
Affordance segmentation of hand-occluded containers from exocentric images

Tommaso Apicella1,2, Alessio Xompero2, Edoardo Ragusa1,
Riccardo Berta1, Andrea Cavallaro2,3,4, Paolo Gastaldo1

1University of Genoa, Italy, 2Queen Mary University of London, U.K.
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Abstract

Visual affordance segmentation identifies the surfaces of
an object an agent can interact with. Common challenges
for the identification of affordances are the variety of the
geometry and physical properties of these surfaces as well
as occlusions. In this paper, we focus on occlusions of an
object that is hand-held by a person manipulating it. To
address this challenge, we propose an affordance segmenta-
tion model that uses auxiliary branches to process the object
and hand regions separately. The proposed model learns
affordance features under hand-occlusion by weighting the
feature map through hand and object segmentation. To train
the model, we annotated the visual affordances of an ex-
isting dataset with mixed-reality images of hand-held con-
tainers in third-person (exocentric) images. Experiments
on both real and mixed-reality images show that our model
achieves better affordance segmentation and generalisation
than existing models.

1. Introduction
The term affordance refers to the potential interactions

between an agent and the environment [7]. Visual af-

fordance segmentation, the task of identifying affordances

in a scene observed by a camera [10], enables assistive

technologies for robotics and prosthetic applications (e.g.,

grasping, object manipulation) or collaborative human-

robot scenarios (e.g., handovers) [3,24,32]. In this scenario,

examples of object affordances include grasp and contain
for a cup and grasp and cut for a knife.

Visual affordance segmentation is challenging due to the

variety of objects with different affordances; objects of the

same category that can vary in their physical and appearance

properties; occlusions by other objects that can be present in

the image; lighting conditions that can affect the object ap-

pearance in the image; and affordance regions in the images

that are not always easily identifiable by edges. Most of the

Figure 1: Predictions of the proposed visual affordance seg-

mentation model on RGB images of hand-occluded con-

tainers. These images (background and object instances)

are never seen during training and do not belong to any of

the datasets. Key: graspable, contain, arm.

methods for visual affordance segmentation modify existing

models for semantic or instance segmentation to predict the

affordances of objects placed on a table top [8, 18–22, 34].

Visual affordance segmentation is even more challenging

when the object is hand-held by a person due to the occlu-

sions caused by the hand and the different poses that the ob-

ject can take. Only one method addresses this scenario, but

the model does not explicitly consider the presence of the

forearm and the hand [14]. This can result in inaccurate af-

fordance segmentation. Moreover, the focus of the method

on egocentric images from human perspective could be un-

suitable for an assistive application, e.g. human-robot col-

laboration, or generalise to exocentric images.

In this paper, we propose a method that focuses the fea-

ture learning on the object and hand region separately, and

predicts affordances of an object despite hand occlusions

(see Fig. 1). We devise a UNet-like [23] multi-branch ar-

chitecture to predict object and hand segmentation, and we

develop a fusion module to learn separate sets of features

in the hand and object region. To train our model, we ex-

tend the annotation of an existing mixed-reality dataset of

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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hand-held containers seen from a third-person view with

visual affordances. To evaluate the generalisation perfor-

mance in real settings, we select and manually annotate a

set of images from two public datasets with hand-object in-

teraction: HO-3D [9] and CORSMAL Containers Manipu-

lation (CCM) [31]. Moreover, we re-train existing methods

on the annotated dataset and perform a comparative anal-

ysis, showing that our proposed model can achieve more

accurate segmentation and better generalisation1.

2. Related work
In this section, we discuss existing methods for visual af-

fordance segmentation from RGB images. We also compare

existing datasets for this task and discuss their limitations.

2.1. Methods

Methods for visual affordance segmentation are usu-

ally based on models for semantic or instance segmen-

tation, but considering affordance classes as semantic la-

bels [19, 21, 35]. Some of these methods can be part of a

two-stage approach that includes a detection step to locate

objects of interest. Affordances are then predicted in the re-

gion cropped around the detected object or corresponding

feature map [1, 3–5, 10, 20, 33]. The two steps can be tack-

led independently [1, 20], to extract the regions of interest,

or learned in an end-to-end manner using multi-tasking [3,

5, 33]. For example, AffordanceNet [3, 5] replaces the in-

stance segmentation branch of Mask R-CNN [12] to predict

affordance classes of the regions of interest localised in the

backbone. The dependence on the detection step can result

in wrongly predicting the presence of an object or missing

to localise the object, especially when the object is occluded

by a hand.

