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Subdivision schemes are used to generate smooth curves or surfaces by iteratively refining 
an initial control polygon or mesh. We focus on univariate, linear, binary subdivision 
schemes, where the vertices of the refined polygon are computed as linear combinations of 
the current neighbouring vertices. In the classical stationary setting, there are just two such 
subdivision rules, which are used throughout all subdivision steps to construct the new 
vertices with even and odd indices, respectively. These schemes are well understood and 
many tools have been developed for deriving their properties, including the smoothness of 
the limit curves. For non-stationary schemes, the subdivision rules are not fixed and can 
be different in each subdivision step. Non-uniform schemes are even more general, as they 
allow the subdivision rules to be different for every new vertex that is generated by the 
scheme. The properties of non-stationary and non-uniform schemes are usually derived by 
relating the scheme to a corresponding stationary scheme and then exploiting the fact that 
the properties of the stationary scheme carry over under certain proximity conditions. In 
particular, this approach can be used to show that the limit curves of a non-stationary 
or non-uniform scheme are as smooth as those of a corresponding stationary scheme. In 
this paper we show that non-uniform subdivision schemes have the potential to generate 
limit curves that are smoother than those of stationary schemes with the same support 
size of the subdivision rule. For that, we derive interpolatory 2-point and 4-point schemes 
that generate C1 and C2 limit curves, respectively. These values of smoothness exceed the 
smoothness of classical interpolating schemes with the same support size by one.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given some initial data f 0 = ( f 0
i )i∈Z at level zero with f 0

i ∈R, a linear, uniform, stationary, binary subdivision scheme 
S generates refined data f k+1 = ( f k+1

i )i∈Z at level k + 1 for any k ∈N0 according to the two subdivision rules

f k+1
2i =

∑
j∈Z

f k
i− ja j and f k+1

2i+1 =
∑
j∈Z

f k
i− jb j, (1)
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with certain weights a j, b j ∈R for j ∈Z. These rules are often referred to as the even and the odd subdivision rule, because 
they determine the refined data with even and odd indices, respectively. In most applications, only a finite number of these 
weights are non-zero, and we shall adhere to this assumption. The scheme S is called convergent, if the sequence (Fk)k∈N0

of functions F k : R → R that are piecewise linear over Z/2k and interpolate f k
i at the parameter values tk

i = i/2k for i ∈Z
converges uniformly for any initial data f 0 and if the limit function is non-trivial for at least one choice of f 0 (Dyn and 
Levin, 2002). The function S∞ f 0 = limk→∞ F k , which is necessarily continuous, is then called the limit function of S for 
f 0. The scheme S can also be applied to initial data consisting of points rather than scalar values, by simply applying the 
subdivision rules to each coordinate, thus resulting in limit curves, and the piecewise linear interpolant F 0 is then called the 
control polygon of the limit curve.

Apart from early work by de Rham (1947), the first subdivision schemes were designed to generate uniform B-spline 
curves of arbitrary degree (Lane and Riesenfeld, 1980). For these B-spline schemes, the weights a j and b j of the subdivision 
rules in (1) can be derived from the two-scale relations of the uniform B-spline basis functions, and the properties of the 
limit functions or curves are evident. Later research studied subdivision independently of B-splines, and simple tools are 
now available for checking the necessary and sufficient conditions for the convergence of S and the smoothness of the 
limit functions or curves (Cavaretta et al., 1991; Dyn and Levin, 2002), as well as for deriving the degrees of polynomial 
generation and reproduction (Dyn et al., 2008), which are intimately related to the approximation order of the scheme S .

In order to generate more general classes of limit curves, several modifications of the rules in (1) have been considered. 
In the non-stationary setting, the weights of the rules are allowed to depend on the subdivision level k, and this flexibility 
can be used to reproduce circles (Jena et al., 2003) or exponential polynomials (Dyn et al., 2003). Circles can as well be 
generated by non-linear subdivision schemes (Sabin and Dodgson, 2005), where the subdivision rules may depend on the 
data f k

i and hence vary not only for each subdivision level k, but also for each index i. Besides generating circles and 
Gaussian functions (Schaefer et al., 2008), non-linear schemes are capable of eliminating shape artefacts (Dyn et al., 2009; 
Marinov et al., 2005) and creating smooth curves on manifolds and curved surfaces (Noakes, 1998). A third modification are 
non-uniform subdivision schemes (Daubechies et al., 1999; Warren, 1995), which can be used, for example, to generate non-
uniform B-splines (Cashman et al., 2007; Goldman and Warren, 1993; Schaefer and Goldman, 2009). For these schemes, the 
parameter values tk

i corresponding to the data f k
i are usually no longer assumed to be uniformly spaced, and consequently 

the subdivision rules depend on k and i, but they remain linear.
Several tools have been developed for proving the convergence and smoothness of a non-linear, non-stationary, or non-

uniform scheme S , including divided differences (Daubechies et al., 1999), asymptotic equivalence (Dyn and Levin, 1995; Dyn 
et al., 2014), asymptotic similarity (Conti et al., 2015), and proximity conditions (Wallner, 2006; Wallner and Dyn, 2005). In 
a nutshell, the common aim of these techniques is to establish a relation to a corresponding linear, uniform, stationary 
scheme S ′ and to show that convergence and smoothness properties of S ′ are inherited by S . For example, non-uniform 
corner cutting gives limit curves that are as smooth as Chaikin’s quadratic B-spline scheme (Chaikin, 1974; Riesenfeld, 1975), 
namely C1, under certain constraints of the cut proportions (Gregory and Qu, 1996), and several variants of the classical 
interpolatory 4-point scheme (Dubuc, 1986; Dyn et al., 1987) are known to also give C1 limit functions or curves (Beccari 
et al., 2007, 2011; Daubechies et al., 1999; Marinov et al., 2005).

In this paper, we show that it is possible to go beyond these results and to increase the smoothness of a linear scheme, 
if we allow the weights a j and b j of the subdivision rules in (1) to depend on k and i. That is, we consider non-uniform 
schemes, but in contrast to most other non-uniform schemes, we stick to the uniform, dyadic parameter values tk

i = i/2k . In 
particular, we focus on schemes that are interpolatory, that is, with weights ak

i,0 = 1 and ak
i, j = 0 for j �= 0, independently of 

k and i, as well as periodic, in the sense that the weights bk
i, j repeat at a frequency of 2k in i, so that the same refinement 

strategy is applied over each of the initial intervals [t0
m, t0

m+1] = [m, m + 1], m ∈Z.

