
Citation: Capello, A.; Fresta, M.;

Bellotti, F.; Haghighi, H.; Hiller, J.;

Mozaffari, S.; Berta, R. Exploiting Big

Data for Experiment Reporting: The

Hi-Drive Collaborative Research

Project Case. Sensors 2023, 23, 7866.

https://doi.org/10.3390/s23187866

Academic Editors: Felipe Jiménez,

Piedad Garrido Picazo and Ikhlas

Abdel-Qader

Received: 8 August 2023

Revised: 9 September 2023

Accepted: 11 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Exploiting Big Data for Experiment Reporting: The Hi-Drive
Collaborative Research Project Case
Alessio Capello 1 , Matteo Fresta 1 , Francesco Bellotti 1,* , Hamed Haghighi 2, Johannes Hiller 3 ,
Sajjad Mozaffari 2 and Riccardo Berta 1

1 Department of Electrical, Electronic and Telecommunication Engineering (DITEN), University of Genoa,
Via Opera Pia 11A, 16145 Genoa, Italy

2 WMG, University of Warwick, Coventry CV4 7AL, UK
3 Institute for Automotive Engineering (IKA), RWTH Aachen University, Steinbachstr. 7,

52074 Aachen, Germany
* Correspondence: francesco.bellotti@unige.it

Abstract: As timely information about a project’s state is key for management, we developed a data
toolchain to support the monitoring of a project’s progress. By extending the Measurify framework,
which is dedicated to efficiently building measurement-rich applications on MongoDB, we were able
to make the process of setting up the reporting tool just a matter of editing a couple of .json configu-
ration files that specify the names and data format of the project’s progress/performance indicators.
Since the quantity of data to be provided at each reporting period is potentially overwhelming, some
level of automation in the extraction of the indicator values is essential. To this end, it is important
to make sure that most, if not all, of the quantities to be reported can be automatically extracted
from the experiment data files actually used in the project. The originating use case for the toolchain
is a collaborative research project on driving automation. As data representing the project’s state,
330+ numerical indicators were identified. According to the project’s pre-test experience, the tool is
effective in supporting the preparation of periodic progress reports that extensively exploit the actual
project data (i.e., obtained from the sensors—real or virtual—deployed for the project). While the
presented use case concerns the automotive industry, we have taken care that the design choices (par-
ticularly, the definition of the resources exposed by the Application Programming Interfaces, APIs)
abstract the requirements, with an aim to guarantee effectiveness in virtually any application context.

Keywords: big data architecture; project monitoring and reporting; non-relational DB; RESTful APIs;
field operational tests; automated driving

1. Introduction

Managing projects necessitates controlling their timing and cost in an effort to meet
planned targets. In order to take the most appropriate actions, the management team needs
timely data representative of the project’s state [1]. Thompson et al. [2] have suggested that
flawed status reporting is a serious concern in information system projects. Iacovou et al. [3]
showed a positive effect of reporting quality on project performance and indicated that
selective reporting behavior (e.g., optimistic biasing) has a degrading effect on reporting
quality. We expect that advances in big data technologies may lead to improvements in this
area of project progress monitoring and reporting. However, there the literature is lacking
with regard to tools specifically dedicated to project monitoring exploiting big data end to
end, from the experimental/project data files up to the key performance indicators (KPIs)
and their visualization and management. Data files contain the raw data logged by the
sensors deployed by a project/experiment. Thus, we propose a further exploitation of such
sensors not only for the aims of the project, but also for quantitative reporting, aiming at
improving its coherence, accuracy and efficiency.

Sensors 2023, 23, 7866. https://doi.org/10.3390/s23187866 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4277-7283
https://orcid.org/0009-0000-7265-7501
https://orcid.org/0000-0003-4109-4675
https://orcid.org/0000-0003-1835-6067
https://orcid.org/0000-0003-1937-3969
https://doi.org/10.3390/s23187866
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187866?type=check_update&version=1


Sensors 2023, 23, 7866 2 of 18

This observation prompted us to investigate the exploitation of state-of-the-art big
data management methods and tools to improve project status monitoring and reporting.
Our research is also interested in characterizing the main features of a periodic reporting
system, independent of the application domain, as well as what types of metadata may
be used, and what user workflow should be supported and the relevant modalities of
human–computer interaction (HCI).

The context and motivation of this research come from the automated driving (AD)
industrial sector, which represents a highly significant investigation domain given the huge
amount of research that is being carried out in the field (e.g., [4–7]). In the L3Pilot project [8],
dedicated to piloting SAE level 3 automated driving functions (ADFs), we studied how
to organize a robust workflow for quantitatively addressing research questions (RQs) in
a collaborative project sharing sensitive data among various partners, while ensuring
methodological soundness and data validity, and protecting partners’ intellectual property
(IP) [9,10]. This process was driven by a well-established reference methodology for large
scale pilots and field operational automotive tests, namely Field opErational teSt supporT
Action (FESTA) [11]. Data are at the center of the methodology, as they are the basis
for the analysis and assessment steps, which provide the final outcome of the project.
Consequently, a data toolchain was designed to support an efficient and effective test phase,
where data are collected, and assessment phase, where data are analyzed. A key novelty
in order to obtain the quantitative information needed to answer the L3Pilot RQs was the
development of the Consolidated Database (CDB), based on the open source Measurify
technology [12], which allows data from all the pilot sites to be shared anonymously
and securely amongst project partners to facilitate data analysis aimed at answering the
project’s RQs.

Continuing the L3Pilot perspective, the Hi-Drive project [13]—EUR 30 M funding, with
a consortium of 40 partners among original equipment manufacturers (OEMs), suppliers,
user associations and research organizations—strives to extend the operational design
domain (ODD) of ADFs and reduce the frequency of their takeover requests (TOR), by
means of a set of new technology enablers aimed at enhancing performance of state of
the art ADFs. Passenger cars and trucks will demonstrate this in a large set of traffic
environments, with a specific attention to demanding, error-causing conditions.

Similarly to L3Pilot, the Hi-Drive’s plan involves a set of experiments that are being
conducted in several countries. In Hi-Drive, an experiment is defined as an entity consisting
of a series of test vehicle runs/trips aimed at investigating a specific use case (e.g., lane
merging, non-signalized intersection crossing) and is conducted under comparable circum-
stances. Experiments are expected to last between 6 and 18 months. Every experiment
tests vehicles from one or more vehicle owners (i.e., OEMs or suppliers), whose ADFs
have been enhanced by one or more enablers. Hi-Drive enablers are technological tools
(hardware, software or methodology) that have the potential to enable new ADF(s) and/or
upgrade existing ADF(s). Hi-Drive enablers concern technologies such as connectivity,
positioning, cyber-security and machine learning. Experiments compare the impact of
enabler-enhanced prototypes with a baseline that is given by an ADF without the corre-
sponding enabler(s). The project considers different types of impacts: safety, efficiency and
environmental, transport system, mobility, socio-economic and user acceptance.

Given the strong similarities of the experimental processes, the Hi-Drive reference
architecture builds on the L3Pilot data architecture [9,10]. However, a critical assessment
of the L3Pilot experience stressed the need for improving the periodical reporting on the
state of the project in the different pilot sites, which suffered difficulties in extracting and
managing KPIs (e.g., how many kilometers were travelled in the period, in what road
type; how many persons took part in the tests, with what roles, etc.). The experience thus
suggested the idea of exploiting the huge quantity of the project’s experimental data with a
view to having a homogeneous quantitative reporting from all the pilot sites, according
to a common schema that was defined in the initial phase of the project. This led to
the idea and design of the Experimental Metadata Database (EMDB), an end-to-end big



Sensors 2023, 23, 7866 3 of 18

data management application dedicated to supporting reporting and enabling the project
management to obtain an overview of all conducted experiments. The project managers
(e.g., project coordinator and work-package/task leaders) should be able to adequately
track the progress of the activities and easily analyze the experiments’ state, through a sort
of “dashboard of the project”.

In the design, we made sure to generalize requirements and devise abstract solu-
tions, so to build a generic tool that could be easily configured also for other projects and
application domains.

This paper presents the challenges we have faced in developing the tool, the im-
plemented design solutions and the feedback from use in the project. The remainder of
the article is organized as follows. The next section presents the related work. Section 3
illustrates the requirements elicited for the system, while Section 4 details the technical
implementation. Section 5 presents and discusses the achieved results, while Section 6
draws the conclusions on the work conducted.

