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introduction

Since stereotactic radiotherapy (SRT) plays a ma-
jor role in the treatment of oligometastatic patients 
[1], one direct consequence is that it will inevitably 
interact with new-generation drugs such as targeted 
therapy and immune system modulating drugs [2]. 
Interactions between SRT and new drugs may, on 
one hand, enhance the effect of therapy [3] or, on 
the other, potentiate toxicities of the two therapeu-
tic modalities [4]. To date, few prospective studies 
have evaluated the interaction between targeted 
therapies and SRT and available data are mainly 
based on retrospective experiences, often related to 
small sample sizes. Our purpose is to describe data 
on SRT and targeted therapies and immune system 
modulating drugs.

State of the art 

Srt and targeted therapies
Single-dose SRT causes apoptosis of vascular 

endothelial cells [5] and, therefore, theoretically, 
could be associated with anti-angiogenic drugs to 
improve results. This therapeutic association was 
evaluated in both preclinical and clinical studies. 
Anti-angiogenic drugs are monoclonal antibodies 
or tyrosine kinase inhibitors of the Vascular En-
dothelial Growth Factor Receptor (VEGFR). Bev-
acizumab, a monoclonal antibody binding to the 
Vascular Endothelial Growth Factor (VEGF), the 
main VEGFR-2 ligand, inhibits its receptor thus 
eliminating the enzymatic cascade that increases 
pro-mitotic signals. The effect of bevacizumab com-
bined with SRT was mainly evaluated in patients 
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with primary brain tumors. In oligometastatic dis-
ease, encouraging clinical results were reported in 
patients with brain metastases from lung cancer 
who were treated with single-dose SRT and subse-
quently bevacizumab (under four weeks between 
treatments). At a median follow-up of 7.8 months, 
75% volumetric reduction of treated lesions was 
observed; the intracranial progression free surviv-
al was 12.7 months (95% CI: 9–20 months), with 
no grade 3 or greater toxicity [6]. Another retro-
spective study, which, however, evaluated only five 
patients, showed that the association of SRT and 
bevacizumab is feasible in selected cases, even in 
pretreated patients with brain metastases [7]. 

Bevacizumab was also tested in association with 
SRT in patients with recurrent high grade gliomas. 
The combined treatment seemed to improve OS, 
especially in patients with IDH wild-type tumors 
(median OS 10.9 months for SRT and Bevacizumab 
vs 8.2 months for bevacizumab alone). There was 
no grade 3 or greater toxicity [8]. 

Finally, although some reports indicated that 
bevacizumab had a role in improving SRT-in-
duced radionecrosis [9] the potential toxicity of 
the combination should not be underestimated. In 
fact, esophageal fistulas and intestinal perforation 
were described in patients with metastatic abdo-
men lesions who received bevacizumab and SRT 
[10]. Accordingly, concomitant administration of 
the two therapeutic modalities is not recommend-
ed. Extreme caution is advised in their sequential 
use, which must take into account the bevacizumab 
half-life of about 20 days (range 11–50 days).

There are some promising data on sunitinib and 
sorafenib, which are VEGFR tyrosine kinase inhib-
itors derived from phase I and II clinical studies. 
Sunitinib was used after SRT in patients with brain 
metastases [11] and concomitant with SRT in oli-
gometastatic patients with abdominal lesions [12]. 
Although clinical results were favorable, grade 3 
or greater toxicity was recorded in 33% of patients 
according to Kao et al. [12], particularly when ab-
dominal or pelvic irradiation was delivered. Fa-
tal toxicities were also recorded in 4% of patients. 
A review of sorafenib [10] reported that cases of 
grade ≥ 3 toxicity (gastric ulcers, bleeding, intes-
tinal obstructions) occurred in patients who also 
received SRT. Combined with single-dose SRT to 
the brain, sorafenib was recently used in a phase 
I study without showing relevant toxicity [13]. One 

case of “radiation recall dermatitis” was described 
in a patient treated for a vertebral metastasis [14]. 
As in the case of bevacizumab, current data sug-
gest avoiding concomitant administration of suni-
tinib/sorafenib and SRT, especially if the treated 
volume is near the airways or intestines.

Very few data are available on SRT in association 
with epidermal growth factor receptor inhibitors 
(EGFR), gefitinib and erlotinib, which are tyrosine 
kinase inhibitors. Such data, deriving from “case re-
ports” or retrospective studies, provided anecdotal 
information on clinical results and toxicity [15, 16].

