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Abstract. The growing share of renewable energy sources in the energy 

mix and the liberalization of electricity markets drastically affected the 

operation of electricity generators. This transition from fossil fuel-based 

energy systems to renewable ones will significantly change the energy 

market, giving important opportunities for energy storage systems. In the 

next years, a large amount of storage capacity is foreseen to be integrated 

into the electricity grids to shave the demand peaks, mitigate price volatility, 

and provide services to the grid. In such a situation, to properly manage these 

crucial technologies, and thus guarantee the economic viability of the 

operation, it is essential to properly optimize the dispatch and define the best 

scheduling. This paper considers Battery Energy Storage (BES) to study the 

problem of dispatch optimization of storage technologies. The complete 

model of BES is developed, considering especially the effect of DoD (Deep 

of Discharge) on the total number of cycles, that influence significantly the 

degradation, and the influence of the current-rate on the total efficiency, due 

to the effects of losses for the Joule effect. The implemented optimization is 

based on a Mixed Integer Linear Programming (MILP) approach, the 

discretization of the state of charge (SoC), and the continuous update of rated 

capacity until the maximum admissible fade is reached. Different scenarios 

are compared showing how the effectiveness of the proposed approach at 

maximizing the net operational profits or minimizing the loss depending on 

the profitability of markets.  

1 Introduction 

The transition from a carbon-based energy system to Renewable Energy Sources (RES) 

can be seen as the most potential solution to counteract global warming and, for many 

countries, decrease foreign dependence on supply pursuing security and affordability of 

supply. Despite the share of energy from renewable sources has continuously increased in 

the last years, global greenhouse gas emissions have also risen, as IEA reported [1]. 

Therefore, pledges for the transition have been set to be more and more challenging, the EU 

in “Fit for 55” [2] has fixed different targets to reach carbon neutrality two key parameters 

are energy efficiency and renewable sources, the most ambitious target is to reach energy 

production from RES up to 40% of the total demand by 2030. 

However, most renewable sources are strongly stochastic and not programmable, posing 

a serious issue in meeting instantaneously electricity generation, demand, and grid security 

requirements. In this scenario, the grid is required to be more flexible, and large storage 

systems are considered essential to mitigate the variability of RES temporarily shifting the 

load [3,4], and provide services such as fast frequency regulation traditionally guaranteed by 
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large rotational inertia of spinning generators. According to the Net Zero Emission by 2050 

scenario of IEA, by 2030 680 GW of grid-scale storage systems must be installed globally, 

while 16 GW were already installed in 2021 [5]. 

Battery Energy Storage Systems (BESS) show great potential for such applications, 

particularly lithium-ion battery are appreciated for their high efficiency and reduced cost. 

They represent 92% of installed grid-scale BES in the US [6] Besides lithium-ion batteries, 

flow batteries could emerge as a breakthrough technology for stationary storage as they do 

not show performance degradation for 25-30 years and are capable of being sized according 

to energy storage needs with limited investment [5] 

Today, most countries adopt a liberalized electricity market design in which is worth for 

storage shifting the load if arbitrage opportunities subsist, the driving factor for arbitrage is 

the electricity price variability, thus the viability of storage strongly depends on the market 

scenario [7] Moreover for some storage, including BESS, degradation is an important issue 

and it must be considered to determine the optimal dispatch, such to maximize net operational 

profits and guarantee the return on the investment. 

This paper focuses on the optimal dispatch of lithium-ion BES considering arbitrage 

opportunities on the electricity day-ahead market. A MILP algorithm is implemented, 

because of the advantages demonstrated in previous studies [8] The optimization is described 

in detail in the methodology section and considers the degradation of the cell due to both 

cycling and calendar ageing, the impact of the state of charge and depth of discharge, and the 

dependency of efficiency on the actual current rate, and the progressive fade in capacity. 

Finally, the presented optimizer is applied to different market scenarios. 

