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Preface

General Relativity is one of the pillars of modern theoretical physics: it describes gravity
through geometry. Over the years, several alternative theories have been developed to
answer some of the questions left open by Einstein’s theory. One of the most fruitful ap-
proaches is to separate the causal structure of spacetime from its geodesic structure. This
separation is obtained by considering the metric and connection as independent fields.
The resulting geometrical framework is the so-called metric-affine approach to gravity.
Three main geometrical attributes are associated with a given connection: the curvature,
the torsion, and the nonmetricity tensors. They represent the rotation of a vector parallel
transported along a closed curve, the failure of the infinitesimal parallelogram formed
when two infinitesimal vectors are parallel transported along each other to close, and the
change of length of a vector parallel transported along a generic curve, respectively.

This thesis focuses on Symmetric Teleparallel Gravity and its generalization called
f (Q) gravity. They are alternative theories of gravity in which both curvature and torsion
are zero and where only metric and nonmetricity tensors are involved in the description
of the gravitational interaction. We investigate both the cosmological and astrophysi-
cal aspects of f (Q) gravity to assess the possible improvements brought by this theory
compared to the alternative ones that already exist. The main points of our study can be
summarized as follows.

First, we present a reconstruction algorithm for cosmological models. We specifically
focus on Bianchi type-I and Friedmann-Lemaître-Robertson-Walker spacetimes, obtain-
ing exact solutions that might have application in a variety of scenarios such as spon-
taneous isotropization of Bianchi type-I models, dark energy, and inflation as well as
pre-Big Bang cosmologies.

After that, using the 1+ 3 covariant formalism, we investigate the effect of nonmetric-
ity on the universe’s dynamics. Then, using the Dynamical System Approach, we an-
alyze the evolution of Bianchi type-I cosmologies. We consider several models of the
function f (Q), each manifesting isotropic eras of the universe, whether transitional or
not. In one case, in addition to the qualitative analysis provided by the dynamical sys-
tem method, we also obtain analytical solutions, showing agreement with the previously
reconstructed results.

We also apply the 1+ 1+ 2 formalism, where preferred directions are chosen for time
and space. Thanks to this formalism, we can introduce static and Locally Rotationally
Symmetric spacetimes. Moreover, we show how nonmetricity affects all kinematic quan-
tities involved in the covariant 1 + 1 + 2 decomposition. We apply the resulting geomet-
rical framework to study spherically symmetric solutions in the context of f (Q) gravity
in vacuum. We obtain explicit solutions and sufficient conditions for the existence of
Schwarzschild-de Sitter type spacetimes.

Finally, we investigate f (Q) gravity coupled with spinor fields of spin-1/2. We
present a tetrad-affine approach. After deriving the field equations, the conservation
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law of the spin density ensures the vanishing of the antisymmetric part of the Einstein-
like equations, just as it happens in theories with torsion and metricity. We show that
spinors are unaffected by the presence of the nonmetricity. We then focus on Bianchi
type-I cosmological models, proposing a general procedure to solve the corresponding
field equations in the coincident gauge. We provide analytical solutions in the case of
gravitational Lagrangian functions of the kind f (Q) = αQn. At late times, such solu-
tions are seen to isotropize, and depending on the value of the exponent n, they can
undergo an accelerated expansion of the spatial scale factors.
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Introduction

Gravity is one of the fundamental forces in nature, along with electromagnetism, weak
nuclear force, and strong nuclear force.

Ancient Greek philosopher Aristotle made an early attempt to explain gravity by di-
viding the universe into terrestrial and celestial spheres. He believed that all objects
naturally move toward their "natural place" and was the first to suggest that objects
with different masses fall at different rates. However, this idea was later disproved by
Galilei’s experiments between the 16th and 17th centuries. Galilei used inclined planes,
pendulums, and telescopes to demonstrate that all objects accelerate uniformly toward
the Earth if we neglect friction forces.

In 1687, Sir Isaac Newton proposed a comprehensive theory of gravity in his treatise
"Philosophiae Naturalis Principia Mathematica." Newton formulated the inverse-square
law of universal gravitation and introduced the crucial idea that space and time are
absolute entities, providing a non-dynamical background for all physical phenomena.
Newton also assumed that gravitational and inertial masses are equivalent, a hypothesis
known nowadays as the Weak Equivalence Principle.

The failure of Newtonian gravitation to explain the excess in the precession of Mer-
cury’s orbit, together with the incompatibility of the Special Theory of Relativity with
Newton’s theory, led Einstein to formulate General Relativity (GR) in 1915 [1]. Unlike
Newton’s notion of gravity as a force, GR proposed that objects fall towards the Earth
due to the curvature of spacetime. The gravitational field is described in terms of the
metric tensor gab and the curvature of spacetime is connected to the matter distribution.
Curvature and metric are related to each other by the Levi-Civita connection.

At present, GR has passed numerous observational tests, including the so-called clas-
sic tests (i.e. the perihelion precession, the gravitational deflection of light and the grav-
itational redshift [2–6]) proposed by Einstein himself, and more recently the direct de-
tection of gravitational waves in 2015 [7, 8]. However, Einstein’s theory is not free from
open issues.

A first shortcoming is the prediction of singularities, such as those found in black
holes or at the beginning of the universe in the Big Bang theory, in which curvature and
matter density become infinite. The presence of singularities challenges the physicality of
the theory, and it is believed that their ultimate understanding may lie in a quantum the-
ory of gravity. At the same time, GR has yet to be successfully integrated with Quantum
Field Theory, mainly because Quantum Field Theory assumes a non-dynamic spacetime,
while GR treats spacetime as a dynamic quantity [9].

From a cosmological point of view, the recent discovery of Cosmic Acceleration, i.e.
the present phase of accelerated expansion that the universe seems to be currently un-
dergoing, has led to the idea (and indeed the problem) of the "Dark universe." Indeed, in
the Concordance model, the dominance of an unclustered fluid with negative pressure,
known as dark energy, driving the accelerated expansion is assumed [10, 11]. A candi-
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date for dark energy is the cosmological constant Λ. However, the Concordance model
fails to explain why the inferred value of Λ is much lower than the typical value of the
vacuum energy density predicted by the Standard Model of particle physics [12]. In ad-
dition to dark energy, GR does not offer a framework for the existence of the so-called
dark matter, a type of unknown non-interacting matter thought to govern astrophysi-
cal structures such as galaxies, galaxy clusters, etc. The study of the rotation curves of
galaxies provides simple evidence of the existence of dark matter. According to Kepler’s
second law, the velocity of objects orbiting the center of spiral galaxies should decrease
with increasing distance from the center. However, experimental observations show that
the orbital velocity does not decrease with distance, but remains more or less constant
[13–15]. The existence of dark matter is why the Concordance model is often called the
Λ Cold Dark Matter (ΛCDM) model.

One of the main problems of the ΛCDM model is the so-called coincidence problem.
It refers to the observed fact that the energy densities of dark matter and dark energy
are currently roughly the same. This fact implies a fine-tuning problem since these two
components of the universe must have evolved differently, being different in nature, and
since we expect dark energy to be negligible at the time of the formation of cosmic struc-
tures.

The shortcomings of GR in accounting for the phenomena mentioned above have
led the research community to study extensions and modifications of Einstein’s theories.
Over the years, these theories of gravitation have been developed to incorporate gravity
with the other fundamental forces and overcome the limits of GR [16–18].

