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Abstract: The urban atmospheric boundary layer (UABL) is complex due to the heterogeneous under-
lying city surface. The nine anemometers installed at different heights along the 325 m meteorological
tower provide an opportunity to carry out a refined study of wind properties in the UABL in central
Beijing, China. Based on the recent 5-year high-resolution measured data, in total, 229,488 10-min
length segments of wind records related to each anemometer are reliable for further analyses. Ac-
cordingly, the statistical properties of the wind speed and direction are first analyzed to present the
local wind climate in a comprehensive way. Moreover, the pattern of the wind profiles related to
two typical synoptic intense events are illustrated in order to give a preliminary perspective, then
the statistical properties corresponding to a series of intense windstorms are described. Here, the
deviations in the wind direction occur between 200 m and 280 m of the atmosphere, which might be
due to the existence of an Ekman spiral; besides this, the laws of wind profiles based on open terrain
are not suitable for the UABL, and the aerodynamic characteristic parameters of the UABL based
on vertical stratified structures have to be considered. The results contribute to the establishment of
revised models for the wind profile and are useful for the further understanding of the structure of
UABL wind.

Keywords: atmospheric boundary layer; field measurement; urban area; wind climate; wind prop-
erty; wind speed profile

1. Introduction

Wind is one of the most crucial atmospheric phenomena, which tends to cause changes
in atmospheric circulation, heat fluxes, surface energy fluxes, and so on [1]. In the at-
mosphere, with the development of social and technological activities, the underlying
surface is much rougher and more complex because engineering structures tend to be
higher, larger, and more flexible and complex [2,3]. The understanding of the atmo-
spheric wind field characteristics in relation to local features, especially over complex
heterogeneous underlying surfaces, is important for structural wind resistance design
and structures’ safety and comfort [4–7]. As for the structural wind engineering field,
four approaches—theoretical analysis, wind tunnel testing, numerical simulation and field
measurement—have been frequently used in the last few decades to investigate the wind
field characteristics. Doubtlessly, field measurement is the most direct and reliable in this
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framework [2,8]. Therefore, it is of great engineering value and theoretical meaning to
analyze the wind field characteristics [9,10].

In order to understand the structure of the wind properties in the atmospheric bound-
ary layer (ABL) and provide wind models for the wind-resistant design of tall and super-tall
building structures, it is essential to learn about intense windstorms and their wind speed
profiles in the ABL over various types of surface terrains [11]. The literature is rich in
contributions that illustrate measured data at various levels, of which the analysis is carried
out with the aim of evaluating the wind speed profiles [12,13]. The sensors installed on
towers are common instruments to detect data. Besides this, Doppler SODAR (Sound
Detection and Ranging) was also applied to the vertical distributions of wind speed char-
acteristics recently [14–16]. It is worth noting that in order to measure the wind speed
in the atmosphere by means of a SODAR, it is necessary to rationally set up the SODAR
parameters first and accurately measure the Doppler shift [17]. Besides the environmental
noise, meteorological factors and turbulence features also affect the accuracy and reliability
of the wind velocity measurements. Generally, the results detected by SODAR should be
compared with those detected directly by the meteorological instruments in order to correct
errors and confirm the accuracy. Therefore, the ultrasonic anemometers are comparatively
more effective and reliable.

Regarding this previous research on wind profiles in different countries, almost all
of them were carried out over open or suburban terrain, whereas in urban areas, within
a couple of kilometers from the site, several changes might occur in the nature of the
terrain’s surface [18]. Therefore, the traditional laws of wind profiles based on the open
flat terrains may be not applicable to the urban atmospheric boundary layer (UABL) wind,
which deserves further discussion. In addition, there are very limited reliable measured
data in the ABL of urban areas [4]. Accordingly, due to more and more tall and super-tall
building structures being built in urban areas throughout the world, it is necessary to collect
the local measurement information, especially for the accurate wind-resistant design of
structures [19]. Fewer scholars have paid attention to the influence of the Ekman spiral, in
which the velocity vector rotates clockwise in direction (in the Northern Hemisphere) and
decays exponentially in magnitude with increasing depth [20], which should be considered
during the analyses of wind profiles because these deviations of wind direction cannot be
ignored any longer in the design of super-tall buildings or gigantic wind turbines, as spiral-
shaped wind profiles may impose significant asymmetrical loadings on structures [21].
Furthermore, many of the previous anemometers were installed on existing towers built
generally for other purposes, or on poles on the roofs of some buildings without paying
enough attention to the wake separation due to the buildings themselves [22–24]. A special
meteorological tower with dense and simultaneous measuring points along the height is
more effective and professional for learning the spatial and temporal characteristics of the
wind speed.