Overall, this means that we consider subdivision schemes that generate the refined data f k = ( f k+1
i )i∈Z at level k + 1

for any k ∈N0 according to the even, interpolatory subdivision rule

f k+1
2i = f k

i (2)

and the 2k odd subdivision rules

f k+1
2i+1 =

∑
j∈ Jk

l

f k
i− jb

k
l, j, (3)

where l = i mod 2k , with certain finite sets J k
i ⊂ Z and weights bk

i, j ∈ R for i ∈ {0, 1, . . . , 2k − 1}, j ∈ J k
i , and k ∈ N0. We 

further call the subdivision scheme an n-point scheme, if the cardinality of all sets J k
i is at most n.

Within this setting, we first derive two novel interpolatory 2-point schemes with C1 limit functions, as opposed to 
the stationary, interpolatory 2-point scheme that simply reproduces the piecewise linear interpolant F 0 of the initial data 
and hence is only C0 (Section 2). The main idea behind our construction is inspired by the B-spline schemes, which were 
designed to converge to uniform B-spline curves, in that we also start with a certain function that we would like the non-
uniform subdivision scheme to generate in the limit and then derive the appropriate weights bk that achieve this. We then 
i, j

2



N. Dyn, K. Hormann and C. Mancinelli Computer Aided Geometric Design 94 (2022) 102083
use this approach to derive two interpolatory 4-point schemes with C2 limit functions (Section 3), and finally discuss how 
these schemes can be used for generating interpolating curves on surfaces (Section 4).

2. Non-uniform C 1 interpolatory 2-point schemes

Let us start by considering interpolatory 2-point schemes, where J k
i = {−1, 0} for any k ∈ N0 and i ∈ {0, 1, . . . , 2k − 1}

in (3), so that each new data value f k+1
2i+1 is some linear combination of the neighbouring data values f k

i and f k
i+1. It follows 

by induction over k ∈ N0 that f k
i for any i ∈ {2km, . . . , 2k(m + 1)} is some linear combination of f 0

m and f 0
m+1, which 

implies that the whole limit function over the interval [m, m + 1] depends only on these two values and is independent of 
the limit function over the neighbouring intervals [m − 1, m] and [m + 1, m + 2]. Therefore, the only chance to generate a 
limit function that is C1 at m ∈ Z is to force the limit function to match a prescribed derivative at m over both adjacent 
intervals. The simplest unbiased choice is to set the derivative of the limit function to zero at all m ∈ Z. Hence, we would 
like to construct a subdivision scheme that generates, over each interval [m, m + 1], a limit function that interpolates the 
initial data and has vanishing first derivative at the endpoints of this interval.

Without loss of generality, let us focus on the unit interval [0, 1]. Our goal now is to determine the weights of the odd 
subdivision rules in (3), such that the subdivision scheme generates a certain C1 function p : [0, 1] →R satisfying

p(0) = f 0
0 , p′(0) = 0,

p(1) = f 0
1 , p′(1) = 0

(4)

as the limit function over [0, 1].

Theorem 1. Let S be the non-uniform, periodic, interpolatory 2-point scheme with the odd subdivision rules in (3) and weights

bk
i = (bk

i,0,bk
i,−1) = (αk

i , β
k
i ), k ∈N0, i ∈ {0,1, . . . ,2k − 1}, (5)

which satisfy

p(tk+1
2i+1) = p(tk

i )α
k
i + p(tk

i+1)β
k
i . (6)

Then the scheme S generates data

f k
i = p(tk

i ), k ∈N0, i ∈ {0,1, . . . ,2k}, (7)

is convergent, and the limit functions f = S∞ f 0 are C1 functions with f (m) = f 0
m and f ′(m) = 0 for m ∈Z.

Proof. We first prove (7) by induction over k and note that the base case (k = 0) follows from (4). For the inductive step, we 
distinguish the even and the odd case. On the one hand, by (2), the induction hypothesis, and the fact that tk

i = i/2k = tk+1
2i , 

we have

f k+1
2i = f k

i = p(tk
i ) = p(tk+1

2i ).

On the other hand, by (3) with the weights in (5), the induction hypothesis, and (6), we have

f k+1
2i+1 = f k

i αk
i + f k

i+1β
k
i = p(tk

i )α
k
i + p(tk

i+1)β
k
i = p(tk+1

2i+1).

It then follows from (7) that the functions F k are piecewise linear interpolants of the function p at the dyadic points tk
i and 

as such converge uniformly to p over [0, 1] as k → ∞ (de Boor, 2001). By the periodicity of the scheme, the same applies 
to all intervals [m, m + 1] for m ∈Z, thus proving the rest of the statement. �

It remains to understand under which conditions the weights in (5) can always be chosen such that they satisfy condi-
tion (6). To this end, let us express p in terms of the initial data f 0

0 and f 0
1 as

p(x) = r0(x) f 0
0 + r1(x) f 0

1

for two basis functions r0, r1 : [0, 1] →R with

r0(0) = 1, r1(0) = 0, r′
0(0) = r′

1(0) = 0,

r0(1) = 0, r1(1) = 1, r′
0(1) = r′

1(1) = 0.

Comparing the coefficients of f 0 and f 0 on both sides of (6) then yields the linear system
0 1

3
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(
r0(tk

i ) r0(tk
i+1)

r1(tk
i ) r1(tk

i+1)

)
︸ ︷︷ ︸

=Ak
i

(
αk

i

βk
i

)
=

(
r0(t

k+1
2i+1)

r1(t
k+1
2i+1)

)
. (8)

Lemma 2. If r0 and r1 form a partition of unity and r1 is strictly increasing, then the linear system in (8) has a unique solution for any 
k ∈N0 and i ∈ {0, 1, . . . , 2k − 1}, which is given by

αk
i = r1(tk

i+1) − r1(t
k+1
2i+1)

r1(tk
i+1) − r1(tk

i )
, βk

i = r1(t
k+1
2i+1) − r1(tk

i )

r1(tk
i+1) − r1(tk

i )
. (9)

These weights αk
i and βk

i are both positive and sum to one.

