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Abstract— An efficient operation of marine diesel engines, 

onboard ships, requires advanced monitoring and diagnostic 

techniques for early detection of faults and degradation in the 

propulsion or power generation system. This complex problem 

has been recently approached by digital-twin-based fault 

detection models. In this paper, we report on two methods for 

fault analysis on marine diesel engines exploiting (i) an Artificial 

Neural Network (ANN) combined with machine learning tools 

and (ii) a digital twin simulation model combined with a 

parameter estimator tool. In both cases, a digital twin model of 

the engine has been used for the generation of synthetic data, 

but in different simulation environments. These methodologies 

are applied to two distinct case studies, and their outcomes are 

discussed, focusing on the pros and cons. A proposal for a 

method combining the benefits of both is presented. 

Keywords—diesel engines, performance monitoring, fault 

detection, condition-based maintenance, machine learning 
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I. INTRODUCTION 

The Predictive Maintenance (PM) approach aims at early 
fault identification in systems and component diagnostic, 
together with the monitoring of the degradation state and the 
prediction of possible future faults. The possibility of 
scheduling and targeting the maintenance activities in a proper 
and effective manner leads to several benefits, with an 
increase in system reliability, maximization of components 
uptime, and minimization of machine downtime  [1], [2].  

Generally, a component failure happens after a 
preliminary phase of incipient degradation during which one 
or more operating parameters start to deviate slightly from the 
expected values [3]. The duration of this phase ranges from 
months to a few minutes and, in the case of complex systems, 
such as the internal combustion engines (ICE), a prompt 
identification of such deviations requires measurements that 
are often impossible or at least very expensive. Additionally, 
among all measurable engine data, there is the problem of 
monitoring only those effectively prone to disclose possible 
faults. In this context, the digital twin approach is thought as 
a useful and promising technique to get an estimate of the 
engine working parameters, including those generally not 
accessible during normal running [4], [5], [6], [7]. This allows 

for the development of novel fault analysis techniques.  
Numerical simulation for the diagnostic analysis of a marine 
system is not yet widely used. The few existing studies mostly 
concern the influence of degradation of one or more 
components on the overall behavior of the examined system 
such as a marine gas turbine [8], a diesel engine [9], and its 
waste heat recovery system from exhaust gases [10]. In this 
paper, two methodologies, based on the digital twin concept, 
are presented. The first one employs an artificial neural 
network (ANN) regression model for estimating the process 
parameters in normal running conditions [11]. The measured 
real-time signal is compared with the optimal estimated value, 
and the deviation between them is used as an indicator of 
potential faults in the engines’ system and components. The 
calibration and performance evaluation of the diagnostic 
model are conducted on synthetic fault data which are fault 
data generated through simulations by the digital twin of the 
engine in degraded conditions. The possibility of generating 
fault data from simulation models (synthetic fault data) is 
effective and useful in replacing fault data measured from a 
real engine (damaged in a controlled manner) [9], which 
would result somewhat dangerous and expensive. At the 
scope, the GT-Power tool is used as a simulation environment. 
Instead, the engine model in nominal conditions has been 
validated by means of real data collected from the field.  

The second methodology combines a parameter 
estimation technique with a digital twin simulation model of 
the diesel engine [12]. This approach aims at identifying and 
quantifying the degradation level of engine components by 
matching the real-time signals with the simulated ones, 
minimizing their relative errors. This is achieved by means of 
the parameter estimation technique, by altering the 
degradation coefficients within the simulation model. At the 
scope, Matlab/Simulink toolboxes are used. Also in this case, 
the real-time signals of the degraded engine are synthetic data. 
The applications of such methods are carried out on two 
different engines: the G1716 produced by IFM- Isotta 
Fraschini Motori (a Fincantieri company) and the MAN 
12V32/44CR four-stroke diesel engines. This paper presents 
the results obtained by the two case studies and provides a 
discussion of the pros and cons, boosting the development of 
both methods using their positive features. 
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II. THE ANN DIAGNOSTIC MODEL 

