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Abstract: Background: Mixtures play a key role in Food Science and Technology. For studying them,
rational approaches should be used. In detail, the experimental designs for mixtures are useful
tools for studying the effects of ingredients/components in formulations. Results: Food Science and
Technology is the fourth category among the total records considered in this review. The applications
span from food formulation to the composition of modified atmosphere, shelf-life improvement and
bioactives extraction. However, the majority of the studies regards few products and ingredients.
Simplex-lattice and simplex-centroid designs are the most common used, although some optimal
designs, such as the D-optimal, have also interesting applications. Finally, some issues are highlighted,
which basically regard the interpretation of the models coefficients and the lack of model validation.
Conclusion: In the last decade, mixture designs have been fairly used in the field of Food Science and
Technology. Modeling the response(s) allows researchers to achieve a global knowledge of the system
under study within the defined experimental domain. However, the majority of application has
regarded limited classes of products, and thus an increase in the spectrum of applications is desired.

Keywords: food formulation; ingredients; product development; DoE; optimization; food quality;
food modelling

1. Introduction

Mixtures are common matter of everyday life and of many fields of science. Actually,
it is quite difficult to think at situations in which mixtures are not concerned. The meaning
of “mixture” could be slightly different considering the context as well as different could
be the way in which mixtures are prepared. Further, according to the complexity, we can
have binary mixtures (made up of two components), ternary mixtures and so on [1–5].

Mixtures are particularly important for the food sector in which, for instance, the
formulation of a product consists in the definition of the ingredients and, most important, of
their relative proportion in the mixture [6,7]. The concept of “proportions” is a key concept
which makes the mixture problem so special [8]. Common situations easily found in the
food sector could be the composition of gases for a modified atmosphere packaging [9], a
blend of olive oils or wines [10], the composition of a liquid medium for food storage, etc.
According to the final aim, food scientists and technicians might be interested in studying
and optimizing their mixture for (i) technological applications (e.g., increasing products
shelf-life); (ii) nutritional targets (e.g., reaching the required content of fiber to ensure the
compliance with health claims); and (iii) organoleptic scopes (e.g., obtaining the desired
textural and sensory properties of a baked good).

Considering their widespread diffusion, the study of mixture is of fundamental
importance. There are rational approaches that can be used to study the mixtures and they
are basically included in the field of the design of experiments (DoE) [8,11]. DoE generally

Foods 2021, 10, 1128. https://doi.org/10.3390/foods10051128 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-0443-0273
https://orcid.org/0000-0001-6048-9248
https://orcid.org/0000-0002-2736-7705
https://orcid.org/0000-0002-0740-7677
https://www.mdpi.com/article/10.3390/foods10051128?type=check_update&version=1
https://doi.org/10.3390/foods10051128
https://doi.org/10.3390/foods10051128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10051128
https://www.mdpi.com/journal/foods


Foods 2021, 10, 1128 2 of 30

refers to a collection of tools aimed at systematically examining different types of problems
in order to obtain the best compromise between information and effort (time, money),
i.e., with a relatively small number of experiments [7,12]. DoE is part of the vast area of
chemometrics [13].

According to Hibbert (2016)[14], the experimental design is an “efficient procedure
for planning combinations of values of factors in experiments so that the data obtained can be
analyzed to yield valid and objective conclusions”. To reach such important goal (valid and
objective conclusions), there are key steps that could be summarized in the following [11]:
(i) define the goal of the experiments; (ii) detect all the factors that can have an effect;
(iii) plan the experiments; (iv) perform the experiments; and (v) analyze the data obtained
by the experiments.

It should be understood that in this process, the critical step is the planning of the
experiments. Once these have been planned in a rational way (which means answering the
question: which combinations of the selected factors should I test to gain the maximum
information about my system?) they can be performed. Then, regression and analysis
of variance (ANOVA) are the tools extensively used to find the relationship between the
dependent variables (the response(s) of interest) and the independent variables (the factors)
and to evaluate the significance of the factors [12]. More detailed information about the
theory and use of DoE can be found elsewhere [8,11,13,15].

Inside the areas of DoE, a special case is represented by the experimental designs for
mixtures. Indeed, mixtures have some particularities which make such designs different
from the others. In the light of these considerations, the aim of this work is to review the
usage of these tools in the field of Food Science and Technology with the scope to highlight
the potentialities of such approach. Before doing this, a brief recap of the mixture problem,
the models and the designs that can be used is reported.

1.1. The Mixture Context

In the next paragraphs, it is our aim to recall some basic information about the mixture
problem and the relative experimental designs that may help those readers who are not
familiar with the topic. The readers interested in learning more about the topic may refer
to other works [7,8,11,13,15].

As already stated, a mixture could be defined in several ways. It could be defined as a
“portion of matter consisting of two or more chemical substances called constituents” [16] or, more
generally, as a “substance made from a combination of different substances, or any combination
of different things” [17]. Further, most important to our scope, by the chemometric point
of view, it could be considered a combination of factors (i.e., ingredients) whose total is a
constant value, 1% or 100%.

Before proceeding, it would be useful at this moment to recall how mixtures are
represented. This is done by the so-called “simplex”, which is the simplest object in the
space of a defined dimensionality (n, equal to the number of components of the mixture)
having n−1 dimension(s) [7,13]. For example, for a binary mixture, the simplex is a line
in one dimension; for ternary mixtures, the simplex is a triangle in two dimensions; for a
quaternary mixture, the simplex is a tetrahedron in 3-dimensions. In Figure 1, the simplex
for a three components mixture is reported. In the simplex, the vertices correspond to the
pure components (i.e., 100% of X1, X2, X3—points A, B and C respectively). The edges
of the simplex correspond to all the binary mixtures made up of the components at the
vertices of the edge under consideration while the component at the opposite vertex is
absent (e.g., point D). Finally, any point inside the simplex represents a ternary mixture
(e.g., point E). In Figure 1, the proportion of each component in all the possible binary or
ternary mixtures is simply obtained by drawing lines parallel to the edge opposite to the
vertex of interest. For example, considering the binary mixture in D, the proportion of X1
can be found on the line parallel to the edge X2–X3 (which is opposite to the vertex X1),
which passes through D. In this case, D being a binary mixture between X1 and X2, it is
easy to conclude that the relative amount of X1 is 50% (or 0.5).
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Figure 1. A simplex for a ternary mixture. Dashed lines indicate intervals of 10% of the components.

However, in case of doubts, it may help to simply remind that the vertex represents
100% of that component. Thus, it is obvious that the closer a point is to a specific vertex,
the higher is the relative amount. To make it clearer, let us consider the point E. As always,
the proportions of the components are found moving in lines parallel to the edge opposite
to the corresponding vertex. The line passing through E, which is parallel to X2–X3 edge,
tells us the proportion of X1. However, one may be confused if X1 is 0.3 or 0.7. Considering
that the line is quite far from the X1 vertex and next to the X2–X3 edge (which is 0% of X1)
it is clear that the relative amount should be 0.3. The same goes for the other components
and it comes out that the mixture in E is made up of 30% of X1, 20% of X2 and 50% of
X3. The sum, of course, is 100%. The interpretation becomes more complicated when the
dimensions are higher than 3.

Having in mind the simplex in Figure 1, some peculiarities of the mixture designs (MD)
could be highlighted. First of all, it could be easily verified that for each point in the simplex,
the implicit constraint (total sum equals to 100%) is fulfilled. Given this implicit dependence,
the natural consequence is that the factors of a mixture are no longer independent [11,15].
For independence we intend the possibility to vary the level of a factor independently
from the other factor(s) [11,18]. In the mixture context, increasing the amount of X1 will
necessarily cause modification in the other component(s). Due to this dependence, the
designs employed in other contexts (such as factorial designs), for which the independence
of the factors is a fundamental requirement, cannot be applied.

A second important consideration is that mixture designs are thought to study the
effect of variation in the proportions of ingredients instead of variation in their absolute
values [6,8,11]. In other words, if we are studying the effect of a mixture of N2, CO2 and O2
on the shelf-life of a packaged food or the effect of different flours on dough properties, it
does not matter if the package headspace is 10 mL or 100 mL, or the final dough weight is
100 g or 10 kg. What we are looking for is, for instance, the effect of changing the amount of
CO2 from 20% to 40% (and obviously reduce the relative amount of the other components).

Until now, we have seen that variables in mixture problems are proportions and their
sums must match the total. However, in a real-life scenario, quite often additional con-
straints should be considered. Indeed, it may happen that the proportion of a component
cannot span the whole range, i.e., from 0% to 100% [19,20]. In these cases, a suitable range
of the component(s) must be fixed. As a result, the experimental domain is reduced, and
the final shape could be different, as reported in Figure 2.