Proof. Using the partition of unity property, we find that det(Ak
i ) = r1(tk

i+1) − r1(tk
i ). Moreover, det(Ak

i ) > 0, because r1 is 
strictly increasing and tk

i < tk
i+1. This implies the invertibility of Ak

i for any k ∈ N0 and i ∈ {0, 1, . . . , 2k − 1}. The formulas 
in (9) can be derived from (8) after inverting Ak

i explicitly, and αk
i and βk

i are positive, because r1 is strictly increasing and 
tk

i < tk+1
2i+1 < tk

i+1. They obviously sum to one. �
Under the assumptions of Lemma 2, it follows that the odd subdivision rules (3) of the corresponding 2-point scheme 

generate the new data f k+1
2i+1 as a convex combination of the previous data f k

i and f k
i+1 and consequently f (x) ∈ [ f 0

m, f 0
m+1]

for x ∈ [m, m + 1] and any m ∈ Z. We shall now discuss two particular choices of basis functions r0 and r1 that lead to 
rather simple expressions of the weights αk

i and βk
i in (9).

Example 1. One possibility to satisfy the conditions in (4) is to choose as p the cubic Hermite interpolant, which is given 
by the basis functions

r0(x) = (1 − x)2(1 + 2x), r1(x) = x2(3 − 2x).

These functions form a partition of unity and r1 is strictly increasing, because r′
1(x) = 6x(1 − x) > 0 for x ∈ (0, 1). A straight-

forward calculation reveals that the formulas in (9) can be simplified to

(αk
i , β

k
i ) = ( 1

2 + 3
2 �k

i ,
1
2 − 3

2 �k
i

)
, �k

i = 2i + 1 − 2k

3(2i + 1)2 − 6(2i + 1)2k + 1

in this case. At the endpoints of each interval [m, m + 1], these weights converge to

lim
k→∞

(αk
0, β

k
0) = ( 3

4 , 1
4

)
and lim

k→∞
(αk

2k−1, β
k
2k−1) = ( 1

4 , 3
4

)
,

and they converge to

lim
k→∞

(αk
2k−1−1, β

k
2k−1−1) = lim

k→∞
(αk

2k−1 , β
k
2k−1) = ( 1

2 , 1
2

)
next to the centre of the interval.

Because of this limit behaviour, the known tools for analysing the smoothness of non-uniform schemes are not applicable 
in this case, but it is evident from the construction that the limit functions of this non-uniform, periodic, interpolating 2-
point scheme are the cubic C1 B-splines with duplicated control points (. . . , f 0−1, f 0−1, f 0

0 , f 0
0 , f 0

1 , f 0
1 , . . .) and uniform double 

knots (. . . ,−1,−1,0,0,1,1, . . .).

Example 2. Even simpler weights can be found if we take as p the piecewise quadratic C1 function given by the basis 
functions

r0(x) =
{

1 − 2x2, x ∈ [
0, 1

2

]
,

2(1 − x)2, x ∈ [ 1
2 ,1

]
,

r1(x) =
{

2x2, x ∈ [
0, 1

2

]
,

1 − 2(1 − x)2, x ∈ [ 1
2 ,1

]
,

for which the weights in (9) turn out to be (α0
0 , β0

0 ) = ( 1
2 , 12

)
and

(αk
i , β

k
i ) = ( 1

2 + 1
4 �k

i ,
1
2 − 1

4 �k
i

)
, �k

i =

⎧⎪⎨
⎪⎩

1

2i + 1
, i < 2k−1,

1
k+1

, i ≥ 2k−1,

2i + 1 − 2

4
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Fig. 1. Initial points, points generated by the first four subdivision steps, and limit curve (from left to right) for the stationary (top) and the non-uniform 
interpolatory 2-point schemes from Example 1 (middle) and Example 2 (bottom).

Fig. 2. Initial data, data generated by the first three subdivision steps, limit function, and first derivative of the limit function (from left to right) for the 
stationary (top) and the non-uniform interpolatory 2-point schemes from Example 1 (middle) and Example 2 (bottom).

for k > 0. As in Example 1, these weights converge to 
( 1

2 , 12
)

for i = 2k−1 −1 and i = 2k−1, but here we have (αk
0, β

k
0) = ( 3

4 , 14
)

not only in the limit, but for any k > 0, and likewise (αk
2k−1

, βk
2k−1

) = ( 1
4 , 34

)
.

As in Example 1, the known tools are not able to prove the smoothness of the limit functions generated by this non-
uniform, periodic, interpolating 2-point scheme, but it follows from the construction that they are the quadratic C1 B-splines 
with duplicated control points (. . . , f 0−1, f 0−1, f 0

0 , f 0
0 , f 0

1 , f 0
1 , . . .) and uniform knots 

(
. . . ,− 3

2 ,−1,− 1
2 ,0, 1

2 ,1, 3
2 , . . .

) =Z/2.

In the geometric setting, the fact that each new point f k+1
2i+1 is generated as a convex combination of the old points f k

i

and f k
i+1 implies that the limit curve has the same shape as the initial control polygon, with apparent C1 discontinuities at 

the initial control points. The explanation for this behaviour is that the new points generated by the non-uniform scheme 
are non-uniformly distributed along the edges of the initial control polygon and clustered towards the endpoints, which 
differs from the uniform distribution of points given by the classical interpolatory 2-point scheme with the stationary 
weights 

( 1
2 , 12

)
(see Fig. 1). Hence, the limit curve of the non-uniform scheme has a continuous rather than a piecewise 

constant derivative with respect to the dyadic parameterization, with vanishing first derivative at m ∈ Z. This fact is more 
evident in the functional setting, where it leads to flat spots at the integers (see Fig. 2).

We should stress that we do not believe these non-uniform 2-point schemes to be of any practical use, but rather 
consider them as “academic examples”, which showcase that non-uniform schemes have the potential to generate limit 
functions and curves with higher smoothness than those generated by the corresponding stationary scheme. And it turns 
out that this potential is not restricted to 2-point schemes.
5
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3. Non-uniform C 2 interpolatory 4-point schemes

For the non-uniform interpolatory 2-point schemes above, we can guarantee the limit functions to be C1 only by forcing 
the first derivative to vanish at the integers. The reason for this arguably arbitrary choice is the locality of the subdivision 
rule, but we can overcome this problem if we enlarge the support of the rules.