Other methods use attention mechanisms to focus on the

object area or select more relevant features for the affor-

dance segmentation directly from the input image [8, 34–

36]. For example, DRNAtt [8] uses Spatial Attention Mod-

ule to model contextual information (similarity between

features in each pixel position) and Channel Attention Mod-

ule to model channel inter-dependencies (similarity among

channels) [6]. However, DRNAtt could be sensitive to large

portions of the image belonging to the background. Shared

Gradient Attention [34] combines affordance segmentation

with semantic edge detection. However, this model could

be sensitive to edges or object transparencies.

All previous methods focus on scenes with objects that

are placed on a tabletop, and are either fully visible or par-

tially occluded due to clutter [8, 19, 34–36]. These objects

are often opaque or textured and easily distinguishable from

the background, causing the affordance segmentation mod-

els to fail when observed objects are in more challenging

1Data, code, and trained models are available at

https://apicis.github.io/projects/acanet.html

poses or occluded, as in the case of hand-held objects when

manipulated by a person.

There is only one close work that tackles the segmen-

tation of affordances of hand-occluded objects [14]. This

work uses a ResNet-FastFCN [30] with a pyramid parsing

module to predict high-resolution outputs by using global

contextual information (usually beneficial for segmenting

general scenes). However, the model ignores the hand and

the global contextual information does not help the model

to capture fine affordance predictions on the object of inter-

est. This can result in inaccurate segmentation of the affor-

dances (e.g, predicted on the hand region).

2.2. Datasets

Existing datasets are designed to segment the functional

(with respect to the design) regions of objects placed on a

table [3, 4, 15, 16, 18, 20, 26]. UMD [18] has 28,843 images

of objects placed on a blue rotating table in the same en-

vironment, and annotated with different affordance classes

for each object category. Similarly, Multi-View [16] has

47,210 images of objects placed on a white rotating table in

the same environment, but includes a larger number of af-

fordance classes and object categories. TRANS-AFF [15]

has 1,346 images of transparent objects on a table, increas-

ing the difficulty to predict affordances. IIT-AFF [20] has

8,835 images of objects placed in a cluttered scene to better

reflect a scenario with occlusions. CAD120-AFF [26] has

3,090 images, sampled from videos of humans performing

activities in a realistic setting, e.g., kitchen, office. FPHA-

AFF [14] has 4,300 images of hand-held objects acquired

from an egocentric point of view. However, this dataset is

currently not publicly available and egocentric images con-

tains arms from the bottom of the image, resulting in objects

highly occluded by the hands.

All the previous datasets are manually annotated but lim-

ited in their size, making the training of visual affordance

segmentation model a problem. The need for thousands

of labelled data has pushed towards the generation of syn-

thetic data. UMD-Synth [4] simulates UMD in a synthetic

manner and has 37,200 images of objects in different back-

grounds and poses, but provides only one affordance per

object region. AFF-Synth [3] has 30,245 images generated

by using domain randomization to overcome the gap be-

tween simulated and real data. Unlike UMD-Synth, each

image of AFF-Synth includes multiple objects. These syn-

thetic datasets, however, are still small in size and do not

contain occlusions, especially in the case of objects held

by a person. Even though CAD120-AFF and FPHA-AFF

address the scenario of hand-held objects, a suitable large-

size dataset (synthetic or real) for segmenting affordances of

objects with different properties (e.g., transparency, shape,

size) and under hand-occlusions is missing.
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Figure 2: ACANet, our proposed model for Arm-Container Affordance segmentation of hand-held containers. The fusion

block is highlighted in yellow.

3. The Arm-Container Affordance Network
In this section, we present our multi-branch architec-

ture and the fusion module to perform affordance segmen-

tation (see Fig. 2). We name the model Arm-Container

Affordance Network (ACANet) as we consider containers

for food and drinks, and graspable and contain as affor-

dance classes. Assuming the input image has a correctly

detected object of interest at the center, the model identifies

the classes graspable, contain, arm, and background.