2 Methodology 

2.1 Capacity fade model 

The BES performance shows a decay of the nominal parameters over time, the capacity 

fade due to the ageing mechanisms has a major impact on the BES operation condition, while 

power fade can be neglected [9]. The rated capacity continuously decreases because of two 

major contributions, first the impact of each cycle, cycling ageing, and second, even in idle 

conditions, a degradation, defined as calendar, occurs. The State of Health (SoH), eq. (1), is 

defined as the ratio of rated capacity on the nominal value, i.e., the complementary of fade. 

Typically, is fixed for most lithium-ion BESS the End-of-Life (EoL) at 20% of fade, 

SoH=80%. Under this threshold value, performance is too poor to keep BESS operating. 

𝑆𝑜𝐻 =
𝐶𝑟𝑎𝑡𝑒𝑑
𝐶𝑛𝑜𝑚

∙ 100% =
𝐶𝑛𝑜𝑚 − 𝐶𝑓𝑎𝑑𝑒𝑑

𝐶𝑛𝑜𝑚
∙ 100% (1) 

As a battery undergoes charging and discharging cycles, its electrodes slowly degrade 

and become less effective at holding and releasing energy, causing cycling ageing. Many 

authors analyzed factors influencing cycling aging [9–13]. All of them agree that the depth 

of discharge is of primary importance, some [10,14,15] describe the impact of working 

temperature, nevertheless, this dependence is neglected by this paper since a temperature 

control system is assumed to be integrated with the BESS and its impact is considered on the 

charging and discharging efficiency model (subsection 2.2). Finally, Stroe et al. [15] and Xu 

et al. [10] claim an impact of the State of Charge (SoC). However, the former affirms that 

high SoC is less impactful, the latter the opposite. Since a gap of knowledge currently subsists 

on the real impact of SoC on cycling degradation, or it is strongly dependent on the specific 

BESS type, it is not considered in this paper. 
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On the other hand, calendar ageing is due to the occurrence of collateral reactions 

generated by the thermodynamic instability of constituent materials [15]. Then, the 

thermodynamic stability of the negative electrode is pivotal since graphite is not 

electrochemically stable when used with most electrolyte types. Calendar aging is generally 

less investigated than cycling in the open literature [9–11,14], nevertheless a proper model 

may be essential if the BESS is forced to long idling periods, e.g., because the market is not 

profitable enough to perform arbitrage. All authors point out that SoC is the key parameter 

and agree on the detrimental effect of high SoC, another factor is the temperature [10,14,15], 

however, as for cycling ageing, it is neglected in this paper. Finally, the proposed models 

differ by the kind of dependency on time, if [10,11,14] propose a linear relationship the 

formula indicated by Stroe reports an exponential factor of 0.8 affirming that the degradation 

rate progressively decreases over time. 

For the purpose of this paper, the authors selected a model to refer to that consistently 

describes the calendar and cycling ageing, because the impact of SoC on the cycling agreeing 

is not certain and in any case of secondary importance, the model proposed by 

Sayfutdinov [12] is considered. Equations (2) and (3) describe the capacity fade, in 

percentage points, attributed to each cycle and idling hour respectively. Where SoC is the 

ratio between dischargeable energy and the nominal capacity, and the Depth of Discharge 

(DoD) is the SoC decrement associated with the discharge. Both of them are used as 

percentage values in the following equations. 

𝐶𝑓𝑎𝑑𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = (𝑎𝑐𝑦𝑐𝑙𝑒 ∙ 𝐷𝑜𝐷
2 + 𝑏𝑐𝑦𝑐𝑙𝑒 ∙ 𝐷𝑜𝐷) [

𝑝. 𝑝.