One of the most common approaches to extending gravity is adding degrees of free-
dom by introducing additional fields that describe the gravitational interaction. The most
famous are scalar-tensor theories, in which a scalar field mediates gravity in addition to
the metric [19–22]. The prototype of these theories is the so-called Brans-Dicke theory,
which, however, is a particular case of the Horndenski theory, the most general scalar-
tensor theory in four dimensions with at most second derivatives of the scalar field giv-
ing second-order equations of motion [23–25]. On the other hand, more complicated
objects might be introduced in the theory, like in the case of bimetric theories [26–28]
in which an additional (dynamic or non-dynamic) second-order tensor is present. The
Minkowski metric gives the simplest non-dynamic example of such tensor, which repre-
sents the choice made by Rosen in the first description of bimetric theory conceived [29].
The geodesic motion of particles is still governed by the usual metric gab, but in the field
equations, we have both metrics. It is also worth mentioning the relativistic gravitation
theory for the MOND paradigm by Bekenstein, which accounts for a vector and a scalar
field other than metric, so it is an example of the so-called tensor-vector-scalar theories
(TeVeS) [30–32]

Another type of GR extension is the approach in which the field equations are higher
than second-order. The classic example is f (R) gravity, where a generic function of the
Ricci scalar is considered [33–35]. With a redefinition of the significant parameters, one
can connect the f (R) theory and the scalar-tensor one. In particular, f (R) gravity can be
connected to Brans-Dicke theory, showing that despite their apparent complexity, f (R)
theories possess only an additional scalar degree of freedom with respect to GR. One can
also consider theories in which contractions of Ricci and Riemann tensors appear in the
action, like, e.g., Gauss-Bonnet invariant. In four dimensions, the Gauss-Bonnet term
corresponds to a boundary term, but this is not true if the invariant is non-minimally
coupled to other fields or in higher dimensions [36–38].
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In this regard, an interesting approach consists of considering a spacetime of dimen-
sions greater than four, as in the Kaluza-Klein theory developed between the 1910s and
1920s to unify gravitation and electromagnetism [39, 40], and representing the precursor
of the formulation of String theory [41, 42]. Among the modern theories that consider
high-dimensional spacetimes, the most famous is Dvali-Gabadadze-Porrati (DPG) grav-
ity [43], which is based on the concept of braneworld, in which the universe is confined to
four-dimensional hypersurfaces, known as brane, encompassed in a higher-dimensional
spacetime called bulk [44–46].

So far, we have mentioned only purely metric theories of gravity where the affine
structure of spacetime is the Levi-Civita one. However, metric tensor and affine connec-
tion can be treated as independent of each other. In this case, one disconnects the causal
structure of spacetime and the idea of parallel transport, which are associated with metric
and connection, respectively, obtaining a much richer theory than GR.

When considered from the variational point of view, there are two different
approaches in considering metric and connection as separate geometric entities: Pala-
tini’s method and the metric-affine formalism [16, 17, 47, 48]. The main difference is that
in the Palatini approach, the matter Lagrangian is independent of connection, whereas in
the metric-affine one, both gravity and matter depend on it. If we apply Palatini’s method
to GR, the variation with respect to connection constrains the connection itself to be that
of Levi-Civita. However, this is a mere coincidence due to the use of the Einstein-Hilbert
action. In general, for other theories, we would obtain different results. In the metric-
affine approach, the resulting theory is different, even in the case of Einstein-Hilbert
Lagrangian.

These alternative ways to geometrize gravity were explored right after the formu-
lation of GR, and they led Weyl to develop a theory with a symmetric and nonmetric
connection, which aimed to unify gravity and electromagnetism [49]. The adjective “non-
metric” indicates that the metric tensor gab is not preserved under parallel transport, im-
plying that the inner product between vectors changes when transported along a given
curve. From the geometric point of view, all this is expressed by the nonmetricity tensor
Qabc. Another interesting geometric approach was considered by Cartan, who developed
a theory where the connection is not symmetric but metric compatible [50], thus intro-
ducing degrees of freedom connected to the torsion tensor Tab

c. Today, we know that
torsion can be associated with a purely quantum property of matter, i.e., the spin. This
connection led to the development of the so-called Einstein-Cartan-Sciama-Kibble the-
ory [51–53] and its several extensions [54–59], which allow introducing spin degrees of
freedom in a relativistic geometric framework.

Both torsion and nonmetricity contain enough degrees of freedom to describe space-
time geometry entirely. Based on this fact, Teleparallel theories were introduced. They
are metric-affine theories of gravity characterized by zero curvature, hence their name.
Einstein initially introduced teleparallelism in an attempt to unify gravitation and elec-
tromagnetism [60]. The idea was based on using tetrad fields since they possess more
degrees of freedom than the metric. However, the Lorentz invariance of the theory lim-
its the additional degrees of freedom. Today, we can recognize two main branches in
teleparallel theories, which are identified by Teleparallel Gravity (TG) and Symmetric
Teleparallel Gravity (STG). Teleparallel Gravity is a gravitational gauge theory for the
translation group that assumes spacetime is flat and describes gravitation through the
torsion and the Weitzenböck connection [61–63]. Also, in TG, the tetrads are the dy-
namical fields, whereas torsion is the field strength. On the other hand, STG assumes a
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torsion-free and curvature-free connection, but with nonmetricity that differs from zero
[64–66]. Although these theories are geometric descriptions of gravity different from GR,
among them, we can consider theories that have field equations equivalent to those of
GR. These are called Teleparallel Equivalent of General Relativity (TEGR) and Symmet-
ric Teleparallel Equivalent of General Relativity (STEGR). Teleparallel theories have been
extended and modified to include new parameters. Significant examples are given by
the f (T) (where T is the torsion scalar) and f (Q) (where Q is the nonmetricity scalar)
theories [67–73].

Within the f (Q) gravity framework, this thesis aims to investigate how nonmetricity
affects spacetime dynamics at both cosmological and astrophysical levels. To this end,
different mathematical methods are used to derive the field equations and their resolu-
tion.

Chapter 1 describes the metric-affine structure with which the differential manifold
representing spacetime is endowed. Special attention is given to nonmetricity, torsion,
and curvature, which constitute the three geometric quantities that characterize an affine
connection. In addition to the covariant derivative, the Lie derivative is also employed,
which is a valuable tool for finding cosmological and astrophysical solutions, given its
connection with the symmetries of the metric.

In Ch. 2, we review the basic principles and concepts that led to the formulation of
GR, showing how the field equations can be derived by a logical process of comparison
with Newtonian gravity as well as by variational principle through Einstein-Hilbert ac-
tion. Next, we analyze the extension of GR given by the f (R) theory, whose paradigm
led to the introduction of f (Q) gravity. In applying the metric-affine approach, we note
how the projection invariance of the Ricci scalar implies stringent constraints on the hy-
permomentum, i.e. the variation of the matter Lagrangian with respect to connection,
and we show some solutions to this issue that have been proposed in the literature.

The STEGR theory and its extensions are described in Ch. 3, focusing in particular
on showing step-by-step how the field equations are derived since the literature is not
always clear about this aspect. In the STEGR, since both curvature and torsion are zero,
a particular choice of coordinates exists where the connection is zero. This coordinate
choice constitutes the so-called “coincident gauge” and is widely used in literature. The
coincident gauge will be employed in the following chapters.

In Ch. 4, we review how the concepts of homogeneity and isotropy imply the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric through the use of the Killing
equations. In addition, we have that the energy-momentum tensor must necessarily be
that of a perfect fluid. By relaxing the concept of isotropy, we can consider possible
anisotropic spaces according to the Bianchi classification. This thesis uses the Bianchi
type-I (BI) metric several times, which is a straightforward generalization of the flat
FLRW metric. Using the reconstruction method and the coincident gauge, in Ch. 5, we
obtain exact solutions for both BI and flat FLRW metric in f (Q) gravity, thereby having
a first glimpse of how nonmetricity affects the evolution of the universe.

In Ch. 6, we apply the 1 + 3 formalism to a spacetime endowed with nonmetricity
but without torsion. The formalism is based on splitting spacetime into a congruence of
timelike curves, representing the observers, and three-dimensional spacelike hypersur-
faces. This splitting allows the nonmetricity tensor to be decomposed into its components
along the congruence and in the orthogonal hypersurfaces, and, in turn, this decompo-
sition highlights the influence of nonmetricity in the kinematic aspects that characterize
spacetime. Using the 1 + 3 formalism, we derive the covariant cosmological equations
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for the BI model in the f (Q) gravity. These equations are then used in Ch. 7 in which we
give a semi-quantitative dynamical analysis through the Dynamical Systems Approach
(DSA). Such analysis is performed by choosing several functions f (Q) widely used in
the literature. Whenever possible, a comparison is made with the results obtained by the
reconstruction method to understand the compatibility between the two approaches.