Beijing is the capital of China and one of the largest cities in the world, presenting
typical urban terrains and often being hit by strong winds, as shown in Figure 1. The 325 m
meteorological tower installed in 1978 is the best observation station to study the urban
boundary layer and the strongest urban storms in Beijing city [25]. Accordingly, Li et al. [26]
carried out a preliminary study of the wind profile data recorded during one windstorm.
Then, they discussed the wind profile by using data obtained from the instrumented
tower during a three-year period from 2001 to 2003 [11]. The vane anemometers were
adopted for the study and the results presented the wind properties of the past for Beijing.
A set of ultra-sonic anemometers was installed at different heights along this tower in
2013, which provide an excellent opportunity to record high-resolution data and learn the
present wind field characteristics of the Beijing urban area. Accordingly, Hui et al. [27]
studied the non-stationarity and non-Gaussian characteristics of wind speeds based on
some selected records measured during the synoptic wind storms. Zhang et al. [25]
preliminarily investigated the characteristics of wind profiles related to thunderstorm
outflows. Despite these and many other analyses, knowledge of the vertical distribution of
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the wind speed in the actual Beijing urban area is still lacking, and a better understanding
and quantification of this key information is vital prior to the construction and insurance of
building companies, wind energy predictions and exploitation, and so on [18]. This paper
contributes to the clarification of such dominant information for structural design wind
load. It also adds value for engineering in terms of structure safety and comfort that might
ultimately lead to a revision of the Chinese National Load Code.

Figure 1. On 5 May 2017, a tree was blown down by intense wind and hit a car (a) https://news.qq.com/a/20170505/025
960.htm (accessed on 5 May 2017); a billboard was blown down and injured a pedestrian (b) (https://v.qq.com/x/page/n0
500nddjni.html? (accessed on 5 May 2017).

In this framework, Section 2 illustrates the main properties of the measurement site
and the instruments. Accordingly, Section 3 analyses the statistical properties of the wind
speed and direction of the Beijing urban area. Section 4 first investigates the boundary
layer wind characteristics of two typical intense synoptic windstorms, then studies the
wind profile properties in a statistical environment thanks to anemometers installed at nine
different heights. Section 5 summarizes the main conclusions.

2. Measurement Site and Instrumentation

The capital of China, Beijing, lies in the northeast part of the country, with a total
area of 16,410.54 square kilometers. The local wind system is dominated by the monsoon-
influenced humid continental climate, characterized by hot, humid summers due to the
East Asian monsoon, and by cold, windy, dry winters that reflect the influence of the vast
Siberian anticyclone. Besides this, thunderstorms also occur frequently, and the average
annual number of thunderstorm days in the Beijing area is 35.6. The peak wind speeds
produced by thunderstorm events are sometimes relatively stronger than those produced
by monsoon winds, while the duration of the thunderstorm outflows is much shorter and
the 10-min mean wind speeds are relatively smaller [28]. Therefore, thunderstorm winds
are also dominant for the structural design, and their main characteristics related to the
wind loading of structures should be considered separately [29]. The Beijing Meteorological
Tower, as shown in Figure 2a, located 2.7 km north of Deshengmen, 1 km away from the
third ring road of Beijing city, was set up in 1978 for basic scientific research, with a height of
325 m. When it was built, the terrain was flat, with numerous low-rise buildings around the
tower. With the rapid development of Beijing, the tower site is now surrounded by some
tall buildings with heights between 70 m and 90 m, nearly 500 m away towards the north.
There are a few low-rise houses and trees to the east of the tower. Some buildings, including
several 60 m high buildings, are about 300 m away from the tower in the southern direction.
The area on the west side of the tower is covered by a mixture of trees, low-rise residential
houses with the height of about 7 m to 25 m, and roughly 40 m-high buildings [11,30]. The
average height of the buildings is about 19.1 m in the range of 4 km × 4 km around the
tower, and it is 18.3 m in the range of 20 km × 20 km. The object characteristic parameters
are shown in Table 1. According to the Chinese National Load Code [31], the site around
the tower can be regarded as terrain C (urban area).

https://news.qq.com/a/20170505/025960.htm
https://news.qq.com/a/20170505/025960.htm
https://v.qq.com/x/page/n0500nddjni.html
https://v.qq.com/x/page/n0500nddjni.html
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Figure 2. Mesh grid of the topographic model satellite image of the landforms around the 325 m
meteorological tower in Beijing in 2020 (a), and a picture of the tower (b).

Table 1. The parameters of the land and buildings around the tower.

Considered Area 4 km× 4 km 20 km × 20 km 60 km × 60 km

Average building height (m) 19.1 18.3 /

Percentage of impervious
surface area (%)

Building 68.3 64.6
24.1

Roads, parking lots, etc. 20.0 13.7

Percentage of permeable
surface area (%) Grass, trees, etc. 11.7 21.7 75.9

In total, the tower has 11 three-axial WindMaster Pro ultrasonic anemometers pro-
duced by GILL Instruments Limited, UK, with a sampling rate of 10 Hz, mounted at nine
heights—namely 8 m, 16 m, 32 m, 47 m, 64 m, 80 m, 140 m, 200 m and 280 m, respectively—
along the tower, as shown in the Figure 2b. These record the information of the wind speed
and temperature continuously. At 32 m and 64 m, two ultrasonic anemometers are installed
at the same height and different directions in order to validate the measured fluctuating
speeds. The measured data are first averaged within each 10 min interval and compared
with the cup-type anemometer data in order to check the reliability before further analy-
ses [11,32,33]. Besides this, in order to avoid the interference effects of the tower on the
measured data, the ultrasonic anemometers are fixed 1.5 m away from the tower towards
the north, which is in the upwind direction of the tower during the dominant synoptic
wind in Beijing in winter and spring.

