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ABSTRACT A great deal of signals coming from structural monitoring scenarios are sparse in the frequency
domain, suggesting the application of Compressive Sensing (CS) techniques in order to reduce the quantity
of transmitted information. CS can recover data vectors starting from a subset of the original vector entries,
thus allowing to recover a previously sampled signal with much less samples than those suggested by
the Nyquist-Shannon theorem, and much less than what is commonly used in dynamic identification of
structures. A CS technique, specifically Basis Pursuit, is applied for the dynamic identification study of a
30-meter-high lightning rod, consisting of a steel monotubular pole, where possible issues had been raised
concerning fatigue damage due to resonant response with the first and second modes of vibration. An
experimental measurement campaign was carried out to estimate damping coefficients useful for structural
verifications. The ambient response was collected using triaxial accelerometers positioned at the top and at an
intermediate height, which transmit data via WiFi to a nearby workstation. Different sampling frequencies
for the compressed records are utilized for the dynamic identification of the structure, comparing modal
frequencies and damping ratios with values obtained from the original records to find the best trade-
off between data reduction and accuracy of modal parameters. Despite the usual challenges inherent in
identification problems, further complicated by the low damping levels of the structure under consideration,
the comparisons demonstrate a very good approximation. Fundamental frequencies are accurately estimated,
while the slight discrepancies in the damping coefficients are associated with the intrinsic uncertainties of
this parameter. Regarding the structural aspect of the case study, the outcomes of the analysis indicate very
low damping values, pointing to potential criticality, particularly in the second mode of vibration. Moreover,
the solid approximation achieved with the CS technique marks a significant advancement in applying IoT
solutions for structural monitoring, emphasizing a significant reduction in data flow without affecting data
quality. This may lead to several benefits, including simpler installation and maintenance, lower costs, and
decreased energy consumption.

INDEX TERMS Compressive Sensing, Modal Parameters, Operational Modal Analysis, Structural Moni-
toring, Vertical Slender Structures.

I. INTRODUCTION

STRUCTURAL Health Monitoring (SHM) of civil infras-
tructures is an activity of primary importance, allowing

the improvement of people’s safety, providing an increased
knowledge about the lifespan and status of structures and the
ability to ensure their correct functioning through mainte-
nance. Many structures require constant monitoring, giving
raise to a great quantity of transmitted data. The introduction
of Compressive Sensing (CS) in this process brings various
potential benefits. CS can recover data vectors (and, by proxy,

signals) starting from a subset of the original vector entries,
thus allowing to recover a previously sampled signal with
less samples than those suggested by the Nyquist-Shannon
theorem. Moreover, since most vectors are compressible, as
is the case of frequency sparse signals, the number of used
entries can potentially be a very small fraction of the original
Nyquist samples. With a reduced data flow, such as the one
coming from a CS application, IoT solutions become more
viable, generating various advantages like less demanding
installation and maintenance processes, reduced costs and
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energy consumption rates while at the same time enabling
connection to more secluded areas, which may be difficult
or outright impossible to reach with traditional approaches.
Compressive Sensing has been extensively described in a
great deal of books [1]–[6] and papers [7]–[15] from a the-
oretical standpoint. Even so, practical uses of CS are still
limited. Some works describe possible applications of CS
theory, such as the Non-Uniform Sampler [8], [12], [16],
the Random Modulation Pre-Integrator [9], [12], [17], the
Single-Pixel Camera [18] and other image/video process-
ing examples, such as [19]. Among other works exploring
possible practical applications of CS, some outline attempts
at applying CS to SHM: [20], [21], [22] and [23] for ex-
ample try to perform reconstruction starting from a slightly
reduced sample pool arising from transmission errors and
data loss that characterize wireless sensor networks. Although
these papers don’t explicitly tackle sub-Nyquist sampling,
they examine a variety of data types, such as vibrational
and ultrasonic sources. This broader perspective reinforces
the notion that CS is effective across a range of scenarios,
indicating its usefulness regardless of the specific type of data
being analyzed. Applications appear promising in enhancing
both the efficiency of data sampling and the effectiveness of
transmission in Wireless Sensor Networks [24], [25], [26].
[27] uses a machine-learning approach for CS data recon-
struction that is tested on simulated signals and on those from
a long span bridge. [28] proposes discrete cosine transform
for data compression applied to lab-scale building models for
modal frequency and damping identification. [29] applies a
rakeness-based CS based on data science paradigm to extract
frequencies of a pinned-pinned steel beam. [30] implements
a neural network model for SHM on a concrete bridge. [31]
uses CS to avoid false mode identification.