Chapter 8 is devoted to the study of static and Locally Rotationally Symmetric (LRS)
solutions. We adopt the 1 + 1 + 2 formalism, where a congruence of spacelike curves is
introduced to identify a preferred direction in space. As in the case of the 1+ 3 approach,
the decomposition helps understand the roles of the different components of the non-
metricity tensor in the LRS spacetimes. Indeed, the 1 + 1 + 2 decomposition allows us
to recast the gravitational field equations as a set of scalar differential equations, simpli-
fying their solution considerably. Using these equations, we could show that to have a
Schwarzschild-de Sitter type metric, certain conditions must be imposed on the function
f (Q), the nonmetric scalar, or the scalar components of the nonmetricity tensor.

The last Ch. 9 is dedicated to the study of the coupling between gravitation and
spinors in the context of f (Q) gravity. The unique feature of the proposed approach is
that the dynamical variables are the tetrad field and the affine connection, not the spin
connection as it usually happens. Spinors appear to be unaffected by the presence of
nonmetricity. The theory is applied to BI cosmologies, providing an exact solution that
isotropizes at a late time.

To conclude, in Ch. 10 we discuss final remarks on the results obtained in this thesis.
The material in Chs. 5, 6, 7 and 8 is based on the works [74], [75], and [76] for which

I was responsible for both its drafting and all calculations. The other authors gave me
valuable insights into the general considerations of the results shown. On the other hand,
Ch. 9 is based on the paper [77], in which I contributed to part of the calculations and the
overall analysis of the results.
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I
Gravity as geometry
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1
Geometric preliminaries

This chapter provides mathematical concepts and definitions that are useful for devel-
oping gravitational theories in a geometric framework. In this way, we will be able to
understand what differentiates General Relativity (GR) from other theories that rely not
only on the metric tensor but also on geometric quantities such as torsion and nonmetric-
ity [53, 73, 78–84].

1.1 Metric-affine geometry

Spacetime is described by a 4-dimensional differentiable manifold M endowed with a
metric

g = gabdxadxb, gab = gba, (1.1)

a rank-2 symmetric covariant tensor, which defines a scalar product on the manifold
between any two vectors v = va∂a and w = wa∂a,

g(v, w) = gabvawb, (1.2)

and consequently the length of a vector,

l2 = gabvavb. (1.3)

According to the sign of gabvavb, we distinguish timelike vectors l2 < 0, spacelike vectors
l2 > 0, and lightlike vectors l2 = 0. In view of this, we can define the line element ds2 as
the length of an infinitesimal displacement dx,

ds2 = gabdxadxb. (1.4)

In the case where ds2 < 0, the line element represents the so-called proper time t, that
is the time measured by a clock following the curve to which the infinitesimal displace-
ments dx are tangent.

The metric is assumed to be non-degenerate, g = det(gab) ̸= 0, therefore we can
define the tensor gab such that gabgbc = δa

c , where δa
c is the Kronecker delta. In matrix

representation, gab is nothing more than the inverse matrix of gab. With the introduction
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of the metric, at each point x of the manifold, we can establish an isomorphism between
the tangent space Vx and the dual one V∗x. Locally, it is described by the procedure of
raising and lowering the indices:

gabvb = va. (1.5)

In addition to the metric, the manifold can be endowed with an affine structure in-
duced by the connection Γab

c. The connection is a geometric object that establishes a rule
that maps a vector va at a point x, into a vector wa at an infinitely near point x + dx:

δvc = wc − vc = −Γab
cvbdxa. (1.6)

Under a coordinate change x̄ : xa → x̄b(xa), Γab
c transforms as follows

Γ̄ab
c(x̄) =

∂x̄c

∂xd
∂2xd

∂x̄a∂x̄b +
∂x̄c

∂xd Γe f
d(x)

∂xe

∂x̄a
∂x f

∂x̄b , (1.7)

so it is not a tensor quantity. A generalization of the Euclidean concept of directional
derivative can be introduced using the affine connection. It is called covariant derivative
∇, and applied to an arbitrary tensor T gives

∇cT
a1···an

b1···bm = ∂cT
a1···an

b1···bm + Γcd
a1Td···an

b1···bm + · · ·+ Γcd
anTa1···db1···bm+

− Γcb1
dTa1···an

d···bm − · · · − Γcbn
dTa1···an

b1···d .
(1.8)

The covariant derivative is linear,

∇c (αva + βwa) = α∇cva + β∇cwa ∀ α, β ∈ R, (1.9)

it satisfies the Leibniz rule,

∇c

(
Ta1···an

b1···bm T̄d1···dn e1···em

)
=
(
∇cT

a1···an
b1···bm

)
T̄d1···dn e1···em+

+ Ta1···an
b1···bm

(
∇cT̄

d1···dn e1···em

)
,

(1.10)

and applied to an arbitrary function f ∈ C∞, it is equal to the partial derivative,

∇a f = ∂a f . (1.11)

From Eqs. (1.7) and (1.8), it is evident that the covariant derivative of a tensor is still
a tensor. On the other hand, if T is a generic tensor density of weight w, its covariant
derivative is given by

∇cT
a1···an

b1···bm = ∂cT
a1···an

b1···bm + Γcd
a1Td···an

b1···bm + · · ·+ Γcd
anTa1···db1···bm+

− Γcb1
dTa1···an

d···bm − · · · − Γcbn
dTa1···an

b1···d + wΓcd
dTa1···an

b1···bm .
(1.12)

Using the connection and the associated covariant derivative, we can also define the
notion of parallel transport along a given curve. To this end, let γ(λ) be a curve in M
with tangent vector ua = dxa/dλ, we say that a tensor field T is parallel transported
with respect to Γab

c along γ if

uc∇cT
a1···an

b1···bm = 0. (1.13)

Moreover, if the following relation holds

ua∇aub = 0, (1.14)

the curve γ(λ) is called autoparallel with respect to Γab
c.

9
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1.2 Nonmetricity and torsion

Given two vectors va and wa which are parallel transported along a curve γ, their scalar
product is not in general preserved,

uc∇c

(
gabvawb

)
= vawbuc∇cgab + wauc∇cva + vauc∇cwa = vawbucQcab. (1.15)

The tensor Qcab is called nonmetricity,

Qcab = ∇cgab Qcab = Qcba, (1.16)

and there are two independent vectors associated to it,

qc = gabQcab and Qb = gcaQcab. (1.17)

Nonmetricity represents the failure of the connection to covariantly preserve the metric
and the scalar product of parallel transported vectors, so the norm of a vector is not
conserved either. Another consequence is that the process of raising and lowering indices
does not commute with the covariant derivation. For example, if we want to lower the
index in ∇avb, we have

gbc∇avc = ∇avb −Qabcvc. (1.18)

In view of this, we must be careful in defining tensors that are the covariant derivative of
covariant or contravariant objects. An example is represented by the nonmetricity itself.
Let us explicitly calculate Qa

bc,

Qc
ab =gadgbeQcde = gadgbe∇cgde = ∇c

(
gadgbegde

)
− gdegbe∇cgad − gdegad∇cgbe =

=∇cgab −∇cgab −∇cgab = −∇cgab.
(1.19)

If we had defined nonmetricity with the totally contravariant metric instead, we would
have had Qc

ab = ∇cgab, which differs from Eq. (1.19) by a minus sign.
From the definition (1.16),

Qcab = ∂cgab − Γca
dgdb − Γcb

dgad, (1.20)

and subsequent permutations,

Qabc = ∂agbc − Γab
dgdc − Γac

dgbd, (1.21)

Qbca = ∂bgca − Γbc
dgda − Γba

dgcd, (1.22)

subtracting Eq. (1.20) from the sum of Eq. (1.21) and (1.22), we derive

Qabc + Qbca −Qcab = ∂agbc + ∂bgca − ∂cgab − 2Γ(ab)
dgdc − 2Γ[ac]

dgbd − 2Γ[bc]
dgda. (1.23)

From the last expression, we obtain the connection decomposition

Γab
c = Γ̃ab

c +
1
2
(Tab

c + Tc
ab + Tc

ba) +
1
2
(Qc

ab −Qab
c −Qba

c) . (1.24)
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We have introduced the Levi-Civita connection1,