2. Related Work

The importance of data has grown exponentially in recent years, with the development
of technologies for dealing with big data sensing, processing, management, and mining
(e.g., [14–17]). Many data analytics tools have been developed to assist in specifying,
integrating, and deploying data analytics applications. Khalajzadeh et al. [18] presented a
survey and analysis of several current research and practice approaches to support data
analytics for end-users. Ataei and Litchfield [19] conducted a systematic literature review
on big data reference architectures. They highlighted major challenges for research such
as micro-services architectures, event-driven paradigms, security and privacy issues, and
metadata management. Github provides good examples of templates, typically in LaTeX,
for scientific experiment reporting (e.g., [20,21]).

However, the literature lacks information about tools for the use of big data to support
experiment/project state reporting. The concept of a Project Consortia Knowledge Base
(PC-KB) is presented by Winkler et al. [22] in an integration framework based on semantic
knowledge that facilitates project-level communication as well as access to project data
across tool and partner boundaries. Theories and technologies related to knowledge
discovery have been applied to all kind of databases because of their abilities in converting
raw data into useful knowledge for operation management, decision making and in-depth
analysis and reporting. For instance, Hsu and Ho [23] developed a knowledge discovery
model using a data warehouse technique to facilitate data gathering and in-depth analysis
and news reporting.

On the other hand, there is significant bibliography stressing the importance of objec-
tive reporting.

Recent research has suggested that flawed status reporting is a serious concern in
Information System (IS) projects. The linkage between reporting quality and project perfor-
mance was empirically studied by Thompson et al. [2] in two studies, with 210 IS project
members and 485 IS project managers, respectively. Both studies showed that the per-
ceived quality of project reporting was improvable and significantly associated with project
task outcomes. The second study suggested that reporting quality was also related to
organizational outcomes.

In a survey of 561 project managers, Iacovou et al. [3] investigated selective reporting
behaviors that are pursued by project managers when communicating the state of their
information system initiatives to their executives. The findings of the study reveal a positive
effect of reporting quality on project performance and indicate that a specific type of
selective reporting behavior (optimistic biasing) has a degrading effect on reporting quality.

El-Omari and Moselhi [1] presented a control model that integrates different auto-
mated data acquisition technologies to collect data from construction sites for progress
measurement purposes. The paper discusses suitability of various automated data acquisi-
tion technologies (e.g., bar coding, Radio Frequency Identification (RFID) 3D laser scanning,



Sensors 2023, 23, 7866 4 of 18

photogrammetry) for tracking and controlling construction activities. The authors propose
a cost/schedule control model which integrates automated data acquisition technologies
with a planning software module, a relational database, and AutoCAD to generate progress
reports that can assist project management teams in decision making.

In the automotive industry, a number of field operational tests (FOTs) have been
executed in recent years to test new advanced driver-assistance systems (ADAS) in authen-
tic traffic conditions, involving thousands of drivers (e.g., euroFOT [16,17]). The FESTA
methodology covers the whole process of planning, preparing, executing, analyzing and
reporting an FOT. The steps that need to be carried out during an FOT are graphically
presented in the form of a “V”-shape diagram, where there is “horizontal” correspon-
dence between the levels on the left-hand side (concerning the “preparation” of the FOT)
and right-hand side (concerning the “analysis” or “evaluation”). The left side of the “V”
descends from definition of functions and use cases, down to research questions and hy-
potheses, performance indicators and measures, data collection tools and pilot site set-up.
The bottom of the “V” is given by data acquisition during tests. The right side of the “V”
rises mirroring the left side: data processing, data analysis to answer research questions on
technical performance, user acceptance and behavior, impact on traffic and mobility, up to
societal impacts. The L3Pilot project adopted the FESTA methodology and built its data
toolchain to support it, particularly answering four sets of research questions, concerning
impact on technical performance, user acceptance, traffic, and society. Through the EMDB,
Hi-Drive extends this solution also to the case of quantitatively supporting periodical
project/experiment reporting.

3. Specifications and Requirements

This section reports, in the next two sub-sections, respectively, the reporting data
specifications and the design requirements that were elicited in the early phases of the
project. The former were established by the Hi-Drive’s Methodology sub-project, also based
on the experience in previous projects. The latter were collected and then harmonized in a
page on the project’s online collaboration tool, where partners could detail one or more
specific needs, in natural language, together with a short user story illustrating the related
application and advantages. In a user-centric design perspective, this list of requirements
was further complemented with the feedback from early lab tests and demos with partners,
which informed useful design iterations.

3.1. Data Specifications

For specifying the data needs, a schema was defined in the initial phase of the project to
make all the experiments report their state in a quantitative and consistent way, considering
the variety of settings across the different experiments.

The schema is encoded in an Excel sheet (an excerpt of the file is provided in Table 1),
which gives detailed structure and specification (until the level of the type of the single
fields) of the signal list (i.e., the data expected to be stored in the EMDB). The sheet has one
row for each unit of data (namely, indicator) quantifying the project/experiment progress
in a particular aspect. In a hierarchical approach, which was deemed appropriate to deal
with their huge number (330+) and variety, indicators are grouped into 35 topics. Examples
of topics include the following:

• Duration of the experiments, which contains, as related indicators, the number of tests
lasting up to 15 min, between 15 and 30 min, 30 and 60 min, etc.;

• ADF operation times, which includes the number of activations with operation time
less than 1 min, between 1 and 5 min, between 5 and 10 min, etc., and the number
of encountered traffic sections (e.g., pedestrian crossings, roundabouts, traffic lights,
tunnels);

• Travelled distance and driving times, which are in turn segmented in terms of the time
of day (e.g., morning, afternoon, evening, night), type of road (motorway, urban, rural,



Sensors 2023, 23, 7866 5 of 18

etc.), road conditions, number of lanes, speed limits, state of the ADF and enabler
(activated or not).

Table 1. Excerpt of data requirements Excel file.

Covered Information Description

Group Specific Value

Time of tests in
the experiment

Between 0 and 6 Number of test runs
performed between hour x

and hour y, local time.

Between 6 and 12
Between 12 and 18
Between 18 and 24

Duration of tests in the
experiment

Less than 15 min

Number of test runs
per-formed during the

indicated length of time.

Less than 30 min
Less than 1 h

Less than 1 h and 30 min
Less than 2 h

Longer than 2 h

A key requirement due to the huge number of indicators to be periodically reported
according to the above mentioned data specifications. Since providing all this data manually
at each reporting period would be overwhelming, it was required to develop scripts that
could extract most of the indicator values from the raw files used in the experiments.

3.2. User Requirements

The main requirement that emerged during the initial analysis and design steps
was system configurability, especially in terms of experiment descriptors and indicators.
Support for configurability was intended to facilitate dealing with possible extensions
during the actual development, and also allow the possibility of using the tool in other
domains as well. To this end, abstraction was a key design factor. For instance, we
generalized the concept of Experiment as a generic project activity, so that it could be
applied to other contexts as well, without sticking to domain-specific characteristics.

Other requirements emphasized the importance of user-friendliness and, thus, de-
manded the availability of a graphical user interface supporting all the data management
operations according to the different typologies of users involved. Overall, project partners
required support for understanding the system (e.g., through hands-on workshops) and
during the actual operations.

Requirements mandated that all the graphical user interfaces (GUIs) be implemented
as cloud-based applications accessible from common browsers, to prevent the burden
of local executable installations (avoiding platform-dependent compatibility issues and
security locks in a company’s PCs). This ensures that all the partners can seamlessly
employ the latest version of the application. On the downside, this approach limits the
interface flexibility and modalities of local file accessibility, but this did not compromise
overall effectiveness.

Data integrity is obviously a key requirement. As we will see later, this is targeted
through the utilization of schemas that mandate the structure of each datum and the
employment of a suitable design pattern (particularly, the “Protocol-Experiment” pattern).

Data confidentiality concerns the fact that experiment managers should be able to
upload and access data about their own experiment, but not those of the others, while
project managers should be able to read data from all the experiments.

The functioning of the EMDB server itself does not imply strict performance require-
ments, given the relatively limited amount of data (in the order of MBs) to be uploaded by
each experiment manager (the expected number of experiments is 20/30) and downloaded
by project managers. However, generalizing the specific use case, the solution is big data
ready, being based on MongoDB, a popular (particularly, involving a large, active commu-
nity of users and rich documentation), high-performance, state-of-the-art non-relational DB



Sensors 2023, 23, 7866 6 of 18

system [24,25]. On the other hand, huge quantities of data are processed by the toolchain at
each experiment’s site, for the automatic extraction of the progress/performance indicators
from the project’s raw files.