Nevertheless, the applicability of CS techniques for struc-
tural dynamic identification purposes still needs further in-
vestigation. First, structural response records are not always
sparse enough. Moreover, the accuracy of modal parameters
(especially damping) that can be identified from reduced data
records has not yet been thoroughly explored.

This paper presents the results of dynamic identification of
a steel lightning rod based on in-field ambient response. The
study extracts fundamental frequencies and damping ratios
from the recovered compressed signals and evaluates modal
damping coefficients using techniques of varying levels of
accuracy. The results demonstrate the practicality of employ-
ing Compressive Sensing in structural monitoring applica-
tions. This approach enables a reduction in data transmis-
sion requirements when utilizing IoT solutions, effectively
addressing challenges associated with common issues such
as data loss and sampling/transmission challenges in wireless
networks.

II. NOTES ON OMA TECHNIQUES
The class of Operational Modal Analysis (OMA) techniques
provides the dynamic identification of structures from re-
sponse records, under the assumption that excitation is ran-

dom stationary [32]. Early applications were referred to as
ambient vibration testing. In the last decades, OMA has been
systematized with new effective output-only modal identifi-
cation procedures that overcome the limitations in dealing
with closely spaced modes, noise and excitation having a
some spectral distribution. Nowadays, OMA is a widely ap-
plied tool with several successful applications in civil and
mechanical engineering under immeasurable loadings such as
environmental and operational loads.
Referring to the literature for overview on this topic (e.g.,

[33]), this investigation employs three distinct procedures
to identify modal frequencies and damping ratios: the Ran-
dom Decrement Technique (RDT), the Frequency-Domain
Decomposition (FDD), and the Data-Driven - Stochastic
Subspace Identification (SSI-data). The former is a simple
method for estimating the dynamic characteristics of struc-
tures by observing the stationary response, the second can
be classified in the framework of OMA procedures, the latter
belongs to advanced OMA.
RDT [34] expresses the random response in time t of a

single degree of freedom system having modal frequency n0
and damping ratio ξ0 as the sum of a deterministic part due to
initial conditions and a zero-mean random part due to random
excitation [35], [36]. Averaging a large enough number of
samples that are taken with the same starting level and slope,
the random part is averaged out, while the deterministic part
is transformed into a free decay system that is called Random
Decrement Signature (RDS) [37]:

a(τ) = G e−ξ0ω0τ×

×
(
cos

√
1− ξ20 ω0τ + H

ξ0
1− ξ20

sin
√

1− ξ20 ω0τ

)
(1)

where τ is the time delay while G, H, ω0 = 2πn0 and ξ0
are to be determined through least squares fitting. Although
this technique is designed for dealing with Single Degree of
Freedom (SDoF) systems only, it can be used to estimate fun-
damental frequencies and damping ratios of multi degree-of-
freedom systems with well separated vibration modes by us-
ing suitable bandpass filtering. The RDS for multiple closely
located vibration modes can be obtained by superimposition
of different damped free oscillations as proposed in [38].
Relying on white noise excitation, at least in the neigh-

borhood of the investigated frequencies, the FDD [39] esti-
mates frequencies and damping ratios by line-fitting the first
eigenvalue (or singular value) of the Power Spectral Density
(PSD) matrix of the measured response in the frequency
domain, n. In the neighborhood of each resonance frequency,
the response is approximated by the square modulus of the
frequency response function of a SDoF system:

SV(ω) =
SV0√

(ω2
0 − ω2)

2
+ 4ξ20ω

2
(2)

where ω = 2πn; ω0, ξ0 and SV0 are to be determined
through least squares fitting, also providing an estimate of
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the frequency and peak value that best approximate (in least-
square terms) the experimental response [40].