Vemurafenib and dabrafenib, V-raf murine sar-
coma viral oncogene homolog B1 (BRAF) kinase 
inhibitors, which are widely used in melanoma pa-
tients, displayed a major radiosensitizing effect in 
preclinical studies [17, 18]. Since unexpected tox-
icities were described when these drugs were com-
bined with radiotherapy [19, 20], the Eastern Co-
operative Oncology Group (ECOG) reviewed the 
literature in 2016 [19]. Although an increased risk 
of bleeding was reported in some series, data on 
increased toxicity were not conclusive. As a precau-
tionary measure, the ECOG suggested suspending 
BRAF inhibitor administration at least on the day 
before and the day after single dose SRT and for at 
least 3 days before and after fractionated SRT [19].

Anti-HER2 drugs had a clear radiosensitizing 
effect in preclinical studies [21]. Even though few 
clinical data are available, some cases of radione-
crosis and cerebral edema were described after 
single dose SRT was combined with trastuzumab 
emtansine (T-DM1) [22, 23], especially when the 
drug was given during radiation treatment [24]. 
Therefore, we advise against T-DM1 administration 
concomitant with SRT to the brain.

Since cyclin-dependent kinase (CDK) 4/6 inhib-
itors have an effect on the cell-cycle, their associa-
tion with SRT seems to be a promising treatment 
option. It was tested in few studies,  appearing to be 
safe and feasible [25]. Ongoing randomized phase 
II/III clinical trials on SRT and concomitant admin-
istration of target therapies are reported in Table 1, 
key literature data regarding the association of SRT 
and target therapies are summarized in Table 2.

Srt and immune system modulators
Interest is growing in combining SRT and im-

munotherapy given its recent success, particularly 
with drugs that block immune system checkpoints 
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(checkpoint inhibitors). By the 1950s, palliative ra-
diotherapy was known to result in disease regres-
sion outside of the irradiated field in the absence 
of other systemic therapies. This “abscopal effect” 
[26] suggested that ionizing radiations somehow 
stimulated activation of anticancer immunity [27, 
28]. Consequently, local radiation may trigger sys-
temic effects that can be harnessed in combination 
with immunotherapy to induce responses outside 
the radiation field [29]. 

Radiotherapy causes immunogenic cell death 
(ICD) by inducing calreticulin translocation to the 
cell surface as well as release of ATP and other en-
dogenous proteins, such as High Mobility Group 
Box 1 (HMGB1), uric acid and heat shock proteins 
[30]. These events are critical for dendritic cell (DC) 

activation and T cell priming. Additionally, radio-
therapy facilitates effector T-cell recruitment to tu-
mors by inducing chemokines [31] and cell adhe-
sion molecules like the intercellular adhesion mole-
cule (ICAM)-1 and vascular cell adhesion molecule 
(VCAM)-1 which mediate lymphocyte adhesion to 
the vascular endothelium [32]. On the tumor cell 
surface the pro-immunogenic effect of radiother-
apy includes MHC class 1 molecule upregulation 
and peptide repertoire modulation. Thus, cytotoxic 
CD8 T cells recognize tumor cells and counter-
act tumor immune evasion [33, 34]. Radiotherapy 
also increases expression of NKG2D receptor stress 
ligands, thus activating Natural Killer (NK) cell 
clearance of tumor cells [35]. Radiotherapy there-
fore transforms the irradiated tumor site into a true 

table 1. Ongoing randomized phase ii/iii clinical trials involving stereotactic radiotherapy (Srt) and concomitant 
administration of target therapies and/or immunotherapy

NCT number Study title Drug Primary 
outcome Phase Recruitment 

status

Nct02364557

Standard of care therapy with or without 
stereotactic radiosurgery and/or surgery in 

treating patients with limited metastatic breast 
cancer

Standard of care 
including anti Her2 

(trastuzumab, 
Pertuzumab, lapatinib)

PFS, OS ii/iii recruiting

Nct03727867

a randomized phase iii trial of efficacy of 
epidermal growth factor receptor tyrosine 

kinase inhibitor combined with early 
stereotactic body radiation therapy to the 

primary tumor in advanced non-small cell lung 
cancer patients harboring epidermal growth 

factor receptor mutation

eGFr-tKi PFS iii Not yet 
recruiting

Nct04563507 ciMer: combined immunotherapies in 
metastatic er+ breast cancer Palbociclib PFS ii recruiting