4. System Design and Implementation

With regard to the platform for the data management in Hi-Drive, the choice fell on
Measurify, a cloud-based, open source, abstract, measurement-oriented data framework
for managing smart things [12,26,27]. Besides its measurement-orientation, the reasons
for the choice concern the fact that Measurify is platform independent and non-cloud
vendor locked, which implies a straightforward portability across partners’ and cloud
providers’ infrastructures. Through high levels of abstraction, the framework supports
an easy and efficient development of data-rich applications, particularly by supporting
the instantiation of application databases (ADB, i.e., a Measurify instance configured
for a specific application) by simply editing configuration files, without writing software.
Measurify was developed and employed also in L3Pilot, where it was used to implement, as
ADBs, the Performance Indicator DB and the User Questionnaire DB [10]. In Hi-Drive, we
decided to also implement the EMDB as a Measurify ADB. Besides the normal configuration,
this also required the development of some extensions (particularly, the Experiment and
Protocol resources), which are described in the following sub-section. Before that, to set the
proper background, we outline the main characteristics of Measurify.

Measurify is implemented in NodeJS and features a RESTful API. It relies on MongoDB
as the underlying database management system. Measurify ADB configuration is achieved
by populating the fundamental resource collections with the application-specific values.
Table 2 synthetizes the main resources available in the framework. A Feature resource fully
and formally describes the data types of the Measurements to be uploaded and managed
by the ADB. This resource is used for the data integrity check at each Measurement upload.
The MongoDB non-relational DB in fact supports performance and development efficiency
but needs the utilization of schemas to guarantee content integrity. Thus, the Measurify’s
Feature resource has been designed to provide the schema to which all the Measurements
referring to that Feature in the DB must comply. Every measurement must refer to a Feature.
This is called the Measurement–Feature pattern.

Table 2. Measurify resources.

Resource Description

Thing A Thing represents the subject (context) of a Measurement. A thing could be
a trip, a vehicle, a house, a driver.

Feature

A Feature fully describes the different types of Measurements that can be
stored in the DB. Every Measurement refers to a single Feature. Example of
Features are Trip-level (or scenario instance level) performance indicators,
that synthetize the performance of an ADF in an experimental vehicle’s trip
(or in a segment of a trip). Each feature specifies several items, which are its
constituting fields (e.g., average speed, maximum speed, travelled Kms).

Device A Device is a tool providing measurements regarding a Thing (or an
actuator that acts within a thing to modify its status).

Measurement A Measurement represents a sample of a Feature measured by a Device.

Tag

A Tag is an alphanumerical string usable to put labels on resources, for
better specifying them (e.g., to support queries, also for the dynamic

generation of the graphical user interface). For instance, a measurement
could be tagged with a rainy weather condition.

User A User represents a user of the DB, with different roles (e.g., admin,
provider, analyst).



Sensors 2023, 23, 7866 7 of 18

Data integrity is obviously a key requirement for the Hi-Drive DBs. Compliance is
guaranteed through the utilization of schemas, that mandate the structure of each piece of
data, and the employment of the Measurement–Feature pattern. Since measurements can be
of different high-level data types, this pattern requires that each measurement references its
specific type (i.e., Feature), and thus, its structure is checked against its declared reference
before being stored in the DB.

4.1. Extensions to Measurify

The main requirements for the EMDB design process were essentially encoded in
an Excel file, which provides a detailed structure and specification of the data expected
to be stored (Table 1). The raw data in this category are mostly single values (either
numeric or string), but storage of histograms (e.g., of driven velocities) is also required,
thus demanding the use of arrays.

Analyzing the specifications from an end-user’s perspective, we observed that every
experiment contains three types of information entries:

• A few basic descriptor fields, such as name of the experiment, location, managing
organization, start and end date, etc.;

• Several metadata items for more in-depth description, such as type of targeted enablers
(e.g., vehicle to infrastructure V2I, localization, positioning, machine learning, etc.),
technical focus (e.g., technical enablers, users, etc.), etc.;

• State-tracking, progress/performance indicators (e.g., number of baseline tests/runs
performed for this experiment, number of tests performed per time of day, per experi-
ment length, travelled distance with ADF and enabler activated, etc.).

In the above, on the one hand, the descriptor fields and metadata describe the nature
(static properties) of the experiment. Descriptors are basic and common to all types of
experiment, while metadata are specific to the experiments of a given project. On the
other hand, state-tracking indicators are to be periodically updated by the experiment
managers during the execution of an experiment. Thus, they represent the dynamic
properties of an experiment. The indicators’ values constitute the experiment’s history,
which is a chronology of records reporting the state of the experiment in given steps in
time, which should be useful for the project and site managers, for instance to prepare
charts and/or tables.

Each history record to be uploaded to the DB includes an ordinal number, namely Step,
that indicates the step in the history to which this record refers. The step can seamlessly
(and arbitrarily) refer to months, quarters, years, etc. The first (logical) progress is indicated
as step 1, the second one as step 2, etc. This allows both the insertion of new history steps
and (if needed) updates of old history steps. The history indexing strategy is completely up
to the user, and it is argued, but not mandated, that experiment managers in a single project
(e.g., Hi-Drive) should coordinate among each other to follow a consistent approach.

In order to take account of possible future changes and extensions, we have defined
the concept of Protocol. A protocol specifies the experiment’s type. To each experiment,
in fact, a protocol must be associated, which specifies all the information (i.e., descriptors,
metadata, indicators, and their relevant types) that will be recorded for that experiment.
Both Protocol and Experiment have been implemented as Measurify resources and are now
available for any kind of project.

For Hi-Drive, at least based on the current specifications, all the experiments refer
to only one Protocol (namely, the “Hi-Drive” protocol resource). However, the use of
different, customized protocols is an abstraction that may also be used within a single
project involving different types of experiments, to help users to focus only on the type of
data relevant to their particular experiments.

The Protocol resource specifies the names and data types of the Metadata and the
History records usable by the experiments that refer to that protocol. Thus, the Experiment–
Protocol pattern is analogous to the Measurement–Feature pattern, with respect to experiment-
related information.



Sensors 2023, 23, 7866 8 of 18

History records are hierarchically structured into Topics and Fields, which are ‘the
children’ of Topics, and represent the above mentioned progress/performance indicators.
This hierarchical structure corresponds to the taxonomy specified in the above-mentioned
specifications file. For instance, the Road Condition topic is subdivided into several fields,
such as Road_dry, Road_wet, Road_icy, Road_snowy, etc. An experiment state at a given
time step is given by the value of such fields.

The whole Hi-Drive Protocol resource in Measurify is specified in a .json file (“Protocol
Hi-Drive.json”). This file is not exposed to the EMDB users, but only to administrators, as it
specifies the data types to be provided by the experiment. What an end-user sees, as we will
show in Section 4.3 “Graphical User Interface”, is a web-form or a .csv file displayed/formatted
according to the protocol. A very limited excerpt of the “Hi-Drive” protocol resource is
provided in Figure 1 below.

Sensors 2023, 23, x FOR PEER REVIEW  8  of  19 
 

 

In order to take account of possible future changes and extensions, we have defined 

the concept of Protocol. A protocol specifies the experiment’s type. To each experiment, 

in fact, a protocol must be associated, which specifies all the information (i.e., descriptors, 

metadata, indicators, and their relevant types) that will be recorded for that experiment. 

Both Protocol and Experiment have been  implemented as Measurify resources and are 

now available for any kind of project.   

For Hi-Drive, at least based on the current specifications, all the experiments refer to 

only  one  Protocol  (namely,  the  “Hi-Drive”  protocol  resource).  However,  the  use  of 

different, customized protocols  is an abstraction  that may also be used within a single 

project involving different types of experiments, to help users to focus only on the type of 

data relevant to their particular experiments.   

The Protocol resource specifies the names and data  types of  the Metadata and the 

History  records  usable  by  the  experiments  that  refer  to  that  protocol.  Thus,  the 

Experiment–Protocol  pattern  is  analogous  to  the Measurement–Feature  pattern, with 

respect to experiment-related information.   

History records are hierarchically structured into Topics and Fields, which are ‘the 

children’ of Topics, and represent the above mentioned progress/performance indicators. 

This hierarchical structure corresponds to the taxonomy specified in the above-mentioned 

specifications file. For instance, the Road Condition topic is subdivided into several fields, 

such as Road_dry, Road_wet, Road_icy, Road_snowy, etc. An experiment state at a given 

time step is given by the value of such fields.   

The  whole  Hi-Drive  Protocol  resource  in  Measurify  is  specified  in  a  .json  file 

(“Protocol  Hi‐Drive.json”).  This  file  is  not  exposed  to  the  EMDB  users,  but  only  to 

administrators, as it specifies the data types to be provided by the experiment. What an 

end-user sees, as we will show in Section 4.3 “Graphical User Interface”, is a web-form or 

a .csv file displayed/formatted according to the protocol. A very limited excerpt of the “Hi-

Drive” protocol resource is provided in Figure 1 below. 

 

Figure 1. Excerpt from the Hi-Drive Protocol specified in .json. 