Given the basic conditions of linearity, stationarity and
response observability, SSI overcomes limitations due to non
white noise excitation by interpreting the measured response
as the output of the mechanical system under investigation
excited by unknown forces that are the output of a so-called
excitation system, loaded, in turns, by a Gaussian white noise.
This way, the measured response is interpreted as the output
of a combined system, made by the excitation system and
by the structure under test in series. The measured response
includes information about both. The discrimination between
structural modes and properties of the excitation is possible
since the structural system has a narrowband response and
time invariant properties. SSI converts the second order dif-
ferential equation of motion into two first order problems, de-
fined by the so-called state equation, modelling the dynamic
of the system, and the observation equation, supplying the
observed dynamic response [41]. The following discrete-time
stochastic state-space model holds:

jk+1 = Bjk +wk

xk = Djk + vk

(3)

where jk , xk are the state and the the observation vectors
at time t = k∆t; B, D are the state and the observation
matrices, wk is the process noise, due to disturbances and
model inaccuracies, and vk is the measurement noise due
to sensor inaccuracies. They are both unmeasurable, zero
mean, white processes. Working in the time domain, the
SSI-data algorithm carries out the identification of the state
sequence before the estimation of the state-space matrices
[41]. The separation of the physical poles from the spurious
mathematical ones takes advantage of the so-called stabi-
lization diagram. It shows the poles obtained for different
model orders as a function of the corresponding frequency. By
tracking the evolution of the poles, the physical modes can be
identified from alignments of stable poles, since the spurious
mathematical ones tend to be more scattered and typically do
not stabilize.

III. COMPRESSIVE SENSING
Compressive Sensing is a sampling paradigm, introduced in
[7], [12], [13], that allows recovery of vectors, regardless of
the nature of their content, using a potentially very small
subset of the original samples. This translates into the ability
to recover a signal with less samples than those suggested by
the Nyquist-Shannon theoremwithout introducing significant
inaccuracies (in fact, the aforementioned theorem introduces
a sufficient but not necessary condition for signal recovery).
The ability to recover a signal using CS relies on two princi-
ples: the first related to the vector to be obtained, i.e., Sparsity,
the second related to the recovery modality, i.e., Incoherence.

A. SPARSITY AND COMPRESSIBILITY
A vector x is said to be s-sparse

||x||0 := card(supp(x)) ≤ s (4)

where supp(x) indicates the support of a vector, which is the
index set of its nonzero entries (most likely a vector that is
shorter than the original one); card(S) is the cardinality of a
set, i.e., the number of nonzero values in it. If the number
of nonzero values in x is less than or equal to s that vector
is s-sparse. Eq.4 is also known as the L0-norm of a vector.
Not many signals exactly satisfy the property of sparsity, as
they may have negligible components which are nevertheless
different from zero, that’s why compressibility is considered
instead. A vector which can be approximated as a sparse
vector is compressible. If a vector is compressible then its
s-term approximation z (an alternate version of the original
vector with some nonzero entries put to zero in order to
transform it into an s-sparse vector) is able to minimize a
quantity called lp error s-term approximation, defined as

σs(x)p := inf {||x− z||p, z is s-sparse} (5)

In other words, compression is successful if z is made of the
highest valued nonzero entries in the original vector.
Many signals are compressible, as demonstrated by the

large amount and efficiency of compressed digital formats
that rely on this exact property. Sparsity and compressibility
influence the ability to acquire signals in a nonadaptive way,
something which improves the performance of the recovery
algorithms employed in the process [1], [12]. Tomaximize the
probability of properly retrieving the original vector another
property is needed.