Let I ∈ R
W×H×3 be an exocentric RGB image, where

W and H are the image width and height respectively, of a

person holding an object, o. Let S ∈ {0, ..., C − 1}W×H

be a segmentation map where each pixel is one of the C
classes that include background, arm, and the affordances

on the visible surface of the object o. The objective is to

design a model f(I) that assigns each pixel in I to one of the

corresponding C classes and that separates the arm from the

object, while identifying the graspable regions of interest on

the object from the regions to avoid.

3.1. Multi-branch architecture

We devise our multi-branch architecture starting from a

UNet-like architecture [23] that uses skip connections be-

tween the encoder and the decoder to preserve the infor-

mation and help the gradient flow during back-propagation.

We replace the encoder with a ResNet-18 [13] to include

residual connections within the convolutional layers of the

encoder, easing the optimization problem [13]. Moreover,

ResNet keeps the first pooling layer and replaces the others

using a stride 2 in convolutional layers, unlike the origi-

nal UNet encoder that halves the resolution of tensors us-

ing only pooling layers. To double the resolution in the de-

coders, we replace the UNet convolutional layers with non-

trainable up-sampling layers based on nearest interpolation.

For each decoder, we also modified the last convolutional

layer from 1 × 1 kernel and no padding (original UNet) to

3 × 3 kernel, stride 1, and padding. This allows the last

convolution to consider neighboring pixels information.

This architecture outputs a tensor S ∈ [0, 1]W×H×C

where each channel predicts one of the classes indepen-

dently, and each pixel in a channel map is a probability

such that
∑C−1

c=0 Sc(i, j) = 1, with i ∈ {1, ..,W} and

j ∈ {1, ..., H} being the width and height indices, respec-

tively. Including the class arm in S already handles the af-

fordance segmentation of hand-occluded containers. How-

ever, we experimentally observed that the model first learns

the classes with higher number of pixels in the annotation,

affecting the prediction accuracy of the other classes.

We include two additional decoder branches that spe-

cialise in the segmentation of the arm and of the visible re-

gion of the object. Segmenting the object helps the model

learn the area of the image where the affordances are. For

simplicity, we refer to the three decoder branches as Arm,

Object, and Affordance segmentation. The Arm segmenta-
tion branch predicts a probability map, mh ∈ [0, 1]W×H ,

that separates the region associated to the arm (composition

of forearm and hand) from all the rest. The Object segmen-
tation branch predicts a probability map, mo ∈ [0, 1]W×H ,

that separates the region associated to the visible object

(held by the person hand) from all the rest. The Affordance
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segmentation branch fuses the feature maps with the arm

and object maps, and predicts the segmentation tensor S.

3.2. Feature separation and fusion

Object and arm segmentation alone are insufficient to

improve the segmentation accuracy under hand-occlusions.

We therefore design a module that merges intermedi-

ate feature maps φa ∈ R
C′×W ′×H′

, with the down-

sampled masks extracted by the Arm segmentation branch

(m̃h ∈ [0, 1]W
′×H′

) and the Object segmentation branch

(m̃o ∈ [0, 1]W
′×H′

), respectively. We compute the inter-

mediate feature maps within the Affordance segmentation
branch by using two UNet blocks that process the feature

maps outputted by the backbone. The object and arm masks

are down-sampled using bi-linear interpolation to match the

size of the intermediate feature maps.

Instead of directly combining the features maps with the

segmentation masks, we first learn specialised features in

the object and arm regions. Specifically, we convolve φa

with a set of 1 × 1 filters to obtain the feature map related

to the object, φo ∈ R
C′×W ′×H′

(where C ′ is the number

of filters), and with another set of 1× 1 filters to obtain the

feature map related to the hand, φh ∈ R
C′×W ′×H′

. We

then perform a pixel-wise weighting of the feature maps φo

and φh with the corresponding segmentation mask m̃o and

m̃h. This highly penalises the features outside of the pre-

dicted object (or arm) region. The merged feature maps are

aggregated with the initial intermediate features as

φ′
a = φa + (φh � m̃h) + (φo � m̃o), (1)

where � is the Hadamard product, i.e., the element-wise

product between each feature map in φo, φh and the down-

sampled segmentation masks m̃o, m̃h
2.