The first diagnostic model, presented herein, is based on 
the real-time comparison between actual measured signals and 
their estimated optimal values, which are generated by an 
Artificial Neural Network. Artificial Neural Networks (ANN) 
is a type of machine learning algorithm consisting of layers of 
interconnected nodes (neurons) that process and transmit 
information through weighted connections to make 
predictions or classifications. ANNs have gained significant 
attention as a promising approach to address modeling 
problems that include complex physical processes with 
nonlinear, high-order, and time-varying dynamics, such as 
those encountered in predictive maintenance strategies [7]. 
Indeed, when properly calibrated the ANNs have good 
computational efficiency. An ANN is here employed for the 
estimation of the optimal value of the diagnostic variable 
which is used as a reference for the diagnostic task. The 
engine's operational variables and environmental data are 
expected to be measured by sensors and acquired and 
organized by means of a so-called Data Gathering system 
(DGS). In this research, due to the lack of data from the field 
of a degraded engine, the GT-Power tool is used to generate 
the operational variables assuming controlled degradation 
types. The engine model implemented in GT-Power, 
operating in nominal condition was calibrated and validated 
against the field data of the real engine. A subset of the 
degraded signals (Predictors) is used as inputs to the ANN, 
which is trained on nominal condition data to output optimal 
values for the main engine's operational variables (diagnostic 
signals). The selection of the Predictors was based both on the 
outcomes of statistical analysis both on IFM experience. The 
deviation between the actual measured value and the 
estimated optimal value of the diagnostic signals serves as an 
indicator of how far the system is operating outside the normal 
condition. The diagnosis relies on defined thresholds based on 
anomalous running data simulated through simulation tools. 
In Figure 1, a scheme of the model is depicted. 

 

III. THE PARAMETER ESTIMATION BASED DIAGNOSTIC  

MODELS 

The second diagnostic model is based on the real-time 
comparison between actual measured signals and their 
simulated optimal values, which are generated by a digital 
twin simulation model of the engine, implemented in 
Simulink. The numerical simulation model of the diesel 
engine is organized in sub-modules each of them consisting of 
algebraic and differential equations that refer to the 
corresponding subsystem behavior. The arrangement of the 
engine blocks is shown in Figure 2.  

A 0D filling and emptying approach is applied to each 
engine simulator block. The in-cylinder phenomena 
calculation is based on a fully thermodynamic actual cycle. A 

real gas model is used for the fluid properties calculation; 
specific internal energy and enthalpy are assumed to be 
functions of both fluid composition and temperature. The 
input variables to the engine simulator are the engine speed 
and the fuel mass flow rate. For the sake of synthesis, the 
reader can find the detailed description of the engine 
simulation model in [12], [13], [14]. In this research, the 
engine model implemented in Simulink, in nominal 
operations, was calibrated against the data reported in the 
project guide of the manufacturer. 

 

 

Fig, 2. Block arrangement for the engine simulation model 

In the same numerical model, a set of gain coefficients are 
introduced, aiming at modeling physical alterations 
(degradations) of mechanical components. In nominal 
operations, all these coefficients are defined by unitary value.  
Also, for this diagnostic model, the engine's operational 
variables and environmental data, are expected to be measured 
by sensors on the field. Due to the lack of data from the field 
of a degraded engine, in this case the degraded engine 
variables are simulated beforehand by using the same 
numerical model in Simulink, by altering in a controlled way, 
the gain coefficients. The deviation between the actual 
measured value (degraded variables) and the simulated 
optimal value is an offset that the parameter estimation 
method (optimization process) will minimize by altering the 
gain coefficients (parameters). At the scope, the parameter 
estimator toolbox of Simulink is used. 

IV. CASE STUDIES  

The ANN diagnostic methodology is applied to the Isotta 
Fraschini Motori (IFM) G1716 diesel engine, originally 
employed for GENSET application.  