𝑐𝑦𝑐𝑙𝑒
] (2) 

𝐶𝑓𝑎𝑑𝑒𝑖𝑑𝑙𝑖𝑛𝑔 = (𝑎𝑖𝑑𝑙𝑒 ∙ 𝑆𝑜𝐶
2 + 𝑏𝑖𝑑𝑙𝑒 ∙ 𝑆𝑜𝐶 + 𝑐𝑖𝑑𝑙𝑒) [

𝑝. 𝑝.

ℎ
] (3) 

Consequently, equations (4,5) indicate the theoretical limits of cycles and idling time 

independently, considering an EoL criterion of 20% of fade. These two limits are quantified 

in 4109 cycles with DoD=80% and 2.3∙104 h (approximately 25 years) of idling at SoC=20%. 

Table 1 reports the coefficients of the equations (2,3). 

𝑛𝑐𝑦𝑐𝑙𝑒𝑚𝑎𝑥
(𝐷𝑜𝐷) =

𝐸𝑜𝐿

𝑎𝑐𝑦𝑐𝑙𝑒 ∙ 𝐷𝑜𝐷
2 + 𝑏𝑐𝑦𝑐𝑙𝑒 ∙ 𝐷𝑜𝐷

 (4) 

𝑡𝑚𝑎𝑥(𝑆𝑜𝐶) =
𝐸𝑜𝐿

(𝑎𝑖𝑑𝑙𝑒 ∙ 𝑆𝑜𝐶
2 + 𝑏𝑖𝑑𝑙𝑒 ∙ 𝑆𝑜𝐶 + 𝑐𝑖𝑑𝑙𝑒) 

 [ℎ] (5) 

Table 1. The fitting coefficient for the Calendar and Cycling ageing model [12]. 

Calendar  Cycling  

𝑎𝑖𝑑𝑙𝑒  𝑏𝑖𝑑𝑙𝑒 𝑐𝑖𝑑𝑙𝑒 𝑎𝑐𝑦𝑐𝑙𝑒  𝑏𝑐𝑦𝑐𝑙𝑒  

2.5083e-7 5.6250e-7 7.7083e-7 -4.72e-5 9.62e-5 

2.2 Efficiency model 

When considering a BESS operating on the electricity grid is important to consider the 

global efficiency, from alternate current to alternate current (AC-AC) which is lower than 

the value provided by some manufacturers concerning the battery itself (DC-DC). Rancilio 

et al. [16] identify the C-rate and the SoC as the factors with the highest impact on AC-AC 

efficiency. However, the reported results show that the influence of SoC is negligible if 

compared to the C-rate contribution.  

The dependence of efficiency on the C-rate is then considered interpolating the reported 

experimental data [16]. Consistently with the reference, discharge and charge efficiencies are 

assumed to be equal. 
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The associated trend reports a maximum approximatively for C-rate=0.4, moving toward 

higher current cause a slight decrease because of the parasitic current losses and greater effort 

required to maintain the cell design temperature. Decreasing C-rate below 0.2 forces the 

energy conversion auxiliary systems to operate in strong off-design conditions, consequently 

a significant drop in charging and discharging overall efficiency occurs at reduced C-rates. 

2.3 BES MILP model developing 

The present section focuses on the optimization algorithm, which is independent of the 

degradation and efficiency models selected in subsections 2.1 and 2.2 respectively. Here is 

explained how these factors are accounted for at the optimization stage. The optimizer 

implementation can be generalized regardless of the models to quantify the aforementioned 

factors. The selection previously carried out is used in Section 3, reporting results of two case 

studies as a practical application of the algorithm here presented. 

A MILP Algorithm is used since it is demonstrated to handle the complexity of the 

problem without losing efficiency in finding the optimal solution [8]. The objective function 

is presented in eq (6). Two terms can be distinguished, the first concerns the operating profits 

(OP) that are exclusively related to the charging and discharging phases, and the second 

quantifies the degradation cost (Costdegr), determined as the sum of the contributions of both 

cycling and idling ageing. 

