RIOT-OS/RIOT examples/nanocoap_server
ndn RIOT-OS/RIOT examples/ndn-ping
paho RIOT-OS/RIOT examples/paho-mqtt
pselect RIOT-OS/RIOT examples/posix_select
psockets RIOT-OS/RIOT examples/posix_sockets
cpp RIOT-OS/RIOT examples/riot_and_cpp
saul RIOT-OS/RIOT examples/saul
tpw RIOT-OS/RIOT examples/timer_periodic_wakeup
room_counter ARte-team/ARte src/Boards/room_counter_emcute
room_infrared ARte-team/ARte src/Boards/room_infrared_emcute
museum ARte-team/ARte src/Boards/museum_counter_emcute
check_bin andreamazzitelli/checkBin RiotCode
sniffer fu-ilab-swp2021/LoRa-Packet-Sniffer b-l072z
ledext ichatz/riotos-apps ledext
relay_coap ichatz/riotos-apps relay_coap
temp_hum ichatz/riotos-apps temperature_humidity
tft_mqtts ichatz/riotos-apps tft_mqtts
udp1 ichatz/riotos-apps udp_usb
bitfield miri64/RIOT_playground bitfield_test/bitfield
udp2 miri64/RIOT_playground udp_test
sizeof_pktsnip miri64/RIOT_playground sizeof_pktsnip
aes deus778/riot-aes-benchmark
thread-duel kfessel/riot-thread-duel
election_master maconard/RIOT_leader-election cpsiot_masternode
election_worker maconard/RIOT_leader-election cpsiot_workernode
udptxrx induarun9086/RIOT_UDP_EchoServerExample udptxrx
echoserver induarun9086/RIOT_UDP_EchoServerExample udpechoserver
bus_monitor FrancescoCrino/ConnectedBusMonitor src/proto_ethos
perf_analysis StefanoMilani/RIOT-OS-examples performance-analysis
ttn yegorich/ttn-mapper-riot
spectrum RIOT-OS/applications spectrum-scanner
app03 Ciusss89/gtip-riotos test_03
trust anchors or verification processes. The evaluation of 50 firmware
samples for RIOT OS on two boards (i.e., native and iotlab-m3) demon-
strated the applicability and efficacy of the tool and the proposed
protection scheme at the cost of a reasonable size overhead of the
firmware image.

As future extensions of this work, we plan to extend the protection
scheme by adding multi-patter (i.e., heterogeneous) AT controls and
evaluate the impact of the PARIOT protection scheme on the repack-
aging attack steps presented in Fig. 3. Also, we would like to measure
the computational and energy footprint of the protection scheme on
resource-constrained IoT devices and extend the support to other IoT
OSes, e.g., Contiki-NG and FreeRTOS.
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Appendix. Experimental dataset

The dataset used for evaluating PARIOTIC consists of 50 firmware
images built using RIOT OS 2021.05 and a different user app that has
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Table A.4
RIOT OS Modules included in the firmware images of the dataset.

Firmware name Included RIOT modules

asym_mqtt $BOARD$, asymcute, auto_init, auto_init_gnrc_netif, gnrc_icmpv6_echo, gnrc_ipv6_default,
netdev_default, ps, shell, shell_cmds_default

ccn_lite $BOARD$, auto_init, auto_init_gnrc_netif, ccn-lite, gnrc_pktdump, netdev_default,
prng_xorshift, ps, shell, shell_cmds_default

cord_ep $BOARD$, auto_init, auto_init_gnrc_netif, cord_ep_standalone, fmt, gnrc_icmpv6_echo,
gnrc_ipv6_default, netdev_default, ps, shell, shell_cmds_default

cord_epsim $BOARD$, auto_init, auto_init_gnrc_netif, cord_epsim, gnrc_ipv6_default, netdev_default,
xtimer

cord_lc $BOARD$, auto_init, auto_init_gnrc_netif, cord_lc, gnrc_icmpv6_echo, gnrc_ipv6_default,
netdev_default, ps, shell, shell_cmds_default

default $BOARD$, auto_init, auto_init_gnrc_netif, gnrc, gnrc_pktdump, gnrc_txtsnd,
mci, netdev_default, ps, random, saul_default, schedstatistics,
shell, shell_cmds_default

decho $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_ipv6_default, netdev_default, prng_sha1prng,
shell, shell_cmds_default, sock_udp, tinydtls