An  example,  minimal  and  dumb  (for  confidentiality  reasons),  of  Experiment 

configuration file using  the Hi-Drive protocol  is provided  in  “Experiment  Italy1.json” 

(Figure 2). As  anticipated,  the file  specifies  the values  for  this  experiment of  the basic 

descriptor fields  (included  the  reference protocol)  and of  the  contextual data  (i.e.,  the 

metadata). A similar file is to be prepared by each experiment manager before the start of 

the experiment. As can be seen, the history list is initially empty. 

Figure 1. Excerpt from the Hi-Drive Protocol specified in .json.

An example, minimal and dumb (for confidentiality reasons), of Experiment configu-
ration file using the Hi-Drive protocol is provided in “Experiment Italy1.json” (Figure 2).
As anticipated, the file specifies the values for this experiment of the basic descriptor fields
(included the reference protocol) and of the contextual data (i.e., the metadata). A similar
file is to be prepared by each experiment manager before the start of the experiment. As
can be seen, the history list is initially empty.

Sensors 2023, 23, x FOR PEER REVIEW  9  of  19 
 

 

 

Figure 2. Excerpt of Experiment Italy1.json. 

The file “Italy1#step2.csv” (an excerpt of which is reported in tabular form in Table 

3), instead, is an example of a possible History step record that could be uploaded by an 

experiment manager.  The  example  reports  the  number  of  test  runs  conducted  in  the 

second step of the experiment, segmented by road condition. Through a convention on 

filenames, the toolchain is able to detect the proper experiment’s history to update. 

Table 3. Example excerpt of a History step for the Italy1 experiment. 

Field Key  Field Value 

Road_dry  14 

Road_wet  4 

Road_icy  0 

Road_snowy  2 

As a summary (Figure 3), the  information to be provided for each experiment has 

been mapped following these criteria: 

 Very  basic  information  about  the  nature  of  the  experiment  is  mapped  to  the 

Experiment  Descriptor  fields.  This  data  structure  is  common  to  all  the 

experiments/projects; 

 More  detailed  information  about  the  nature  of  the  experiment  is mapped  to  the 

Experiment Metadata. This data structure is experiment specific; 

 The indicators periodically reporting the progress of the experiment are mapped to 

the Experiment History record. This data structure is experiment specific. 

Finally,  it  is  important  to  highlight  the  generality  of  the  proposed  design,  since 

Descriptors, Metadata  and  History  are  concepts  applicable  to  virtually  any  type  of 

experiments/projects, and  the Protocol  resource abstraction allows  this flexibility  to be 

implemented with intrinsic data integrity checking. 

 

Figure 2. Excerpt of Experiment Italy1.json.

The file “Italy1#step2.csv” (an excerpt of which is reported in tabular form in Table 3),
instead, is an example of a possible History step record that could be uploaded by an
experiment manager. The example reports the number of test runs conducted in the second



Sensors 2023, 23, 7866 9 of 18

step of the experiment, segmented by road condition. Through a convention on filenames,
the toolchain is able to detect the proper experiment’s history to update.

Table 3. Example excerpt of a History step for the Italy1 experiment.

Field Key Field Value

Road_dry 14

Road_wet 4

Road_icy 0

Road_snowy 2

As a summary (Figure 3), the information to be provided for each experiment has been
mapped following these criteria:

• Very basic information about the nature of the experiment is mapped to the Experiment
Descriptor fields. This data structure is common to all the experiments/projects;

• More detailed information about the nature of the experiment is mapped to the
Experiment Metadata. This data structure is experiment specific;

• The indicators periodically reporting the progress of the experiment are mapped to
the Experiment History record. This data structure is experiment specific.

Sensors 2023, 23, x FOR PEER REVIEW  9  of  19 
 

 

 

Figure 2. Excerpt of Experiment Italy1.json. 

The file “Italy1#step2.csv” (an excerpt of which is reported in tabular form in Table 

3), instead, is an example of a possible History step record that could be uploaded by an 

experiment manager.  The  example  reports  the  number  of  test  runs  conducted  in  the 

second step of the experiment, segmented by road condition. Through a convention on 

filenames, the toolchain is able to detect the proper experiment’s history to update. 

Table 3. Example excerpt of a History step for the Italy1 experiment. 

Field Key  Field Value 

Road_dry  14 

Road_wet  4 

Road_icy  0 

Road_snowy  2 

As a summary (Figure 3), the  information to be provided for each experiment has 

been mapped following these criteria: 

 Very  basic  information  about  the  nature  of  the  experiment  is  mapped  to  the 

Experiment  Descriptor  fields.  This  data  structure  is  common  to  all  the 

experiments/projects; 

 More  detailed  information  about  the  nature  of  the  experiment  is mapped  to  the 

Experiment Metadata. This data structure is experiment specific; 

 The indicators periodically reporting the progress of the experiment are mapped to 

the Experiment History record. This data structure is experiment specific. 

Finally,  it  is  important  to  highlight  the  generality  of  the  proposed  design,  since 

Descriptors, Metadata  and  History  are  concepts  applicable  to  virtually  any  type  of 

experiments/projects, and  the Protocol  resource abstraction allows  this flexibility  to be 

implemented with intrinsic data integrity checking. 

 

Figure 3. Organization of the data structure for an experiment.

Finally, it is important to highlight the generality of the proposed design, since De-
scriptors, Metadata and History are concepts applicable to virtually any type of experi-
ments/projects, and the Protocol resource abstraction allows this flexibility to be imple-
mented with intrinsic data integrity checking.

4.2. The EMDB Workflow

According to the Measurify model [12], the workflow consists of two main phases:

1. Configuration, which sets up the specific ADB;
2. Operation, which fills it during the progress of the application.

In the first configuration step, the EMDB administrator creates the Protocol resources
in the EMDB. In the Hi-Drive case, there is only one resource, which is instantiated by
uploading the already presented “Protocol Hi-Drive.json” file. Then, each Experiment man-
ager defines his own Experiment in a .json file and uploads it to the EMDB (“Experiment
Italy1.json” is a configuration file example, shown in Figure 2). The EMDB configuration
steps are depicted in Figure 4.



Sensors 2023, 23, 7866 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW  10  of  19 
 

 

Figure 3. Organization of the data structure for an experiment. 

4.2. The EMDB Workflow 

According to the Measurify model [12], the workflow consists of two main phases: 

1. Configuration, which sets up the specific ADB; 

2. Operation, which fills it during the progress of the application. 

In the first configuration step, the EMDB administrator creates the Protocol resources 

in the EMDB. In the Hi-Drive case, there  is only one resource, which  is  instantiated by 

uploading  the  already presented  “Protocol Hi-Drive.json” file. Then,  each Experiment 

manager  defines  his  own  Experiment  in  a  .json  file  and  uploads  it  to  the  EMDB 

(“Experiment Italy1.json” is a configuration file example, shown in Figure 2). The EMDB 

configuration steps are depicted in Figure 4. 

 

Figure 4. Steps for the creation and initialization of the EMDB. 

Once configured, the EMDB  is ready for receiving data from the various test sites. 

Each experiment manager can report the state of the experiment at a given history step by 

uploading a file (e.g., “Italy1#step2.csv” shown in Table 3) through the Operation Tool, a 

graphical user  interface which will  be described  in  the next  subsection. Then, project 

managers can retrieve  the state of all  the Experiments present  in  the ADB. Experiment 

managers are allowed to update and retrieve data about their Experiment(s), while Project 

managers are allowed to retrieve data of all Experiments. Figure 5 provides an overview 

of the operation phase of the EMDB. 

 

Figure 5. Typical steps for the operation phase of the EMDB. 

4.3. Graphical User Interface 

Given  the  relevance  of  the partners’  requirements,  special  attention was paid  to  the 

graphical user interface (GUI). The GUI consists of three tools that are available as simple web 

applications on browsers: the Admin Dashboard, the Operation Tool and the Data Visualizer.   

The Admin Dashboard has been designed to support DB administrators to create and 

initialize  (i.e.,  configure)  their  ADBs.  The  Admin  Dashboard  supports  creation  and 

configuration of all the Measurify resources, including Protocols and Experiments (e.g., Figure 

Figure 4. Steps for the creation and initialization of the EMDB.

Once configured, the EMDB is ready for receiving data from the various test sites.
Each experiment manager can report the state of the experiment at a given history step
by uploading a file (e.g., “Italy1#step2.csv” shown in Table 3) through the Operation Tool,
a graphical user interface which will be described in the next subsection. Then, project
managers can retrieve the state of all the Experiments present in the ADB. Experiment
managers are allowed to update and retrieve data about their Experiment(s), while Project
managers are allowed to retrieve data of all Experiments. Figure 5 provides an overview of
the operation phase of the EMDB.