3.3. Predicting object affordances and the hand

The Affordance segmentation branch uses the fused fea-

ture maps, φ′
a, as input to three UNet blocks to predict the

output segmentation tensor S. Note that the feature maps

φ′
a are concatenated via skip connection with the corre-

sponding intermediate feature maps in the encoder before

the first UNet block (see Fig. 2). We modify the first UNet

block after the fusion module to improve the processing of

the feature maps. Specifically, we increase the number of

output channels of the first convolutional filter from 64 to

128, and we add another convolutional layer to decrease the

channels from 128 to 64. Furthermore, we avoid concate-

nating low-level information (e.g., edges) from the back-

bone to the last three UNet blocks via skip connections.

This design choice helps the model preserve the changes

in the feature maps φ′
a and predict affordances in the object

region. The final segmentation map is: S = argmaxc S.

2Mathematical simplification as m̃o and m̃h should be repeated for

each channel of the feature maps φo and φh.

3.4. Loss functions

To train ACANet, we use a linear combination of a Dice

loss [17] and two binary cross-entropy losses as:

L = La + λo Lo + λh Lh, (2)

where the Dice loss, La, operates on the affordance branch

outputs, the binary cross-entropy, Lo, operates on the object

branch output, and the binary cross-entropy, Lh, operates

on the arm branch output. The hyper-parameters λo and

λh ∈ R control the impact of object and hand segmentation

losses, respectively. L allows each branch to specialize for

their segmentation task and influences the backbone to learn

a common representation for all the branches.

The Dice loss, La, addresses the imbalance problem be-

tween classes, as the majority of pixels can be labelled as

background [27]. Given a batch of B predicted segmenta-

tion and corresponding annotations, the Dice loss is3:

La = 1− 1

C

C−1∑

c=0

2
∑B

b=1

∑WH
l=1 ycl,bŷ

c
l,b

ε+
∑B

n=1

∑WH
l=1 ŷcl,b + ycl,b

, (3)

where ŷ ∈ [0, 1]WH×C and y ∈ {0, 1}WH×C are the

reshaped predictions and annotations, respectively, with∑C−1
c=0 yci = 1.

The binary cross-entropy loss is used in binary classi-

fication and semantic segmentation task, considering each

pixel as independent from the others. Given a batch of B
predicted object segmentation masks and corresponding an-

notations, the binary cross-entropy loss for the object is:

Lo = − 1

B

B∑

b=1

WH∑

l=1

vl,b log(v̂l,b) + (1− vl,b) log(1− v̂l,b),

(4)

where v̂ ∈ [0, 1]WH is the reshaped vector of mo and

v ∈ {0, 1}WH is the reshaped vector of the correspond-

ing annotation. The binary cross-entropy for the hand, Lh,

is similarly computed using the reshaped vector of mh and

corresponding reshaped annotation.

3.5. Training with mixed-reality images

Training ACANet requires a large dataset with (exo-

centric) images of hand-occluded objects and segmentation

annotation of both arm, object, and affordances. Such a

dataset was not available, and collecting and manually an-

notating a new dataset is challenging, expensive, and time-

consuming. We therefore complement an existing dataset,

which has mixed-reality images of hand-occluded contain-

ers for object pose estimation [29], with visual affordance

annotations. Using mixed-reality datasets can easily scale

the generation of a larger number of images under differ-

ent realistic backgrounds. Moreover, some existing works

3The margin ε = 10−7 avoids numerical issues when ŷ = y = 0.
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Figure 3: Samples of cropped RGB images and segmen-

tation maps of arms and object affordances from the an-

notated mixed-reality dataset, CHOC-AFF. Key: back-
ground, graspable, contain, arm

on hand-object reconstruction or object pose estimation

achieved good performance when training on mixed-reality

datasets despite the domain gap [11, 28].