B. INCOHERENCE & MATRIX QUALITY MEASURES
To correctly perform Compressive Sensing recovery, the
Sensing Matrix, also called Measurement Matrix, A, size
M×N, has to satisfy the property of Incoherence. The coher-
ence of a matrix is defined as

µ := max
1≤i̸=j≤N

|⟨ai, aj⟩| (6)

so it is equal to the maximum inner product between two
different L2-normalized columns of the matrix. It is also
known asMutual Incoherence Property (MIP) [42]. µ is equal
to 0 when the columns of the matrix form an orthonormal
system and is at most equal to 1. In general, the lower the
coherence, the better.
Coherence is a simple way to assess the quality of a mea-

surement matrix. The concept of Restricted Isometry Prop-
erty (RIP), also known as Uniform Uncertainty Principle,
is introduced as a more precise measure of the success rate
of recovery algorithms, even though it’s harder to compute
[43]. Whereas Coherence considers pairs of columns, RIP
considers all possibile s-tuples of columns, providing a more
precise and descriptive result. The s-th restricted isometry
constant δs of a matrix A ∈ C is the smallest value of δ
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such that the following expression holds true for all s-sparse
vectors x:

(1− δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22 (7)

if the matrix has L2-normalized columns, the relations be-
tween δ and µ are

δ1 = 0 s = 1

δ2 = µ s = 2

δs ≤ (s− 1)µ s ≥ 2

(8)

CS theory regards random matrices as the most versatile to
be adopted, irrespective of the sparse basis. Even so, using
domain-specific matrices, like the DFT, DCT and DST ma-
trices for the frequency domain and the DWT matrix for the
wavelet domain, offers qualitatively better results.

C. THE RECOVERY PROBLEM
Performing CS recovery amounts to solving an optimization
problem using L1-Minimization algorithms:

min ||x||1 subject to Ax = y (9)

M ≥ C s ln(N/s) (10)

The involved quantities are: y, the Measurement Vector in
which the random measures obtained from the original data
vector are stored, size M; the original vector x, size N (with
N > M ) and the previously mentioned Measurement Matrix
A, a M×N matrix which models the measurement/recovery
process (a simple way to obtain it is to select the rows of
the transformation matrix corresponding to the indices of
the values taken from x to create y). Finally, in Eq.10, s
is the degree of sparsity and C is a constant value greater
than 0 (C ≈ 0.28, according to [5]). It should be noted
that the formula suggests a minimum required number of
measurements lower than the one actually needed in practical
uses. Still, it perfectly summarizes the quantities involved in
the CS recovery process.

D. PRECISION AND EVALUATION PARAMETERS FOR CS
CS literature lists some parameters which can be used to eval-
uate obtained results [44], [45]. Among them, Recovery Error
(RE), Root Mean Square Error (RMSE) and Compression
Ratio (CR) are some of the most descriptive and intuitive
metrics. The Recovery Error is defined as

RE =
||x− x̂||
||x||

(11)

and its meaning is very similar to that of RMSE, of which we
propose a slightly modified version

nRMSE =

√√√√√ N∑
i=1

(xi − x̂i)2

N
∗ 1

max |x|
(12)

where x is the original sample, x̂ is the recovered value (x
and x̂ being the vectors containing all samples in Eq.11), N

is the length of both the original and of course the recovered
vector and finally max |x| denotes the largest component of
the vector, irrespective of its sign. Using a normalized RMSE
allows obtaining an evaluation metric which is not bound
by signal dynamics, thus of more immediate understanding.
Finally, Compression Ratio is a very simple parameter

CR =
M
N

(13)

it denotes the ratio between the number of compressive mea-
sures M and the original length N of the vector to be recov-
ered, providing insight on the amount of actually needed data
vs the originally gathered one.