Foods 2021, 10, 1128 4 of 30

Figure 2. Reduced domains with irregular (A) or regular shape (B).

In the first case (Figure 2A) the constrains define a subspace with irregular domain,
whereas this is not true for the second one (Figure 2B).

By the practical point of view, when possible, it could be advisable to reduce the space
to a regular form such as that in Figure 2B in order to apply the standard designs (see next
paragraph). However, when it is not possible (Figure 2A), the best experimental points could
be selected by approaches such as the D-optimal criterion [11,21–23]. When the simplex is
reduced, components could be transformed in the so-called pseudo-components. Ways for
transformation in pseudo-components are reported elsewhere [7,8,13].

1.2. Designs for Mixtures

Before a brief overview about the available designs for mixtures, it is worth recalling
that a mathematical model is associated to each experimental design (not only for mix-
tures) [7]. Actually, the design is only the tool to calculate the model which is the real
information we are looking for. The model should be a priori defined by the investigator
according to her/his aims and it defines the postulated relationship between the factors
and the response(s). The models for MD are generally presented in the so-called canonical
form [8] and the most common ones are the linear (Equation (1)), the quadratic (Equation (2))
and the special cubic (Equation (3)).

y = b1X1 + b2X2 + b3X3 (1)

y = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + b23X2X3 (2)

y = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + b23X2X3
+b123X1X2X3

(3)

where y, indicate the response(s); b1, b2 and b3 indicate the linear terms coefficients;
b12, b13 and b23 indicate the coefficients of the two-interaction terms; b123 indicates the
coefficient of the three-interaction term; and X1, X2 and X3 indicate the components un-
der study.

It is worth highlighting that in the canonical forms of the quadratic and special cubic
models, the quadratic terms (i.e., x2) and the cubic terms (i.e., x3) are not present. Indeed,
the quadratic and the special cubic models allow to estimate the linear and all the two-
interaction terms and the linear, the two- and three-interaction terms, respectively.

In this kind of models, the coefficients of the linear terms represent the response
obtained solely with the ith pure component, while the interaction terms show the devi-
ation from the sole additive effect of the components (i.e., positive or negative synergic
effects) [6,11].
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There are two well-known kinds of designs for mixtures: (i) the simplex-lattice de-
signs and (ii) the simplex-centroid designs [8,13]. In the simplex-lattice, the levels of each
component are defined by the ratios r/m (where m is the polynomial degree to be fitted and
r goes from 0 to m) and the experimental points are the combinations of these levels. For a
quadratic model (m = 2) with three components, the levels of each component are 0 (0/2),
0.5 (1/2) and 1 (2/2) and the experimental points are (1,0,0), (0,1,0), (0,0,1), (0.5,0.5,0),
(0.5,0,0.5) and (0,0.5,0.5). By contrast, in simplex-centroid designs the experimental levels
are defined by the ratios 1/q for q going from 1 up to the number of components. With q = 3
we have 1 (1/1), 0.5 (1/2), 1/3 and, of course, 0. Then, the experimental points are all the
combinations of these levels for a total number of equals to 2q − 1 [13]. The experimental
points for a special cubic model with a ternary mixture are reported in Table 1.

Table 1. Experimental points (blends of the components X1, X2, X3) for a special cubic model
according to the simplex-lattice or the simplex-centroid designs.

#
Simplex-Lattice Design Simplex-Centroid Design

X1 X2 X3 X1 X2 X3

1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 0 0 1 0 0 1
4 2/3 1/3 0 0.5 0.5 0
5 2/3 0 1/3 0.5 0 0.5
6 1/3 2/3 0 0 0.5 0.5
7 0 2/3 1/3 1/3 1/3 1/3
8 1/3 0 2/3 - - -
9 0 1/3 2/3 - - -

10 1/3 1/3 1/3 - - -

In simple-lattice designs, the factor levels depend on the postulated model regardless
the number of components and blends of m-components at a time are tested (being m the
model degree). This means that for modeling a quadratic model, blends of two components
per time will be considered whether there are three or five components [15]. The number
of experiments varies according to the postulated model (Table 2).

Table 2. Number of experiments for simplex-lattice and simplex-centroid designs according to the
number of components (q) and the postulated models.

q
Simplex-Lattice Design

Simplex-Centroid Design
Linear Quadratic Special Cubic

2 2 3 4 3
3 3 6 10 7
4 4 10 20 15
5 5 15 35 31
6 6 21 56 63
7 7 28 84 127

Differently, simplex-centroid designs are reported to be model independent, being de-
pendent only on the number of components, according to the formula 2q − 1 (Table 2) [13].
However, in practice, it could be argued that also in the case of simplex-centroids the
experimental points are related to the postulated models and not only on the formula
2q − 1. A clear example is reported in [6], where the authors started by postulating a
simple model (i.e., linear) which could be calculated using only the three experiments at the
vertices of the simplex. Then, the experimental blends at the edges are used for validation.
If the linear model is rejected, the edge experiments are used to calculate the higher model
(i.e., quadratic). This example shows that the minimum number of experiments required
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by a simplex-centroid design could be lower than expected by the application of the rigid
formula and could vary according to the postulated model.

Moreover, the so-called augmented designs could be found which consider other
experiments generally located at half-way between each vertex and the center (i.e., blends
made up of 2/3, 1/6 and 1/6 in a ternary mixture) [24–27].

After the experiments have been performed, the response(s) could be modeled, and
the model coefficients could be estimated, together with their significance and the figures
of merit of the regression [12,15]. By the practical point of view, it should be considered
that the interpretation of the model coefficients in mixture designs is not so straightforward
such as that for designs for independent variables, because the coefficients are not related to
the effects [8,11,13]. Thus, a better and much more reliable interpretation of the components
effect on the response(s) could be obtained by looking at the response surfaces [11,28].

Finally, model validation should be always carried out [6,11,12].

2. Materials and Methods

This review is based on a literature search carried out through the ISI-Web of Science
Core Collection (SCI), considering all the research works published in a 10-year range, from
2011 to present (18 February 2021). The keywords used for the bibliographic survey were
“mixture-design”, “design of experiment AND mixture”, “Experimental design AND mixture”,
“DoE AND mixture”, “Formulation AND Design” in both the topic (searches title, abstract,
author keywords, and Keywords Plus) and the title.

With the aim of giving to the reader a general overview of the literature search results,
the number of papers in which the keyword “mixture-design” was mentioned in the topic are
reported in Table 3, and the results were classified according to the Web of Science Categories.

Table 3. Number of results divided in subject area for the keyword “mixture-design”.

Web of Science Categories Records % of 2169

Materials Science Multidisciplinary 507 23
Engineering Civil 488 22

Construction Building Technology 454 21
Food Science Technology 330 15
Pharmacology Pharmacy 174 8

Engineering Chemical 167 8
Environmental Sciences 121 6

Biotechnology Applied Microbiology 90 4
Engineering Environmental 90 4

Energy Fuels 89 4
Results obtained from Web of Science database. Each record can belong to more than one category.

Considering the number of results recorded in the topic search for the keyword
“mixture-design”, it is possible to highlight the predominance of the mixture design in the
materials science and in the engineering area. Food Science and Technology is the fourth
category in which the mixture design is used, followed by the pharmaceutical science.

Moreover, to better refine the research, the investigation was focused on the papers
belonging to the Food Science and Technology category which had the keyword “mixture-
design” within the title. The keyword was chosen as it is very specific and precise according
to the aims of this review. From this further research, 106 papers were identified and then
studied and discussed in the next section.

3. Results

This part is aimed to show the versatility of the experimental designs for mixtures in
the food sectors which cover a wide range of applications. Some of the results (ten) have
been excluded because out of the scope. On the whole, the majority of applications consider
ternary mixtures (Figure 3A). In a couple of cases binary mixtures were studied and only in
one case were five and six components considered. As already reported, studying mixtures
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in which components are >3 becomes more complicate starting from the limitations in the
experimental space visualization and, consequently, in model interpretation [11]. To over-
come this issue, an interesting approach could be to split the whole mixture in subdomains
each made up of an acceptable number of components [29].

Figure 3. (A) Mixture complexity and (B) type of designs in the surveyed articles, respectively (n = 96).

The MD used in the food sector are mostly the canonical ones (simplex-lattice and
simplex-centroid) (Figure 3B).

In addition, optimal designs are rightly used when restricted domains do not allow to
use the classic ones (see Section 1.1). Among these, D-optimal is the most commonly used,
although some examples of I-optimal are found, too.