As shown in Figure 3, the anemometric data of the database is stored in terms of three
instantaneous wind speed components (VX, VY, VZ) according to the geophysical coordi-
nate system, where VX is directed from east to west, VY is from south to north, and VZ is
vertical, where up is taken to be the positive direction. The long-term continuous monitored
wind data considered herein cover 5 years (2013–2017), and are detected simultaneously
by all of these ultrasonic anemometers. It is worth noting that the stationarity check and
outlier removal are carried out for the initial data, and subsequently those preprocessed
data are used for the analysis.

Figure 3. Tri-axial ultrasonic anemometer and the direction of the three instantaneous wind speed
components (GILL WindMaster Pro).



Atmosphere 2021, 12, 786 5 of 21

3. Statistical Properties of the Wind Speed and Direction

As described above, the measured data detected by the ultrasonic anemometers on the
Beijing 325 m high meteorological tower in 2013–2017 are used herein, and the preliminary
evaluation of the local statistical properties of the wind speed are carried out first. In total,
there are 229,488 10-min length segments of wind records related to each anemometer; they
were considered reliable for the following analyses after a suitable quality control.

3.1. Wind Speed

The information related to the 140 m anemometer is presented in Table 2, illustrating
the number of the records belonging to different classes of the horizontal 10-min mean
wind velocity U. The 10-min mean wind speed U for most of the records (95%) is smaller
than 8 m/s. The number of records with the 10-min mean wind speed in the range between
8 m/s and 11 m/s is 8886. The wind records with a mean wind speed larger than 11 m/s
are surely neutral and more than two thousand (0.88%).

Table 2. Classes of membership of the 10-min mean wind velocity U.

U (m/s) 0 < U ≤ 8 8 ≤ U < 11 11 ≤ U < 20.5

Number of records 218,590 8886 2012

The designing wind speed is analysed assuming the occurrence of meteorological
phenomena corresponding to extreme cyclones. The wind speeds documented in these
types of cyclones tend to be very high, and the atmospheric properties tend towards
neutrality [34].

The Richardson number, RB, is the common indicator adopted to examine the effect of
atmospheric stratification; it is calculated by means of the measurements carried out at two
heights, z1 and z2, and is given below [35]:

RB =

(
g
θ

)
∆θ

∆z
/
(

∆U
∆z

)2
(1)

in which g is the acceleration due to gravity, and ∆z = z2 − z1, ∆θ = θz2 − θz1 and
θ=(θz2 + θz1)/2 are the averaged potential temperature at the z1 and z2 heights. In this
atmospheric environment, it can be found that the potential temperature θ is almost
the same as the temperature T measured by the anemometer, such that the former can
be substituted by the latter in the computation. When RB > 0, the atmosphere can be
considered as stably stratified; when RB = 0, it is neutrally stratified; when RB < 0, it is
unstably stratified.

Herein, only the wind records with mean wind speeds higher than 11 m/s at 140 m
were used to evaluate the atmospheric stratification condition. In this case, based on the
measurements at z1 = 47 m and z2 = 140 m, RB is in a range between −0.023 and 0.021.
Most of the values are zero or slightly larger than 0, such that the atmosphere can be
considered to be neutrally stratified. Figure 4 shows the histogram of the mean wind speed
values; around half of them are between 11 m/s and 12 m/s. About 1/4 of the data are
in the range between 12 m/s and 13 m/s. Then, the number of wind records decreases
rapidly with the increase of the mean wind speed.
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Figure 4. The distribution of the intense wind records with the 10-min mean wind speed detected by
the 140 m anemometer.

Based on Figure 4, there are only three records with a 10-min mean wind speed larger
than 18 m/s at 140 m, which are 19.24 m/s at 22:40, 5 May 2016; 18.53 m/s at 8:40, 5 May
2017; and 20.47 m/s at 9:20, 5 May 2017, respectively. It can be noted that all of them
occurred in May, namely in spring, and this is consistent with the statistical climatological
data according to which the most frequent gales happen in spring [25,36]. Besides this,
there was a blue alert on 5 May 2016 and a yellow alert on 5 May 2017 for the intense winds
in Beijing, which further confirms the occurrence of the strong storm. Luckily, the one
detected in 2016 occurred during the night, and no injuries were recorded. On the other
hand, on 5 May 2017, some disasters caused by the intense windstorm occurred, as shown
in Figure 1, which testifies to the importance of the study about the local wind field.