IV. EXPERIMENTAL TESTS AND RESULTS
The effectiveness of compressive sensing is examined with a
specific focus on its application for the dynamic monitoring
of a 30 m high lightning rod. It is a steel tubular pole, clamped
at the base, with a 16-sided polygonal section, outer diameter
of 0.77 m at the base, 0.24 m at the top and a thickness t
of 4 mm. It is free of any appendages or ancillaries along
its height. This lightning rod was the object of an in-depth
investigation after frequent wind-induced vibrations were
observed, highlighting possible criticality for fatigue [46].
An experimental campaign was therefore conducted for its
dynamic identification. The structure was equipped with two
triaxial MEMS accelerometers positioned at the top of the
pole, at 30 m above the ground and at an intermediate level
of 16 m for appreciating the contribution of higher modes.
Sensor measurements are performed at 500 Hz, with a 20-bit
resolution and self-noise lower than 18× 10−6g/

√
Hz, being

g the gravity acceleration. A GNSS receiver embedded in the
sensors allows to synchronize the signals with the absolute
time. Each accelerometer acquires along the two horizontal
directions denoted by u and v; the vertical component is not
considered. Signals are sent viaWiFi to a workstation near the
pole, where they are stored on a laptop. Structural response
was recorded under approximately stationary ambient condi-
tions for a period of about two hours, during which measured
wind speed was less than 2 m/s and the temperature nearly
constant.
Figure 1 reports the main dimension of the structure, the u,

v directions and the acquisition system at the top of the pole.
The antenna shown in the figure is for transmitting the signal
through WiFi while an integrated memory bank allows to
manage a ring-buffer for long continuous recordings. Figure
2 provides an overview of the experimental process used in
this work. Figure 3 shows the 2-hour long time record of
ambient vibrations at the two levels 30 m and 16 m along
the horizontal directions u and v, respectively. RMS values of
acceleration components u, v are, respectively, 0.21 m/s2 and
0.17 m/s2 at the top of the pole. Figure 4 shows the PSD in
the frequency range [0, 10] Hz for each response component
at the two levels, highlighting the harmonic contributions of
the first three modes of vibration.
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FIGURE 1: Lighting rod and recorded response components

FIGURE 2: The employed methodology

A. MODAL IDENTIFICATION
This application specifically focuses on identifying modal
frequencies and damping ratios, which are the key parame-
ters for understanding dynamic behavior [47]. Fundamental
frequencies of the first three vibration modes can be easily
identified in Figure 4 by peak picking. They are, respectively:
n1 = 0.90 Hz, n2 = 3.61 Hz, n3 = 8.78 Hz. The estimate
of modal damping is much more delicate due to the inher-
ent randomness of the dissipation mechanism, data integrity
and errors associated with the estimation technique. In the
examined case, modal damping coefficients are expected to
be very small, therefore estimates are particularly sensitive to
the quality of the data.

By preconditioning the signals with a bandpass filter, RDT
is applied to investigate each vibration mode individually. As
an example, Figure 5a shows the RDS and the envelope func-
tion evaluated by a nonlinear fit of an exponential decay that
simulates the equivalent viscous damping of the first mode.

It is performed by using an iterative least squares estimation.
First and second modal damping ratios derive: ξ1 = 0.34%,
ξ2 = 0.019%. Figure 5b shows the first singular value of the
PSD matrix and its local best fitting approximation (dashed
green lines). Modal damping ratios derive: ξ1 = 0.31%,
ξ2 = 0.022%. Both applied methods do not yield meaningful
damping values for the third mode, likely due to its lowmodal
contribution.
SSI-data is implemented using the commercial tool

Macec® with MATLAB and the Signal Processing Toolbox
of MATLAB. Figure 6 shows the stabilization poles. It sup-
plies: ξ1 = 0.29%, ξ2 = 0.021%. The third modal damping
ratio is also derived: ξ3 = 0.06%.

The aerodynamic damping component, resulting from dis-
sipation through the air, is negligible at low wind velocities.
Consequently, the obtained values are considered merely rep-
resentative of the structural damping.