Γ̃ab
c =

1
2

gcd (∂agbd + ∂bgad − ∂dgab) Γ̃ab
c = Γ̃ba

c, (1.25)

the only symmetric and metric compatible connection, i.e., so that ∇cgab = 0, and the
torsion Tab

c,
Tab

c = Γab
c − Γba

c, Tab
c = −Tba

c, (1.26)

the antisymmetric part of the connection. From Eq. (1.7), we prove that torsion is a
tensor,

T̄ab
c = Γ̄ab

c − Γ̄ba
c =

∂x̄c

∂xd
∂xe

∂x̄a
∂x f

∂x̄b

(
Γe f

d − Γ f e
d
)

. (1.27)

Geometrically, torsion measures the non-closure of the parallelogram formed when two
infinitesimal vectors, such as va and wa, are parallel transported along each other. The
failure to construct the parallelogram is represented by the vector Tab

cvawb.
In decomposition (1.24), it is useful to define the distortion tensor,

Nab
c = Kab

c + Lab
c, (1.28)

where Kab
c is the contortion tensor,

Kab
c =

1
2
(Tab

c + Tc
ab + Tc

ba) , (1.29)

which is antisymmetric in the last two indices,

Kacb =
1
2
(Tacb + Tbac + Tbca) =

1
2
(−Tcab − Tabc − Tcba) = −Kabc, (1.30)

whereas Lab
c is the disformation tensor,

Lab
c =

1
2
(Qc

ab −Qab
c −Qba

c) , (1.31)

which is instead symmetric in the first two indices, Lab
c = Lba

c.

1.2.1 Levi-Civita tensor

The Levi-Civita tensor is the tensor constructed from the Levi-Civita symbol ϵabcd and
the determinant of the metric g, which are both tensor densities of weight −1 and −2,
respectively,

εabcd =
√
−gϵabcd, εabcd =

1√−g
ϵabcd, (1.32)

where
ϵmnpqgmagnbgpcgqd = −gϵabcd, (1.33)

and it is characterized by the following properties,

εabcd = ε [abcd], (1.34)

1Throughout the thesis, we will denote by a tilde all quantities related to the Levi-Civita connection.
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εabcdεe f gh = −24δe
[aδ f

bδg
cδh

d], (1.35)

εabcdεae f g = −6δe
[bδ f

cδg
d], (1.36)

εabcdεabe f = −4δe
[cδ f

d], (1.37)

εabcdεabce = −6δe
d, (1.38)

εabcdεabcd = −24. (1.39)

Its covariant derivative is equal to

∇eεabcd =∂eεabcd − Γea
hεhbcd − Γeb

hεahcd − Γec
hεabhd − Γed

hεabch = ∂eεabcd − Γeh
hεabcd =

=

(
1√−g

∂e
√
−g
)

εabcd +

(
1
2

qe −
1
2

gab∂egab

)
εabcd =

1
2

qeεabcd.

(1.40)

Therefore, it is covariantly preserved only in the absence of nonmetricity. In Eq. (1.40)
we used the relation

1√−g
∂e
√
−g =

1
2

gab∂egab. (1.41)

1.3 Curvature

From the commutator of two covariant derivatives applied to a vector va,

[∇c,∇d] va = ∇c∇dva −∇d∇cva = Ra
bcdvb − Tcd

b∇bva, (1.42)

we define the Riemann tensor, or curvature tensor, for the connection Γab
c,

Ra
bcd = ∂cΓdb

a − ∂dΓcb
a + Γce

aΓdb
e − Γde

aΓcb
e, (1.43)

which is antisymmetric in the last two indices,

Ra
bcd = −Ra

bdc, (1.44)

and satisfies the two Bianchi identities:

• First Bianchi identity,
Ra

[bcd] = ∇[bTcd]
a − T[cd

eTb]e
a; (1.45)

• Second Bianchi identity,

∇[e|R
a

b|cd] = −Ra
b f [eTcd]

f . (1.46)

Similar relations are obtained for a covector wa,

[∇c,∇d]wb = −Ra
bcdwa − Tcd

a∇awa, (1.47)

and an arbitrary tensor Ta1···an b1···bm ,

[∇c,∇d]Ta1···an
b1···bm =Ra1 ecdTe···an

b1···bm + · · · − Re
b1cdTa1···an

e···bm + · · ·+
− Tcd

e∇eT
a1···an

b1···bm .
(1.48)
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Equations (1.42), (1.47), and (1.48) are called Ricci identities.
From a geometric point of view, curvature measures the rotations of a vector when

parallel transported along a closed curve. For example, if we consider a parallelogram
built by two vectors ra and sa, and we perform the parallel transport of a vector va along
it, we obtain that the difference of va after and before the loop is

δva = Ra
bcdvbrcsd. (1.49)

Furthermore, we can demonstrate that the relative acceleration of two infinitely near
curves is deeply related to Riemann and torsion tensors. Let γs(λ) be a family of curves,
with s ∈ R the parameter that identifies a curve of the family, ua = ∂xa/∂λ the vector
field tangent to the family of curves, and wa = ∂xa/∂s the vector field which gives the in-
finitesimal displacement at a fixed value of λ from a curve to another. Since the following
relation for the torsion tensor holds

ua∇awb − wa∇aub = −Tac
buawc, (1.50)

the relative acceleration of two curves in the family is equal to

ab =ua∇a

(
uc∇cwb

)
= ua∇a

(
wc∇cub

)
− ua∇a

(
Tcd

bucwd
)
=

= (ua∇awc)∇cub + uawc∇a∇cub − ua∇a

(
Tcd

bucwd
)
=

= (ua∇awc)∇cub + uawc∇c∇aub + uawcRb
dacud+

− uawcTac
d∇dub − ua∇a

(
Tcd

bucwd
)
=

= (wa∇avc)∇cub − Tad
cuawd∇cub + uawc∇c∇aub + uawcRb

dacud+

− uawcTac
d∇dub − ua∇a

(
Tcd

bucwd
)
=

=wc∇c

(
ua∇aub

)
+ Rb

dacuduawc − ua∇a

(
Tcd

bucwd
)

.

(1.51)

Specifically, there is a direct proportionality between the relative acceleration and the
Riemann tensor when the curves of the family are autoparallel and the torsion is null.

Riemann tensor has three independent contractions:

• Ricci tensor,
Rbd = Ra

bad; (1.52)

• the contraction of the second and third index,

R̄ad = Ra
b

bd; (1.53)

• homothetic curvature,

Řcd = Ra
acd, Řcd = −Řdc. (1.54)

The contraction of Eqs. (1.52) and (1.53) with the metric gives the Ricci scalar,

R = gabRab = −gabR̄ab. (1.55)

13



CHAPTER 1. GEOMETRIC PRELIMINARIES

Using Eq. (1.24), we have the decomposition of Riemann tensor,

Ra
bcd = R̃a

bcd + ∇̃cNdb
a − ∇̃dNcb

a + Ncp
aNdb

p − Ndp
aNcb

p, (1.56)

where R̃a
bcd and ∇̃ are the curvature and the covariant derivative of the Levi-Civita con-

nection Γ̃ab
c, respectively. Notice that R̃abcd is antisymmetric in the first two indices,

therefore we can derive a simple relation between the homothetic curvature and non-
metricity tensor,

Řcd = ∇̃cLda
a − ∇̃dLca

a = −∇̃[cqd] = −∂[cqd], (1.57)

emphasizing the purely nonmetric nature of Řcd. From the decomposition of the Ricci
scalar,

R =R̃ +
1
4

QcabQcab − 1
2

QcabQabc − 1
4

qaqa +
1
2

qaQa +
1
4

TabcTabc − 1
2

TcabTabc − TaTa+

+ QabcTabc − qaTa + QaTa + ∇̃a (qa −Qa + 2Ta) =

=R̃ +Q+ T + QabcTabc − qaTa + QaTa + ∇̃a (qa −Qa + 2Ta) ,
(1.58)

with Ta = Tab
b, we define both the nonmetricity scalar,

Q =
1
4

QcabQcab − 1
2

QcabQabc − 1
4

qaqa +
1
2

qaQa, (1.59)

and the torsion scalar,

T =
1
4

TabcTabc − 1
2

TcabTabc − TaTa. (1.60)

Decomposition (1.58) will assist us in understanding the equivalence between GR and
STEGR (see Ch. 3).