The data recorded in the period from 2013 to 2017 by the 140 m anemometer installed
on the Beijing meteorological tower were used to preliminarily evaluate the local statistical
properties of the wind speed in order to avoid the interference of the airflow around the
meteorological tower due to the complex urban surroundings. Accordingly, as shown in
Figure 5, the distribution of the monthly maximum mean wind speeds in 1-s, 3-s, 1-min
and 10-min time intervals for the 5 years extracted from this anemometer are presented.
In spring, the peak value of the monthly maximum average wind speed averaged on
different time intervals generally appeared in May, and only in 2015 did it occur in April,
in correspondence with an intense sandstorm. Then, the mean wind speed presents an
obvious decrease in summer. Of particular interest is the summer in 2016. After the
investigation, a short intense gust front in June and a thunderstorm in July happened and
were detected, which made clear the mean wind speed increasing in short intervals. The
monthly maximum average wind speed related to September is relatively smaller, and
presents a peak in October or November in autumn. In winter, the monthly maximum
average wind speed is generally homogeneous. The abnormal small values in November
2015 and January 2016 probably derive from the lack of valid data due to equipment
failure. The annual variation is because of Beijing’s closer proximity to the wind source
in the spring and winter months [36]. The analysis results are also consistent with the
characteristics of the temperate continental monsoon climate in Beijing [37].
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Figure 5. The distribution of the monthly maximum mean wind speeds with different time intervals
related to the 140 m anemometer from 2013–2017.

The statistical results of the monthly maximum 10-min mean wind speed, with similar
patterns of variation at three levels—namely 47 m, 140 m and 280 m—are shown in
Figure 6a. The magnitude of the mean wind speed increases with the increase of the height,
which is consistent with the conventional property of the wind profile of synoptic winds.
Besides this, the corresponding monthly maximum 3-s gust wind speed related to these
three anemometers is also illustrated in Figure 6b. In general, the monthly maximum 3-s
gust wind speed presents a tendency to increase with the height. It may be noted that the
trend lines related to 140 m and 280 m are very close in some months (orange triangles).
In the investigation, all of the special situations which occurred correspond to the same
intense wind storms. Furthermore, the abnormal vertical mean wind speed distribution,
where the gust wind speed at the height of 140 m even exceeds the wind speed at the
height of 280 m (green squares), can be associated to a short-duration wind storm in March
and June 2015, and a convective thunderstorm in August 2017. Then, it can be seen that
the maximum gust wind speeds at the heights of 47 m and 140 m are very close in June
2014 and April 2017 (black circles), when the thunderstorm and a near gale with a Beaufort
scale 7 rating occurred.
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Figure 6. Distribution of the monthly maximum wind speed with time intervals of 10 min (a) and 3 s (b) from 2013–2017.
Orange triangles: the trend lines related to 140 m and 280 m are very close; green squares: the gust wind speed at the height
of 140 m even exceeds the wind speed at the height of 280 m. Black circles: the maximum gust wind speeds at the height of
47 m and 140 m are very close.

3.2. Wind Direction

As for the analysis of the mean wind directions, the relevant horizontal wind rose is
first presented in Figure 7a based on the 5-year data detected by the 140 m anemometer.
It shows that the dominant wind directions are northwest, north, southwest and south.
The samples of high wind speeds in the northwest and low wind speeds in the south are
relatively numerous, while the samples for the other directions are relatively sparse. The
seasonal distribution of the wind direction is illustrated in Figure 7b, which shows that
the northwest wind prevails in winter and the southwest wind is dominant in summer.
Spring and autumn are the transition seasons, and south, southwest and northwest are the
dominant wind directions.

Figure 7. Horizontal wind roses based on the data at 140 m from 2013 to 2017: wind speed distribution (a) and seasonal
distribution (b).
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As shown in Table 1, the number of the samples with mean wind speeds higher than
11 m/s is 2012, which is enough for a statistical analysis to be carried out, assuming that
the wind speed is associated with the neutral properties of synoptic events [5,6] and thus
related to the wind-resistant design of structures.

Furthermore, the wind rose diagram in the four seasons related to the records char-
acterized by mean wind velocities higher than 11 m/s during the period of study from
the 140 m anemometer is presented in Figure 8. It shows the dominance of occurrences
in the WNW and NW. Intense winds frequently occur in spring, and secondly in win-
ter and autumn, while the wind samples in summer are much smaller than those in the
other seasons.

Figure 8. Wind rose diagram in different seasons based on the intense wind records at 140 m from
2013 to 2017.

4. Statistical Properties of the Wind Profiles

For the estimation of the wind profile properties in the Beijing urban area, two intense
synoptic wind events which occurred in autumn and spring were first taken as an example
and separately illustrated in detail in Sections 4.1 and 4.2. Then, the statistical analysis of a
family of wind profiles corresponding to intense synoptic wind records was carried out
and examined in Section 4.3.