Considering the applications, it could be observed that MD in food science in the last
decade have been mostly used for bakery/pasta and for juices/beverages/jams. Together,
these two categories cover roughly 50% of the total applications (Figure 4A). Accordingly,
the main components studied were hydrocolloids/starch/proteins which alone cover
almost half of the surveyed applications (Figure 4B). Hydrocolloids are widely used in
food formulation thanks to their functional properties. In processed foods they are al-
most ubiquitous [30], and the reported results confirm the great interest toward their
use. Other remarkable applications regard meat products and emulsions/creams/desserts
(Figure 4A). On the contrary, a less usage of MD has been recorded for extraction studies,
food microbiology and food engineering. It is in those areas that efforts should be made to
improve the knowledge about the advantages of the use of MD approaches. For example,
recovery of bioactives from foods or food by-products has become an hot topic in recent
years [31–33] but, despite this interest, in our research only few works have been found
that optimize the extraction mixtures according to MD.

Looking at the objectives, the majority of the research articles studied the textural,
the rheological and/or the sensorial properties of foods as affected by the formulation.
Food texture is one of the main parameters, together with the sensory quality, that strongly
influences the consumer decisions and the willing to buy a certain product. Therefore, in
this perspective, MD can strongly help new product development and optimization.
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Figure 4. (A) Food products/applications and (B) type of components in the surveyed articles, respectively (n = 96).

Finally, following DoE approaches has the important advantage to reduce the number
of experiments—and thus the efforts—giving, at the same time, information of a higher
quality. From the literature overview, it emerged that only in few cases the number of
experiments exceed 20, and in 35 out of 96 papers the number was lower or equal than
10 (Figure 5). In Table 4, a synoptic scheme of the surveyed literature together with the
main features of the employed designs and their statistical evaluation is reported, while
the succeeding paragraphs give a brief presentation of the surveyed works.

Figure 5. Number of experiments carried out in the surveyed articles (n = 96).
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Table 4. Summary of the main features of the mixture designs applied together with the area of investigation.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

Bakery Products and Pasta

[34] Bread
Hydroxypropyl methyl
cellulose, xanthan and

guar gums
3 Quadratic D-optimal 11

Anova of
regression, R2, R2

adj, R2 pred, Lack
of fit, PRESS

No Yes Yes

[35] Bread Rice flour, maize starch
and wheat starch 3 Special cubic Simplex-centroid 7 Anova of

regression, R2 No Yes Yes

[36] Quick breads
(scones)

Margarine,
oligofructose, caster

sugar and inulin
4 Special cubic D-optimal 24 Anova of

regression, R2 Yes Yes Yes

[37] Bread

Chickpea flour, cassava
starch, maize starch,

potato starch and
rice flour

3 Linear, quadratic,
special cubic Simplex-centroid 9 (×6 designs)

Anova of
regression, R2 adj,

Lack of fit
Yes Yes Yes

[38] Gluten-free sponge
cake

Whey protein
concentrate, maize and

rice flours
3 Linear, quadratic,

special cubic Not reported 15
Anova of

regression, R2, R2

adj
No No Yes

[39] Sponge cake Powdered nettle leaf
and milk thistle 2 Linear, quadratic,

cubic, quartic Not reported 9
Anova of

regression, R2,
R2 adj

Yes Yes Yes

[40] Muffin
Xathan, car-

boxymethylcellulose
and κ-carrageenan

3
Linear, quadratic,
special cubic and

cubic

Augmented
simplex-centroid 10 R2, R2 pred No Yes Yes

[41] Gluten-free layer
cakes

Pea, whey and egg
white proteins 3 Cubic Simplex-lattice 10 R2 No Yes No

[42] Cake Chhana, tikhur starch
and semolina 3 Linear, quadratic,

special cubic, cubic D-optimal 14 R2, R2 adj, Lack
of fit, PRESS Yes Yes Yes

[20] Pasta Water, proteins
and gums 3 Quadratic Augmented

simplex-centroid 13
Anova of

regression, Lack of
fit

No Yes Yes

[43] Rice noodle
Gelatinized corn starch,

guar gum and
xanthan gum

3 Special cubic Simplex-centroid 7 R2 No Yes Yes

[44] Pasta

Semolina, pea protein
isolate 80%, whey

protein isolate 80%, soy
protein isolate 90%, oat

flour and gluten

6 Linear, quadratic
and special cubic D-optimal 31

R2 pred, Lack of
fit, Cook’s

distance, DFFITS
No No Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

[45] Bread Xanthan gum, sodium
alginate and guar gum 3 Quadratic, cubic Simplex-centroid 7 R2 No Yes Yes

[46] Dough Einkorn, cranberry
bean and potato flours 3 Quadratic Simplex-lattice 15

Anova of
regression, R2,

RMSE
No No No

[47] Cake Wheat flour, yacon
flour and maca flour 3 Special cubic Simplex-centroid

7 (21 considering
the mixture-

process design)

Anova of
regression, R2 adj,

Relative error
No Yes Yes

[48] Crackers
Cassava starch, high
quality cassava flour

and fish flour
3 Quadratic, special

cubic, cubic Simplex-centroid 14 R2 No Yes Yes

[49] Breadmaking
improvers

Aspergillus oryzae S2
α-amylase, ascorbic

acid and
glucoseoxidase

3 Special cubic Simplex-centroid 7 R2 Yes Yes Yes

[50] Cookies
Wheat flour, Jerusalem

artichoke flour
and sugar

3 Quadratic Simplex-centroid 7 R2 No Yes Yes

[51] Cookies Quinoa flour, quinoa
flakes and corn starch 3 Cubic Simplex-lattice 14 R2, R2 adj No Yes Yes

[52] Aqueous model
system

Wheat, buckwheat and
rice flours 3 Linear, quadratic Simplex-lattice 14 R2 No Yes No

[53] Wheat chips Chickpea flour, pea
flour and soy flour 3 Quadratic Simplex-lattice 15

Anova of
regression, R2,

RMSE
No Yes Yes

[19] Extruded corn
snacks

Fish protein, cheddar
cheese powder and

vegetable oil; omega-3
fish oil, vegetable oil
and cheese powder

3 Not reported D-optimal 14 Not reported No Yes Yes

[54] Dough

Wheat flour, WF,
Lupinus protein
concentrate and
Jatropha protein

concentrate

3 Special cubic D-optimal 8 Anova of
regression, R2 Yes Yes Yes

[55] Extruded product Maize, finger millet
and defatted soy flours 3 Linear, quadratic,

cubic, special cubic D-optimal 16
Anova of

regression, R2, R2

adj, Lack of fit
Yes Yes Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

Meat products

[56] Beef burgers Inulin, β-glucan and
breadcrumbs 3 Linear, quadratic,

special cubic D-optimal 14 R2 Yes Yes Yes

[57] Sausage Pork back fat, inulin
(two types) 3 Linear, quadratic,

special cubic D-optimal 17
Anova of

regression, R2,
Lack of fit

No Yes Yes

[58] Sausage
Whey powder,

ι-carrageenan and
turkey fat

3 Special cubic Simplex-lattice 14 R2, R2 adj No Yes Yes

[59] Sausage Inulin, konjac
and starch 3 Linear, quadratic,

special cubic D-optimal 13 R2 pred No Yes Yes

[60] Sausage β -glucan, resistant
starch and starch 3 Linear, quadratic,

special cubic D-optimal 13 R2 pred No No Yes

[61] Sausage

Persicaria hydropiper,
Murraya koenigii and
Etlingera elatior dried

aromatic herbs

3 Linear, quadratic,
special cubic Simplex-lattice 13

Anova of
regression, R2,

Lack of fit
Yes Yes Yes

[62] Sausage NaCl, KCl and sodium
tripolyphosphate 3 Cubic Augmented

simplex-centroid 13
Anova of

regression, Lack
of fit

Yes Yes Yes

[63] Beef patties Meat, lentil flour and
rice protein 3 Linear, quadratic,

special cubic D-optimal 17
Anova of

regression, R2,
Lack of fit

Yes Yes Yes

[64] Beef patties Pork fat, pomace olive
oil and canola oil 3 Special cubic Augmented

simplex-centroid 10 R2 adj No Yes No

[65] Ham NaCl, glycine and
yeast extract 3 Linear, quadratic I-optimal 12

Anova of
regression, R2 adj,

Lack of fit
Yes Yes Yes

[66] Canned meat Pork bacon, inulin and
lentil flour 3 Special cubic Simplex-centroid 10 R2 No Yes No

[19] Fish strudel Fish mince, onion and
curry powder 3 Not reported D-optimal 14 Not reported No Yes Yes

[67] Lamb patties Fat, carboxymethyl
cellulose and inulin 3 Special cubic Simplex-lattice 13 Not reported No Yes No