We use the publicly available CORSMAL Hand-

Occluded Containers (CHOC) dataset that has 138,240

RGB images of 48 synthetic containers pseudo-realistically

rendered on top of 30 different real backgrounds [29]. The

dataset has 8,640 images with objects placed on top of a flat

surface and 129,600 images of hand-held objects rendered

in various locations and poses above the flat surface in the

scene. The 48 containers are evenly distributed among 3

categories (box, stem, non-stem) and vary in their physi-

cal properties, such as size and shape, and appearance (tex-

tures, transparency). Hand-held objects were generated us-

ing synthetic forearms that hold the synthetic containers

with three different visually plausible grasps and are ori-

entated towards the pointing direction of the camera to sim-

ulate a potential offering of the object.

These characteristics and the available generation

pipeline allows us to easily extend CHOC with the annota-

tion of the graspable and contain affordances in addition to

the existing annotations of the segmentation masks for the

arm and object. We annotate the affordances on the surfaces

of the 3D CAD models of the 48 containers using Blender4.

We then use the object poses annotated in CHOC to project

the models with affordances on the image plane and render

the affordance maps. We add the hand mask to the affor-

dance map by pixel replacement. For simplicity, we refer

to this version of the dataset with annotations of the affor-

dances as CHOC-AFF. Fig. 3 shows sampled images and

annotations of CHOC-AFF. We use CHOC-AFF for train-

ing and testing ACANet and other models, and we evaluate

the generalisation of the models to real images.

4. Validation
4.1. Methods under comparison

We compare ACANet against a baseline and two state-

of-the-art methods: ResNet18-UNet (RN18-U), ResNet50-

FastFCN (RN50-F) [14], and DRNAtt [8]. RN18-U is the

single-branch baseline behind ACANet and has a UNet-like

architecture with a ResNet-18 based encoder. DRNAtt is

the best performing model on the UMD dataset [2]. We

implemented RN18-U and re-implemented DRNAtt to di-

rectly segment both the object affordances and the arm. We

changed the channels of the last layer in RN50-F5 to seg-

ment only affordances of objects as per the original imple-

mentation in case of egocentric data [14].

4.2. Experimental setup

For our experiments, we split CHOC-AFF into training
set and validation set to train the models, and two test-
ing sets to evaluate the models generalisation to different

backgrounds and different object instances. We also select

and annotate images from two existing public datasets for

hand-object pose estimation or reconstruction to evaluate

the models in real conditions.

For CHOC-AFF, the training set has 89, 856 images with

26 out of 30 backgrounds and 36 out of 48 containers (12
per object category). The validation set has 17, 280 images

with all 30 backgrounds and 6 container instances (2 per

object category) different from the ones in training set. The

first testing set has 13, 824 images and evaluates the gen-

eralisation performance of the models to the same training

object instances in 4 backgrounds not seen during training.

The second testing set has 17, 280 images and evaluates the

generalisation performance of the models to 6 object in-

stances (2 per object category) not seen during training in

all 30 backgrounds [29].

For the two testing sets in real conditions, we consider

HO-3D [9] and CCM [31] due to the presence of various

challenges, such as presence of the human body, real in-

teractions, and different object instances and hand-object

4https://www.blender.org/
5Original RN50-F implementation [30] is available at https://

github.com/wuhuikai/FastFCN
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poses. HO-3D is a multi-view video dataset of people

manipulating different types of objects. We selected 150
frames of mugs and boxes as containers from the lateral

and frontal cameras (with respect to the arm), keeping a

diversity in object and hand poses. We used the segmen-

tation provided by the authors as annotation for the classes

arm6 and graspable, whereas we manually annotated the

class contain. CCM is a dataset of multi-view sequences of

people manipulating containers with different contents, and

then offering the objects to a fixed robot arm. The offering

phase allows us to evaluate the models under more realistic

human grasps and object poses in a human-robot collabo-

ration scenario, and more challenging conditions caused by

different background and lighting settings. Moreover, con-

tainers can vary in their physical appearance (e.g., trans-

parency, texture) or be affected by the presence of content.

We selected the last frame (offering phase) of 150 sequences

from a side perspective, diversifying objects, hand poses,

and scene color settings. We manually annotated the affor-

dance classes contain and graspable, and the class arm of

only the hand(s) in contact with the offered container.