Nct04074096

Binimetinib encorafenib pembrolizumab 
± stereotactic radiosurgery in BraFv600 

melanoma with brain metastasis 
(BePcOMe-MB)

Binimetinib 
encorafenib 

Pembrolizumab
intracranial PFS ii Not yet 

recruiting

Nct03115801

a phase ii randomized controlled trial of 
programmed death —1/Programmed Death 
ligand-1 (PD-1/PDl-1) axis blockade versus 
PD-1/PDl-1 axis blockade plus radiotherapy 
in metastatic genitourinary (renal/urothelial) 

malignancies

Nivolumab, 
atezolizumab,

Pembrolizumab

Best overall 
response rates, 

difference in 
best overall 

response

ii Not yet 
recruiting

Nct02843165

randomized phase ii study of checkpoint 
blockade immunotherapy combined with 

stereotactic body radiation therapy in advanced 
metastatic disease

anti-PD-1/PD-l1 
immunotherapy

Objective 
response rate  ii recruiting

Nct03795207
Prostate cancer with oligometastatic relapse: 
combining  stereotactic ablative radiotherapy 

and Durvalumab (MeDi4736) (POStcarD)
Durvalumab

two-years PFS
ii recruiting

Nct03548428 Stereotactic body irradiation of oligometastase 
in sarcoma (Stereosarc) atezolizumab PFS ii recruiting

Nct04830267 the efficacy of camrelizumab plus stereotactic 
body radiotherapy in r/M HNScc camrelizumab Best overall 

response ii recruiting

PFS — progression-free survival; OS — overall survival; tKi — tyrosine kinase inhibitor; PD-1 — targeting programmed death-1; PD-l-1 — targeting programmed 
death ligand-1 
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endogenous anticancer vaccine which may, in turn, 
stimulate a poly-antigenic T lymphocyte cytotoxic 
response [36]. 

These data provide the rationale for therapeutic 
strategies that combine Radiotherapy with immu-
notherapy and/or monoclonal antibodies that inhibit 
“immuno-checkpoints”. Unfortunately, this approach 
seems counterproductive in large volume irradiation 
as it may be associated with massive release of ne-
crotic material, inflammatory cells (Myeloid-Deriva-
tive-Supressor-Cells, MDSC) and strongly immuno-
suppressive cytokines. Indeed, prolonged irradiation 
of large volumes using conventional fractions, with 
irradiation of a significant amount of blood vessels, 
reduced the number of T lymphocytes which are 
highly radiosensitive and crucial in establishing an 
immune response against cancer [37, 38]. 

On the other hand, since SRT irradiates much 
smaller volumes, it may optimize the immunomod-
ulating effect of immunotherapy and/or monoclonal 
antibodies. Recent data showed that SRT altered the 
tumor microenvironment, facilitating lymphocyte 
infiltration, inflammatory cytokine release and mac-
rophage activation [2, 27]. SRT treatment of oligo-
metastatic disease is, therefore, ideal for being com-
bined with immunological drugs [39]. Preclinical 
data and reports of “abscopal responses” in patients 
undergoing SRT and immunotherapy showed that 
single doses of 6–8 Gy delivered for 3–5 fractions ef-
fectively determined an immune response [40–42]. 
Single doses over 12–18 Gy induced exonuclease 
Trex1, an enzyme that removes cytosolic DNA after 
radiotherapy. Thus, interferon production, as in-
duced by ionizing radiation was prevented, which is 
a key step in dendritic cell migration [43]. 

Immunotherapy includes cancer vaccines and 
immune-checkpoint inhibitors (ICI). Many data are 
available on the association of SRT with monoclo-
nal antibodies directed to antigen 4 on cytotoxic 
T lymphocytes (CTLA-4), and antibodies directed 
against the PD-1/PDL-1 axis. Although preclini-
cal data are very promising, clinical information 
derives from case reports and phase I and II stud-
ies. In several preclinical studies ipilimumab, the 
CTLA-4 antagonist, acted synergistically with ra-
diotherapy [44]. In clinical practice, when asso-
ciated with SRT, it elicited excellent responses in 
patients with brain metastases from melanoma, as 
median survival was 21.3 months vs. 4.9 months in 
patients who received only SRT [45]. In particular, 
survival seemed better when SRT was performed 
before or during ipilimumab administration, rather 
than afterwards [46]. A single-centre retrospective 
study [47] on 137 melanoma patients (1094 lesions) 
who were treated with single fraction SRT and an-
ti-CTLA-4 and/or anti-PD1 showed that, unlike 
chemotherapy, SRT was not associated with worse 
radiation-necrosis free survival, and the temporal 
proximity of immunotherapy to SRT was not clear-
ly associated with differing radionecrosis risk. A re-
cent review reported that treatment-related necro-
sis tended to occur 2.4 times more frequently when 
SRS and ICI were combined, compared with SRS 
alone in melanoma patients with brain metastasis 
(16.0% vs. 6.5%; p = 0.065) showing a high cumula-
tive incidence within the first year [48]. 