The obtained results consistently indicate very low damp-
ing coefficients for the analyzedmodes. The variations among
the outcomes from the different procedures align perfectly
with the inherent uncertainties characterizing the damping
estimate. Values of the first modal damping of steel poles
under ambient vibrations reported by the literature (e.g., [48],
[49] , [50], [51]) are generally in line with the present values,
although they tend to be a little higher, potentially due to
the usual presence of auxiliary elements. Available measure-
ments on the second vibration mode are quite few. Values
reported by [48] are much higher. This outcome highlights
possible criticality for aeroelastic conditions related to higher
modes and potential vortex induced vibrations in lock-in
regime [52].

B. MODAL IDENTIFICATION BY CS RECOVERY
The PSD of recorded signals (Figure 4) benefits from sparsity
in the frequency domain, highlighted by a clear harmonic
content in the neighborhood of the fundamental frequencies
and very small damping ratios. The terms Pseudofrequency
and Pseudo-Hz (psHz) will be used to refer to the number of
average random measurements per second which are taken
during the initial phase of CS reconstruction. Measurement
process is dealt with CS at different pseudofrequencies, from
6 Pseudo-Hz (CR = 1.2%) down to 2 Pseudo-Hz (CR =
0.4%), well below commonly used sampling frequencies for
structural monitoring applications and below what is sug-
gested by the Nyquist-Shannon theorem. The recovery pro-
cess is performed onMatlab using the packagesCVX: Matlab
Software for Disciplined Convex Programming for solving
convex programs [53], [54] and ASP - A Matlab solver for
sparse optimization [55]–[57].

The employed CS technique for this research is Basis
Pursuit, an optimization method which is both well-known in
the related literature as well as the most applied one to explain
and solve the CS problem (see, for example, [1]). Given
that the attained results, as explained in the following, have
proven to be satisfactory, only this method was used. Future
works may also include comparisons between various CS
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FIGURE 3: Time history of the structural acceleration records

FIGURE 4: PSD of the structural acceleration records

techniques in relation to modal identification. The significant
oversampling of the signal led to the necessity of resampling
to a lower frequency, chosen at 20 Hz in this case, to better
focus on the frequency components of the signal at hand.
Such a course of action was needed because Compressive
Sensing recovery techniques are more effective when the
values used to construct the measurement vector vary widely
[1], rather than being too similar. Initially, this wasn’t the
case, as the structure vibrates at 0.9 and 3.6 Hz, yet the data
was being sampled at 500 Hz. Moreover, given the length
of the original time records, signals were split into segments
and CS was applied to each of them individually. Recovered
segments were then joined back together for comparison. As
an example, Figure 7 shows the recovered compressed signals
in u, v at 2 Pseudo-Hz. Table 1 reports the RMS andmaximum
values for the original acceleration signal ü recorded at top
and the recovered signals (6, 4 and 2 Pseudo-Hz), highlighting
a very good approximation concerning maximum values;
nRMSE error decreases from 5.4% to 2.5% passing from 2
to 6 Pseudo-Hz.

The comparison with the original record can be appreciated
in Figure 8, showing the PSD of the recorded acceleration at