4.1. Analysis of the Intense Wind Event which Occurred on 10 October 2013

First of all, the synoptic event detected on 10 October 2013 was selected as representa-
tive of the intense synoptic winds that occur in Beijing during the autumn. In this case, the
Beijing meteorological bureau issued a blue alert for strong winds and there was blown
sand in some areas.

Three groups of measured data, recorded at 47 m, 140 m and 280 m heights, were
compared in order to investigate the time histories of the 10-min mean wind speed U (a), the
mean wind direction ϑ (b), the mean temperature T (c) and the friction velocity normalized
by the mean wind speed u∗/U (d) at various altitudes, as shown in Figure 9. The friction

velocity u∗ can be determined by the formula u∗ =
[(
−u′w′

)2
+

(
−v′w′

)2
]0.25

, where

−u′w′ and −v′w′ are the vertical flux of horizontal momentum, which are obtained from
the constant flux layer [38]. The four groups of data from different anemometers fluctuated
similarly, which confirms the reliability of the measured data. This synoptic event occurred
from about 7:50 Beijing time. The 10-min mean wind speed at 280 m above ground level
(AGL) increased from 6.86 m/s to 15.46 m/s suddenly, while the wind speed at 47 m and
140 m increased relatively slowly. At 140 m, the wind speed at 7:50 was 5.05 m/s, and it
spent 1 h to reach 13.55 m/s. It increased from 1.12 m/s to 9.09 m/s at 47 m in the same
time interval. The high wind speed lasted for about 13 h between the vertical dashed lines.
The mean wind speed at 47 m was lighter than that at 140 m and 280 m. As shown in
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Figure 9b, the wind directions before and after the storm fluctuated strongly, while they
remained stable around 270 deg during the storm. The information on the temperature
shows a daily increase in the morning and simultaneously at the beginning of the storm, as
illustrated in Figure 9c. Then, the temperature decreased despite the coming noon. It can be
inferred that the accumulation of solar energy was the dominant factor for the temperature,
while the occurrence of the event affected it slightly. According to Figure 9d, it was found
that there were no indications of significant diurnal variations of the dimensionless friction
velocity. During the period of strong wind, the patterns of the temporal variations of the
dimensionless friction velocity at the three levels were almost the same, which indicates
that the atmospheric turbulence is mainly dominated by the mechanical convection, and
that the atmosphere is near-neutrally stratified [39].

Figure 9. Time histories of the synoptic event which occured on 10 October 2013, related to the heights of 47 m, 140 m and
280 m: (a) 10-min mean wind speed, (b) 10-min mean wind direction, (c) 10-min mean temperature, and (d) the friction
velocity normalized by the mean wind speed u∗/U. The vertical dashed lines include the time window of the event.

The two vertical dashed lines drawn in Figure 9 roughly isolate the strong storm event
in light of the relatively stable wind direction during this period. Table 3 illustrates the
comparison of the maximum, minimum and mean value of the 10-min mean wind speed,
the mean wind direction and the mean temperature at the three heights related to the
duration between the two vertical lines. The wind speed increases with the height while
the temperature decreases as the height increases. Besides this, during this intense wind
event, the mean values of the 10-min mean wind direction related to the three heights were
almost constant, as shown in Figure 9b, and the difference between the maximum and
minimum was mainly due to the beginning and end of the storm.

Table 3. Comparison of the wind data of three heights related to the duration between the two
vertical lines in Figure 9.

h (m)
Speed (m/s) Direction (deg) Temperature (◦C)

Max Min Mean Max Min Mean Max Min Mean

47 13.03 1.52 7.23 360 280.8 302.1 22.54 19.29 20.91
140 17.22 4.64 11.12 352 291.5 312.2 21.93 18.78 20.08
280 19.92 6.27 14.57 336 287.4 306.5 19.11 15.79 17.21
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The profile variations of the 10-min mean wind speed U (a), horizontal direction α (b)
and wind angle of attack γ (c) (namely the angle between the wind flow direction and the
horizontal direction) every two hours are shown in Figure 10. A regular variation trend
occurs during the strong storm. The vertical angle changed slightly at low heights and
remained almost constant at higher levels.

Figure 10. The profile variation of the 10-min mean wind speed (a), hotizontal direction (b) and wind
angle of attack (c) on 10 October 2013.
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The profiles of the 10-min mean wind speed (a), horizontal direction (b) and wind
angle of attack (c) related to some intense wind records during the synoptic event which
occurred on 10 October 2013 are shown in Figure 11. It should be noted that the mean wind
speeds are normalized with reference to the values detected by the 280 m anemometer. The
wind speeds always increase with the increasing height, and their variation tendency is
similar. The mean direction remains in the range between 270 and 320 degrees, and appears
a little bit clockwise rotated with the increase of the height, followed by a relatively larger
clockwise rotation from 200 m to 280 m. This rotation is consistent with the Ekman spiral
concepts. When evaluating the measurements up to 300 m in a city center, the Ekman
spiral may appear at over 200 m. Most of the wind angle of attacks were negative, namely
upward for the lower heights, while for higher heights almost all of them were positive,
namely downward. The magnitudes of all of them were small.