1.3.1 Irreducible decomposition of Riemann tensor: the Weyl tensor

Let us split the Riemann tensor into its antisymmetric and symmetric parts in the first
two indices [85, 86],

Rabcd = R[ab]cd + R(ab)cd = Wabcd + Zabcd, (1.61)

where
Wabcd = R[ab]cd, and Zabcd = R(ab)cd. (1.62)

The antisymmetric part can be decomposed as follows,

Wabcd =
6

∑
n=1

W(n)
abcd, (1.63)

W(1)
abcd = Wabcd −

6

∑
n=2

W(n)
abcd, (1.64)

W(2)
abcd =

1
2
(Wabcd −Wcdab)−

(
R[mn] − R̄[mn]

)
δm
[a g b][c δn

d], (1.65)

W(3)
abcd = W[abcd] = R[abcd], (1.66)
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W(4)
abcd = −

(
R(mn) − R̄(mn)

)
δm
[a g b][c δn

d] −
1
2

gc[agb]dR, (1.67)

W(5)
abcd =

(
R[mn] − R̄[mn]

)
δm
[a g b][c δn

d], (1.68)

W(6)
abcd =

1
6

gc[agb]dR. (1.69)

On the other hand, the symmetric part is decomposed as

Zabcd =
5

∑
n=1

Z(n)
abcd, (1.70)

Z(1)
abcd = Zabcd −

5

∑
n=2

Z(n)
abcd, (1.71)

Z(2)
abcd =

1
2

(
Zabcd − Zc(ab)d + Zd(ab)c

)
+

− 1
4

(
R[mn] + R̄[mn] − Řmn

) (
2δm

(agb)[cδn
d] − gabδm

[c δn
d]

)
,

(1.72)

Z(3)
abcd =

1
6

(
R[mn] + R̄[mn] −

1
2

Řmn

)(
4δm

(agb)[cδn
d] − gabδm

[c δn
d]

)
, (1.73)

Z(4)
abcd =

1
2

(
R(mn) + R̄(mn)

)
δm
(agb)[cδn

d], (1.74)

Z(5)
abcd =

1
4

gabŘcd. (1.75)

We call Weyl tensor the following expression,

Cabcd = W(1)
abcd + Z(1)

abcd, (1.76)

which is the trace-free component of the Riemann tensor, and it has the same symmetries.
In a pure metric theory, the Weyl tensor is defined by the Ricci decomposition:

C̃abcd = R̃abcd +
1
2
(

gadR̃bc − gacR̃bd + gbcR̃ad − gbdR̃ac
)
+

1
6

R̃ (gacgbd − gadgbc) . (1.77)

The Weyl tensor (1.77) is also called conformal tensor since, if we raise the first index,
Ca

bcd, it is invariant under conformal transformations of the metric, that is, transforma-
tions that preserve the metric up to a scale factor [82],

g −→ e2σg. (1.78)

In the case of C̃abcd equal to zero, the metric is said to be conformally flat. An example is
the Friedmann-Lemaître-Robertson-Walker metric given in Sec. 4.1.
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1.4 Geodesics

A geodesic is the generalization of the Euclidean concept of a straight line as the shortest
path between two fixed points. Given a curve γ(λ), with endpoints A and B, and tangent
vector ua = dxa/dλ, the geodesic is the extremal of the length functional

lAB =
∫ B

A

√
±gabuaubdλ. (1.79)

Considering, for example, a timelike curve gabuaub < 0, we have

0 =δlAB = δ
∫ B

A

√
−gab

dxa

dλ

dxb

dλ
dλ =

=−
∫ B

A

1
2

(
−gde

dxd

dλ

dxe

dλ

)− 1
2
(

δxc∂cgab
dxa

dλ

dxb

dλ
+ 2gab

d
dλ

(δxa)
dxb

dλ

)
dλ =

=−
∫ B

A

1
2

(
−gde

dxd

dλ

dxe

dλ

)− 1
2
[

δxc∂cgab
dxa

dλ

dxb

dλ
− 2gabδxa d2xb

dλ2 − 2δxa∂cgab
dxc

dλ

dxb

dλ
+

−
(
−gmn

dxm

dλ

dxn

dλ

)−1 d
dλ

(
−gpq

dxp

dλ

dxq

dλ

)
gab

dxb

dλ
δxa

]
dλ =

=
∫ B

A

[
−gde

dxd

dλ

dxe

dλ

]− 1
2
[

gab
d2xb

dλ2 + ∂cgab
dxc

dλ

dxb

dλ
− 1

2
∂agcb

dxc

dλ

dxb

dλ
+

+

(
−gmn

dxm

dλ

dxn

dλ

)−1 d
dλ

(
−gpq

dxp

dλ

dxq

dλ

)
gab

dxb

dλ

]
δxadλ,

(1.80)

where we imposed δxa(A) = δxb(B) = 0. Multiplying the integrand by the gda, we
obtain the desired geodesic equation,

d2xd

dλ2 +
1
2

gda (∂bgca + ∂cgba − ∂agbc)
dxc

dλ

dxb

dλ
+

+

(
−gmn

dxm

dλ

dxn

dλ

)−1 d
dλ

(
−gpq

dxp

dλ

dxq

dλ

)
dxd

dλ
= 0,

(1.81)

Of course, the same result can be obtained using the Euler-Lagrange equations,
d

dλ

∂L
∂ua −

∂L
∂xa = 0, (1.82)

with L =
√
−gabuaub.

If the tangent vector ua has constant length, as in absence of nonmetricity, the geodesic
equation (1.81) is equal to

d2xd

dλ2 +
1
2

gda (∂bgca + ∂cgba − ∂agbc)
dxc

dλ

dxb

dλ
=

d2xd

dλ2 + Γ̃bc
d dxc

dλ

dxb

dλ
= 0, (1.83)

that is,
ua∇̃aud = 0. (1.84)

Therefore, when we have zero torsion and nonmetricity, autoparallel curves (1.14) are
geodesics.
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1.5 Lie derivative and Killing vectors

Let X = Xa∂a be a vector field, the Lie derivative with respect to X is an operator, LX, that
maps tensor to tensor of the same manifold as follows

LXTa1···an
b1···bm =Xc∂cT

a1···an
b1···bm −Tc···an

b1···bm ∂cXa1 + · · ·+
+ Ta1···an

c···bm ∂b1 Xc + · · ·,
(1.85)

and it satisfies the properties [82]:

• let Y be a vector field, the Lie derivative is linear, that is ∀ α, β ∈ R

LX
(
αTa1···an

b1···bm + βT̄a1···an
b1···bm

)
= αLXTa1···an

b1···bm + βLXT̄a1···an
b1···bm , (1.86)

LαX+βYTa1···an
b1···bm = αLXTa1···an

b1···bm + βLYTa1···an
b1···bm ; (1.87)

• Leibniz rule,

LX

(
Ta1···an

b1···bmT̄d1···dn e1···em

)
=
(
LXTa1···an

b1···bm

)
T̄d1···dn e1···em+

+ Ta1···an
b1···bm

(
LXT̄d1···dn e1···em

)
;

(1.88)

• let Y be a vector field,
LXY = [X, Y] = X(Y)− Y(X); (1.89)

• let f be an arbitrary function,

LX f = X( f ) = Xa∂a f . (1.90)

Lie derivative is closely related to the one-parameter transformation groups: if a tensor
is invariant under the action of a one-parameter transformation group, the Lie deriva-
tive with respect to the infinitesimal generator is zero. A simple example is given by
isometries, transformations such as y : xa → yb(xa) that preserve the metric:

gab(x) =
∂yc

∂xa
∂yd

∂xb gcd(y). (1.91)

Considering the infinitesimal transformation

ya = xa + ϵXa, (1.92)

with ϵ→ 0 and X the vector field that generates the transformation, the metric becomes,

gab(x) =
(

δc
a + ϵ

∂Xc

∂xa

)(
δd

b + ϵ
∂Xd

∂xb

)
gcd(y)