Hence, let us now consider the interpolatory 4-point schemes with J k
i = {−2, −1, 0, 1} and weights

bk
i = (bk

i,1,bk
i,0,bk

i,−1,bk
i,−2) = (αk

i , β
k
i , γ k

i , δk
i ), (10)

for the odd subdivision rules in (3), so that the new data value

f k+1
2i+1 = f k

i−1α
k
i + f k

i βk
i + f k

i+1γ
k
i + f k

i+2δ
k
i

is a linear combination of the neighbouring data values f k
i−1, f k

i , f k
i+1, and f k

i+2, just as for the classical interpolatory 4-point 
scheme (Dubuc, 1986), which uses the stationary weights 

(− 1
16 , 9

16 , 9
16 , − 1

16

)
.

As before, we first focus on the unit interval [0, 1], and this time we aim at reproducing in the limit a certain C2 function 
p : [0, 1] →R that satisfies

p(0) = f 0
0 , p′(0) = 1

2 ( f 0
1 − f 0−1), p′′(0) = f 0

1 − 2 f 0
0 + f 0−1

p(1) = f 0
1 , p′(1) = 1

2 ( f 0
2 − f 0

0 ), p′′(1) = f 0
2 − 2 f 0

1 + f 0
0 .

(11)

Again, the key trick is to choose the weights in (10) such that

p(tk+1
2i+1) = p(tk

i−1)α
k
i + p(tk

i )β
k
i + p(tk

i+1)γ
k
i + p(tk

i+2)δ
k
i . (12)

Expressing p in terms of the initial data f 0−1, f 0
0 , f 0

1 , and f 0
2 as

p(x) = r−1(x) f 0−1 + r0(x) f 0
0 + r1(x) f 0

1 + r2(x) f 0
2

for four basis functions r−1, r0, r1, r2 : [0, 1] →R with

r−1(0) = 0, r′−1(0) = − 1
2 , r′′−1(0) = 1, r−1(1) = 0, r′−1(1) = 0, r′′−1(1) = 0,

r0(0) = 1, r′
0(0) = 0, r′′

0(0) = −2, r0(1) = 0, r′
0(1) = − 1

2 , r′′
0(1) = 1,

r1(0) = 0, r′
1(0) = 1

2 , r′′
1(0) = 1, r1(1) = 1, r′

1(1) = 0, r′′
1(1) = −2,

r2(0) = 0, r′
2(0) = 0, r′′

2(0) = 0, r2(1) = 0, r′
2(1) = 1

2 , r′′
2(1) = 1,

and comparing the coefficients of f 0−1, . . . , f
0
2 in (12) leads to the linear system

⎛
⎜⎜⎜⎜⎝

r−1(tk
i−1) r−1(tk

i ) r−1(tk
i+1) r−1(tk

i+2)

r0(tk
i−1) r0(tk

i ) r0(tk
i+1) r0(tk

i+2)

r1(tk
i−1) r1(tk

i ) r1(tk
i+1) r1(tk

i+2)

r2(tk
i−1) r2(tk

i ) r2(tk
i+1) r2(tk

i+2)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=Bk

i

⎛
⎜⎜⎜⎜⎝

αk
i

βk
i

γ k
i

δk
i

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

r−1(t
k+1
2i+1)

r0(t
k+1
2i+1)

r1(t
k+1
2i+1)

r2(t
k+1
2i+1)

⎞
⎟⎟⎟⎟⎠ . (13)

Lemma 3. If r−1, r0, r1, r2 reproduce quadratic polynomials in the sense that

2∑
j=−1

r j(x) = 1,

2∑
j=−1

r j(x) j = x,
2∑

j=−1

r j(x) j2 = x2, (14)

and the third-order divided difference of r2 satisfies

r2[tk
i−1, tk

i , tk
i+1, tk

i+2] �= 0, (15)

for some k ≥ 2 and i ∈ {1, 2, . . . , 2k − 2}, then the corresponding linear system in (13) has a unique solution.
6
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Proof. Using (14), we first transform Bk
i into

⎛
⎜⎜⎝

1 1 1 1
−1 0 1 2

1 0 1 4
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=L

·Bk
i =

⎛
⎜⎜⎜⎝

1 1 1 1
tk

i−1 tk
i tk

i+1 tk
i+2

(tk
i−1)

2
(tk

i )
2

(tk
i+1)

2
(tk

i+2)
2

r2(tk
i−1) r2(tk

i ) r2(tk
i+1) r2(tk

i+2)

⎞
⎟⎟⎟⎠ .

We then exploit the fact that the parameter values tk
i−1, . . . , tk

i+2 are uniformly spaced with distance 2−k , so that replacing 
the second, third, and fourth column of this matrix with the first, second, and third order differences of its columns gives 
the lower triangular matrix

B̃k
i = L · Bk

i ·

⎛
⎜⎜⎝

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=R

=

⎛
⎜⎜⎜⎝

1 0 0 0
tk

i−1 2−k 0 0

(tk
i−1)

2 ∗ 2 · 4−k 0

r2(tk
i−1) ∗ ∗ ρ

⎞
⎟⎟⎟⎠ ,

where

ρ = r2(t
k
i+2) − 3r2(t

k
i+1) + 3r2(t

k
i ) − r2(t

k
i−1) = 6r2[tk

i−1, tk
i , tk

i+1, tk
i+2] · 8−k.

Since det(L) = 2 and det(R) = 1, we have

det(Bk
i ) = 1

2
det(B̃k

i ) = 8−kρ,

hence Bk
i is non-singular, because of (15). �

As in the proof of Theorem 1, we would now like to conclude by induction that the scheme generates data

f k
i = p(tk

i ), k ∈N0, i ∈ {0,1, . . . ,2k}, (16)

which in turn implies that p is the limit curve over [0, 1], and for the even case the arguments are the same. Alas, the 
inductive step for showing that f k+1

1 = p(tk+1
1 ) relies on the identity f k−1 = p(tk−1), which is not supported by the induction 

hypothesis for k > 0, and likewise for f k+1
2k+1−1

. To fix this problem, let us take a look at the first subdivision step. It is not 
hard to verify that for k = 0 and i = 0, the correct weights, which guarantee f 1

1 = p( 1
2 ), are

b0
0 = (b0

0,1,b0
0,0,b0

0,−1,b0
0,−2) = (α0

0, β0
0 , γ 0

0 , δ0
0) = (

r−1(
1
2 ), r0(

1
2 ), r1(

1
2 ), r2(

1
2 )

)
, (17)

generating the data

f 1−2 = f 0−1,

f 1−1 = f 0
−2α

0
0 + f 0−1β

0
0 + f 0

0 γ 0
0 + f 0

1 δ0
0,

f 1
0 = f 0

0 ,

f 1
1 = f 0−1α

0
0 + f 0

0 β0
0 + f 0

1 γ 0
0 + f 0

2 δ0
0,

f 1
2 = f 0

1 .