Figure 11. The profiles of 10-min mean wind speed normalized by the value at 280 m (a), the horizontal direction (b) and
the wind angle of attack (c) related to the strong wind records of a synoptic event which occured on 10 October 2013.

4.2. Analysis of the Intense Wind Event which Occurred on 5 May 2017

The synoptic event detected on 5 May 2017 was selected as being representative of
the intense synoptic winds that occur in Beijing during the spring. Figure 12 shows the
10-min mean wind speed (a), wind direction (b), temperature (c) and normalized friction
velocity (d) history related to the heights of 47 m, 140 m and 280 m. The three groups of
data also present striking similarities. Besides this, Table 4 reports the maximum, minimum
and mean values of the wind speed, wind direction and temperature at the three heights
during the period between the two vertical dashed lines in Figure 12. This synoptic event
occurred at 7:30 Beijing time and lasted for about 11.5 h. The mean wind speed at 47 m
is smaller than that at 140 m and 280 m. As shown in Figure 12b, differently, the wind
directions before and after the storm fluctuate strongly at 47 m, and take values around
190 deg at 140 m and around 260 deg at 280 m. Moreover, the directions become about
290 deg at 47 m and 140 m, and about 330 deg at 280 m during the event, as illustrated
in Table 3, which is different from the event shown in Figure 9b, proving the individual
variation of different synoptic storms. As shown in Figure 12c, the information of the
temperature shows an abnormal decrease in the morning when the event occurred, which
means that the occurrence of the storm influenced it. Figure 12d shows the temporal
variation of the friction velocity normalized with reference to the mean wind speed at three
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levels. When the wind speed is low, the fluctuations of the dimensionless friction velocity
increase significantly and its statistical characteristics become unsteady. During the strong
storm, the normalized friction velocity was almost constant, similar to the event which
occurred on 10 October 2013. The further and detailed study of the stratified structure of
the atmospheric boundary layer of the Beijing urban area is still in progress.

Figure 12. The 10-min mean wind speed (a), wind direction (b), temperature (c) and friction velocity normalized by the
mean wind speed u∗/U, (d) history of the synoptic event which occured on 5 May 2017, related to the heights of 47 m,
140 m and 280 m.

Table 4. Comparison of the wind data of three heights related to the duration between two vertical
lines in Figure 12.

h (m)
Speed (m/s) Direction (deg) Temperature (◦C)

Max Min Mean Max Min Mean Max Min Mean

47 14.29 2.31 8.17 339.3 280.8 298.14 19.13 14.86 17.27
140 20.47 3.75 11.3 339.3 291.5 309.02 18.79 14.35 16.76
280 24.2 4.49 13.86 354.5 287.4 304.68 17.08 12.48 14.85

The profile variations of the 10-min mean wind speed (a), horizontal direction (b) and
wind angle of attack (c) every two hours are illustrated in Figure 13. Similarly to the
previous event, during the storm the shapes of the wind speed and wind direction profiles
change a little as time goes on. In particular, the wind direction presents a relatively large
clockwise rotation from 200 m to 280 m, which is the same as the event which occurred on
10 October 2013; furthermore, in this case the generation of the Ekman spiral may explain
this phenomenon. As far as concerns the wind angle of attack, it varies a little bit with the
time during the intense event; moreover, it exhibits a positive and negative change for the
lower levels whilst remaining relatively constant for the higher levels.

The profiles of U normalized with reference to the value at 280 m (a), the horizontal
direction (b) and the wind angle of attack (c) are shown in Figure 14. The wind speed
profiles of the different 10-min length segments present a relatively similar trend to the
height. This property is more prominent for the wind direction, which rotates clockwise
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a little. As far as concerns the angle of attack, most of the values lower than 64 m are
negative. They then become relatively constant until 200 m. It is noteworthy that there is a
slight increase between the heights of 200 m and 280 m.

Figure 13. The profile variation of the 10-min mean wind speed (a), hotizontal direction (b) and wind
angle of attack (c) of the synoptic event which occured on 5 May 2017.
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Figure 14. The profiles of the 10-min mean wind speed nomalized by the related value at 280 m (a), the horizontal direction
(b) and the wind angle of attack (c) related to the strong wind records of the synoptic event which occured on 5 May 2017.

4.3. Statistical Analysis of the Intense Wind Speed Records

Estimating the 5-year measured data, eight intense wind speed samples were selected
to show a preliminary tendency of the wind speed (a), wind direction (b) and wind angle
of attack profiles (c); they are shown in Figure 15. The mean wind speeds at 280 m
corresponding to these records were between 16.8 m/s and 24.2 m/s; besides this, they
were extracted from 6 different storms.