[68] Beef patties
Grape seed oil,

pomegranate seed oil
and animal fat

3 Quadratic Simplex-lattice 15 R2 No No No
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

Emulsions, creams, desserts, juices, beverages, jams

[69] Mayonnaise-like
product

Xanthan gum, guar
gum and

mono-diglycerides
emulsifier

3 Linear, qudratic,
special cubic

Augmented
simplex-centroid 10 R2 No Yes Yes

[70] Mayonnaise
Germ protein isolate,

xanthan gum and
egg yolk

3 Linear, quadratic,
special cubic

Undefined
optimal design 10 R2 No Yes Yes

[71] Dairy dessert
Carrageenan, alginate,

guar and
xanthan gums

4 Cubic Simplex-lattice 30 R2 No Yes Yes

[72] Dairy dessert

A. gossypinus,
A. fluccosus and

A. rahensis
tragacanth gums

3 Linear, quadratic,
special cubic, cubic Not reported 17 R2 No No No

[73] Camel yogurt
Carboxymethyl

cellulose, konjac gum
and sage seed gum

3 Quadratic Simplex-centroid 14

Anova of
regression

analysis, R2, Lack
of fit

No Yes Yes

[74] Ice cream
Basil seed gum,
carboxymethyl

cellulose and guar gum
3 Quadratic, full

quartic
Augmented

simplex-centroid
10 (x2 different total

amount)

Anova of
regression, R2, R2

adj
Yes Yes Yes

[75] Yogurt Steviol glycoside
sweeteners 3 Linear, special cubic Simplex-lattice 10 Anova of

regression, R2 No Yes Yes

[76] Sweeteners blend Coconut sugar, agave
and stevia 3 Linear, quadratic,

special cubic
Augmented

simplex-centroid 10 R2 adj No Yes Yes

[77] Milk chocolate Maltitol, xylitol
and isomalt 3 Linear, quadratic,

special cubic Simplex-lattice 15
Anova of

regression, R2, R2

adj, Lack of fit
Yes Yes Yes

[78] Chocolate Maltitol, xylitol and
galactooligosaccharide 3 Linear, quadratic Simplex-lattice 14

Anova of
regression, R2, R2

adj, Lack of fit
Yes Yes Yes

[79] Spreadable halva Soy flour, sesame paste
and emulsifier 3 Linear, quadratic,

special quartic
Undefined

optimal design 12 Anova of
regression, R2 No No Yes

[80] Peanut-based
beverage

Lecithin, xanthan gum,
propylene

glycol alginate
3 Linear plus two

interaction terms Simplex-centroid 7 R2, R2 adj, RMSE No Yes Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

[1] Energy drink
Whey and grape juice;

whey and
pomegranate juice

2 Quadratic D-optimal 13 R2 Yes Yes Yes

[81] Soft drink
Whey protein

concentrate, date syrup
and persian gum

3 Quadratic Not reported 9 R2 No Yes Yes

[26] Juice powders Broccoli, cabbage and
carrot powders 3 Linear, quadratic Augmented

simplex-lattice 13 Anova of
regression, R2 No Yes Yes

[2] Juice
Black cherry, Concord

grape and
pomegranate juices

3 Not reported Simplex-centroid 7 Not reported No Yes Yes

[10] Wine blends Cabernet Sauvignon,
Merlot and Zinfandel 3 Linear Augmented

simplex-centroid 10 Not reported Yes Yes Yes

[82] Aquafaba

Carboxymethylcellulose,
Na-alginate,

polydextrose and
whey powder

4 Quadratic D-optimal 25 Anova, R2, R2 adj,
Lack of fit, PRESS No Yes Yes

[83] Chocolate
Xanthan gum, guar
gum, alginate and
locust bean gum

4 Quadratic Simplex-centroid 15 R2 No Yes Yes

[84] Chocolate
Usta cocoa, Gerkens

cocoa and Ulker
Gold cocoa

3 Quadratic Augmented
simplex-lattice 9 R2 No Yes Yes

[85] Chocolate Cocoa butter, inulin
and β-glucan 3 Quadratic Simplex-centroid 8

Anova of
regression, R2 adj,

Lack of fit
No Yes No

[21] Pestil (fruit leather)
Xanathan gum, locust

bean gum and
pregelitinized starch

3

Linear, quadratic,
special cubic, cubic,

quartic and
special quartic

D-optimal 16 R2, Lack of fit Yes Yes Yes

[86] Jam/jelly-like model
system

Xanthan gum, pectin
and carboxymethyl

cellulose
3 Not reported Simplex-lattice 13 R2 No Yes Yes

[5] Jam

Jenipapo, marolo,
murici, soursop and

sweet passion
fruit pulps

5 Quadratic Simplex-lattice 21 Anova of
regression, R2 Yes Yes Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

[22] Tomato sauce

Hot-break tomato
puree, onion puree and

extra virgin olive oil;
Cold-break tomato

puree, onion puree and
extra virgin olive oil

3 Linear, quadratic,
special cubic D-optimal 14

Anova of
regression, R2, R2

adj, Lack of fit
No Yes No

[87] Berry jelly
Blackberry, blueberry

and strawberry
fruit juices

3 Linear, quadratic Simplex-centroid 7
Anova of

regression, R2,
Lack of fit

No Yes Yes

[88] Fruit jelly Jabuticaba, pitanga and
cambuci fruit juices 3 Linear Simplex-centroid 7 R2, Lack of fit No Yes Yes

[89] Soy-based sauce

Guar gum, xanthan
gum and

pregelatinized cassava
starch

3 Linear, quadratic,
cubic Simplex-centroid 9 R2, Lack of fit No Yes Yes

[90] Instant ice cream
mix powder

Carboxymethyl
cellulose, carrageenan
and sodium alginate

3 Cubic D-optimal 14 R2, R2 adj No Yes Yes

[91] Beverage

Sweet potato peel
water extract, sweet
potato leaves water

extract and
honey solution

3 Cubic I-optimal 24

Anova of
regression, R2, R2

adj, Lack of fit,
RMSE

No Yes Yes

[83] Dairy dessert
Carrageenan, alginate,

guar and
xanthan gums

4

Reduced cubic,
reduced special
cubic, reduced
special quartic

Simplex-lattice 30 R2 No Yes Yes

[92] Soy-based fermented
product

Soy, oat and
wheat fibers 3 Linear, quadratic,

special cubic Simplex-centroid 9 R2, Lack of fit No Yes Yes

[93] In vitro flavor release
Maltitol, erythritol,
polydextrose and

oligofructose
4 Quadratic D-optimal 20 R2 No Yes No

[53] Beverage Pine, flower and
highland honeys 3 Quadratic Simplex-lattice 15 R2 No Yes Yes

[94] Salad dressing Chinese quince juice,
oil and vinegard 3 Linear, quadratic D-optimal 14 Anova of

regression, R2 No Yes Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

Extraction applications

[95] Isoflavone extraction
from soy flour

Water, acetone,
acetonitrile and

ethanol
4 Linear, quadratic,

special cubic Simplex-centroid 15
Anova of

regression, R2,
Lack of fit

Yes Yes Yes

[96] Bioactive extraction
from fruits

Acetone, methanol
and water 3 Quadratic Simplex-lattice 15

Anova of
regression, R2, R2

adj, R2 pred, Lack
of fit

Yes Yes Yes

[97] Bioactive extraction
from seeds

Ethanol, acetone
and water 3 Linear, quadratic,

special cubic
Augmented

simplex-centroid 10 Anova of
regression, R2 No Yes Yes

[24] Extraction from
herbs

Rhodiola crenulata,
Panax quinquefolius and

Astragalus
membranaceus

3 Linear, quadratic Augmented
simplex-centroid 10

Anova of
regression, R2,

R2 adj
No Yes Yes

[98] Oil extraction Soybeans, peanuts,
linseeds and tea seeds 4 Linear, quadratic,

cubic, special cubic
Augmented

simplex centroid 24

Anova of
regression, R2, R2

adj, R2 pred, Lack
of fit

Yes Yes Yes

[99] Migration from baby
bottles

Toluene–hexane,
dichloromethane–
hexane and ethyl
acetate–hexane

3 Linear, quadratic,
cubic

Augmented
simplex-centroid 13

Anova of
regression, Lack

of fit
Yes No Yes

Study of shelf-life and stability

[100] Stability of soybean
oil

Carnosol, rosmarinic
acid and thymol 3 Special cubic Augmented

simplex centroid 10 R2 No Yes No

[101] Frying oil Soybean, safflower and
flaxseed oils 3 Linear, cubic Simplex-lattice 185 Anova of

regression Yes No Yes

[102] Shelf life of sponge
cake

Refined wheat flour,
sugar, jujube fruit flour 3 Linear, quadratic,

special cubic
Undefined

optimal design 16

Anova of
regression, R2, R2

adj, R2 pred, Lack
of fit

Yes Yes Yes

[23] Shelf life of hard
candy

Sucrose, 40 DE corn
syrup and 20 DE

high-maltose
corn syrup

3 Linear, quadratic,
cubic D-optimal 36

Anova of
regression, R2, R2

adj, Lack of fit,
residuals analysis

Yes Yes Yes

[103] Nanoemulsion Lactose, trehalose
and β-casein 3 Quadratic, special

cubic, cubic D-optimal 17 Anova of
regression, R2 adj No Yes Yes
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Table 4. Cont.