TABLE I.  ENGINE DETAILS 

Engine G1716 MAN 20V32/44CR 

Cycle 4 strokes 4 strokes 

Num. of Cylinders 16 V 20 V 

Power 1940 kW 12000 kW 

Speed 1500 rpm 750 rpm 

Bore x Stroke  170x185 mm 320 x 440 mm 

Mean effective pressure 23.1 bar 27.1 bar 

Application Genset Propulsion 

 

The parameter estimation based diagnostic model is 
applied to a MAN 20V32/44CR marine diesel engine. The 
main specifications of the engines are shown in Table I [11], 

 
Fig. 1. Diagnostic model scheme 
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[12]. For the training of the ANN and the test of the diagnostic 
model, it is used a dataset consisting in 4661 measurements. 
These data are collected with a sample time of 5s during about 
6 hours of running on test bench in which the engine has been 
subjected to a specific and controlled operative profile 
characterized by different load regimes (from 0% to 100% and 
from 100% to 0%). In Figure 3 the density i.e. the number of 
instances in the Dataset referring to a specific power range is 
shown. 

 

 

Fig. 3. Details of the tested load regimes 

The measurements refer to 51 signals of sensors installed 
on the engine: only normal condition data are acquired. This 
data refers to specific environmental data, such as air 
temperature and freshwater temperature that are measured 
alongside. The ANN diagnostic model is tested on the 
detection of three possible faults: misfiring, intake valve seat 
fault, and turbine fault. These are selected from a priority list 
of relevant faults, identified by IFM manufacturer. In 
particular, the turbine fault is meant as a generic malfunction 
that causes a loss of turbine efficiency (e.g., turbine 
obstruction, damaged blades, dirt, etc.). Misfiring and intake 
valve seat fault was supposed to occur on cylinder 1 of the A 
bank (A1). For the case at hand, three diagnostic signals 
(variables) which has emerged as very good indicators for the 
engine operation and health state have been selected [11]: 
exhaust gas temperature of cylinder A1 (CGT), intake 
manifold temperature (IMT), and intake manifold pressure 
(IMP) of bank A.  

 

 
Fig. 4. Prediction performances of the ANN 

Figure 4 shows the regressive performance of the network 
for the three different diagnostic signals of the engine in 

nominal conditions. All the diagnostic parameters are 
predicted with very good accuracy as indicated by a 
coefficient of regression R over 0.99. The percentage error of 
prediction is distributed almost normally around zero and it 
indicates that the model is not biased towards overestimating 
or underestimating the target variable. The calibration and 
validation of the MAN engine, implemented in Simulink, was 
carried out focusing on engine power and specific fuel 
consumption for different engine working conditions: engine 
load equal 100%, 85%, 75%, 65%, 50%, and 25% of 
Maximum Continuous Rating (MCR) at a constant speed (750 
rpm) and variable speed. The comparisons between calculated 
and reference data, showed a good simulator accuracy, with 
errors less than 0.5% in the MCR engine load conditions, and 
less than 1% in the other examined engine working conditions. 

A number of nine different degradations is considered, 
thus nine degradation coefficients (parameters) are 
implemented in the Simulink model, as reported in Table II 
[14], [15]. The diagnostic signals (i.e. variables) that are 
monitored are listed in Table III [16]: all variables that could 
be reasonably measured on the field are assumed. 

TABLE II.  DEGRADATION TYPES AND CORRESPONDING COEFFICIENTS 

Simulation block Degradation (Coefficient name) 

Intercooler Intercooler fouling (d_in_p) 

Intercooler Efficiency reduction (d_in_eff) 

Compressor Dirty air filter (d_co_eff) 

Compressor Efficiency reduction (d_co_re) 

Compressor Mass flow reduction (d_co_m) 

Shaft TG Bearing deterioration (d_tg_cu) 

Turbine Efficiency reduction (d_t_re) 

Turbine Erosion or fouling of the blades (d_t_pa) 

Cylinder Fuel flow reduction (d_c_co) 

TABLE III.  MONITORED ENGINE VARIABLES (I: INTERCOOLER, C: 
COMPRESSOR, D: DUCT, TEMP: TEMPERATURE, P: PRESSURE) 

Intercooler (I)  

and Compressor (C) 

Turbine (T)  

and exhaust duct (D) 
Cylinder 

Outlet Temp. (I and C) Outlet p (D and T) Outlet Temp. 