TABLE 1: RMS and maximum values

500 Hz 6 psHz 4 psHz 2 psHz
(Original)

ürms (m/s2) 0.212 0.206 0.201 0.188

ümax (m/s2) 1.304 1.295 1.265 1.305

nRMSE (%) - 2.53 3.52 5.40

TABLE 2: Fundamental frequencies

500 Hz 6 psHz 4 psHz 2 psHz
(Original)

n1 (Hz) 0.90 0.90 0.90 0.90

n2 (Hz) 3.61 3.62 3.61 3.62

n3 (Hz) 8.78 8.88 - -

top (u direction, blue line) together with the PSDof a selection
of the recovered signals (6, 4 and 2 Pseudo-Hz). The lower
Pseudo-Hz values exhibit noticeable background noise which
is however small compared to the significant energy contents
in the neighborhood of the structural frequencies n1 and n2,
while it affects the contribution related to the third mode,
around n3. Fundamental frequencies are detected from the
PSD functions and are listed in Table 2, showing satisfying
agreement with the values obtained from the original signal
for the first and second vibration mode. The identification of
n3 is only achieved at 6 Pseudo-Hz with 3% error. Estimates
of damping ratios are reported in Tables 3, 4, 5, respectively
obtained by RDT, FDD, SSI-data. Comparison with the re-
sults obtained from the original signals (sampled at 500 Hz,
also reported in the tables) and the recovered ones highlights
a very good approximation. The distinctions apparent in the
tables are primarily attributed to variations in the error bounds
commonly associated with structural damping. For this rea-
son, there is no appreciable variation in the approximation by
varying the CR, going from 6 to 2 Pseudo-Hz.
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(a) Random Decrement signature of the top acceleration (1st mode) (b) Singular value of PSD acceleration matrix

FIGURE 5: Damping estimate by RDT and FDD

FIGURE 6: stabilization poles of the SSI algorithm

TABLE 3: Modal damping coefficients by RDT

500Hz 6 psHz 4 psHz 2 psHz
(Original)

ξ1(%) 0.34 0.35 0.41 0.32

ξ2(%) 0.019 0.017 0.013 0.024

TABLE 4: Modal damping coefficients by FDD

500Hz 6 psHz 4 psHz 2 psHz
(Original)

ξ1(%) 0.31 0.29 0.30 0.34

ξ2(%) 0.022 0.023 0.024 0.027

TABLE 5: Modal damping coefficients by SSI-data

500 Hz 6 psHz 4 psHz 2 psHz
(Original)

ξ1(%) 0.29 0.24 0.21 0.26

ξ2(%) 0.021 0.022 0.022 0.023

V. CONCLUSIONS & FURTHER DEVELOPMENTS
This paper has presented a CS based structural identifica-
tion of a slender, lightly damped steel lightning rod. Using
the results of a monitoring campaign, compressed signals
of the structural acceleration due to ambient vibrations have
been obtained at various Compression Ratios, from 1.2% to
0.4%, with sample rate from 6 Pseudo-Hz to 2 Pseudo-Hz.
These values are less than what is suggested by the Nyquist-
Shannon theorem and much less than what is commonly used
in dynamic identification of structures. While fundamental
frequencies can be easily obtained from the peak peaking of
the PSD of the acceleration signals, modal damping ratios
have been obtained according to three different modal iden-
tification techniques, i.e. the classical Random Decrement
Technique, the Frequency Domain Decomposition, and the
Stochastic Space Identification, which belongs to the field
of advanced OMA procedures. The comparison of the results
with the values obtained from the original records highlights
the following outcomes:

• in the time domain, the recovered signals allow repro-
ducing the original ones and the main statistic param-
eters with high accuracy. In the frequency domain, the
PSDs exhibit some background noise which is however
small compared to the significant energy contents in the
neighborhood of the first and second modal frequencies,
while it affects the contribution related to the third mode.
This mode is however hardly identifiable and of little
concern for structural applications;
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FIGURE 7: Structural acceleration records recovered at 2 Pseudo-Hz

FIGURE 8: Random Decrement signature of the top acceler-
ation (1st mode)

• fundamental frequencies of the first and second vibra-
tion modes are detected from the recovered signals with-
out appreciable error; the third frequency is detected
with good approximation at 6 Pseudo-Hz, already well
below the Nyquist value;

• modal damping of the first and second vibration modes
are detected from the recovered signals with very good
approximation; errors committed are well below the
usual uncertainties inherent to the estimate of this quan-
tities. Therefore, despite the criticality in the estima-
tion of this parameter, especially in the case of poorly
damped structures, and despite its extreme sensitivity to
the quality of the signal, this result shows that, in the field
of CR values analysed, the applied procedures appear
not sensitive to the sample reduction.

These findings represent a step forward the use of IoT
solutions for structural monitoring applications relying on
reduced data flow, generating various advantages such as less
demanding installation and maintenance processes, reduced
costs and decreased energy consumption.
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