Therefore, computing f 2
1 in the standard fashion as

f 2
1 = f 1−1α

1
0 + f 1

0 β1
0 + f 1

1 γ 1
0 + f 1

2 δ1
0

results in a value that depends on the initial data f 0
−2, . . . , f

0
2 , but in order to have f 2

1 = p(t2
1), it must not depend on f 0

−2. 
The trick now is to replace the index set J 1

0 = {−2, −1, 0, 1} by the set J 1
0 = {−2, −1, 0, 2}, so that the subdivision rule (3)

for f 2
1 becomes

f 2
1 = f 1−2α

1
0 + f 1

0 β1
0 + f 1

1 γ 1
0 + f 1

2 δ1
0

= f 0−1(α
1
0 + α0

0γ
1

0 ) + f 0
0 (β1

0 + β0
0γ 1

0 ) + f 0
1 (γ 0

0 γ 1
0 + δ1

0) + f 0
2 (δ0

0γ
1

0 ).

Comparing the coefficients of f 0 , . . . , f 0 with those on the right hand side of
−1 2

7
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p(t2
1) = r−1(

1
4 ) f 0−1 + r0(

1
4 ) f 0

0 + r1(
1
4 ) f 0

1 + r2(
1
4 ) f 0

2

then reveals that for k = 1 and i = 0 the correct choice of weights

b1
0 = (b1

0,2,b1
0,1,b1

0,0,b1
0,−1,b1

0,−2) = (α1
0 ,0, β1

0 , γ 1
0 , δ1

0) (18a)

is

α1
0 = r−1(

1
4 ) − r−1(

1
2 )r2(

1
4 )

r2(
1
2 )

, β1
0 = r0(

1
4 ) − r0(

1
2 )r2(

1
4 )

r2(
1
2 )

, γ 1
0 = r2(

1
4 )

r2(
1
2 )

, δ1
0 = r1(

1
4 ) − r1(

1
2 )r2(

1
4 )

r2(
1
2 )

. (18b)

To compute f 2
3 , we proceed analogously, using the index set J 1

1 = {−3, −1, 0, 1}, and it turns out that the correct weights

b1
1 = (b1

1,1,b1
1,0,b1

1,−1,b1
1,−2,b1

1,−3) = (α1
1, β1

1 , γ 1
1 ,0, δ1

1) (19a)

are

α1
1 = r0(

3
4 ) − r0(

1
2 )r−1(

3
4 )

r−1(
1
2 )

, β1
1 = r−1(

3
4 )

r−1(
1
2 )

, γ 1
1 = r1(

3
4 ) − r1(

1
2 )r−1(

3
4 )

r−1(
1
2 )

, δ1
1 = r2(

3
4 ) − r2(

1
2 )r−1(

3
4 )

r−1(
1
2 )

. (19b)

So far, this ensures the interpolation property in (16) to hold for k = 0, 1, 2, but for k > 2, we need yet another approach. 
If we replace again the index set J k

0 for k ≥ 2 with {−2, −1, 0, 2}, then we run into the same problem as before, because 
f k−2 = f k−1

−1 depends on f 0−2. To resolve this, we replace J k
0 with {−3, −2, −1, 0} instead, so that the subdivision rule for 

f k+1
1 becomes

f k+1
1 = f k

0 αk
0 + f k

1 βk
0 + f k

2γ k
0 + f k

3 δk
0.

Note that this choice would not work for k = 1, because f 1
3 depends on f 0

3 . Using the induction hypothesis that f k
j = p(tk

j)

for j = 0, 1, 2, 3, the weights (αk
0, β

k
0, γ k

0 , δk
0) that guarantee f k+1

1 = p(tk+1
1 ) are then given by the linear system in (13) for 

i = 0, with Bk
0 replaced by Bk

1, which still leads to a unique solution under the assumptions of Lemma 3. Similarly, we 
replace the index set J k

2k−1
with {−1, 0, 1, 2} for k ≥ 2, and the weights (αk

2k−1
, βk

2k−1
, γ k

2k−1
, δk

2k−1
) for computing

f k+1
2k+1−1

= f k
2k−3α

k
2k−1 + f k

2k−2β
k
2k−1 + f k

2k−1γ
k
2k−1 + f k

2kδ
k
2k−1,

such that f k+1
2k+1−1

= p(tk+1
2k+1−1

), are given by (13) for i = 2k − 1, with Bk
2k−1

replaced by Bk
2k−2

.
Based on the discussion above, we are now ready to summarize our construction.

Theorem 4. Let r−1, r0, r1, r2 be four basis functions that satisfy

r−1(
1
2 ) �= 0, r2(

1
2 ) �= 0 (20)

as well as the assumptions of Lemma 3 for any k ≥ 2 and i ∈ {1, 2, . . . , 2k −2}. Further let S be the non-uniform, periodic, interpolatory 
4-point scheme with the odd subdivision rules in (3) and the weights in (17), (18), and (19) for k = 0 and k = 1, as well as

bk
0 = (bk

0,0,bk
0,−1,bk

0,−2,bk
0,−3) = (αk

0, β
k
0, γ k

0 , δk
0)

= (
r−1(t

k+1
1 ), r0(t

k+1
1 ), r1(t

k+1
1 ), r2(t

k+1
1 )

) · (Bk
1

)−T
,

bk
i = (bk

i,1,bk
i,0,bk

i,−1,bk
i,−2) = (αk

i , β
k
i , γ k

i , δk
i )

= (
r−1(t

k+1
2i+1), r0(t

k+1
2i+1), r1(t

k+1
2i+1), r2(t

k+1
2i+1)

) · (Bk
i

)−T
, i ∈ {1,2 . . . ,2k − 2},

bk
2k−1 = (bk

2k−1,2,bk
2k−1,1,bk

2k−1,0,bk
2k−1,−1) = (αk

2k−1, β
k
2k−1, γ

k
2k−1, δ

k
2k−1)

= (
r−1(t

k+1
2k+1−1

), r0(t
k+1
2k+1−1

), r1(t
k+1
2k+1−1

), r2(t
k+1
2k+1−1

)
) · (Bk

2k−2

)−T

for k ≥ 2. Then the scheme S generates the data in (16), is convergent, and the limit functions are C2 functions with f (m) = f 0
m, 

f ′(m) = ( f 0
m+1 − f 0

m−1)/2, and f ′′(m) = f 0
m+1 − 2 f 0

m + f 0
m−1 for m ∈Z.