Torque (C) Outlet Temp. (D and T) Outlet p  

Outlet p (C) Torque (T) Consumption 

Speed rpm (C) Speed rpm (T) Engine torque 

V. RESULTS  

A. ANN + GT-Power 

The effect of faults on the engine behavior and the 
thermodynamic variables are investigated through GT-Power, 
an industry-standard engine performance 1D-CFD simulation 
tool. The engine model is built by using geometrical and real 
engine characteristic data and it is tuned and validated against 
experimental measurements from test bench tests. The faults 
are introduced by properly adjusting the tuning parameters in 
the engine model [11].  

In Figure 5 it is possible to observe the deviation of the 
diagnostic parameter value from the normal condition for each 
fault occurrence. In general, the higher the power load, the 
higher the value and the range of deviation. Note that the 
considered faults do not exhibit common symptoms, thus this 
ensures that the diagnostic signals under consideration are 
adequate for fault diagnosis and there is no possibility of 
diagnostic ambiguity (i.e. a peculiar and exclusive behavior of 
the faults has been identified). The fault diagnostic is 
performed by calculating the percentage of deviation between 
the actual measured variables of the engine and their estimated 
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optimal values generated by the ANN. If the percentage 
deviations of all diagnostic signals fall simultaneously within 
the fault boundaries, (identified by the engine loads and by the 
fault type, as shown in Figure 5), then the specific fault is 
detected by the system, and the corresponding alarm is raised. 

 

 

 
Fig. 5. Engine behavior under simulated misfiring (F1), valve leakage (F2), 

and turbine fault (F3) 

Focusing on the misfiring fault type, 776 simulation 
instances, carried out in GT-power, are considered: 387 are 
associated with normal operating conditions, and 389 refer to 
fault occurrence. The results obtained from the application of 
the ANN fault analysis are presented in Figure 6 in the form 
of the confusion matrix, where F and H stay for fault and 
healthy, respectively.  

 

Fig. 6. Confusion matrix of the model’s diagnosis 

The ANN fault diagnostic correctly detected all 387 
healthy instances, and no false alarm was raised. Among the 
expected fault cases, only 65% (i.e. 252 of the expected 389) 
were correctly detected, whereas the remaining fault cases 
were not identified. This could be imputed to the real data 
measured from the field affecting the training of the ANN. The 
measured signals and normal condition predictions could be 
affected by non-negligible noise due to sensors’ precision, 
which may be responsible for the percentage deviation to fall 
outside thresholds, (i.e. the ANN may lack in perfectly 
tracking the optimal value of diagnostic signals).  

B. Digital twin + Parameter estimation (PE) 

The degraded engine variables are obtained by the same 
numerical model of the engine in Simulink, by setting known 
values of the degradation coefficients. Several degraded cases 

were generated modifying one coefficient at a time and also 
two coefficients at the same time. These data are then inputted 
to the Parameter Estimation toolbox (PE) [12], [17]. The 
application of the parameter estimation to a sample set of 
monitored variables allows identifying the degraded 
component and its degradation level, causing that given 
realization of the monitored variables. In the optimization 
procedure, the degradation coefficients (parameters) vary 
until their value produces numerical outcomes matching with 
the input variables (degraded engine data). In Figure 7, the 
results for a sample case characterized by a single degradation 
are presented. The degraded scenario refers to a pressure loss 
at the intercooler (d_in_p) equal to 10%.  Figure 7 shows the 
numerical iterations of the non-linear optimization routine, 
prior to converge. It is possible to observe how, during the 
whole iteration process, the most sensitive parameter is the 
one related to the pressure loss of the intercooler. After ten 
iterations, its value settles on 0.9 (i.e. corresponding to a 10% 
degradation), whereas all remaining coefficients provide 
almost unitary values (i.e. absence of corresponding 
degradation). 