≈gab(x) + ϵXc∂cgab(x) + ϵ∂aXcgcb(x) + ϵ∂bXcgac(x),

(1.93)

where we stopped at the first order in ϵ. Therefore, for the metric to be invariant under
the transformation (1.92), it must be

Xc∂cgab(x) + ∂aXcgcb(x) + ∂bXcgac(x) = 0, (1.94)
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which is exactly the definition of the Lie derivative, LXgab = 0. Equation (1.94) is called
Killing equation and the infinitesimal generator of the isometry X is called Killing vector
field. If we write Xc = gcdXd, we have

∇̃(aXb) = 0. (1.95)

This equation allows us to completely determine the Killing vectors from given values
of Xa and ∇̃aXb at some point P of the manifold [78, 87]. Indeed, the Ricci identity (1.47)
and the first Bianchi identity for the Levi-Civita Riemann tensor,

R̃a
bcd + R̃a

cdb + R̃a
dbcd = 0, (1.96)

together with Eq. (1.95) yield the following relation

∇̃b∇̃cXd = R̃a
bcdXa. (1.97)

Therefore, given Xa and ∇̃aXb at a given point P, we can determine the second derivative
of the Killing vector at P, and its successive derivatives by Eq. (1.97). Hence, all the
derivatives of Xa in P are a linear combination of Xa(P) and ∇̃aXb(P). So, we can write
a generic Killing vector as

Xa(x) = Aa
b(x)Xb(P) + Ba

bc(x)∇̃bXc(P), (1.98)

where Aa
b and Ba

bc are functions independent of the initial values Xa(P) and ∇̃aXb(P).
Because of that, they are the same for all Killing vectors. In this way, we proved that the
Killing vectors are well established by Eq. (1.95).

Killing vectors form a vector space since the Killing equations (1.94) are linear in X.
Moreover, they also form a Lie algebra, that is, a vector space closed to commutation. To
prove this we need to use the Jacobi identity2

[[X, Y] , Z] + [[Z, X] , Y] + [[Y, Z] , X] = 0, (1.99)

and to demonstrate the well-known property of the Lie derivative,

L[X,Y] = LXLY − LYLX. (1.100)

First, we apply Eq. (1.100) to a generic function f ,

(LXLY − LYLX) f = X(Y( f ))− Y(X( f )) = [X, Y] ( f ) = L[X,X] f , (1.101)

and to a vector field Z,(
L[X,Y] − LXLY + LYLX

)
Z = [[X, Y] , Z]− [X, [Y, Z]] + [Y, [X, Z]] = 0, (1.102)

which is zero because of the Jacobi identity. Now, let us show that the r.h.s. of Eq. (1.100)
satisfies the Leibniz rule,

(LXLY − LYLX)
(

Ta1···an
b1···bmT̄d1···dn e1···em

)
=

= LX

[(
LYTa1···an

b1···bm

)
T̄d1···dn e1···em + Ta1···an

b1···bm

(
LYT̄d1···dn e1···em

)]
+

− LY

[(
LXTa1···an

b1···bm

)
T̄d1···dn e1···em + Ta1···an

b1···bm

(
LXT̄d1···dn e1···em

)]
=

=
[
(LXLY − LYLX)Ta1···an

b1···bm

]
T̄d1···dn e1···em+

+ Ta1···an
b1···bm

[
(LXLY − LYLX) T̄d1···dn e1···em

]
.

(1.103)

2To prove Eq. (1.99), it is sufficient to apply the l.h.s. to an arbitrary function f .
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The last thing we have left to prove is that Eq. (1.100) is true when it acts on a dual field
wa. In order to do this we consider the contraction of wa with a vector field va, which
forms a scalar,

0 =
(
L[X,Y] − LXLY + LYLX

)
wava = va

(
L[X,Y] − LXLY + LYLX

)
wa. (1.104)

Thus, Eq. (1.100) is true for any arbitrary tensor. Hence, we can show that the commuta-
tor of two Killing fields is a Killing field,

L[X,Y]gab = (LXLY − LYLX) gab = 0. (1.105)

The fact that the Killing fields form a Lie algebra will be an important aspect in the anal-
ysis of homogeneous spaces (see Ch. 4).

Finally, Eq. (1.85) can be recast using both the definition of covariant derivative (1.8)
and the connection decomposition (1.24),

LXTa1···an
b1···bm =Xc∇cT

a1···an
b1···bm −Tc···an

b1···bm∇cXa1 + · · ·+ Ta1···an
c···bm∇b1 Xc+

+ · · ·+ Tcd
a1Tc···an

b1···bm Xd + · · ·+ Tcb1
dXcTa1···an

d···bm + · · ·,
(1.106)

providing a new geometric interpretation of the Lie derivative. Let Y = Ya∂a a vector
parallel transported along X, and vice versa, the Lie derivative with respect to X is equal
to

LXYa = Xc∇cYa −Yc∇cXa + Tcd
aYcXd = Tcd

aYcXd, (1.107)

i.e., it measures the failure of the closure of the parallelogram given by the
vector Tcd

aYcXd.
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2
General Relativity and metric-affine

formulation

Making use of the geometric framework described above, in this chapter, we discuss how
gravity is described in the context of General Relativity (GR), the first geometric theory
of gravitation. Thereafter, we focus on theories that are modifications or extensions of
GR itself.

2.1 General Relativity

General Relativity was formulated by Einstein in the early twentieth century, and it is
based on what we refer to as Einstein’s Equivalence Principle (EEP). It states that [2]:

• Weak Equivalence Principle (WEP) holds, that is “if an uncharged test body is placed
at an initial event1 in spacetime and given an initial velocity there, then its subsequent
trajectory will be independent of its internal structure and composition”;

• the outcome of any local nongravitational test experiment is independent of the velocity of
the freely falling apparatus (Local Lorentz Invariance);

• the outcome of any local nongravitational test experiment is independent of where and when
in the universe it is performed (Local Position Invariance).

WEP means that in a local system of reference, it is impossible to distinguish the effects
of a gravitational field from those due to uniformly accelerated frames just by using
the observation of free-falling particles. On the other hand, by local nongravitational
test experiment, we refer to an experiment performed in a free-falling laboratory small
enough to avoid inhomogeneities and in which self-gravitational effects are negligible.

It is possible to demonstrate that if a gravitation theory satisfies the EEP, then the
following postulates are valid (more details are given in [2]):

• the spacetime is endowed with a metric tensor gab;

1We refer to “event” as an arbitrary point of spacetime.
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• the world lines of test bodies are geodesics of the metric tensor;

• there always exists a local free-falling frame, called local inertial frame, where the nongrav-
itational laws of physics are those of special relativity.

The last postulate implies that in a local inertial frame

gab = ηab, ∂cgab = 0, (2.1)

where ηab ≡ (−1, 1, 1, 1) is the Minkowski metric.
Another cornerstone of GR is that equations preserve their form under an arbitrary

coordinate transformation. This statement is called the Principle of General Covariance.
The significance of this principle lies in the fact that, because of its general covariance,
a physical equation will be true in the presence of a gravitational field if it is true in the
absence of it. Thus, it relates to the postulate of the existence of the local inertial frame.

Now, let us show that the free-fall motion of a test particle is given by the geodesic
equation [78]. In a local inertial frame, the equation of motion is that of a straight line,

d2ya

ds2 = 0, (2.2)

where
ds2 = ηabdyadyb (2.3)

is the line element of spacetime. Supposing the free-falling coordinates ya are a function
of an arbitrary coordinate system xa, i.e, ya = ya(xb), we have

0 =
d2ya

ds2 =
d
ds

(
∂ya

∂xb
dxb

ds

)
=

∂ya

∂xb
d2xb

ds2 +
∂aya

∂xb∂xc
dxb

ds
dxc

ds
. (2.4)

Multiplying by ∂xd/∂ya, Eq. (2.4) becomes

d2xd

ds2 +

(
∂xd

∂ya
∂2ya

∂xb∂xc

)
dxb

ds
dxc

ds
= 0. (2.5)

It is simple to derive that the term in parentheses represents exactly the Levi-Civita con-
nection (1.25). Recalling how the metric transforms under a change of coordinate system,

gab =
∂yc

∂xa
∂yd

∂xb ηcd, (2.6)

and differentiating with respect to xh, we obtain

∂gab

∂xh =
∂2yc

∂xh∂xa
∂yd

∂xb ηcd +
∂yc

∂xa
∂2yd

∂xh∂xb ηcd =

=

(
∂2yc

∂xh∂xa
∂xp

∂yc

)
∂yq

∂xp
∂yd

∂xb ηqd +
∂yc

∂xa
∂yq

∂xp

(
∂2yd

∂xh∂xb
∂xp

∂yd

)
ηcq =

=

(
∂2yc

∂xh∂xa
∂xp

∂yc

)
gpb +

(
∂2yd

∂xh∂xb
∂xp

∂yd

)
gap.