dsock $BOARD$, auto_init, auto_init_gnrc_neti, gnrc_ipv6_default, netdev_default, prng_sha1prng,
shell, shell_cmds_default, sock_dtls, sock_udp, sock_util, tinydtls

dwolfssl $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_ipv6_default, netdev_default, shell,
shell_cmds_default, sock_udp, wolfcrypt, wolfcrypt_dh, wolfcrypt_ecc, wolfcrypt_rsa,
wolfssl, wolfssl_dtls, wolfssl_psk

em_mqtt $BOARD$, auto_init, auto_init_gnrc_netif, emcute, gnrc_icmpv6_echo, gnrc_ipv6_default,
gnrc_netif_single, netdev_default, ps, shell, shell_cmds_default

filesystem $BOARD$, auto_init, constfs, devfs, ps, shell,
shell_cmds_default, vfs_auto_format, vfs_default

gcoap $BOARD$, auto_init, auto_init_gnrc_netif, fmt, gcoap, gnrc_icmpv6_echo,
gnrc_ipv6_default, ipv4_addr, ipv6_addr, lwip_arp, lwip_dhcp_auto, lwip_ipv4,
lwip_ipv6, lwip_ipv6_autoconfig, lwip_netdev, netdev_default, netutils, od,
ps, random, shell, shell_cmds_default, socket_zep

gnrc_brouter $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_dhcpv6_client_6lbr, gnrc_icmpv6_echo,
gnrc_ipv6_auto_subnets_simple,gnrc_ipv6_nib_dns, gnrc_rpl, gnrc_sixlowpan_border_router_default,
gnrc_uhcpc, netdev_default, ps, shell, shell_cmds_default, sock_dns

gnrc_net $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc_icmpv6_echo, gnrc_icmpv6_error,
gnrc_ipv6_nib_dns, gnrc_ipv6_router_default, gnrc_rpl, netdev_default, netstats_ipv6, netstats_l2,
netstats_rpl, ps, shell, shell_cmd_gnrc_udp, shell_cmds_default, sock_dns, socket_zep

gnrc_net_mac $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc_gomach, gnrc_icmpv6_echo,
gnrc_ipv6_router_default, gnrc_lwmac, gnrc_pktdump, gnrc_rpl, gnrc_udp, netdev_default,
netstats_ipv6, netstats_l2, netstats_rpl, ps, shell, shell_cmds_default

lua_basic $BOARD$, auto_init, lua

lua_REPL $BOARD$, auto_init, lua

micropython $BOARD$, auto_init, micropython

nanocoap $BOARD$, auto_init, auto_init_gnrc_netif, fmt, gnrc_icmpv6_echo, gnrc_ipv6_default,
hashes, nanocoap_sock, netdev_default, prng_minstd, sock_udp, xtimer

ndn $BOARD$, auto_init, auto_init_gnrc_netif, ndn-riot, netdev_default, random,
shell, shell_cmds_default

paho $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_icmpv6_echo, gnrc_icmpv6_error, gnrc_ipv6_default,
ipv4_addr, ipv6_addr, lwip, lwip_arp, lwip_dhcp_auto, lwip_ipv4,
lwip_ipv6_autoconfig, lwip_netdev, netdev_default, ps, shell, shell_cmds_default,
sock_async_event, sock_ip, sock_tcp, sock_udp, ztimer, ztimer_msec

pselect $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_ipv6_default, netdev_default, posix_inet,
posix_select, posix_sockets, sock_udp

psocket $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_ipv6_default, netdev_default, posix_inet,
posix_sleep, posix_sockets, ps, shell, shell_cmds_default, sock_udp

cpp $BOARD$, auto_init, cpp, libstdcpp

saul $BOARD$, auto_init, ps, saul_default, shell, shell_cmds_default

tpw $BOARD$, auto_init, ztimer_msec

room_counter $BOARD$, auto_init, auto_init_gnrc_netif, emcute, gnrc_icmpv6_echo, gnrc_ipv6_default,
gnrc_netdev_default, gnrc_sock_udp, ps, shell, shell_commands, xtimer

room_infrared $BOARD$, auto_init, auto_init_gnrc_netif, emcute, gnrc_icmpv6_echo, gnrc_ipv6_default,
gnrc_netdev_default, gnrc_sock_udp, ps, shell, shell_commands, xtimer

museum $BOARD$, auto_init, auto_init_gnrc_netif, emcute, gnrc_icmpv6_echo, gnrc_ipv6_default,
gnrc_netdev_default, gnrc_sock_udp, ps, shell, shell_commands, xtimer