As in the previous section, we shall now discuss two particular choices of basis functions r−1, r0, r1, r2, for which rather 
simple expressions of all weights αk , βk , γ k , δk can be derived.
i i i i

8
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Example 3. One possibility to satisfy the conditions in (11) is to choose as p the quintic Hermite interpolant, which is given 
by the basis functions

r−1(x) = x(1 − x)3(− 1
2 − x), r0(x) = (1 − x)(1 + x − 9

2 x3 + 3x4),

r1(x) = x( 1
2 + 1

2 x + 9
2 x2 − 15

2 x3 + 3x4), r2(x) = x3(1 − x)(− 3
2 + x).

It is not hard to verify that these functions satisfy the conditions in (14) and (20) and that

r2[tk
i−1, tk

i , tk
i+1, tk

i+2] = −4−k(10i2 − 10i(2k − 1) − 5(2k − 1) + 3
2 · 4k),

which is equal to zero if and only if

i = 1
2

(
2k − 1 ±

√
2
5 · 4k − 1

)
.

For k = 0, these values are imaginary, and if k > 0, then 2k − 1 is odd and the root would have to be odd, too, in order for i
to be an integer, that is,√

2
5 · 4k − 1 = 2m − 1 ⇐⇒ 2

5 · 4k − 1 = 4m2 − 4m + 1 ⇐⇒ 4k = 5(2m2 − 2m + 1)

for some m ∈Z, but this is impossible, because 4k does not divide by 5.
This asserts that these basis functions satisfy the assumptions of Theorem 4, and the weights of the resulting subdivision 

scheme turn out to be

b0
0 = (− 1

16 , 9
16 , 9

16 ,− 1
16

)
, b1

0 = (− 33
512 ,0, 390

512 , 120
512 , 35

512

)
, b1

1 = ( 35
512 , 120

512 , 390
512 ,0,− 33

512

)
for k = 0 and k = 1, as well as

bk
0 =

(
5

16
· 113 − 65 · 2k + 6 · 4k

100 − 60 · 2k + 6 · 4k
,

15

16
· 87 − 55 · 2k + 6 · 4k

100 − 60 · 2k + 6 · 4k
,

− 5

16
· 61 − 45 · 2k + 6 · 4k

100 − 60 · 2k + 6 · 4k
,

1

16
· 35 − 35 · 2k + 6 · 4k

100 − 60 · 2k + 6 · 4k

)
,

bk
i =

(
− 1

16
· 5(7 + 8i)(7 + 8i − 2k+3) + 35 + 3 · 4k+2

5(4 + 8i)(4 + 8i − 2k+3) + 80 + 3 · 4k+2
,

9

16
· 5(5 + 8i)(5 + 8i − 2k+3) + 75 + 3 · 4k+2

5(4 + 8i)(4 + 8i − 2k+3) + 80 + 3 · 4k+2
,

9

16
· 5(3 + 8i)(3 + 8i − 2k+3) + 75 + 3 · 4k+2

5(4 + 8i)(4 + 8i − 2k+3) + 80 + 3 · 4k+2
,− 1

16
· 5(1 + 8i)(1 + 8i − 2k+3) + 35 + 3 · 4k+2

5(4 + 8i)(4 + 8i − 2k+3) + 80 + 3 · 4k+2

)
for i ∈ {1, 2, . . . , 2k − 2}, and

bk
2k−1 = (bk

0,−3,bk
0,−2,bk

0,−1,bk
0,0)

for k ≥ 2. These weights converge to

lim
k→∞

bk
0 = ( 5

16 , 15
16 ,− 5

16 , 1
16

)
and lim

k→∞
bk

2k−1 = ( 1
16 ,− 5

16 , 15
16 , 5

16

)
(21)

at the endpoints and to the weights of the classical interpolatory 4-point scheme,

lim
k→∞

bk
i = (− 1

16 , 9
16 , 9

16 ,− 1
16

)
,

at all interior points with i ∈ {1, 2, . . . , 2k − 2}.
As the limit weights in (21) are the non-symmetric variants of the stationary 4-point weights, in the sense that they 

can also be derived from locally fitting and evaluating a cubic polynomial, it might be possible to extend one of the known 
tools to show that the limit functions of this non-uniform, periodic, interpolating 4-point scheme are as smooth as those of 
the stationary 4-point scheme, namely C1, but not that they are C2. In fact, it is not hard to see that the limit functions are 
the quintic C2 B-splines with control points(

. . . ,
−3 f−2+18 f−1+5 f0

20 ,
5 f−1+18 f0−3 f1

20 ,
− f−1+22 f0− f1

20 ,
−3 f−1+18 f0+5 f1

20 ,
5 f0+18 f1−3 f2

20 , . . .
)

and uniform triple knots (. . . ,−1,−1,−1,0,0,0,1,1,1, . . .).
9
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Example 4. Much simpler weights can be found by taking as p the piecewise cubic C2 function given by the basis functions

r−1(x) =

⎧⎪⎪⎨
⎪⎪⎩

x(− 1
2 + 1

2 x + 13
18 x2), x ∈ [

0, 1
4

]
,

1
36 − 5

6 x + 11
6 x2 − 19

18 x3, x ∈ [ 1
4 , 3

4

]
,

− 13
18 (1 − x)3, x ∈ [ 3

4 ,1
]
,

r0(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − x2(1 + 13
6 x), x ∈ [

0, 1
4

]
,

11
12 + x − 5x2 + 19

6 x3, x ∈ [ 1
4 , 3

4

]
,

(1 − x)( 19
6 − 29

6 x + 13
6 x2), x ∈ [ 3

4 ,1
]
,

r1(x) =

⎧⎪⎪⎨
⎪⎪⎩

x( 1
2 + 1

2 x + 13
6 x2), x ∈ [

0, 1
4

]
,

1
12 − 1

2 x + 9
2 x2 − 19

6 x3, x ∈ [ 1
4 , 3

4

]
,

1 − (1 − x)2( 19
6 − 13

6 x), x ∈ [ 3
4 ,1

]
,

r2(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 13
18 x3, x ∈ [

0, 1
4

]
,

− 1
36 + 1

3 x − 4
3 x2 + 19

18 x3, x ∈ [ 1
4 , 3

4

]
,

(1 − x)( 13
18 − 35

18 x + 13
18 x2), x ∈ [ 3

4 ,1
]
.