 

Fig. 7. Convergence plot for a single degradation scenario (d_in_p) 

 

Fig. 8. Convergence plot for a single degradation scenario (d_co_m) 

In Figure 8, the degraded scenario refers to a compressor 
mass flow reduction (d_co_m) equal to 10%. Also in this case, 
it is possible to observe how, during only three iteration 
process, the most sensitive parameter is the one related to the 
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correct failure. Finally, the parameter estimation outcomes for 
a sample case involving two simultaneous degradations are 
presented. In this scenario, we expect a pressure loss at the 
intercooler (5% due to fouling of the air filter) and a problem 
on the turbine blades (10% loss due to fouling of the turbine 
blades). In Figure 9, it is possible noticing that, also in this 
case, the optimization procedure at convergence provides 
d_in_p= 0.95 and d_t_pa= 0.9 while all other coefficients 
remain unchanged. 

 

 
Fig. 9. Convergence plot for two degradations scenario (d_in_p and d_t_pa) 

VI. DISCUSSION 

The ANN and the PE methodologies showed promising 
outcomes regarding the fault analysis of marine diesel 
engines. This section provides a thoughtful discussion of the 
two case studies focusing on their positive aspects and 
limitations. The ANN, applied to the G1716 engine, benefits 
from the availability of several data from the field (i.e. signals 
affected by noise), in training the numerical model of the 
engine operating in nominal conditions. This gives the 
possibility of realizing a numerical model calibrated to the real 
engine. The analyzed faults relate to the three typical cases 
frequently observed on operating engines and exploit a direct 
correlation between each fault and the effects on a specific 
system variable. The possibility of generating degraded 
engine behavior in the GT-power environment ensures the 
generation of somewhat reliable synthetic data, although 
validation of such damage scenarios is not possible with real 
data from the field. On the other hand, the ANN model works 
with predefined thresholds for checking the offset between the 
nominal and the degraded engine variables, somewhat 
affecting the effectiveness of the fault analysis outcomes. The 
PE method applied to an engine model implemented in 
Simulink proves its effectiveness although limiting the whole 
analysis to the same simulation environment. Compared to the 
ANN technique it appears less mature meaning it has still 
room for development, regarding the applicability to real 
engine data. However, the possibility of handling more than 
one mechanical degradation at a time and the possibility of 
quantifying the degradation level prior to a major fault 
endorses further studies on the PE approach. For instance, the 
application of the PE method could be carried out to the 
G1716 engine, using the same input data by the ANN model, 
aiming at a validation through the comparison of the two 
method outcomes. This could be beneficial also for the further 

developments of the ANN method in better understanding the 
reasons behind the shortcomings in identifying all fault cases. 

VII. CONCLUSIONS 

This paper presented two methodologies based on digital 
twin models for the fault analysis on marine diesel engines. 
Both methods proved their positive features through the 
applications to two different case studies based on available 
data. The ANN method was judged more mature, despite 
somewhat less accurate, because based on real data i.e. 
measured signals, thus affected by noise due to sensors’ 
precision. The PE method resulted accurate and suitable for 
condition monitoring although less mature, since its outcomes 
were not affected by noisy measured signals.  Future research 
will regard the application of ANN and PE methods to the 
same case study aiming at a direct comparison, enforcing 
further developments of both methodologies. Attention will be 
given to the degraded engine scenarios, attempting to a 
classification of the degradation levels. Indeed, the 
degradation level resulting from the PE application has 
currently no acknowledged physical meaning.      
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