Reference Food
Product/Application Components No. Components Model a Design No. Experiments b Model Fitting c Validation d Surface Plots e Optimization f

[25] β-carotene
nanoparticles

Tween 80, gelatine and
pectin 3 Special cubic Augmented

simplex-centroid 10 Anova of
regression, R2 Yes Yes Yes

[9] Gas mixture O2, CO2, N2 3 Linear, special cubic Simplex-lattice 7 R2 Yes Yes Yes

Food microbiology

[104] Microbiology
Cell-free supernatants

of L. brevis and
L. plantarum

3 Linear, quadratic,
special cubic, cubic Simplex-centroid 14

Anova of
regression, R2, R2

adj, R2 pred, Lack
of fit

Yes Yes Yes

[105] Antimicrobial
activity

Clove, cinnamon,
lavender and myrtle

essential oils
4 Cubic Simplex-centroid 15

Anova of
regression,
Residuals

Yes Yes Yes

[106] Microbiology
Deglet Nour extract,
Deglat extract and

Bacillus strain
3 Linear, quadratic D-optimal 10

Anova of
regression, Lack

of fit
No Yes Yes

[107] Microbiology
Soy protein isolate,

bovine whey protein
and egg white protein

3 Quadratic, special
cubic Simplex-centroid 7 Anova of

regression, R2 adj Yes Yes No

Food engineering, packaging and related topics

[108] Film production by
blown extrusion

Cassava starch,
chitosan and glycerol 3 Special cubic Not reported 11 R2, Lack of fit No Yes No

[3] Starch-based films
Cassava starch,

alginate and
polyvinyl alcohol

3 Cubic Augmented
simplex-lattice 10 Anova of

regression, R2 No Yes Yes

[109] Microencapsulation

Whey protein
concentrate,

maltodextrin and
arabic gum

3

Linear, reduced
quadratic, quadratic,

reduced cubic, special
cubic, reduced special

quartic, special
quartic

D-optimal 18 Anova of
regression, R2 No Yes Yes

[27] Microencapsulation
Arabic gum,

maltodextrin and
inulin

3 Cubic Augmented
simplex-centroid 16 Anova of

regression, R2 Yes Yes Yes

[110] Extract
microencapsulation

Maltodextrin, mesquite
gum and zein 3 Not reported Augmented

simplex-centroid 10 Not reported No No Yes

[111] Salt reduction NaCl, KCl and CaCl2 3 Linear, quadratic,
special cubic Not reported 10 R2 adj No Yes Yes

a, postulated and/or fitted canonical models. Reduced models obtained after coefficient(s) removing are not reported except if explicitly indicated in the text; b, considering also replicates; c, figure of merits of the
goodness of fit shown; d, validation of the fitted model by test experiments; e, response(s) contour plot(s); f, defining an optimal formulation by numerical or graphical approaches.
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3.1. Study and Optimization of Product Formulation
3.1.1. Case Studies on Bakery Products and Pasta

Bread and other bakery products are continuously investigated by researchers in
order to improve their nutritional quality or to design products for special consumers (e.g.,
gluten-free, rich in protein, fat-reduced).

Encina-Zelada et al. [34] studied the influence of hydrocolloids for the formulation
of gluten-free bread with the aim to study the possibility of synergistic effect through the
combination of xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC) and guar
gum (GG). The D-optimal mixture design consisted in 11 experiments and the total amount
of hydrocolloids reached the 4% of the formulation. The quality parameters of the bread
were analyzed by a two-factor interaction polynomial linear model. The authors found
significant interactions between XG and GG, whereas HPMC interacted with GG and they
improved some physicochemical properties of bread, such as the specific volume, the
softness and the porosity of the crumb. Finally, an optimization study was carried out
to maximize the specific volume of the crumb, the brown index of the crust, as well as
minimize the hardness and the cell density of the crumb.

The bread quality parameters can be optimized in glute-free formulation also by
investigating the effect of the main ingredients such as rice flour, maize starch and wheat
starch, as reported in Mancebo et al. [35]. The mixture design proposed by the authors was a
simplex centroid performed in duplicate, and the responses were not only instrumental (e.g.,
texture profile, image and color analysis) but also the overall acceptability was considered.
After the modeling with a special cubic model, the multiple response method was used to
optimize the formulation, as function of both instrumental and sensory analysis.

So far, the mixture designs analyzed concerned the study of three ingredients. How-
ever, mixture design can be easily applied to more components with different strategies of
design. For example, Rößle et al. [36] designed a D-optimal experiment at four compo-
nents (inulin, oligofructose, margarine and sugar) for the production of quick breads. In
particular, the sum of four ingredients reached the 20% of the formulation, whereas the
remaining 80% was constituted by the other ingredients. With a total of 24 experiments,
the authors focused on the possibility to use inulin and oligofructose as fat and sugar sub-
stitutes, analyzing as responses, the usual quality parameters seen for the previous articles
(texture, crumb porosity, color indices, bread volume). The responses were modeled by a
special cubic model which was then validated. The authors obtained a good prediction
level for the optimized formulations and suggested that future studies will be focused on
the nutritional and sensory aspects since the technological quality was already optimized.

In another work carried out by Santos et al. [37] the ingredients studied through the
mixture design were five, i.e., chickpea flour, cassava starch, maize starch, potato starch
and rice flour. The authors decided to prepare six different simplex-centroid designs at
three components with three factors (1, 1/2, 1/3) in order to identify the optimal ratios of the
chickpea flour with the different blends of the other ingredients. The physical properties of the
bread were evaluated and, as in the previous studies, the optimal formulations were identified.

Besides bread, mixture design was widely applied also to other bakery products such
as cakes and baked goods [38–42] with different purposes.

Masmoudi et al. [40] investigated the addition of hydrocolloids (xanthan gum, car-
boxymethyl cellulose and κ-carrageenan) with the aim of solely improve the textural quality
of acorn muffin in order to have a close structure to the conventional muffin produced
with wheat flour. The augmented simplex centroid design with 10 experiments was used,
and the optimal formulation was only predicted but not produced. In this case as well, the
authors suggest that further study will involve the optimization of the sensory properties.

Both texture and sensory quality of gluten-free cakes were optimized by adding
protein ingredients [38,41]. Ammar et al. [38] studied the influence of maize and rice flours
(0–100%) in combination with whey protein concentrate (0–15%) in a gluten-free sponge
cake. Bravo-Nunez et al. [41] analyzed the effect of pea, whey and egg white proteins in
gluten-free layer cake by using a simplex lattice design with 10 experiments. Interestingly,
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Ammar et al. [38] carried out the optimization by giving higher importance to different
criteria: (i) the cost of the product and the energy value, (ii) the physicochemical properties.
Then, the two selected formulation were analyzed for the microstructural and the sensory
properties. Finally, the authors concluded that the incorporation of the 6.5% of whey
protein concentrate led to the best results.

The mixture design was also applied to pasta, with the aims of study the rheological
properties of a gluten-free dough [20], optimize the tensile strength of rice noodles [43] or
formulate a protein-fortified pasta for athletes [44].

Larrosa et al. [20] while preparing their simplex centroid design pointed out the impor-
tance of the constrains coming from the preliminary trials. In particular, they stated that was
not possible to laminate the pasta dough outside the range of the water content between
35.5% and 39.5%, therefore, the experimental domain was adjusted according to the require-
ment of the food. The rheological properties were modeled with a second order polynomial
model, furthermore, the optimization was carried out by the desirability function.

Kamali Rousta et al. [44] study the formulation of athletic pasta, prepared a D-optimal
design with all the six ingredients of the product (semolina, pea protein isolate, whey
protein isolate, soy protein isolate, oat flour and gluten), leading to 31 experimental trials.
The usual linear, quadratic and special cubic models were fitted to each of the responses
(hardness, protein). The optimization was carried out reaching the best compromise
between the protein content and the hardness (according to the desirability function) and
just one formulation was proposed and subjected to the sensory evaluation.

3.1.2. Case Studies on Meat and Meat Products

Mixture design has been widely applied to meat and meat products to (i) optimize
the fat reduction [56–58]; (ii) improve the nutritional quality by adding prebiotic ingredi-
ents [59,60], bioactive compounds [61], salt substitutes [62] and supplementary sources of
protein [63].