(continued on next page)
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Table A.4 (continued).
check_bin $BOARD$, $DRIVER$, auto_init, auto_init_loramac, fmt, periph_gpio,

periph_gpio_irq, periph_i2c, semtech-loramac, semtech_loramac_rx, shell, shell_commands,
u8g2, xtimer, ztimer, ztimer_usec

sniffer $BOARD$, $DRIVER$, auto_init, fatfs_vfs, mtd_sdcard, periph_gpio_irq, vfs, xtimer

ledex $BOARD$, auto_init, periph_gpio, xtimer

relay_coap $BOARD$, auto_init, periph_gpio, xtimer

temp_hum $BOARD$, auto_init, dht, fmt, periph_rtc

tft_mqtt $BOARD$, auto_init, auto_init_gnrc_netif, emcute, gnrc_ipv6_default, gnrc_netdev_default,
gnrc_netif_single, gnrc_uhcpc, periph_gpio, periph_spi, stdio_ethos, ucglib,
xtimer

udp1 $BOARD$, auto_init, auto_init_gnrc_netif, gnrc_icmpv6_echo, gnrc_ipv6_default, gnrc_netdev_default,
gnrc_uhcpc, stdio_ethos, xtimer

bitfield $BOARD$, auto_init

udp2 $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc_icmpv6_echo,
gnrc_ipv6_router_default,gnrc_netdev_default, gnrc_rpl, gnrc_udp, netstats_ipv6, netstats_l2, od,
ps, shell, shell_commands

sizeof_pktsnip fmt, $BOARD$

aes $BOARD$, auto_init, cipher_modes, crypto_aes_128, crypto_aes_192, crypto_aes_256,
od, od_string, random, shell, shell_commands, xtimer

thread-duel $BOARD$, auto_init, sched_cb, sema, xtimer

election_master $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc, gnrc_icmpv6_echo,
gnrc_icmpv6_error, gnrc_ipv6_default, gnrc_ipv6_router_default, gnrc_netdev_default, gnrc_pktdump,
gnrc_rpl,gnrc_sock_udp, gnrc_txtsnd, gnrc_udp, netstats_ipv6, netstats_l2,
netstats_rpl,periph_rtc, ps, random, schedstatistics, shell, shell_commands, xtimer

election_worker $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc, gnrc_icmpv6_echo,
gnrc_icmpv6_error, gnrc_ipv6_default, gnrc_ipv6_router_default, gnrc_netdev_default, gnrc_pktdump,
gnrc_rpl,gnrc_sock_udp, gnrc_txtsnd, gnrc_udp, netstats_ipv6, netstats_l2,
netstats_rpl,periph_rtc, ps, random, schedstatistics, shell, shell_commands, xtimer

udptxrx $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc_ipv6_default, gnrc_netdev_default,
gnrc_rpl, gnrc_sock_udp, gnrc_udp

echoserver $BOARD$, auto_init, auto_init_gnrc_netif, auto_init_gnrc_rpl, gnrc_ipv6_default, gnrc_netdev_default,
gnrc_rpl, gnrc_sock_udp, gnrc_udp

bus_monitor $BOARD$, $DRIVER$, auto_init, auto_init_gnrc_netif, emcute, gnrc_icmpv6_echo,
gnrc_ipv6_default, gnrc_netdev_default, gnrc_uhcpc, hts221, ps, shell,
shell_commands, stdio_ethos, xtimer, ztimer, ztimer_msec

perf_analysis $BOARD$, auto_init, crypto, prng_minstd, ps, shell, shell_commands, xtimer

ttn $BOARD$, auto_init, minmea, periph_uart, xtimer

spectrum $BOARD$, auto_init, auto_init_gnrc_netif, fmt, gnrc, netdev_default,
xtimer, ztimer64_xtimer_compat

app03 $BOARD$, auto_init, ps, shell, shell_commands, uptime,xtimer
a publicly-available source repository on GitHub. The dataset samples
use more than 130 different RIOT modules, and each app includes, on
average, 12 modules with a standard deviation of 6.

Table A.3 reports the name of each app, the link to the GitHub
project, and the subfolder that contains the source code. Table A.4
details the list of all the RIOT OS modules included for each firmware in
the dataset. We also specified $BOARD$ and $DRIVER$ to collectively
refer to the additional modules needed by a firmware to execute in a
particular board/driver.
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