4.3. Training details and parameters settings

During training, we fine-tune all encoders, pre-trained

on ImageNet [25], to start from a better initialisation than

random. For ACANet, we set the hyper-parameters λo and

λh to 1. For all models, we set the batch size to 2, the ini-

tial learning rate to 0.001, and we use the mini-batch Gra-

dient Descent algorithm as optimizer with a momentum of

0.9 and a weight decay of 0.0001. For all models except

RN50-F, we schedule the learning rate to decrease by a fac-

tor of 0.5, if there is no increase of the mean Intersection

over Union in the validation set for 3 consecutive epochs.

For RN50-F, we set the learning rate schedule following the

original setup. We use a Dice Loss to penalise the errors for

RN18-U. We use the standard cross-entropy loss for DR-

NAtt and RN50-F (with auxiliary weight set to 0.2). We

use early stopping with a patience of 10 epochs to reduce

overfitting, and set the maximum number of epochs to 100.

Images can be of different resolutions and therefore we

apply a cropping square window of fixed size to avoid dis-

torsions or adding padding. Assuming a perfect object de-

tector, we crop a W ×W window around the center of the

bounding box obtained from the object mask annotation to

restrict the visual field and obtain an object centric view.

However, the cropping window can go out of the support of

the image if the bounding box is close to the image border.

In this case, we extend the side of the window that is inside

the image support to avoid padding. In case the bounding

box is bigger than the cropping window, we crop the image

inside the bounding box and resize it to the window size.

We apply this cropping procedure to all the images both in

6Note that the forearm is not annotated.

training and testing phases.

During training, we also use data augmentation to fur-

ther increase the diversity of the images. Specifically, for

each input image, we apply the following sequence of trans-

formations: resize by a factor randomly sampled in the in-

terval [1, 1.5] to avoid degrading quality; center crop the

resized image with a W × H window to restore the origi-

nal image resolution; and horizontal flip with a probability

of 0.5 to simulate the other arm. We set the window size

to W = H = 480 (minimum resolution for RN50-F), as

higher resolutions degrade the image quality.

4.4. Performance measures

To evaluate and compare the models, we compute the

per-class precision, recall, and Jaccard Index as percentages

across all images of a given dataset D = {In|n = 1, ..., N}.

Precision measures the percentage of true positives among

all positive predicted pixels. Recall measures the percent-

age of true positive pixels with respect to the total number of

positive pixels. The Jaccard Index measures how much two

regions with the same support are comparable (Intersection

over Union or IoU).

To obtain these performance measures, we first compute

true positives (TP ), false positives (FP ), and false nega-

tives (FN ) between prediction Sn and annotation Gn for

each RGB image In ∈ D and for each class c. A true posi-

tive is a pixel x ∈ In that is predicted as class c in Sn and

the corresponding pixel in Gn is annotated as c. A false pos-

itive is a pixel x ∈ In that is predicted as class c in Sn, but

not annotated as c in Gn. A false negative is a pixel x ∈ In
that is not predicted as class c in Sn, but the corresponding

pixel in Gn is annotated as c.
We therefore compute the per-class precision, P , the per-

class recall, R, and the per-class Jaccard Index, J , as:

P =

∑N
n=1

∑
x∈In

TP
∑N

n=1

∑
x∈In

TP + FP
, (5)

R =

∑N
n=1

∑
x∈In

TP
∑N

n=1

∑
x∈In

TP + FN
, (6)

J =

∑N
n=1

∑
x∈In

TP
∑N

n=1

∑
x∈In

TP + FP + FN
. (7)

Note that we keep the notation simple and we did not in-

clude the index of the class c in the above equations, as all

the results will refer to the per-class measures.

4.5. Results and discussion

Table 1 compares the performance of the models on the

mixed-reality and real testing sets. For the discussion and

ranking of the methods, we consider J as the reference per-

formance measure. Overall, ACANet outperforms the other
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Table 1: Comparison of the affordance and arm segmen-

tation results between the models on the two mixed-reality

testing sets and on the two real testing sets.