Afshari et al. [56] evaluated the effect of a mix composed of breadcrumb, inulin
and beta glucan on the physicochemical properties and the overall acceptability of beef
burgers, produced following a three-factor at six-levels mixture design. The sum of the
three components was the 8% of the total and 12 experiments plus two replicates were
performed. The linear, the quadratic and the special cubic model were then fitted to each
of the responses analyzed. The results indicated the interaction between inulin and beta
glucan which improved the physicochemical properties of the burgers without damaging
the sensory quality. Finally, the optimization step allowed to the definition of the best ratios
between the three ingredients.

The addition of prebiotic ingredients in meat products was also studied by Amini
Sarteshnizi et al. [60] who optimized the formulation of prebiotic sausages supplemented
with resistant starch (RS), beta glucan (BG) and starch (ST). The ingredients constituted
the 6% of the total formulation and they were combined according to a D-optimal mixture
design consisting in eight experiments plus five replicates. In this study as well, the physic-
ochemical and sensory properties were fitted to a linear, quadratic, or special cubic models.
The authors pointed out that the RS alone was not suitable in the formulation since its
negative impact on the physicochemical properties and the sensory acceptability, whereas
the combination between RS and BG led to a soft texture. The optimum formulation was
also identified through the desirability function and it contained 2.2% RS, 1.3% BG and
2.5% ST.

Baugreet et al. [63] used a simplex centroid D-optimal mixture design with constrains
to study the effect of meat content (90–100%), rice protein (0–10%) and lentil flour (0–10%)
on physicochemical, microbiological and sensory quality of beef patties, specifically de-
signed for an older adult diet. The model consisted of seven experimental points plus
10 replicates and the results were fitted to linear, quadratic and special cubic models accord-
ing to the significance, the coefficients of determination and the lack of fit. The model was
also validated calculating the accuracy and the bias factors. The optimization study showed
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that the addition of small quantity of rice protein (1–4%) and lentil flour (4–7%) improved
not only the protein content but also the texture and the sensory quality of beef patties.

Marchetti et al. [62] optimized the reduction of the sodium content in lean sausages
by using a simplex-lattice mixture design. The proportion of the three ingredients were
constrained, setting the ranges of NaCl, KCl and sodium tripolyphosphate (TPP) to 0.5–1.4,
0–0.7 and 0–0.5 g/100 g, respectively. The ranges were identified according to previous
studies that reported the maximum level of usages for KCl and TPP. This highlights that
the mixture design can be easily adaptable also to a very small quantity of the ingredients.
The design consisted in 11 experiments with three replications of the centroid point. The
experimental data were fitted to a cubic model and then validated. According to the
physicochemical and the textural properties, the salt substitutes content was optimized
through the desirability function. The authors decided to carry out the optimization prior
the sensory analysis which was performed only on the optimized formulation and on the
control. Despite the alteration of the structure given by the salt substitution, the sensory
properties were not affected.

The improvement of the nutritional value of meat products can be achieved also by
the addition of bioactive compounds, as reported by Nurain et al. [61]. The authors used
a simplex-lattice mixture design to investigate the effect of three natural antioxidants
from aromatic herbs in chicken sausages. The design consisted in 10 experiments plus
three replicates and the results of the total phenolic compounds, antioxidant activity and
sensory analysis were fitted by linear, quadratic or special cubic models. Once identified,
the optimal region according to the target, the model was validated and the t-test was
used to determine significant differences between the predicted results and actual values
of the optimized formulae.

3.1.3. Case Studies on Emulsions, Creams, Dessert

Emulsions, creams, yogurt and desserts obtained from different sources (both animal
or plant) have been the focus of several optimization efforts in order to reduce the fat
content, substituting ingredients and obtain improved products with physicochemical
properties similar to the conventional ones.

In the work of Nikzade et al. [69] a simplex-centroid mixture design was used to
optimize the proportions of three components (xanthan gum, guar gum, and mono- and
diglycerides emulsifier) in a mayonnaise-like formulation. A total of 10 experiments were
carried out, seven of which are the typical experiments of a simplex-centroid (Table 1) plus
the augmented blends at the levels 2/3, 1/6 and 1/6. The physicochemical and textural
properties as well as the overall acceptance were modeled according to linear, quadratic
and special cubic models. Although no validation was carried out, the best combinations
to produce low-cholesterol and low-fat emulsions with soy milk close to the commercial
mayonnaise, was predicted. The reduction of fat in mayonnaise was also studied by
Rahbari et al. [70]. A ternary mixture composed of wheat germ protein isolate (WGPI),
xanthan gum and egg yolk (EY) was studied. Giving the defined constrains which result in
an irregular domain, the 10 experimental points were chosen according to an optimization
criterion which was not reported by the authors. The responses were the physicochemical
properties, the texture and overall acceptance which were modeled according to the linear,
quadratic and special cubic models. The contour plots of the responses were then used to
define a suitable proportion of the components which was found to be 7.87 g, 0.2 g and
0.93 g of WGPI, XG and EY, respectively.

Polysaccharides were used in diary and low-fat dairy desserts to improve the rheo-
logical and sensorial properties [71,72]. For example, Toker et al. [71] studied the effect
of carrageenan, alginate, guar and xanthan gums by a simplex-lattice mixture design. A
cubic model was postulated (20 experiments for a quaternary mixture—Table 2) to which
the authors added further experiments, plus some replicates up to a final number of 30 ex-
periments. Soluble solids, pH and rheological parameters were the selected responses.
The authors found that the gums could influence the responses differently. Rheological
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properties for example, were mostly influenced by the carrageenan while an antagonistic
effect of alginate was reported.

Kashaninejad and Razavi [73] used a simplex-centroid design to investigate the effects
of hydrocolloids (carboxymethyl cellulose—CMC, konjac gum—KG, and sage seed gum—
SSG) on the dynamic rheological properties of instant camel yogurt. A quadratic model
was postulated and a total of 14 experiments were carried out which accounted also for
the so-called check points. Several models were built, one per each response, and the final
optimal conditions were found to be 35% CMC, 10% KG and 55% SSG.

Similar stabilizers (basil seed gum—BSG, CMC and GG) was also studied in ice
cream [74]. A simplex-centroid design was set having as responses the apparent viscosity,
draw temperature, overrun and melting rate. Ten experiments were carried out although
the design was replicated two times considering the total percentage of gum addition as a
process variable. This approach is unusual considering that mixture designs are thought
to study the effects of proportion of components in the formulation instead of their total
amount [6,8,11]. The responses were modeled according to a quadratic model (apparent
viscosity and melting rate) and a full quartic model (draw temperature and overrun). The
optimum proportions for ice creams with higher viscosity, overrun and melting rate and
lower draw temperatures were 84.43% BSG and 15.57% GG at the lowest total concentration.
The model was then validated, without any significant differences between the predicted
and the measured properties.

Besides the hydrocolloids, the sweeteners have also been optimized [75–77]. Indeed,
Ribeiro and co-workers used a simplex-lattice design to optimize the sweeteners proportion
(three steviol glycoside) in a high-protein plain yogurt. Ten formulations were tested and
compared with two reference formulations made by using sucrose and sucralose, respec-
tively. As a response, the Euclidian distance calculated from the Napping® descriptive test
was used. The aim was to minimize the distance between the tested formulation and the
reference ones. By comparing the contour plots the authors found the optimal ranges of
the three components while the optimal formulation was then defined even considering
the market price of the single component aiming at the most convenient one.

3.1.4. Case Studies on Juice, Beverages and Jam

Various kind of beverages, drinks and similar products—basically based on fruits—
were studied by MD. The effects of lecithin, xanthan gum, propylene glycol alginate, and
their combinations on the colloidal stability, the physicochemical and rheological properties
of a model peanut-based beverage was studied by Gama et al. [80]. By means of a simplex-
centroid design (consisting in seven experiments plus one control), the authors modeled
the responses postulating a linear model plus two two-interaction terms. The optimal
combination was 66% xanthan gum and 34% lecithin which sum up to 0.5% by weight
of the beverage. D-optimal design was used by Shiby et al. [1] to develop a whey-fruit-
based energy drink. In this case, two binary mixtures were studied (whey/grape juice and
whey/pomegranate juice) having as a response the acidity and the overall acceptability.
Quadratic models were postulated after modeling and a mathematical optimization was
carried out. Zendeboodi et al. [81] optimized a natural soft drink by studying the effect
of whey protein concentrate (WPC), date syrup (DS) and persian gum (PG). A quadratic
model was postulated, and nine experiments were carried out. Optimum values of PG, DS
and WPC in the mixture design were predicted to be 1.5%, 6.5% and 12%, respectively.