(2.7)
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From subsequent permutations of the indices,

∂gbh
∂xa =

(
∂2yc

∂xa∂xb
∂xp

∂yc

)
gph +

(
∂2yd

∂xa∂xh
∂xp

∂yd

)
gbp, (2.8)

∂gha

∂xb =

(
∂2yc

∂xh∂xb
∂xp

∂yc

)
gpa +

(
∂2yd

∂xb∂xa
∂xp

∂yd

)
ghp, (2.9)

subtracting Eq. (2.7) from the sum of Eq. (2.8) and Eq. (2.9), and multiplying by geh,
finally we find (

∂2yc

∂xb∂xb
∂xe

∂yc

)
=

1
2

geh (∂agbh + ∂bgah − ∂hgab) , (2.10)

that is

Γ̃ab
e =

∂2yc

∂xa∂xb
∂xe

∂yc . (2.11)

Therefore, Eq. (2.5) is equal to the geodesic equation (1.83),

d2xd

ds2 + Γ̃bc
d dxb

ds
dxc

ds
= 0. (2.12)

The connection Γ̃bc
d represents the gravitational force applied on the test particle, or in

the absence of a gravitational field the apparent force that appears when performing a
transformation from an inertial to an arbitrary frame.

According to this result, in GR the connection of the spacetime is assumed to be the
Levi-Civita one, without torsion and nonmetricity. Therefore, the metric is preserved by
the covariant derivative,

∇̃cgab = 0, (2.13)

and the Riemann tensor has the following expression

R̃a
bcd = ∂cΓ̃db

a − ∂dΓ̃cb
a + Γ̃ce

aΓ̃db
e − Γ̃de

aΓ̃cb
e, (2.14)

with the properties:

• antisymmetry in the last two indices,

R̃abcd = −R̃abdc; (2.15)

• antisymmetry in the first two indices,

R̃abcd = −R̃bacd; (2.16)

• symmetry by exchanging the pair of the first two indices with the pair of the last
two ones,

R̃abcd = R̃cdab; (2.17)

• First Bianchi identity,
Ra

[bcd] = 0; (2.18)

• Second Bianchi identity,
∇[e|R

a
b|cd] = 0. (2.19)
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In addition, Rab = R̄ab, and Řab = 0. Through the contractions of the Riemann tensor we
can construct the so-called Einstein tensor,

Gab = R̃ab −
1
2

gabR̃, (2.20)

which satisfies the contracted Bianchi identity,

∇̃aGa
b = 0. (2.21)

From Eq. (1.51), we have for two infinitely close geodesics the proportionality between
the relative acceleration and the Riemann tensor,

aa = R̃a
bcdubucwd, (2.22)

which manifests the fact that in GR gravity is mediated by the curvature of spacetime.

2.1.1 Field Equations

One of the starting points followed by Einstein in describing GR through field equations
was the comparison with the Poisson equation of Newtonian gravity,

∂a∂aϕ = 4πGNρ, (2.23)

where ϕ is the gravitational potential, GN is the Newtonian gravitational constant, and ρ
is the mass density of matter (we set c=1) [78, 80]. In analogy with the Poisson equation,
we are looking for a tensor that is linear in second-order derivatives of the metric, which
is the gravitational field. However, the only tensors that satisfy this requirement are the
Riemann tensor and its contraction. In addition, in Newtonian gravity, the acceleration
of two near particles is proportional to wc∂c∂aϕ, with wd the separation vector of the
particles, while we showed in Eq. (2.22) that in GR it is proportional to R̃a

bcdubudwc, with
ua the tangent vector of the geodesics, which correspond to the 4-velocity of the particles.
Therefore, a correspondence between these two quantities can be proposed,

R̃a
bcdubuc ←→ ∂d∂aϕ. (2.24)

Moreover, in GR the properties of matter distribution are described by the
energy-momentum tensor Ψab, and the conservation equations2

∇̃aΨab = 0. (2.25)

A correspondence with ρ can be given by

Ψabuaub ←→ ρ. (2.26)

Having in mind Eq. (2.23), Einstein was originally driven to postulate the following field
equations

R̃ab = 4πGNΨab. (2.27)

2Notice that the introduction of an energy-momentum tensor and Eq. (2.25) cannot be justified with the
postulates of GR alone, but it results from the choice of having equations that express the conservation of
the total energy [1].
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However, due to Eq. (2.25), we obtain

∇̃aR̃ab = 0. (2.28)

This equation represents a severe constraint since the identity (2.21) implies ∇̃aR̃ = 0.
Hence, the scalar R̃ would be constant everywhere. The most natural choice was to use
the Einstein tensor to replace the Ricci tensor, in order to have the well-known Einstein
equations,

Gab = 8πGNΨab. (2.29)

The same equations can be derived by the Einstein-Hilbert action,

AE−H = AG + AM =
1

16πGN

∫
R̃
√
−gd4x +

∫
Lm(gab, ψ)

√
−gd4x, (2.30)

where AG and Am are the gravitational and matter actions, respectively,
√−gd4x is the

invariant volume, and Lm the matter Lagrangian density, with ψ representing the field
that describe the ordinary matter. The variation with respect to the metric tensor yields

δAG =
1

16πGN

∫ [
δ
√
−gR̃ +

√
−gδgabR̃ab +

√
−ggabδR̃ab

]
d4x =

=
1

16πGN

∫ [√
−gδgab

(
R̃ab −

1
2

gabR̃
)
+

+
√
−g∇̃c

(
gabδΓ̃ba

c − gcbδΓ̃ab
a
)]

d4x =

=
1

16πGN

∫ [√
−gδgab

(
R̃ab −

1
2

gabR̃
)
+

+∂c

(√
−ggabδΓ̃ba

c −
√
−ggcbδΓ̃ab

a
)]

d4x,

(2.31)

where we used the relation

δR̃ab = ∇̃c

(
δΓ̃ba

c − δc
aΓ̃db

d
)

, (2.32)

and that from Eq. (1.12), considering the Levi-Civita covariant derivative of a vector
density, we have

∇̃c
(√
−gvc) = ∂c

(√
−gvc)+ Γ̃cd

c (√−gvc)− Γ̃dc
c (√−gvc) = ∂c

(√
−gvc) . (2.33)

In the last line of Eq. (2.31), the second term is a total derivative, and, by the divergence
theorem, it results in a boundary term. Usually, this boundary term is nonzero since it
depends on δgab and its first derivative ∂cδgab, which in general does not vanish on the
boundary [88, 89]. To avoid this problem, it is necessary to add to the Einstein-Hilbert
action an additional term that cancels the boundary one out3. However, we assume that
the boundary term is null, and thus we obtain the Einstein equations4,

R̃ab −
1
2

gabR̃ = 8πGNΨab, (2.34)

with the energy-momentum tensor

Ψab = −
2√−g

δ (
√−gLm)

δgab . (2.35)

3An explicit evaluation is given in Appendix A.
4According to Lovelock’s theorem [16, 90], the only field equations of second order that can be derived

by an action involving the metric tensor and its first and second derivatives are represented by Eq. (2.34).
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2.2 Alternative and extended theories of gravity

Despite the great successes of Einstein’s theory, some shortcomings of GR have emerged
over the years. For example, in cosmology, no known matter source can generate the ac-
celerated expansion phase that we measure. The currently most widely accepted model
for cosmology, the ΛCDM model, assumes that the accelerated expansion is due to the
cosmological constant Λ. However, the observed value of Λ disagrees with the theoreti-
cal prediction. This result led the community to consider more general fluids, generally
known as dark energy, with the same key property as Λ, that is, negative pressure. At the
quantum level, the main conceptual problem is that in GR the metric is the field describ-
ing both the dynamics of gravity and the spacetime background, while quantum theories
are formulated on a fixed background.