Testing set Model graspable contain arm

P R J P R J P R J

RN50-F 97.33 95.72 93.27 89.83 91.94 83.27 - - -

RN18-U 96.79 96.44 93.45 84.94 93.16 79.95 96.55 96.46 93.24

CHOC-B DRNAtt 96.38 97.04 93.63 91.84 90.63 83.88 96.94 97.19 94.30
ACANet 97.09 96.60 93.88 89.46 94.67 85.17 96.48 96.52 93.24

RN50-F 96.55 95.35 92.20 90.20 74.27 68.73 - - -

RN18-U 96.33 96.35 92.94 88.97 74.32 68.04 96.67 96.91 93.78

CHOC-I DRNAtt 95.85 96.74 92.85 90.48 71.08 66.13 97.00 96.88 94.07
ACANet 96.36 96.51 93.11 88.72 76.68 69.86 96.94 96.77 93.90

HO-3D

RN50-F 95.61 18.29 18.14 90.69 79.57 73.56 - - -

RN18-U 85.85 72.53 64.79 88.21 87.61 78.42 61.80 41.03 32.73

DRNAtt 75.42 44.08 38.54 87.26 18.75 18.25 50.23 0.32 0.32

ACANet 89.72 80.78 73.93 79.20 90.43 73.07 61.95 53.02 40.00

CCM

RN50-F 6.14 87.87 6.09 13.51 33.11 10.61 - - -

RN18-U 13.69 78.69 13.20 31.92 42.44 22.28 44.21 42.53 27.68

DRNAtt 6.37 95.09 6.35 0.00 0.00 0.00 4.47 0.24 0.23

ACANet 10.22 86.50 10.06 45.40 37.46 25.83 49.47 45.35 31.00

Highlighted in bold the proposed model, and the best performing results.
KEY – RN50-F: ResNet50-FastFCN [14], RN18-U: ResNet18-UNET, DRNAtt [8],
J: per-class Jaccard Index, CHOC-B: the CHOC-AFF testing set with new back-
grounds, CHOC-I: the CHOC-AFF testing set with new instances.

models on all datasets and for most of the classes. This

means that ACANet achieves better generalisation to other

backgrounds and object instances in the testing sets.

The performance on the mixed-reality testing sets is sim-

ilar among the models and J is higher than 90% for the

classes graspable and arm. Models predict a low number of

false positives and false negatives, resulting in a high value

for precision and recall (R, P > 95%). The class contain is

the most challenging and J drops to the interval [79%, 85%]

for the first testing set with unseen backgrounds (CHOC-B)

and to the interval [66%, 70%] for the second testing set

with unseen object instances (CHOC-I). ACANet outper-

forms the other models for the classes graspable and con-
tain on both testing sets, whereas DRNAtt has the highest

Jaccard Index for the class arm. RN50-F has the lowest

performance, except for J in contain and P in graspable.

This result shows that adding the arm class helps improve

the performance. In CHOC-B, models except DRNAtt pre-

dict more false positives than negatives for the class contain
(P ∈ [84%, 91%], R > 90%). On the contrary, the number

of false negatives for the class contain is higher than false

positives (R ∈ [71%, 76%], P > 88%) in CHOC-I.

The HO-3D and CCM testing sets allow us to assess the

generalisation capabilities of the models to images acquired

in real scenarios, given the known problem of the gap be-

tween synthetic and real data. As expected, performance

of the models is lower in the real testing sets than in the

mixed reality testing sets due to the domain shift. This can

be observed especially for the classes graspable and arm.

In HO-3D, ACANet outperforms the other models for

the classes graspable and arm. However, all models tend

to predict the wrong class in the graspable and arm regions

(P > R), and even ACANet has a high number of false pos-

itives and false negatives for the class arm (J = 40%). The

performance for the class arm is penalised for all models

due to the lack of annotation of the forearm, and the pres-

ence of the human body and challenging arm poses. For

the class contain, DRNAtt predicts a high number of false

negatives that affect the final performance (J = 18.25%),

whereas the other models predict a lower number of false

positives than DRNAtt, resulting in a higher Jaccard index

(J ∈ [73.07%, 78.42%]).