A simple calculation reveals that these functions satisfy the conditions in (14) and (20) and that

r2[tk
i−1, tk

i , tk
i+1, tk

i+2] = 1

54

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−39, i = 1,2, . . . ,2k−2 − 2,

−23, i = 2k−2 − 1,

41, i = 2k−2,

57, i = 2k−2 + 1,2k−2 + 2, . . . ,3 · 2k−2 − 2,

41, i = 3 · 2k−2 − 1,

−23, i = 3 · 2k−2,

−39, i = 3 · 2k−2 + 1,3 · 2k−2 + 2, . . . ,2k − 2

for any k ≥ 2. Hence, the assumptions of Theorem 4 are satisfied, and straightforward calculations reveal that the weights 
of the resulting subdivision scheme are

b0
0 = (− 1

16 , 9
16 , 9

16 ,− 1
16

)
, b1

0 = (− 41
576 ,0, 462

576 , 104
576 , 51

576

)
, b1

1 = ( 51
576 , 104

576 , 462
576 ,0,− 41

576

)
for k = 0 and k = 1, as well as

b2
0 = ( 253

656 , 471
656 ,− 61

656 ,− 7
656

)
, b3

0 = ( 99
368 , 393

368 ,− 163
368 , 39

368

)
, bk

0 = ( 5
16 , 15

16 ,− 5
16 , 1

16

)
, k ≥ 4

and, by symmetry,

bk
2k−1 = (bk

0,−3,bk
0,−2,bk

0,−1,bk
0,0), k ≥ 2,

for the new points corresponding to the parameter values t = m ± 2−k−1 for m ∈Z. Moreover,

bk
2k−2 = (− 57

656 , 417
656 , 321

656 ,− 25
656

)
, bk

3·2k−2−1 = (bk
2k−2,−2,bk

2k−2,−1,bk
2k−2,0,bk

2k−2,1), k ≥ 2, (22a)

for the new points at m + 1
4 + 2−k−1 and m + 3

4 − 2−k−1, and

bk
2k−2−1 = (− 7

368 , 159
368 , 255

368 ,− 39
368

)
, bk

3·2k−2 = (bk
2k−2−1,−2,bk

2k−2−1,−1,bk
2k−2−1,0,bk

2k−2−1,1), k ≥ 3, (22b)

for the new points at m + 1
4 − 2−k−1 and m + 3

4 + 2−k−1. All other bk
i are just the classical stationary weights (− 1

16 , 9
16 , 9

16 , − 1
16

)
, because they are used to compute a new point from four old points that lie on a common cubic piece 

of the limit function.
Because of the special weights in (22), the usual tools for analysing the smoothness of non-uniform schemes cannot be 

applied to this scheme, but it is clear by construction that the limit functions of this non-uniform, periodic, interpolating 
4-point scheme are the cubic C2 B-splines with control points(

. . . ,
−13 f−2+109 f−1+109 f0−13 f1

192 ,
7 f−1+46 f0−5 f1

48 ,
− f−1+98 f0− f1

96 ,
−5 f−1+46 f0+7 f1

48 ,
−13 f−1+109 f0+109 f1−13 f2

192 , . . .
)

and uniform knots 
(
. . . ,−1,− 3

4 ,− 1
2 ,− 1

4 ,0, 1
4 , 1

2 , 3
4 ,1, . . .

) =Z/4.

Figs. 3 and 4 show a comparison between the classical interpolatory 4-point scheme and the two non-uniform variants 
from Examples 3 and 4 in the geometric and the functional setting, respectively. While the shapes of the limit functions for 
the non-uniform schemes are slightly negatively affected by the prescribed first derivative at the integers, the limit curves 
look rather pleasing and smoother than the limit curve of the classical scheme, as expected due to the improved smoothness. 
Note that the limit functions and curves generated by the two non-uniform schemes are visually almost indistinguishable, 
but the differences are evident for the second derivatives of the limit functions, which are piecewise cubic and piecewise 
linear, respectively (see Fig. 4).
10
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Fig. 3. Initial points, points generated by the first four subdivision steps, and limit curve (from left to right) for the stationary (top) and the non-uniform 
interpolatory 4-point schemes from Example 3 (middle) and Example 4 (bottom).

Fig. 4. Initial data, data generated by the first two subdivision steps, limit function, first and second derivative of the limit function (from left to right) for 
the stationary (top) and the two non-uniform interpolatory 4-point schemes from Example 3 (middle) and Example 4 (bottom).

4. Curves on surfaces

One may argue that the schemes derived above are questionable, because the exact limit curve is known a priori and can 
thus be evaluated directly. However, the same argument would apply to the uniform B-spline schemes (Lane and Riesenfeld, 
1980), and the situation changes once we leave the non-Euclidean setting, for example, if we consider subdivision on a 
manifold surface M. In this case, the usual definition of the affine average of n points p1, p2, . . . , pn for certain weights wi

that sum to one,

p̄ =
n∑

i=1

wi pi,

is not well-defined anymore, because the points on M do not form a vector space. Instead, one can define the affine average 
using the weighted Fréchet mean,

p̄ = arg min
p∈M

n∑
i=1

wid(p, pi)
2, (23)

where d : M × M → R is the distance function, which measures the length of the geodesic, that is, the shortest path 
between two surface points. If d is the Euclidean distance, then both definitions are equivalent, but in general, the minimizer 
11
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p̄ in (23) may not be unique and may not depend continuously on the points pi and the weights wi (Karcher, 1977; Afsari, 
2009). Therefore, even though the limit curves of the non-uniform schemes in Examples 1–4 are B-spline curves and every 
point on these curves is an affine combination of the initial points f 0

i , evaluating them directly via the Fréchet mean can 
result in curves that are not even C0.