Sensors 2023, 23, x FOR PEER REVIEW  10  of  19 
 

 

Figure 3. Organization of the data structure for an experiment. 

4.2. The EMDB Workflow 

According to the Measurify model [12], the workflow consists of two main phases: 

1. Configuration, which sets up the specific ADB; 

2. Operation, which fills it during the progress of the application. 

In the first configuration step, the EMDB administrator creates the Protocol resources 

in the EMDB. In the Hi-Drive case, there  is only one resource, which  is  instantiated by 

uploading  the  already presented  “Protocol Hi-Drive.json” file. Then,  each Experiment 

manager  defines  his  own  Experiment  in  a  .json  file  and  uploads  it  to  the  EMDB 

(“Experiment Italy1.json” is a configuration file example, shown in Figure 2). The EMDB 

configuration steps are depicted in Figure 4. 

 

Figure 4. Steps for the creation and initialization of the EMDB. 

Once configured, the EMDB  is ready for receiving data from the various test sites. 

Each experiment manager can report the state of the experiment at a given history step by 

uploading a file (e.g., “Italy1#step2.csv” shown in Table 3) through the Operation Tool, a 

graphical user  interface which will  be described  in  the next  subsection. Then, project 

managers can retrieve  the state of all  the Experiments present  in  the ADB. Experiment 

managers are allowed to update and retrieve data about their Experiment(s), while Project 

managers are allowed to retrieve data of all Experiments. Figure 5 provides an overview 

of the operation phase of the EMDB. 

 

Figure 5. Typical steps for the operation phase of the EMDB. 

4.3. Graphical User Interface 

Given  the  relevance  of  the partners’  requirements,  special  attention was paid  to  the 

graphical user interface (GUI). The GUI consists of three tools that are available as simple web 

applications on browsers: the Admin Dashboard, the Operation Tool and the Data Visualizer.   

The Admin Dashboard has been designed to support DB administrators to create and 

initialize  (i.e.,  configure)  their  ADBs.  The  Admin  Dashboard  supports  creation  and 

configuration of all the Measurify resources, including Protocols and Experiments (e.g., Figure 

Figure 5. Typical steps for the operation phase of the EMDB.

4.3. Graphical User Interface

Given the relevance of the partners’ requirements, special attention was paid to the
graphical user interface (GUI). The GUI consists of three tools that are available as simple
web applications on browsers: the Admin Dashboard, the Operation Tool and the Data
Visualizer.

The Admin Dashboard has been designed to support DB administrators to create
and initialize (i.e., configure) their ADBs. The Admin Dashboard supports creation and
configuration of all the Measurify resources, including Protocols and Experiments (e.g.,
Figure 6). Thus, the .json files needed for configuring of an EMDB installation (including
the single experiments) can be set up by filling in fields in a visual form, if preferred by
the user.

Sensors 2023, 23, x FOR PEER REVIEW  11  of  19 
 

 

6). Thus, the .json files needed for configuring of an EMDB installation (including the single 

experiments) can be set up by filling in fields in a visual form, if preferred by the user. 

 

Figure 6. Outlook of the Admin Dashboard page for managing experiments. 

The Operation Tool is the tool through which the various DB users can perform the 

typical data upload and download operations  to/from an ADB. The Operation Tool  is 

designed to support the operations of the workflow presented in Figure 5. 

The Data Visualizer offers a user-friendly way for experiment and project managers 

to quickly obtain a graphical overview of the EMDB data. The GUI supports bar- and pie-

type interactive charts. The bar chart displays the absolute values of each item within the 

selected data group (a data group is one of the 35 topics defined in Section 3.1), while the 

pie chart shows their relative values as percentages. If a data group consists of a single 

item, the charts will be generated for different steps of the experiment instead of different 

items within the group. 

These  tools  have  been  developed  using  state-of-the-art  JavaScript  libraries  for 

building advanced user interfaces, such as React [28], Vue.js [29], and Chart.js [30]. 

4.4. Automatic Extraction of the Progress/Performance Indicators 

As per the requirement of reducing the manual effort needed to fill in the periodic 

reports  to  be  inserted  in  the  EMDB,  we  designed  Python  scripts  to  extract  the 

progress/performance indicators. Extraction is achieved by processing the .hdf5 files that 

log  the  timeseries  of  the  signals  obtained  by  the  vehicular  sensors  (e.g.,  speed, pedal 

activity, ADF  activity,  etc.),  that  are  enriched  in post-processing with derived/context 

measures (e.g., detected driving scenarios, relative position of other traffic actors, type of 

road, weather conditions, etc.) [10]. Since one .hdf5 file is created for each test session (i.e., 

test-vehicle’s trip), the script that takes in input a directory containing all the .hdf5 files 

recorded in the reporting period and outputs the .csv file to be uploaded to the EMDB, 

with most of its fields automatically filled. The script associates a counter to each fillable 

indicator.  Some  of  these  counters  (e.g.,  number  of  tests  on  wet  roads)  are  simply 

incremented by one for each .hdf5 file meeting the relevant criterion. Other counters (e.g., 

number of take-over requests) are incremented per each .hdf5 file by the value obtained 

by processing the relevant  timeseries  in  that file. A few other  indicators, which are not 

related to values logged during a trip (e.g., number of trip participants, age, etc.), cannot 

be computed automatically and are left to be manually filled by the experiment manager.   

Figure 7 provides an overview of  the periodic  reporting process. The experiment 

manager collects all the relevant files in a root directory, executes the automation script, 

checks the resulting .csv file, manually fills the missing values, and finally uploads the file 

to the EMDB via the Operation Tool on a browser. 

Figure 6. Outlook of the Admin Dashboard page for managing experiments.



Sensors 2023, 23, 7866 11 of 18

The Operation Tool is the tool through which the various DB users can perform the
typical data upload and download operations to/from an ADB. The Operation Tool is
designed to support the operations of the workflow presented in Figure 5.

The Data Visualizer offers a user-friendly way for experiment and project managers
to quickly obtain a graphical overview of the EMDB data. The GUI supports bar- and
pie-type interactive charts. The bar chart displays the absolute values of each item within
the selected data group (a data group is one of the 35 topics defined in Section 3.1), while
the pie chart shows their relative values as percentages. If a data group consists of a single
item, the charts will be generated for different steps of the experiment instead of different
items within the group.

These tools have been developed using state-of-the-art JavaScript libraries for building
advanced user interfaces, such as React [28], Vue.js [29], and Chart.js [30].

4.4. Automatic Extraction of the Progress/Performance Indicators

As per the requirement of reducing the manual effort needed to fill in the peri-
odic reports to be inserted in the EMDB, we designed Python scripts to extract the
progress/performance indicators. Extraction is achieved by processing the .hdf5 files
that log the timeseries of the signals obtained by the vehicular sensors (e.g., speed, pedal
activity, ADF activity, etc.), that are enriched in post-processing with derived/context
measures (e.g., detected driving scenarios, relative position of other traffic actors, type of
road, weather conditions, etc.) [10]. Since one .hdf5 file is created for each test session (i.e.,
test-vehicle’s trip), the script that takes in input a directory containing all the .hdf5 files
recorded in the reporting period and outputs the .csv file to be uploaded to the EMDB, with
most of its fields automatically filled. The script associates a counter to each fillable indica-
tor. Some of these counters (e.g., number of tests on wet roads) are simply incremented
by one for each .hdf5 file meeting the relevant criterion. Other counters (e.g., number of
take-over requests) are incremented per each .hdf5 file by the value obtained by processing
the relevant timeseries in that file. A few other indicators, which are not related to values
logged during a trip (e.g., number of trip participants, age, etc.), cannot be computed
automatically and are left to be manually filled by the experiment manager.

Figure 7 provides an overview of the periodic reporting process. The experiment
manager collects all the relevant files in a root directory, executes the automation script,
checks the resulting .csv file, manually fills the missing values, and finally uploads the file
to the EMDB via the Operation Tool on a browser.

Sensors 2023, 23, x FOR PEER REVIEW  12  of  19 
 

 

 

Figure 7. Periodic report preparation process. 

4.5. Lab Testing 

The  system  architecture  has  been  implemented with  a  systematic  exploitation  of 

automatic unit  testing  to aim at achieving  robustness and guarantee  that each version 

release could meet the requirements. This is particularly important  in languages which 

are not  strongly  typed,  such  as  JavaScript,  so properties or methods of variables may 

depend on inputs. Thus, the scope of static verification is limited, and actual checks should 

be performed at runtime. Unit tests have been prepared for all the functionalities provided 

by the APIs, and new releases are made only after all unit tests have been successfully 

passed. Testing of the server functionalities can be performed through the GUI or directly 

through API testing routines directly built into Measurify, which is the way employed for 

the automatic unit testing. 