Figure 15. The profiles of the 10-min mean wind speed nomalized by the related value at 280 m (a), the horizontal direction
(b) and the wind angle of attack (c) related to eight strong synoptic wind records.

Figure 15a shows that the changes of the mean wind speeds with the height of the
different samples are very close. According to Figure 15b, the mean wind direction rotates
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clockwise a little bit with heights under 200 m, while above 200 m the direction rotates
clockwise relatively greatly with the height; this situation is consistent with the two events
described above and the Ekman spiral in the Northern Hemisphere. Besides this, the wind
angle of attacks of the samples are negative, as shown in Figure 15c for the lower heights.
From 80 m to 200 m, most of them are positive, and remain around constant values with the
height. Then, they increase slightly from 200 m to 280 m. It may be preliminarily inferred
that this might be due to the stratified structure of the atmospheric boundary layer, which
deserves further analysis.

For the assessment of the wind loads on structures in the Chinese code (GB50009-
2012), the representation of the mean wind velocity profile by the power law [40,41] is first
investigated. It can be written as

U(z) = Ur·
(

z
zr

)α

(2)

in which U(z) is the mean wind speed at the height z AGL, Ur is the mean wind speed at
the reference height zr AGL, and α is the ground roughness exponent. The estimation of
the past study indicated that the measured data from the anemometers below 47 m are
influenced by the buildings around the meteorological tower [25]. Here, the intense wind
speed data from the anemometers above 47 m were adopted for the fitting of the wind
speed profile by the least square method.

Here, the distribution of the ground roughness exponents α obtained from all of the
considered intense records with 10-min mean wind speeds faster than 11 m/s related to
the 140 m anemometer by regression analysis is presented in Figure 16. Accordingly, it can
be found that most of the results, namely 60.4%, are between 0.2 and 0.4. Then, the profiles
are separated into five different families with different wind speed ranges at 140 m height:
11 ≤ U < 12, 12 ≤ U < 13, 13 ≤ U < 14, 14 ≤ U < 15, and 15 ≤ U < 21 m/s. The fitting
ground roughness exponents of every record belonging to the same family are averaged
and illustrated in Table 5, below. As the mean wind speed of the records considered
increases, the ground roughness exponent decreases gradually. All of the average fitting
exponents are larger than the maximum value in the Chinese National Load Code (α = 0.30
for terrain D). On the other hand, based on the code, the ground roughness exponent
around the tower is 0.22 (terrain C), a value lower than the results from the measured
data [31].

Figure 16. The distribution of the ground roughness exponents.
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Table 5. Average fitting ground roughness exponents of every record belonging to the same family.

U (m/s) α

11 ≤ U < 12 0.393
12 ≤ U < 13 0.378
13 ≤ U < 14 0.372
14 ≤ U < 15 0.361
15 ≤ U < 21 0.327

There might be two main reasons for the relatively larger values obtained from the
measured data. One is due to the rapid development of the buildings around the Beijing
meteorological tower in recent years. The surface roughness has increased and the city’s
underlying surface has become more complex. Therefore, part of the original rules in the
load code are no longer applicable. The other is that in an area with a high density of
buildings, the height at which the mean velocity approaches zero is not the terrain level
but the average height of the obstacles, namely the zero plane displacement. This condition
is not considered in the power law profiles adopted in the Chinese load code, which makes
the obtained ground roughness exponents α larger.

In addition to the power law, the log law also is investigated below for the description
of the vertical distribution of the mean wind speed in the ABL. According to the asymptotic
similarity considerations for a neutral atmospheric boundary layer [42,43], it is given by:

U(z) =
u∗

κ
·ln

(
z
z0

)
(3)

in which u∗ is the surface friction velocity; κ is von Karman’s constant, assumed here to be
0.4; and z0 is the surface roughness length. When considering a dense canopy with packed
surface obstacles such as vegetations and buildings, the mean flow does not penetrate
downward to the surface; therefore, Equation (3) is corrected as

U(z) =
u∗

κ
·ln

(
z− d

z0

)
(4)

where d is the zero plane displacement.
However, some previous research has shown that the log law does not represent the

mean wind speed profile well for the higher levels, typically for z > 200 m [11,13,44].
The Deaves–Harris model (D-H model) incorporates more of the real physics of the ABL
meeting both the upper and lower boundary conditions, and is supposed to be applicable
to the entire boundary layer [45]. It is expressed as:

U(z) =
u∗

κ

[
ln
(

z
z0

)
+ 5.75

( z
h

)
− 1.88

( z
h

)
− 1.33

( z
h

)2
+ 0.25

( z
h

)4
]

(5)

in which h is the height of the ABL, and is given by:

Uh =
u∗

B f
(6)

where f is the Coriolis parameter equaling to 9.375× 10−5s−1 and B is an empirical constant,
of which the magnitude is 6 according to the observed wind profiles [14].