If we generate the limit curve instead using a subdivision process, then we are guaranteed to have a sequence of con-
tinuous, piecewise geodesic curves, which usually converge to a limit curve that is as smooth as the one in the Euclidean 
setting (Wallner and Dyn, 2005; Wallner, 2020). Moreover, in order to properly define the subdivision rules for points on 
surfaces, it suffices to have a generalization of the affine average of two points. In the Euclidean setting, the affine average

A(p,q, t) = (1 − t)p + tq (24)

of p and q with weights (1 − t) and t is simply the unique point r = A(p, q, t) on the straight line through p and q with 
relative distances |t| and |1 − t| to p and q, that is,

d(r, p) = |t| · d(p,q), d(r,q) = |1 − t| · d(p,q).

Since the equivalent of a straight line on a surface M is a geodesic, it is then clear how to generalize the average operator 
in (24) to two points p, q ∈M. Note that if t ∈ [0, 1], then r = A(p, q, t) is a point on the geodesic between p and q, while 
this geodesic needs to be extrapolated beyond p for t < 0 and beyond q for t > 1. A formal description of this procedure is 
given by Wallner (2020) for smooth surfaces and by Polthier and Schmies (1998) for surface meshes. The ambiguity of this 
definition, which may arise whenever the geodesic between p and q is not unique, can be resolved by making an arbitrary 
but deterministic choice.

With the average operator A in (24) defined on M, we now follow Schaefer and Goldman (2005) and express the odd 
subdivision rules (3) of our non-uniform 4-point schemes with J k

l = { j2, j1, j0, j−1} in terms of three 2-point-averages as

f k+1
2i+1 = A

(
A( f k

i− j0
, f k

i− j1
,μ1),A( f k

i− j−1
, f k

i− j2
,μ2),μ3

)
, μ1 = γ k

i

βk
i + γ k

i

, μ2 = δk
i

αk
i + δk

i

, μ3 = αk
i + δk

i .

For this order of averages, the first two averages are usually geodesic interpolations with μ1, μ2 ∈ (0, 1) and only the last 
average requires geodesic extrapolation with a rather small extrapolation factor −μ3 > 0. For example, this is the case (with 
−μ3 = 1

8 ) for almost all subdivision rules of the non-uniform schemes in Examples 3 and 4. Only at the endpoints of each 
interval, for k > 1 and i ∈ {0, 2k − 1}, this order applies extrapolation for the first or the second (or both) averages and 
interpolation for the third average.

When implementing the scheme from Example 4, we observed that the rather large extrapolations that may occur during 
the first three subdivision steps (e.g., with factor −μ2 = 41

10 for k = 1 and i = 1 and −μ1 = 163
230 for k = 3 and i = 0) can 

lead to some unexpected artefacts of the limit curve. We therefore propose to circumvent these subdivision steps and to 
compute instead the data f 4 = ( f 4

i )i∈Z directly as affine combinations of the initial data, using the fact that

f 4
16i = f 0

i , f 4
16i+m = r−1(

m
16 ) f 0

i−1 + r0(
m
16 ) f 0

i + r1(
m
16 ) f 0

i+1 + r2(
m
16 ) f 0

i+2, m ∈ {1,2, . . . ,15}
for any i ∈ Z. This avoids extrapolation with factors greater than 1

8 and generally results in artefact-free and presumably 
smooth curves (see Fig. 5). Proving that these limit curves are C2 is beyond the scope of this paper and left to future work.

5. Conclusions

The main goal of this paper is to show that non-uniform subdivision schemes can give limit functions and curves that 
are smoother than those of corresponding stationary subdivision schemes, and the non-uniform schemes described in Ex-
amples 1–4 clearly serve as a “proof of concept”. However, the theory that leads to these examples is actually more general.

Regarding 2-point schemes, our construction in Section 2 works for any strictly increasing C1 function r1 : [0, 1] → R
with r1(0) = r′

1(0) = 0, r1(1) = 1, and r′
1(1) = 0. Letting r0(x) = 1 − r1(x), we then have two basis functions that satisfy the 

assumptions of Lemma 2, and the limit functions of the non-uniform scheme with the weights in (9) are C1 by Theorem 1. 
The support size of the basic limit function of any such scheme is 2, just like for the stationary, interpolatory 2-point 
scheme, but while the latter reproduces linear functions, our non-linear 2-point schemes reproduce only constant functions, 
because of the vanishing first derivative at the integers. Consequently, the approximation order is only O (h), compared to 
O (h2) for the stationary scheme.

Likewise, our “recipe” for designing non-uniform 4-point schemes in Section 3 works for any C2 function r2 : [0, 1] →R
with r2(0) = r′

2(0) = r′′
2(0) = 0, r2(

1
2 ) /∈ {− 1

8 , 0}, r2(1) = 0, r′
2(1) = 1

2 , and r′′
2(1) = 1, as long as r2 satisfies (15) for any k ≥ 2

and i ∈ {1, 2, . . . , 2k − 2}. In this case, we simply define the other three basis functions as

r−1(x) = − 1 x(1 − x) − r2(x), r0(x) = 1 − x2 + 3r2(x), r1(x) = 1 x(1 + x) − 3r2(x),
2 2

12
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Fig. 5. Initial data (black dots) and interpolating curves on a manifold surface after 8 subdivision steps with the stationary (blue) and the non-uniform (red) 
4-point scheme from Example 4. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

which ensures that all assumptions of Lemma 3 and Theorem 4 are satisfied, so that the limit functions of the corresponding 
scheme are guaranteed to be C2. The support size of the basic limit function of any such non-uniform scheme is only 4, 
compared to the support size 6 of the basic limit function of the stationary, interpolatory 4-point scheme, which means 
that the influence of the initial control points on the shape of the limit curve is more local. Moreover, in the case of an 
open control polygon with n + 1 points f 0

0 , f 0
1 , . . . , f 0

n , the limit curves of these non-uniform schemes are defined for any 
t ∈ [1, n − 1], while the limit curves of the classical 4-point schemes are defined only for t ∈ [2, n − 2]. However, just as for 
2-point schemes, the approximation order of the non-uniform 4-point schemes is only O (h3), compared to O (h4) for the 
stationary 4-point scheme, because they reproduce only quadratic functions.

It remains future work to find other non-uniform schemes that do not simply reproduce a known limit function and 
where the subdivision rules do not depend on the latter, which will require developing new tools for analysing the conver-
gence and smoothness of non-uniform schemes.
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