The  client’s GUI  has  been  verified  in  lab  tests  and  discussed  in  demos with  the 

relevant  partners. Automatic  unit  tests  have  been  set  up  also  for  the GUI,  using  the 

Cypress.io tool [31], which proved itself very useful as an independent test runner that 

does not need  to closely  integrate with  source  code. Through an  interactive web page 

accessible from the browser, the developer can visually execute sequences of actions on 

the GUI under development. Each one of such sequences is a unit test that is recorded by 

Cypress.io to be later employed in automatic testing. 

5. Results and Discussion 

5.1. Deployment 

Lab  tests were useful  to  release  a  stable  system  implementing  the  functionalities 

according to the requirements specified in Section 3 “Specifications and Requirements”. 

However, as is common in research projects, design iterations are needed (and reasonably 

expected), based on the feedback of the actual end-users using early versions of the system 

under development. To this end, demos and then hands-on workshops were organized 

since the early phases of the project, in order for partners to familiarize themselves with 

the workflow. The  availability of  a good  tutorial,  to be  followed  at  the workshops,  is 

essential. Then, a pre-pilot phase was organized to deploy and test the systems to verify their 

overall functioning before the actual execution of the tests that will produce the final project 

results. Feedback is requested by all the partners during the pre-tests in order to allow the 

system to achieve the desired level of service. Pre-tests concern 20 operational sites. 

Two solutions are requested and  implemented for the deployment of the Hi-Drive 

DBs: (i) in the cloud; (ii) on premises. In both cases, users are able to manage data through 

the previously presented GUI. The former solution is particularly suited for project-level 

DBs but could also be used for EMDB instances available to single partners only. To this 

end, the Hi-Drive cloud space on Amazon Web Server (AWS) was set up, hosting an EC2 

t2 medium machine dedicated  to  the pre-pilot EMDB with Ubuntu operating  system, 

which can be scaled according to further requirements. 

Figure 7. Periodic report preparation process.

4.5. Lab Testing

The system architecture has been implemented with a systematic exploitation of
automatic unit testing to aim at achieving robustness and guarantee that each version
release could meet the requirements. This is particularly important in languages which are
not strongly typed, such as JavaScript, so properties or methods of variables may depend
on inputs. Thus, the scope of static verification is limited, and actual checks should be
performed at runtime. Unit tests have been prepared for all the functionalities provided



Sensors 2023, 23, 7866 12 of 18

by the APIs, and new releases are made only after all unit tests have been successfully
passed. Testing of the server functionalities can be performed through the GUI or directly
through API testing routines directly built into Measurify, which is the way employed for
the automatic unit testing.

The client’s GUI has been verified in lab tests and discussed in demos with the relevant
partners. Automatic unit tests have been set up also for the GUI, using the Cypress.io
tool [31], which proved itself very useful as an independent test runner that does not need
to closely integrate with source code. Through an interactive web page accessible from
the browser, the developer can visually execute sequences of actions on the GUI under
development. Each one of such sequences is a unit test that is recorded by Cypress.io to be
later employed in automatic testing.

5. Results and Discussion
5.1. Deployment

Lab tests were useful to release a stable system implementing the functionalities
according to the requirements specified in Section 3 “Specifications and Requirements”.
However, as is common in research projects, design iterations are needed (and reasonably
expected), based on the feedback of the actual end-users using early versions of the system
under development. To this end, demos and then hands-on workshops were organized
since the early phases of the project, in order for partners to familiarize themselves with the
workflow. The availability of a good tutorial, to be followed at the workshops, is essential.
Then, a pre-pilot phase was organized to deploy and test the systems to verify their overall
functioning before the actual execution of the tests that will produce the final project results.
Feedback is requested by all the partners during the pre-tests in order to allow the system
to achieve the desired level of service. Pre-tests concern 20 operational sites.

Two solutions are requested and implemented for the deployment of the Hi-Drive
DBs: (i) in the cloud; (ii) on premises. In both cases, users are able to manage data through
the previously presented GUI. The former solution is particularly suited for project-level
DBs but could also be used for EMDB instances available to single partners only. To this
end, the Hi-Drive cloud space on Amazon Web Server (AWS) was set up, hosting an EC2 t2
medium machine dedicated to the pre-pilot EMDB with Ubuntu operating system, which
can be scaled according to further requirements.

The on-premises EMDB solution has been thought of typically for private installa-
tions, in which partners can have local tests with their own data, before sharing them at
consortium level in the cloud. Moreover, they may try different local DB configurations
(e.g., with new Features implementing different data types), for instance, for exploring
possible solutions that could be later extended to the whole consortium. This requires that
partners download the source code and proceed with the installation of the server and then
the configuration of the EMDB, as described in the previous section.

The actual experience in the pre-pilots is showing a very limited use of on-premises
deployment, while the cloud solution, in which installation is managed by the project-level
DB-administration team, is more convenient, also for single-partner EMDBs.

Pre-pilot tests have been very useful in allowing partners to gain practical experience
with all the modules developed during the project and thus provide concrete suggestions
on how to improve their usability. For the EMDB, this implied several tweaks in the GUI
design (e.g., position and text of the widgets, consistency among the web pages, feedback
messages to the user, content of the tutorial/user manual web pages).

A major outcome from the pre-pilot tests concerns verification of efficiency both in
deployment and usage. This concerns both the experiment set-up time and the history
update time.

The developed system allows experts to focus on experiment description by defin-
ing the two lists of metadata and of progress indicators as .csv files. The definition of
the corresponding data types (Protocol resource, one for the whole Hi-Drive project) is
straightforward. Once the files are ready, the EMDB is instantiated in few seconds.



Sensors 2023, 23, 7866 13 of 18

Table 4 gives a summative quantitative characterization of an EMDB cloud installation
targeted for Hi-Drive. Table 5 shows the performance results of this EMDB installation
(also in a stress case with 8 h of vehicular signal recordings, instead of the standard case
of 4).

Table 4. Quantitative summary of an Hi-Drive EMDB cloud installation.

Item Value Notes

# protocols 1 The Hi-Drive protocol only

# experiment descriptors 7 Static values set at
the initialization

# metadata 88 Static values set at
the initialization

# history step indicators (total) 334

# history steps to be filled manually 41

# experiments 20

# history steps 18

# hdf5 files ~40 Per experiment and history step

.hdf5 file size ~55 MB Average, for each file

Reporting frequency Monthly

Cloud machine AWS EC2 t2.medium 2 vCPU, 4 GB RAM

Upload/download speed 250–300 MBit/s Nominal bandwidth

Upload size ~8 KB Per experiment and history step

Download size ~500 KB All experiments and steps

Time to upload one history step <1 s By an Experiment manager

Time to download all steps for
one experiment ~1 s By a Project manager

Secure protocol https

Table 5. Test results for EMDB standard and stress usage for a single experiment.

Standard Stress

# Data source files (.hdf5) (per experiment
and step) 40 40

Signal sampling frequency 10 Hz 10 Hz

# Hours per experimental run per day 4 8

# Samples per day 144,000 288,000

# Vehicular signals sampled 21 21

Single .hdf5 file size 55 MB 110 MB

Total size of files to be processed (per
experiment and step) ~2.2 GB ~4.4 GB

Progress indicator extraction time (per
experiment and step) 153 s 310 s

Time to fill manual indicators ~10 min ~10 min

Time to upload one history step <1 s Same as standard case

Time to download all steps for one experiment ~1 s Same as standard case



Sensors 2023, 23, 7866 14 of 18

Currently, the amount of data to be uploaded at each periodic reporting step by each
experiment manager is in the order of KBs. The download, instead, may involve history
data from several sites and time steps, thus in the order of hundreds of MBs. Consequently,
the EMDB server, serving about 20 different users, can be safely hosted on a medium-end
cloud machine.

On the other hand, more resources are demanded for the computation of the progress/
performance indicators from the project’s data. But this processing can be carried out using
the computational infrastructure set up at each test site for the scientific and technical goals
of the project (i.e., processing the vehicular data logged to assess performance of the ADFs
enhanced through the newly proposed technological enablers).

It is apparent the reduction in data size from the source data files (in the order of the
GB, Table 5) to the extracted KPIs (in the order of the KB, Table 4).

Results in Table 5 reveal that our solution efficiently handles the potentially large file
sizes, allowing a rapid extraction of the needed indicators. Tests were performed on a
laptop equipped with an Intel Core i7 11800 H @ 2.30 GHz processor and 16 GB of RAM.

Progress indicator extraction automation was key to reduce the reporting time and
thus make the overall process acceptable for the experiment managers, who have to
deal with more than 300 indicators for each reporting step. Otherwise, the number of
indicators would have had to be drastically reduced, and the process would have been
more error prone.