𝑂𝑃𝑁𝑒𝑡 =∑((𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔) − (𝐶𝑜𝑠𝑡𝑐𝑦𝑐𝑙𝑒 + 𝐶𝑜𝑠𝑡𝑖𝑑𝑙𝑒)) =∑(𝑂𝑃 − 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟) (6) 

Indeed, the capacity fade represents a cost since, once the EoL criterion is reached, the 

battery must be replaced. While OP represents the actual cash flow for the operator, what is 

worth maximizing is the OPnet to avoid performing cycles characterized by too low OP to 

justify the lifetime consumption of the cell. Such a strategy guarantees maximizing earnings, 

net of CAPEX, over a long period. On yearly basis, the summation of Costdegr can be 

considered as a provision for new investment at the end of BES life or amortization of already 

paid CAPEX. Consequently, the costs associated with cycling or idling are determined by 

equations (6,7) as the ratio between CAPEX and the maximum number of cycles or the 

maximum idling time respectively (eq(4-5)). 

𝐶𝑜𝑠𝑡𝑐𝑦𝑐𝑙𝑒(𝐷𝑜𝐷) =
𝐶𝐴𝑃𝐸𝑋

𝑛𝑐𝑦𝑐𝑙𝑒𝑚𝑎𝑥
(𝐷𝑜𝐷)

 (7) 

𝐶𝑜𝑠𝑡𝑖𝑑𝑙𝑒(𝑆𝑜𝐶) =
𝐶𝐴𝑃𝐸𝑋

𝑡𝑚𝑎𝑥(𝑆𝑜𝐶)
 (8) 

Since the optimization is carried out considering the day ahead market, the time 

discretization is set to one hour in accordance with the time interval. Optimization of dispatch 

is performed subsequently day by day, considering a forecasting horizon of 36 hours as the 

best trade-off between computational time and global optimum identification [8]. 

The general problem formulation for the MILP is presented in equation eq. (9). And 

optimization variable x is a binary variable that can be visualized by the matrix approach of 

Figure 1. For each time step, a matrix is defined, columns indicate the initial SoC while rows 

determine the final. At each time step t, one and only one element must be set to 1 selecting 

an operational mode. Is then imposed the consistency between the final SoC at time t and the 

initial SoC at time t+1. 
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Fig. 1. Matrix visualization of optimization variable x. 

Analogously, the f array can be defined with the same 3D matrix shape. For each position 

in the matrix, Costdegr is determined by the SoC and ΔSoC associated and OP is computed by 

the ΔSoC of each operational mode, the electricity zonal price (ZP), which depends on the 

time, and the charging or discharging efficiency, depending on C-rate and so on ΔSoC. 

Equation (10) reports in detail how each element of f is computed according to the objective 

function, eq.(6). f is then reshaped as a 1-D array before running the MILP algorithm. 

min
𝑥
𝑓𝑇𝑥  𝑠. 𝑡. {

𝐴 · x ≤ b
𝑙𝑏 ≤ x ≤ u𝑏

 (9) 

𝑓𝑖,𝑗,𝑡(∆𝑆𝑂𝐶𝑖,𝑗) =

{
 
 

 
 
∆𝑆𝑜𝐶𝑖,𝑗

100
· 𝐶𝑛𝑜𝑚 · 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(∆𝑆𝑜𝐶𝑖,𝑗) · ZP𝑡 − 𝐶𝑜𝑠𝑡𝑐𝑦𝑐𝑙𝑒(𝐷𝑜𝐷𝑖,𝑗), ∆𝑆𝑂𝐶𝑖𝑖 > 𝑗

−𝐶𝑜𝑠𝑡𝑖𝑑𝑙𝑒(𝑆𝑜𝐶𝑖,𝑗)             , ∆𝑆𝑂𝐶𝑖𝑖 = 𝑗

(
∆𝑆𝑜𝐶𝑖,𝑗

100 · 𝜂𝑐ℎ𝑎𝑔𝑒(∆𝑆𝑂𝐶𝑖,𝑗)
· 𝐶𝑛𝑜𝑚 · ZP𝑡 − 𝐶𝑜𝑠𝑡𝑖𝑑𝑙𝑒(𝑆𝑜𝐶𝑚𝑒𝑎𝑛𝑖,𝑗))  ∆𝑆𝑂𝐶𝑖𝑖 < 𝑗

 (10) 