In the work of Kim et al. [26] the aim was to optimize the formulation for antioxidant rich
juice powders based on broccoli, cabbage and carrot powders. An augmented simplex-lattice
design was used, and the responses were the antioxidant compounds, the antioxidant activity
and the acceptance. Linear and quadratic models were calculated respectively for ABTS
and acceptance and for total phenolic compounds and FRAP. Finally, the optimization step
was carried out. With the aim of optimizing the proportions of black cherry, Concord grape
and pomegranate juices in a nutraceutical-rich juice, a simplex-centroid design was set up
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in Lawless et al. [2]. According to the overall liking and the antioxidant content, the optimal
formulation was 75% of Concord grape, 12% pomegranate and 13% black cherry juices.

Interestingly, an augmented simplex-centroid design was used by Dooley et al. [10] to
optimize wine blends based on Cabernet Sauvignon, Merlot and Zinfandel to consumers’
liking. The 10 experiments were evaluated by a consumer analysis. Through the desirability
function, three blends were created for three distinct targets of consumers.

Aquafaba is an emerging by-product obtained after pulses soaking in water or cooking
which presents interesting technological properties [82]. For this reason, it has been used
in several practical applications. The main disadvantage is linked to the high moisture
content which could be overcome for example by drying. In [82], the optimal formulation
of foaming agents and stabilizer to be added to aquafaba prior to the drying process
has been studied. A D-optimal design was set up consisting of 25 experiments. The
studied components were carboxymethylcellulose, Na-alginate, polydextrose and whey
powder, while the responses were foam density and drainage volume. The formulation was
numerically optimized obtaining the following mixture: 0.716% CMC, 0.165% Na-alginate,
0.119% polydextrose and 0% whey powder. This mixture, when added to 100 g of aquafaba
and dried at 70 ◦C, gave the best physicochemical features.

Chocolate products have been the focus of several optimization efforts. A simplex-
centroid mixture design was used to investigate the effects of four different gums (xanthan
gum, guar gum, alginate and locust bean gum) on the rheological properties of a prebiotic
model instant hot chocolate beverage [4]. A quadratic model was postulated for a total of
15 experiments (Table 2). The formulation was then mathematically optimized according
to the consistency index value and the best solution was found to be a binary mixture
made of 59% xanthan gum and 41% locust bean gum. Moreover, the effect of three types
of cocoa was studied in the formulation of a hot chocolate beverage [84]. An augmented
lattice design was set up and a quadratic model was postulated. The responses were the
physicochemical, the rheological and the sensory properties. Thanks to the experiments,
three optimized formulations for the sensory properties were identified. In the work of
Rezende et al. [85], a simplex-centroid design was used for a three-component mixture
(cocoa butter, inulin, β-glucan) aiming at the partial replacement of fat with fiber in
sucrose-free chocolates. A quadratic model was postulated. The obtained results showed
that β-glucan significantly affected the rheological parameters while inulin led to the
improvement of the sensory acceptance.

Processed fruits products are worldwide present and consisted of jellies, jams, juices,
nectars, and ice creams and related products. These have been the object of several opti-
mization studies. In Tontul et al. [21] a D-optimal mixture design was used to produce an
optimized pomegranate pestil by using xanthan gum, locust bean gum and pregelatinized
starch (PS). A total of 16 blends were tested looking at the physicochemical parameters,
the texture, the bioactive content and the sensory aspects. The mathematical optimization
was carried out through the desirability function. Then, the prediction was validated,
and the authors did not find any significant difference between the predicted and the
actual formulations, which led to an optimized pestil with higher content of bioactive, less
browning and improved textural properties than the traditional one.

Hydrocolloid’s formulations based on carboxymethylcellulose, xanthan gum and
pectine in a model system recalling jam/jelly-like products was studied by Ozgur et al. [86].
Ten experiments plus three replicates (one at each vertex) were planned. The contour plots
showed the effect of the pure components and of their interactions on the physicochemical
and rheological properties. Finally, a mathematical optimization through the desirability
function was carried out.

A simplex-lattice design was used to study the formulation of a Brazilian Cerrado
fruit jam using five components (fruit jenipapo, marolo, murici, soursop and sweet passion
fruit) [5]. A quadratic model was postulated having as responses the consumer acceptance
for color, appearance, smell, taste and the overall liking for a total of 21 experimental blends
tested. It was found that the formulations with better acceptance for all attributes had



Foods 2021, 10, 1128 22 of 30

percentages of jenipapo, and murici, close to zero and the optimum levels to the other
factors were approximately 40% of marolo, 35% of soursop and 25% of sweet passion fruit.

3.2. Mixture Design for Extraction Applications

Extraction represents a common step in many areas, from analytical chemistry to
by-product valorization. There are different kinds of extractions among which some of the
most important in the food area are the liquid-liquid extraction and solid-liquid extrac-
tion. In these techniques, a liquid mixture is used to extract target compounds from the
matrix. Mixture design of experiments could be an efficient tool to define and optimize the
extractive mixture. Some applications in Food Science and Technology have regarded the
extraction of bioactive compounds [24,95–97]. Water, acetone, acetonitrile and ethanol were
the components studied in order to optimize the extraction of isoflavones from defatted
soy flour using a simplex-centroid design [95]. A total of 15 experiments were carried out.
The authors observed that different forms of isoflavones were differently affected by the
mixture composition but in general terms, mixture with 50% water or less are the best.
However, for specific class of isoflavones the mixture composition should vary, according
to the differences in polarity. Water–acetone–ethanol (2:1:1), water–acetone–acetonitrile
(2:1:1) and water–acetone (1:1) mixtures were optimal for extraction of malonyl-glycosidic
and total forms, glycosidic isoflavones and less polar aglycone forms, respectively. Mix-
tures of ethanol, acetone and water were also tested for bioactives extraction from Phoenix
dactylifera L. seeds by using an augmented simplex-centroid design [97]. The mixture
design allowed the identification of synergic or antagonistic effect on the phytochemicals
extraction and the optimal mixture was found to be made of 22.39%, 37.37% and 40.24% of
acetone, ethanol and water, respectively. An interesting approach is the one followed by Li
and co-workers [98] who studied the optimal mixture of raw materials (soybeans, peanuts,
linseeds and tea seeds) from which a blended oil with ideal fatty acid ratio of 0.27:1:1
(SFA–MUFA–PUFA) could be extracted. The authors used an augmented simplex-centroid
design with replicates for a total of 24 experiments. The responses were MUFA–PUFA,
SFA–MUFA and oil extraction yield. It was found that three possible mixtures allowed the
authors to reach the goal.

Finally, an augmented simplex-centroid design was also used to define the optimal
extraction mixture for the determination of non-target migrants and dibutyl phthalates
from baby bottles [99]. The optimized mixture was made up of ethyl acetate (27.5%),
dichloromethane (22.5%) and hexane (50%). The results were validated showing a good
concordance between the predicted values and the experimental ones.

3.3. Mixture Design for the Study of Shelf-Life and Stability

Food degradation could follow different pathways which could vary according to the
specific composition of a product, the storage conditions (of both raw materials, ingredients
and final product) and the undergone technological processes. In the case of oils and
fats, oxidation is of primary concern. Efforts to increase oils stability toward the use
of mixture designs have been reported [100,101]. Saoudi and co-workers [100] used an
augmented simplex-centroid design to optimize the formulation of natural antioxidants
(carnosol, rosmarinic acid and thymol) aimed at increasing soybean oil stability. The
ternary combination in equal proportion of the natural antioxidants was more effective
in maintaining oxidative stability during heating. In [101] a simplex-lattice design was
used to formulate frying oils (from soybean, safflower and flaxseed oils) with high content
of essential fatty acids and low n-6/n-3 ratio. Other studies have regarded the shelf-life
of cakes and candies [23,102]. In [102], jujube flour was used to improve the shelf-life
of sponge cakes and the results showed that using about 7% of the ingredient in partial
substitution of sugar and refined wheat flour improved not only the shelf life of the product
but even the textural and physicochemical properties. Spanemberg and colleagues [23]
used a D-optimal design to determine the sugar formulation that maximizes the shelf life
and critical moisture content of hard candy. In this case, the critical factor affecting the
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shelf-life was moisture. The optimal formulation of sugars was found to be 0.6, 0.2 and
0.2 of sucrose, 40 DE corn syrup and 20 DE high-maltose corn syrup, respectively, which
gave a shelf life that extended seven months beyond the expiration date usually used in
the industry.