5.2. Instantiating the EMDB in Other Projects

The Measurify system’s code is freely available online (https://github.com/measurify/
server/, accessed on 12 September 2023). The /gui sub-folder of the repository contains the
code for the Admin Dashboard and of the Operation tool. All the resources are provided with
instructions for installation and use.

In this sub-section, we summarize the steps necessary for third parties to instantiate
their own EMDB:

1. Define the static information needed to describe each project’s experiment (i.e.,
the Metadata).

2. Define each experiment’s static information values (i.e., the values of the experiment
Descriptor and Metadata).

3. Define the dynamic information needed to describe each project’s experiment (i.e.,
the Progress Indicators).

4. Define one or more Protocols to specify the data types of Metadata and Indicators.
5. Create an empty EMDB installation by using the Admin Dashboard.
6. Encode the Protocol(s) in a .json file (Figure 1), or through the Admin Dashboard GUI,

without directly editing the file. Insert the protocols into the EMDB.
7. Instantiate the project’s Experiments, specifying their Descriptor, Metadata, and

referenced Protocol by uploading to the server the Experiment’s .json file (Figure 2).
This step can also be performed through the Admin Dashboard GUI, without directly
editing the file.

8. Develop the script to automatically extract performance indicator values from the
project/experiment’s data files. This step is optional, and completely project specific.
It is time consuming, but highly beneficial to reduce the final reporting time.

9. Use the Operation tool for uploading and downloading the project’s history steps
(Figures 4 and 7, if the system includes scripts for automatic extraction of the indica-
tors, as mentioned in the previous step).

It is important to highlight that the big data aspect of the system is project specific, so
scripts need to be developed ad hoc to process the project data file (step 8 in the bullet list
above). However, the EMDB may be used not only for data-intensive experiment reporting,
but also for projects where the indicators for a work-package (WP) or task could be quickly
manually filled on the .csv template.

https://github.com/measurify/server/
https://github.com/measurify/server/


Sensors 2023, 23, 7866 15 of 18

5.3. Comparison with Off-the-Shelf Reporting Tools

Online reporting tools help users to visually analyze business information to create
and share insightful business reports and dashboards. The market offers a variety of
excellent tools, for instance, Zoho Analytics [32]. Power BI is a unified, scalable platform
with an emphasis on business intelligence [33]. Finereport, which is free for personal use,
supports the design of complex reports through simple visual drag and drop [34]. These
tools (and the open source one cited below as well) expose APIs for easy integration with
other services and modules (e.g., databases). All commercial tools have payable licenses,
with expensive monthly/yearly service subscriptions.

In the open source world, the JasperReports Library is the most popular reporting
engine. It is written in Java and able to use data from different sources and produce
documents in a variety of formats [34]. The report templates for the JasperReports Library
are XML files that can be edited using an Eclipse-based report designer called Jaspersoft
Studio. JasperReports Server is a stand-alone and embeddable reporting server. It provides
reporting and analytics that can be embedded into a web or mobile application as well as
operate as a central information hub. JasperReports IO supports the related RESTful service.

While the above-mentioned open source solution is powerful and flexible, the project
considered that a solution tailored to the specific needs of the project reporting would have
been much more usable by the heterogeneous partnership.

The proposed solution focuses on specific requirements and offers a very simple
workflow, based on the abstraction of the concepts of experiment, history steps, and
protocol. It does not require any installation or editing tool (the Admin Dashboard is a
simple web page with fillable fields and few buttons). This solution is much less flexible but
supports a clear and common periodic reporting need, shared among projects of different
types. However, extensions are possible, as the whole codebase is released online in the
above-mentioned github site. On the other hand, the progress indicator extraction is project
specific and should nevertheless be developed with custom code.

Finally, from a technical viewpoint, our proposed solution exploits the JavaScript-based
NodeJs platform on the server side, and the high-performance MongoDB non-relational
database solution for big data management, both representing leading-edge technologies.

6. Conclusions

As timely availability of information about the state of a project, particularly involving
a large consortium with several different activities, is key for management, we explored
the development of a workflow for supporting project coordinators and managers in moni-
toring evolution of activities in terms of pre-defined quantitatively measurable dimensions.
In our work, we named project activities as experiments, but the concept is generally
applicable, the key requirement being that the activity should be assessable through some
quantitatively measurable dimensions that are typically provided by or extracted from a
proper set of real or virtual sensors that are used for the project. The main contribution of
this paper is twofold. On the one hand, it discusses how a flagship automation project ex-
ploits the big data produced by its deployed sensors to support detailed periodic reporting.
On the other hand, it presents the design choices for a generic, end-to-end solution tailored
to the requirements of periodic reporting.

While our use case concerns the automotive industry, we focused our design on
abstraction, with an aim being to guarantee the effectiveness of the tool in virtually any
application context. By extending the Measurify framework through the Experiment and
Protocol resources (and the related GUIs), we managed to make the process of setting up a
MongoDB-based application just a matter of editing .json configuration files specifying the
names and data format of an experiment’s progress/performance indicators.

We have identified two main user roles for the system: experiment managers, who
insert all the information about their experiments, and project managers, who can read this
information. While not necessary in Hi-Drive, it is possible to define finer-grained access,



Sensors 2023, 23, 7866 16 of 18

for instance, allowing work-package (WP) leaders to only read data about experiments of
their WP.

As the quantity of data to be produced by the experiment manager at each reporting
step is potentially overwhelming, and given the added value of timely reporting, some
level of automation in filling in the reports is essential. To this end, it is important to
make sure that most, if not all, of the quantities to be reported can be extracted from the
experiment data files actually used in the project. In our use case, this allowed us to set up
a workflow leading to the automatic generation of almost 90% of each history step’s report.
Other fields should be added manually as they do not concern logged signals.

According to the pre-test experience by twenty partners, the new tool enables the
preparation of periodic progress reports that extensively exploit actual project data.

This article focused on the development of an end-to-end periodic reporting applica-
tion, the first of this kind reported in the literature, to the best of our knowledge, showing
that it is possible to meet the requirements of a flagship project, in a short time, subject
to the availability of a configurable tool. A straightforward next step of the research will
involve a user study assessing the improvements in project management achieved through
the new tool, also analyzing whether the focus on quantitatively measurable aspects really
improves the quality and effectiveness of the reporting and of the project as a whole.

We designed the EMDB abstracting functionalities to allow its use also in other projects,
through simple configuration of flexible resources, such as Experiment and Protocol. Thus,
other future research work will involve the testing of the developed tool in application con-
texts different from automated driving research projects, verifying and possibly improving
the design choices.

As anticipated, the Measurify system code is freely available online (https://github.
com/measurify/server/, accessed on 12 September 2023) in order to support the big data
research community.

Author Contributions: Conceptualization, F.B., R.B. and J.H.; methodology, R.B. and F.B.; software
R.B., A.C., M.F., H.H. and S.M.; writing—original draft preparation, F.B., A.C., M.F., H.H. and S.M.;
writing—review and editing, F.B., A.C., M.F., H.H., J.H., S.M. and R.B.; supervision, F.B., J.H. and R.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101006664. The sole responsibility of this
publication lies with the authors. Neither the European Commission nor CINEA—in its capacity of
Granting Authority—can be made responsible for any use that may be made to the information this
document contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all partners within Hi-Drive for their coopera-
tion and valuable contribution, particularly Felix Fahrenkrog, Burak Guelsen, Susanne Reithinger
(BMW), Christoph Kessler (Ford), and Jean Louis Sauvaget (Stellantis).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Omari, S.; Moselhi, O. Integrating Automated Data Acquisition Technologies for Progress Reporting of Construction Projects.

Autom. Constr. 2011, 20, 699–705. [CrossRef]
2. Thompson, R.L.; Smith, H.J.; Iacovou, C.L. The Linkage between Reporting Quality and Performance in IS Projects. Inf. Manag.