The measured profiles which are the ensemble-averaged values of the 10-min mean
wind speed for the whole family considered (a) and several regimes of the reference
wind speed at 140 m AGL ((b)–(f)) are compared with the empirical mean speed profiles
which were determined based on the aerodynamic parameters fitted by the corresponding
measurement in Figure 17. All of the profiles were normalized at the 140 m value. The
average values of u∗ at 80 m, where the maximum occurs in the near-surface layer, were
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applied in these models [11,46]. The concept of a local u∗ value depending on height above
the ground was also used by Burlando et al. [47] with reference to complex terrains.

Figure 17. Comparison of the measured mean wind speed profile with those of the empirical models based on the adoption
of the measured parameters related to wind records with different speed ranges (m/s).

The profiles of the power law and log law are in closer agreement with the measured
profiles for the lower heights. Besides this, for higher levels, the power law exhibits
significant differences with the measured data, whereas the log-law model underestimates
the wind speeds; however, the corrected log law based on the D–H model presents a good
fit to the measured mean wind speed profiles. The roughness length z0 and zero-plane
displacement d are 1.8 m and 17.8 m for the ensemble, respectively. Besides this, the former
decreases gradually with the increase of the wind speed period calculated and the latter
does not present a clear rule for the moment. The height h of the neutral ABL based on
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the D–H model is 1940 m, corresponding to the whole family considered, which exceeds
greatly the gradient height (450 m) recommended by the code (GB50009-2012) [33]. It is
observed that the value h generally increases with the wind speed. All of the traditional
laws of wind profiles based on open and flat terrains are not appropriate for the UABL
wind and could only present appropriate fitting. It is necessary to take account of the
aerodynamic characteristic parameters of UABL based on a vertical stratified structure for
the wind profiles in the urban boundary layer.

5. Conclusions

The 325 m meteorological tower in Beijing provides a good opportunity to detect
high-resolution measured data at different levels using a refined analysis of UABL. The
properties of the measurement site and anemometers on the tower were illustrated here for
the first time. Then the database generated by it based on nine ultrasonic anemometers
mounted at different heights from 8 m to 280 m along the tower from 2013 to 2017 was
estimated, after which a total of 229,488 10-min length segments of wind speed records
related to each anemometer were retained and considered to be reliable after a suitable
quality control for further analyses.

In order to display a preliminary viewpoint on the wind-climate properties in the
Beijing urban area, the statistical properties of the wind speed and direction were evaluated.
It was found that, generally, the season with the most frequent gales is spring. Moreover,
most of the high wind speed records are from the northwest, and the low wind speed
records are from the south. The seasonal distribution of the wind direction was also pre-
sented, and it was found that the northwest wind prevails in winter, the dominant direction
in summer is southwest, and spring and autumn can be considered as transition seasons.

Then, as for learning the property of wind profiles in the Beijing urban area, eight
intense wind speed samples were preliminarily examined. It is worth noting that the
wind speed profiles related to all of them exhibit a similar growth with the height. As the
height increases, the mean wind direction shows a small amount of clockwise rotation with
heights under 200 m, while it rotates counterclockwise from 200 m to 280 m, which might
be owing to the Ekman spiral. With the increase of the measured data, this deserves further
study. Besides this, the wind angle of attacks of the samples are negative for the lower
levels, then become positive and almost hardly vary with height. In particular, from 200 m
to 280 m, there is a slight increase of the wind angle of attack.

Then, the intense wind speed segments were selected herein for the further study of
the wind speed profiles. The corresponding wind speed profiles related to different wind
speed ranges were fitted by applying the power law. The ground roughness exponent
decreases gradually with the increase of the wind speed. Furthermore, compared with
the Chinese National Load Code (GB50009-2012), the average fitting exponents obtained
by the measurements are larger than the proposed value for the site around the tower in
the code (α = 0.22 for terrain C). This means that the empirical model underestimates the
influence of the ground roughness, which probably is due to the lack of measured data
within a certain height range of the urban center. Besides this, it was found that, for the
lower heights, the power-law and log-law profiles agree with the measured profiles. For
higher heights, the power-law profiles present significant differences from the measured
data: the log-law model underestimates the wind speeds, whereas the log law correction
based on the D–H model improves the matching, providing a good fit to the measured
profiles. The inaccuracy of traditional laws of wind profiles which can be found when
fitting the UABL wind and the aerodynamic characteristic parameters of UABL based on
vertical stratified structures have to be taken into account. Further research is necessary for
the safety, reliability and economy of building structures.

The results were collected by ultra-sonic anemometers and pertain to the Beijing
urban area, where buildings are relatively dense. The acquisition of new data through
other instruments, like LiDAR (light detection and ranging), may strongly contribute
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to refining the study of the wind-speed profile carried out here, and may consequently
contribute to the improvement of current engineering standards.

The study of the property of turbulence is a matter for another paper currently
in progress.
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