The previously mentioned constraints of consistency between t and t+1 and the 

requirement to select one, and only one, operational mode at the same time are imposed by 

the inequality constraints expressed by the matrix A and the array b. Analogously, is imposed 

that the initial SoC at the first hour of the dayn is equal to the final SoC at the 24th hour of the 

dayn-1. The upper and lower bounds (ub and lb) impose x to be binary. 

3 Results 

The present section applies the optimizer described in Subsection 2.3, the ageing model 

proposed by Sayfutdinov [12], and the efficiency formulation presented in Subsection 2.2 to 

a 1MWh/1MW BESS in some real market scenarios. The Italy NORD zone is assumed as a 

case study and different scenarios are created considering electricity prices from different 

years repeated several times.  

Dispatch of BES is optimized daily and the rated capacity is continuously updated 

consistently with the adopted ageing model, once the EoL (20%) is reached the process stops. 

The discretization parameter n is imposed to 9, limiting the minimum SoC to 20%. 
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(a) (b) 

Fig. 2. Cycling and Calendar contribution to capacity fade (left y-axis) and cumulative OP for 2022 

(a) and 2021 (b) scenarios. Dashed horizontal lines indicate the CAPEX (150 k€) and the cumulative 

OP at the EoL highlighting the net profits or loss. 

Figures 2(a) and (b) report the results for the scenarios 2022 and 2021 respectively. 2022 

was characterized by high prices, which are commonly associated with increased variability, 

i.e., the main driving factor for energy arbitrage. In 2022 the average daily variability of 

electricity price, i.e., the difference between the maximum and minimum daily prices, scored 

161.52 €/MWh, while in 2021 it was limited to 59.40 €/MWh. Consequently, BESS operates 

much more in the 2022 scenario performing 0.84 equivalent cycles per day against 0.20 if 

2021 prices are adopted. 

This is immediately reflected in the ageing process, in the first case the lifespan is 

estimated at 8.0 years with a relevant impact of cycling (63.8%) on the overall fade. In the 

second scenario BESS lasts more (16.6) and calendar ageing is by far more relevant than 

cycling, which contributes only by 31.9% to the overall fade. However, what is important is 

to look at the cumulative sum of OP at the end of life. 234.9 k€ and 87.4 k€ for the two 

scenarios respectively. Considering that the CAPEX for a 1MWh BESS is assumed to be 150 

k€, its possible to conclude that the optimization of operation, considering energy arbitrage 

opportunities on the day-ahead market of electricity, guarantees 10.63k€/year of net profits 

in the 2022 scenario. Conversely, considering prices of 2021, it minimizes the losses to 

3.77€/year, but the arbitrage itself is not enough to pay back the investment in such 

conditions. 

4 Conclusions 

In this paper, a dispatching model for the BES system was developed accounting, during 

the optimization stage, for the impact of charge and discharge cycles on the battery capacity 

fade, as well as the contribution of idling. Moreover, the dependency of charging and 

discharging efficiencies on the C-rate, thus on the power, is considered. 

The percentage of fade caused by cycling during profitable (i.e., characterized by high 

price variability on daily basis) market periods is significantly high, up to 60-65%. For the 

market conditions as of 2022, the profits opportunities for the batteries are sufficient to 

operate almost one full cycle per day, while for 2021 conditions, the battery on average 

performs one cycle every five days. 

Even if such continuous operations have a great impact on the lifespan, which in the 2022 

scenario is less than half of 2021, the most important economic indicator, i.e. the annual net 

profit is positive and significantly higher. 
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