2007, 44, 196–205. [CrossRef]
3. Iacovou, C.L.; Thompson, R.L.; Smith, H.J. Selective Status Reporting in Information Systems Projects: A Dyadic-Level Investiga-

tion. MIS Q. 2009, 33, 785–810. [CrossRef]
4. Lenzo, B.; de Castro, R.; Chen, Y.; Xu, S.; Zhang, X. Recent Advances in Automated Driving Technologies from the Guest Editors. IEEE

Veh. Technol. Mag. 2022, 17, 16–17. [CrossRef]

https://github.com/measurify/server/
https://github.com/measurify/server/
https://doi.org/10.1016/j.autcon.2010.12.001
https://doi.org/10.1016/j.im.2006.12.004
https://doi.org/10.2307/20650327
https://doi.org/10.1109/MVT.2022.3221266


Sensors 2023, 23, 7866 17 of 18

5. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

6. Khan, M.A. Intelligent Environment Enabling Autonomous Driving. IEEE Access 2021, 9, 32997–33017. [CrossRef]
7. Wu, Q.; Zhao, Y.; Fan, Q.; Fan, P.; Wang, J.; Zhang, C. Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based

on Asynchronous Federated and Deep Reinforcement Learning. IEEE J. Sel. Top. Signal Process. 2023, 17, 66–81. [CrossRef]
8. L3Pilot: L3Pilot. Available online: https://l3pilot.eu/ (accessed on 22 June 2023).
9. Hiller, J.; Koskinen, S.; Berta, R.; Osman, N.; Nagy, B.; Bellotti, F.; Rahman, A.; Svanberg, E.; Weber, H.; Arnold, E.H.; et al. The

L3Pilot Data Management Toolchain for a Level 3 Vehicle Automation Pilot. Electronics 2020, 9, 809. [CrossRef]
10. Bellotti, F.; Osman, N.; Arnold, E.H.; Mozaffari, S.; Innamaa, S.; Louw, T.; Torrao, G.; Weber, H.; Hiller, J.; De Gloria, A.; et al.

Managing Big Data for Addressing Research Questions in a Collaborative Project on Automated Driving Impact Assessment.
Sensors 2020, 20, 6773. [CrossRef] [PubMed]

11. Barnard, Y.; Innamaa, S.; Koskinen, S.; Gellerman, H.; Svanberg, E.; Chen, H. Methodology for Field Operational Tests of
Automated Vehicles. Transp. Res. Procedia 2016, 14, 2188–2196. [CrossRef]

12. Berta, R.; Kobeissi, A.; Bellotti, F.; De Gloria, A. Atmosphere, an Open Source Measurement-Oriented Data Framework for IoT.
IEEE Trans. Ind. Inform. 2021, 17, 1927–1936. [CrossRef]

13. Hi-Drive Deployment of Higher Automation. Available online: https://www.hi-drive.eu/ (accessed on 22 June 2023).
14. Rahman, M.S.; Reza, H. A Systematic Review Towards Big Data Analytics in Social Media. Big Data Min. Anal. 2022, 5, 228–244.

[CrossRef]
15. Ved, M.; Rizwanahmed, B. Big Data Analytics in Telecommunication Using State-of-the-Art Big Data Framework in a Distributed

Computing Environment: A Case Study. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 1, pp. 411–416.

16. Ang, K.L.-M.; Ge, F.L.; Seng, K.P. Big Educational Data & Analytics: Survey, Architecture and Challenges. IEEE Access 2020, 8,
116392–116414. [CrossRef]

17. Philip, N.Y.; Razaak, M.; Chang, J.; O’Kane, M.; Pierscionek, B.K. A Data Analytics Suite for Exploratory Predictive, and Visual
Analysis of Type 2 Diabetes. IEEE Access 2022, 10, 13460–13471. [CrossRef]

18. Khalajzadeh, H.; Abdelrazek, M.; Grundy, J.; Hosking, J.; He, Q. Survey and Analysis of Current End-User Data Analytics Tool
Support. IEEE Trans. Big Data 2022, 8, 152–165. [CrossRef]

19. Ataei, P.; Litchfield, A. The State of Big Data Reference Architectures: A Systematic Literature Review. IEEE Access 2022, 10,
113789–113807. [CrossRef]

20. Huang, K. Chaser; ModPhyLab. 2022. Available online: https://github.com/chaserhkj/ModPhyLab (accessed on 12 September
2023).

21. GitHub—Longqianh/ZJU-Experiment-Report-Template: An Experiment Report Template for ZJUers with LaTeX. Available
online: https://github.com/longqianh/ZJU-experiment-report-template (accessed on 26 July 2023).

22. Winkler, D.; Ekaputra, F.J.; Serral, E.; Biffl, S. Efficient Data Integration and Communication Issues in Distributed Engineering
Projects and Project Consortia. In Proceedings of the 14th International Conference on Knowledge Technologies and Data-Driven
Business, Graz, Austria, 16 September 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–4.

23. Hsu, M.-J.; Ho, C.-P. Creating a Knowledge Discovery Model Using MOEX’s Examination Database for in-Depth Analysis and
Reporting. In Proceedings of the 2012 IEEE Symposium on Robotics and Applications (ISRA), Kuala Lumpur, Malaysia, 3–5 June
2012; pp. 705–707.

24. Krechowicz, A.; Deniziak, S.; Łukawski, G. Highly Scalable Distributed Architecture for NoSQL Datastore Supporting Strong
Consistency. IEEE Access 2021, 9, 69027–69043. [CrossRef]

25. Wiseso, L.G.; Imrona, M.; Alamsyah, A. Performance Analysis of Neo4j, MongoDB, and PostgreSQL on 2019 National Election
Big Data Management Database. In Proceedings of the 2020 6th International Conference on Science in Information Technology
(ICSITech), Palu, Indonesia, 21–22 October 2020; pp. 91–96.

26. Berta, R.; Bellotti, F.; De Gloria, A.; Lazzaroni, L. Assessing Versatility of a Generic End-to-End Platform for IoT Ecosystem
Applications. Sensors 2022, 22, 713. [CrossRef]

27. Fresta, M.; Bellotti, F.; Capello, A.; Cossu, M.; Lazzaroni, L.; De Gloria, A.; Berta, R. Efficient Uploading of.Csv Datasets into a Non-
Relational Database Management System. In Proceedings of the Applications in Electronics Pervading Industry, Environment
and Society, Genova, Italy, 28–29 September 2023; Berta, R., De Gloria, A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp.
9–15.

28. React—A JavaScript Library for Building User Interfaces. Available online: https://legacy.reactjs.org/ (accessed on 27 July 2023).
29. Macrae, C. Vue.Js: Up and Running; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018; Available online: https://www.oreilly.com/

library/view/vuejs-up-and/9781491997239/ (accessed on 22 June 2023).
30. Chart.Js. Available online: https://www.chartjs.org/ (accessed on 22 June 2023).
31. JavaScript Component Testing and E2E Testing Framework|Cypress. Available online: https://www.cypress.io/ (accessed on 22

June 2023).
32. Online Reporting Tool|Reporting Software—Zoho Analytics. Available online: https://www.zoho.com/analytics/reporting-

software.html (accessed on 28 July 2023).

https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/ACCESS.2021.3059652
https://doi.org/10.1109/JSTSP.2022.3221271
https://l3pilot.eu/
https://doi.org/10.3390/electronics9050809
https://doi.org/10.3390/s20236773
https://www.ncbi.nlm.nih.gov/pubmed/33260831
https://doi.org/10.1016/j.trpro.2016.05.234
https://doi.org/10.1109/TII.2020.2994414
https://www.hi-drive.eu/
https://doi.org/10.26599/BDMA.2022.9020009
https://doi.org/10.1109/ACCESS.2020.2994561
https://doi.org/10.1109/ACCESS.2022.3146884
https://doi.org/10.1109/TBDATA.2019.2921774
https://doi.org/10.1109/ACCESS.2022.3217557
https://github.com/chaserhkj/ModPhyLab
https://github.com/longqianh/ZJU-experiment-report-template
https://doi.org/10.1109/ACCESS.2021.3077680
https://doi.org/10.3390/s22030713
https://legacy.reactjs.org/
https://www.oreilly.com/library/view/vuejs-up-and/9781491997239/
https://www.oreilly.com/library/view/vuejs-up-and/9781491997239/
https://www.chartjs.org/
https://www.cypress.io/
https://www.zoho.com/analytics/reporting-software.html
https://www.zoho.com/analytics/reporting-software.html


Sensors 2023, 23, 7866 18 of 18

33. What Is Power BI? Definition and Overview|Microsoft Power BI. Available online: https://powerbi.microsoft.com/en-us/what-
is-power-bi/ (accessed on 28 July 2023).

34. Finereport. Available online: https://sourceforge.net/projects/finereport/ (accessed on 28 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://powerbi.microsoft.com/en-us/what-is-power-bi/
https://powerbi.microsoft.com/en-us/what-is-power-bi/
https://sourceforge.net/projects/finereport/

	Introduction 
	Related Work 
	Specifications and Requirements 
	Data Specifications 
	User Requirements 

	System Design and Implementation 
	Extensions to Measurify 
	The EMDB Workflow 
	Graphical User Interface 
	Automatic Extraction of the Progress/Performance Indicators 
	Lab Testing 

	Results and Discussion 
	Deployment 
	Instantiating the EMDB in Other Projects 
	Comparison with Off-the-Shelf Reporting Tools 

	Conclusions 
	References