In CCM, the tablecloth and the presence of the human

body are the main challenges for the models, causing a per-

formance drop compared to the other datasets. In the pres-

ence of the tablecloth, models tend to predict graspable in

most regions of the image. This results in a large difference

between P and R (e.g., 76 percentage points for ACANet).

ACANet achieves the best performance for the classes con-
tain (J = 25.83%) and arm (J = 31%). DRNAtt does

not generalise to the real images of CCM with J ≤ 1%
for the class arm and J = 6.35% for the class graspable,

whereas the class contain is not predicted. This is caused by

a large number of false positives towards the class graspable
(P = 6.37%) and a large number of false positives and false

negatives for the class arm (P = 4.47%, R = 0.24%). The

higher performance of ACANet compared to DRNAtt and

RN18-U shows that learning arm and object features sepa-

rately is better than learning affordances directly.

Fig. 4 shows and compares the affordance segmentation

results of the models on sample images from the four test-

ing sets. We chose images with objects and hand poses that

are challenging and never seen in training, e.g., holding a

box from the bottom; and with different backgrounds and

lighting or different object appearances. Visually, ACANet

achieves the most accurate segmentation for the arm and the

object affordances (see also Fig. 1). For CHOC-B (columns

1 and 2), the predictions have more false positives in the

background, whereas there are false positives or false nega-

tives in the object region for CHOC-I (columns 3 and 4).

For HO-3D, ACANet predictions show better affordance

segmentation than other models, but the number of false

positives of the class arm increases in presence of the hu-

man face (column 5). All models show a high number of

false positives for the class graspable in the CCM testing

set, especially when there is a colorful tablecloth (7th col-

umn). However, the predictions of RN18-U and ACANet

are close to the annotation when the setting is similar to

the training one, i.e., there is no colorful tablecloth nor the

human body/face, but just the arm holding the container

(columns 6 and 8). In the last column, we also chose to

show the results for a transparent cup as transparency can

be a challenge for the models due to the not clearly defined
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Figure 4: Comparison of the predicted affordance and hand masks of the models on sampled images from the four testing sets.

The segmentation masks are overlayed on the RGB images. KEY - GT: ground-truth, graspable, contain, arm.

Table 2: Models size and computational cost.

ACANet RN18-U RN50-F DRNAtt

# parameters 20.82 14.32 66.40 17.38
GFLOPs 85.17 38.28 239.33 149.90

KEY: # parameters: number of parameters (in millions), GFLOPs: Giga
Floating-point operations, RN50-F: ResNet50-FastFCN [14], RN18-
U: ResNet18-UNET, DRNAtt [8].

borders. For example, the background environment or the

content in the container can influence the segmentation pre-

dicted by the models. In the sampled image, the cup is filled

with a content, and the models are able to correctly predict

both the contain and graspable regions, except for DRNAtt.

We also briefly discuss the complexity of the models

measured in number of parameters (in millions) and num-

ber of operations (as Giga Floating-point or GFLOPs). Ta-

ble 2 shows that RN50-F has the highest amount of param-

eters and operations, but the generalisation performance is

worse than ACANet. DRNatt has 3 millions fewer parame-

ters than ACANet, but 1.7× more operations than ACANet

and the performance on real-data is worse in all classes. Fi-

nally, ACANet has an increased number of parameters (6
millions) and GFLOPs (2.2 times) compared to the base-

line RN18-U, thus contributing to the higher performance

in almost all classes and testing sets.

5. Conclusion

We tackled the problem of visual affordance segmenta-

tion of hand-occluded containers and proposed ACANet, a

multi-branch convolutional neural network that fuses object

and hand segmentation mask with the affordance features

to specialise filters for object and hand regions. Training

ACANet on an annotated dataset with mixed-reality images

of hand-held containers leads to better generalisation to real

images with containers not seen in training and with new

backgrounds (e.g., on the HO-3D dataset or on-the-fly ac-

quired images). Moreover, ACANet outperforms alterna-

tive methods when segmenting the graspable area and the

person’s arm, and can achieve a more accurate segmenta-

tion even when the objects are in more challenging poses

caused by how the person holds the object.

As future work, we will use a larger set of objects, per-

form an ablation study on the fusion module components,

reduce the computational costs necessary to run the model,

and validate it in a human-robot collaboration scenario.
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