In the last decades, nanotechnology is spreading also in the food sector and most
application regards the effect of nanoparticles in improving stability of dispersed systems.
In this regard, the stability of nano emulsions/nano dispersions have been studied using
mixture designs [25,103]. Maher and co-workers [103] used a D-optimal design to optimize
the formulation of nano emulsions using viscosities and glass transition temperatures as
responses. The studied mixture components were lactose, trehalose and β-casein. In [25],
Tween 80, gelatin and pectin were the ingredients studied in order to obtain nanoparticles
having smallest particle size and highest β-carotene concentrations. The authors set
an augmented simplex-centroid design with 10 experiments. The optimal formulation
obtained—made of 35% w/w Tween 80, 46% w/w gelatin and 19% w/w pectin—was
validated showing that no significant difference were obtained between the predicted and
measured responses.

3.4. Applications on Food Microbiology

Mixture design was also successfully applied in research involving the microbiological
aspects of the food sector. Belay et al. [9] optimized the composition of the atmosphere to
reduce the microbial growth during the storage of pomegranate arils by using a simplex
lattice mixture design with three components (O2, CO2, N2) and seven experiments. The
responses evaluated were the total aerobic mesophilic bacteria, the yeast and the mold
counts. The results were fitted to a linear model and then to a special cubic model. The
authors found that the single, binary and tertiary component interactions had significant
effects in reducing the aerobic mesophilic bacteria and yeast growth. By contrast, the
mold count was only significantly affected by the binary interaction of O2 and CO2. The
model was validated, and the special cubic model showed the best predictability; moreover,
analyzing the contour plots, the optimum gas concentration was identified.

Yolmeh et al. [104] optimized a multiple-strain mixture (MSM) of Lactobacillus
against food-borne pathogenic bacteria (Escherichia coli (ATCC 25922), Salmonella en-
teritidis (ATCC13076), Listeria monocytogenes (ATCC 49594) and Bacillus cereus (ATCC
70876)). The cell-free supernatant of L. brevis isolated from fermented olives, L plantarum
isolated from fermented olives and L. brevis isolated from garlic, were mixed according
to a simplex lattice design and the 14 experiments were tested against the pathogenic
bacteria. The antimicrobial activity was explained by a linear model for E. coli, S. enteritidis
and L. monocytogenes, whereas for L. brevis a quadratic model was significant. Finally, the
optimization was carried out by the desirability function, and the accuracy of the prediction
was verified.

The antimicrobial activity was studied also by Falleh et al. [105] who optimized the
combination of clove, cinnamon, lavender and myrtle essential oils against E. coli ATTC
35218, by a simplex centroid design with 15 experiments. The response was modeled
by a cubic model. In the optimization step, the authors found that the combination with
higher percentages of cinnamon and lavender led to a stronger antimicrobial activity. The
optimized formulation was produced, and it showed a similar value compared to the
predicted value.

Mahdhi et al. [106] worked on two dates extracts (Phoenix dactylifera L.) in combination
with a prebiotic Bacillus strain to confer protection against vibriosis in Artemia culture. A
total of 10 experiments were performed, analyzing the growth rate and the survival rate of
the Artemia. The responses were modeled with linear and quadratic equations, the latter
showing better results in terms of fitting quality. The authors concluded that the highest
protection against virulent Vibrio was obtained when only the dates extracts were used,
without the combination with Bacillus.
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Finally, de Castro et al. [107] used a simplex centroid design with seven experiments to
investigate the functional properties and the growth promotion of Bifidobacteria and lactic
acid bacteria strains as affected by protein hydrolysates mixes prepared with soy protein
isolate, bovine whey protein and egg white protein. Quadratic or special cubic regression
models were fitted with the responses. The model was validated, and the authors did not
find any significant difference between the predicted values and the experimental results.
The authors concluded that the hydrolyzed samples positively stimulated the growth of
the bacteria under investigation, identifying the optimal proportion of the ingredients.

3.5. Applications on Food Engineering, Packaging and Related Topics

Within the food engineering area, mixture designs have been successfully applied
to develop different kind of films and improve the encapsulation process [3,27,108–110].
Pelissari et al. [108] studied the formulation of a film made from cassava starch, chitosan
and glycerol. The authors, thanks to the 11 experiments, observed that synergic and
antagonistic effects between the components could significantly vary the properties of the
film. In particular, chitosan percentage should be controlled in order to avoid excessive
rigidity and opacity. Starch based films—using cassava starch, alginate and polyvinyl
alcohol—were also studied in [3] by a simplex-lattice design. The best mechanical and
barrier properties were found using 80% starch, 11.4% alginate and 8.6% polyvinyl alcohol.
In recent years, encapsulation technologies gained attention. Some works have focused
on the optimization of wall materials by means of mixture designs for encapsulation
of grape seed extract [110], cinnamon essential oil [27] and freeze-dried pumpkin seed
oil [109]. In [27,110], augmented simplex-centroid designs allowed the authors to find the
optimal formulations which were based on a binary mixture of zein and mesquite gum or
maltodextrin [110] and on a ternary mixture of arabic gum, maltodextrin and inulin [27].

3.6. Criticism

MD are efficient and rational tools for studying formulation problems which are so
common in the food sector. However, from the literature survey, some issues concerning
their use have been found.

First, according to Marrubini et al. [18], critical information about the experimental
design should be always reported to make the experiments replicable and consequently
to verify the results. Unfortunately, the information reported are not always complete.
For example, in some cases it is not reported the type of design used (Figure 3B) or even
the mathematical model postulated. Lack of information might be linked to the limited
space available in scientific articles or to the fact that a secondary importance is given
to the explanation of design methodology. Nonetheless, presenting detailed information
about the followed design and the model(s) computation could strongly improve the
understanding of the results and their practical importance.

Then, a very important concern regards the model coefficients. As previously reported,
in mixture designs coefficients do not provide a straightforward understanding of the
system under study and the best way to look at the effects of the ingredients/components is
by using the surface plots [8,11,28]. Data discussion could be improved if based on contour
plots instead of on coefficients and the results could be even more easily understood by the
users. A further concern regards the elimination of non-significant coefficients from the
postulated models. It could be useful to recall that deleting coefficients from the postulated
models has very relevant side effects on the calculations, by increasing the number of
degrees of freedom, reducing the leverage and therefore artificially reducing the confidence
interval of the predictions. Unfortunately, in many courses the teachers state that the
removal of the non-significant coefficients is “the first thing to do”, because in such way
“the quality of the model is improved”; of course, they do not realize that this apparent
improvement is obtained just by overfitting the data. The best and simple way to face
with such issue it to a priori postulate a model and, of course, validate it. If the model
is not validated, then it will be possible to postulate another mathematical relationship,
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calculate the model and, as always, validate it [6]. Another critical aspect regards the use
of R2 as a figure of merit for evaluating the prediction ability of the models. Indeed, from
the literature overview it emerged that, quite often, the suitability of the obtained models
for prediction purposes and further real application was based on the high value of R2.
Thus, it could be useful to recall that the coefficient of determination basically gives some
information about the fitting ability. Analysis of variance of the regression, lack of fit test
and residuals analysis would be much more useful for checking the model adequacy while
a validation step would be the best way for understanding the real applicability of the
obtained models.

4. Conclusions

This review showed the potentiality of the mixture design as applied in Food Science
and Technology. Overall, mixture design is a very versatile tool to investigate a wide range
of applications in the food sector, from food technology to microbiology and nutraceutical
fields. In the last decade mixture designs have been fairly used in the field of Food
Science and Technology, which is ranked fourth among the total records considered for
this review work. However, the majority of the application has regarded limited classes
of products such as bakery, pasta, juice, beverage, jam and meat. Accordingly, the main
ingredients studied have been hydrocolloids, starch and proteins, which are widely used
in those products for several technological purposes. Thus, an increase in the spectrum
of applications is wished. Interesting areas in which the use of such approach could be
useful are for example that of extraction and recovery of bioactives from foods by-products,
microbiology or packaging.

The advantage of using mixture designs consists in the possibility to have, with a
defined number of experiments, a clear representation of the effect and the interaction of
the ingredients in a certain product. Thus, a global knowledge about the system under
study could be achieved. Moreover, as reported in most of the examined papers, mixture
design allows to split the research and development steps, carrying out, for example, firstly
the optimization of the physicochemical or textural properties and then the evaluation
of the sensory quality of foods. Only in 14% of the surveyed articles did the number of
experiments exceed 20 with clear advantages for the resources management, too.

A main limitation is the difficulty in studying more than three or four ingredients.
Perhaps that is why roughly 90% of the surveyed articles consider three components.
Finally, some criticisms have been found and highlighted, basically linked to the presen-
tation of clear information about the model definition and development, the coefficients
interpretation and the model validation.

On the whole, we strongly encourage the researchers to implement the use of mixture
design for their works, in order to improve the reliability of the results as well as to optimize
the work and the resources.
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