In preclinical studies PD-1/PDL-1 axis antago-
nists in combination with SRT also demonstrated 
great therapeutic potential [49, 50]. Clinical ex-
perience showed good disease control in the ab-

table 2. Summary of literature data regarding the association of stereotactic radiotherapy (Srt) and targeted therapies or 
immune system modulators

SRT and targeted 
therapies

Anti-VEGFr: (moab, tKi) theoretical synergism, but the concomitant association is not recommended especially if 
the treated volume is near the airways or intestines [5–14]

Anti-EGFr tKI: very few data available [15, 16]

brAF kinase inhibitors: theoretical synergism, but the concomitant association is not recommended [17–20]

Anti-HEr2 drugs: proven radiosensitizing effect, t-DM1 administration concomitant with Srt to the brain is not 
recommended due to high rate of radionecrosis and cerebral edema [21–24]

cDK 4/6 inhibitors: theoretical synergism, few data available, in breast cancer patients with brain metastases 
resulted safe and feasible [25]

SRT and immune 
system modulators

ctLA-4 antagonist: proven radiosensitizing effect, in patients brain metastases from melanoma excellent 
responses [45] associated with high radionecrosis risk [47, 48]

PD-1/PDL-1 axis antagonists: theoretical synergism and “abscobal effect” induction [52], positive effects on 
disease control, without severe toxicities [53–55]; optimal timing, dose and fractionation have to be defined [56] 

veGFr — vascular endothelial growth factor receptor; moab — monoclonal antibody; eGFr — epidermal growth factor receptor; tKi — tyrosine kinase inhibitor; 
t-DM1 — trastuzumab emtansine; cDK — cyclin-dependent kinase; PD-1 — targeting programmed death; PDl-1 — targeting programmed death ligand-1
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sence of relevant toxicities. A recent phase I study 
evaluated SRT in association with pembrolizum-
ab (initiated within 7 days of completing RT) in 
73 oligometastatic patients with ovarian, lung, 
breast, endometrial, rectal, head-neck and bil-
iary neoplasms. Outcomes were favorable with 
excellent toxicity profiles as only 6/63 patients 
who were evaluated for toxicity, had grade 3 tox-
icity. Lesion size was reduced in 13.2% of the 68 
patients who were evaluated. Complete response 
was achieved in 9/68 patients and partial response 
in 8 [51]. An “abscopal effect” was described in 
a patient with lung cancer who was treated with 
Nivolumab and SRT [52]. Furthermore, current 
data suggested the association of SRT and im-
munotherapy seemed to exert positive effects on 
disease control, without clearly demonstrating 
severe toxicities [53–55]. Although the combi-
nation of SRT and immunotherapy is currently 
being investigated in several phase I and II trials, 
many questions persist about timing, dose and 
fractionation [56]. Ongoing randomized phase 
II/III clinical trials on SRT and concomitant ad-
ministration of immune system modulators are 
reported in Table 1, key literature data regarding 
the association of SRT and immune system mod-
ulators are summarized in Table 2.

 conclusions

In conclusion, although SRT in association 
with targeted therapies plays a role in the treat-
ment of oligometastatic disease, concerns about 
the toxicity of combined treatments still need to 
be addressed. Furthermore, regarding SRT and 
immune system modulators potential side effects 
and toxicities need to be assessed as data are insuf-
ficient, and cannot, at present, provide definitive 
indications [57–59]. Ii is worth of notice that in 
the most relevant ongoing randomized phase III 
trial (i.e. SABR-COMET 3 [60], SABR COMET 10 
[61], CORE trial [62],) which compares standard 
of care (SOC) vs SOC and SRT in oligometastatic 
patients, no immunotherapeutic or molecularly 
target agents are allowed from two weeks before 
SRT until one week after SRT. Therefore, prospec-
tive studies are needed to evaluate safety and ef-
ficacy of SRT and systemic therapies association, 
and data collection in large databases is particular-
ly recommended [63]. 
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