Alternative and extended theories of gravity have been developed [16–18] to unify
gravity with the other three fundamental forces and/or to overcome the open questions
left by GR. They can be characterized by extra tensor fields that mediate the gravity be-
sides metric tensor (e.g., scalar-tensor theories [21, 22], bimetric theories [26–29], Einstein-
Aether theory [91, 92] and so on), as well as extra spatial/temporal dimensions of space-
time (e.g, Kaluza-Klein theory [39, 40], Einstein-Gauss-Bonnet gravity [93], DGP gravity
[43] and so on) or higher-order derivative field equations (e.g., f (R) theories [34, 35],
Hořava-Lifschitz gravity [33, 94] and so on). Theories and approaches involving torsion
and nonmetricity may also be considered, as we will see below. In this section, we will
analyze f (R) theories, which will be a guideline to introduce the f (Q) gravity, the lead-
ing theory of this thesis.

2.2.1 f (R) theories

The f (R) theories [34, 35] are based on the generalization of the Einstein-Hilbert action
considering a generic function of the Ricci scalar R̃,

A =
1

16πGN

∫
f (R̃)

√
−gd4x +

∫
Lm(gab, ψ)

√
−gd4x (2.36)

The variation with respect to the metric tensor of the matter Lagrangian is given by Eq.
(2.35), whereas from the variation of the gravitational one we obtain

δ
∫

f
√
−gd4x =

∫ [
δ
(√
−g
)

f +
√
−gδ f

]
d4x =

=
∫ [
−1

2
gabδgab f + f ′R̃abδgab + f ′gabδR̃ab

]√
−gd4x

(2.37)

where f ′ = d f /dR̃, that is, it denotes the first derivative of f (R) with respect to the
argument. Let us focus on the variation of the Ricci tensor. Using the relation (2.32) and

δΓ̃ab
c =

1
2

gcd
[
2∇̃(aδgb)d − ∇̃dδgab

]
, (2.38)

δΓ̃ab
a =

1
2

gac∇̃bδgac, (2.39)
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we find∫
f ′gabδR̃ab

√
−gd4x =

∫
f ′gab∇c

(
δΓ̃ba

c − δc
aΓ̃db

d
)√
−gd4x =

=−
∫ 1

2
gabgpc∇̃c f ′

(
2∇̃aδgbp − ∇̃pδgab − gapgdq∇̃bδgdq

)√
−gd4x =

=
∫ (
−∇̃a∇̃b f ′ + gab∇̃c∇̃c f ′

)
δgab√−gd4x.

(2.40)

Therefore, the field equations due to the variation with respect to the metric are equal to

f ′R̃ab −
1
2

gab f − ∇̃a∇̃b f ′ + gab∇̃c∇̃c f ′ = 8πGNΨab, (2.41)

which are fourth-order partial differential equations reducing to Einstein equations for
f (R̃) = R̃. As in the case of the Einstein-Hilbert action, we have neglected the boundary
term in the variation (2.37). More details on boundary terms in f (R) theories can be
found, for example, in [95].

From the trace of Eq. (2.41),

f ′R̃− 2 f + 3∇̃a∇̃a f ′ = 8πGNΨ, (2.42)

with Ψ = gabΨab, we notice that in f (R) theories the Ricci scalar and the trace of the
energy-momentum tensor are related by a differential equation and not an algebraic one,
which is a remarkable difference with respect to GR.

The energy-momentum conservation,

∇̃aΨab = 0, (2.43)

can be proven by using the identity[
∇̃b∇̃c∇̃c − ∇̃c∇̃c∇̃b

]
φ = −Rab∇̃a φ, (2.44)

with φ an arbitrary function, and verifying that the contraction of the covariant deriva-
tive with the l.h.s. of Eq. (2.41) is zero, i.e.,

∇̃a
[

f ′Rab −
1
2

gab f − ∇̃a∇̃b f ′ + gab∇̃c∇̃c f ′
]
= 0. (2.45)

Finally, we show that f (R) gravity is mathematically equivalent to a scalar-tensor
theory, in which, besides the metric tensor, we have a scalar field describing the gravity.
In particular, it is equivalent to the Brans-Dicke theory, one of the prototypes of the ex-
tended theories of gravity. We prove this equivalence for completeness in our description
of f (R) theories, but it is not our interest to give an exhaustive description of scalar-tensor
theories, a detailed discussion of which can be found in [19–25]. By introducing a scalar
field χ, we can rewrite Eq. (2.36) in the following equivalent form,

A =
1

16πGN

∫ [
f (χ) + f ′(χ) (R− χ)

]√
−gd4x +

∫
Lm
√
−gd4x. (2.46)

Variation with respect to χ gives

f ′′(χ) (R− χ) = 0, (2.47)
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which yields R = χ for f ′′(R) ̸= 0. Now, defining a new field ϕ = f ′(χ) and the potential

V(ϕ) = χ(ϕ)ϕ− f (χ(ϕ)), (2.48)

Eq. (2.46) is recast as follows

A =
1

16πGN

∫
[ϕR−V(ϕ)]

√
−gd4x +

∫
Lm
√
−gd4x, (2.49)

which corresponds to the Brans-Dicke action, i.e.,

A =
1

16πGN

∫ [
ϕR̃− ω

ϕ
gab∇̃aϕ∇̃bϕ−V(ϕ)

]√
−gd4x +

∫
Lm
√
−gd4x, (2.50)

with parameter ω = 0. In this representation, it is evident that f (R) theories have just
one extra scalar degree of freedom with respect to GR.

2.3 Metric-affine formalism

In this section, we introduce the metric-affine formalism, where metric and connection
are two independent dynamical variables. The consequence is that the connection is
characterized by torsion and nonmetricity as well. Furthermore, the matter Lagrangian
density can be connection dependent, Lm(gab, Γab

c, ψ). Consequently, we have to define
the variation of Lm with respect to the connection,

∆ab
c = −

2√−g
δ (
√−gLm)

δΓab
c , (2.51)

which is called hypermomentum tensor [47]. Henceforth, the metric-affine approach will
be used throughout this thesis. As an introductory example, we will review the case of
metric-affine f (R) theories.

2.3.1 f (R) theories in metric-affine formalism
In the metric-affine formalism, the Riemann tensor is expressed as a function of the full
connection by Eq. (1.43) and it is independent of the metric tensor. Hence, f (R) is a
generic function of the full connection Ricci scalar [47] and the action is equal to

A =
1

16πGN

∫
f (R)

√
−gd4x +

∫
Lm(gab, Γab

c, ψ)
√
−gd4x. (2.52)
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The total variation of the gravitational action yields

δ
∫

f
√
−gd4x =

∫ (
f ′Rab −

1
2

f gab

)
δgab√−gd4x+

+
∫ {

f ′
[

gab (∇cδΓΓba
c −∇bδΓΓca

c) + gabTcb
dδΓΓda

c
] }√

−gd4x =

=
∫ (

f ′Rab −
1
2

f gab

)
δgab√−gd4x+

+
∫ [
∇d

(√
−g f ′gbd

)
δa

c −∇c

(√
−g f ′gab

)
+

+ f ′
√
−g
(

gabTdc
d − gbpTdp

dδa
c + gbdTcd

a
)]

δΓΓab
cd4x+

+
∫

∂c

(√
−g f ′gabδΓΓba

c −
√
−g f ′gbcδΓΓab

a
)

d4x.

(2.53)

We used the relation

δΓRab = ∇cδΓΓba
c −∇bδΓΓca

c + Tcb
dδΓΓda

c. (2.54)

It is worth noticing that there is no variation of the Ricci tensor with respect to the metric.
The last line in Eq. (2.53) is a boundary term that we can neglect without further assump-
tions since in the metric-affine approach, it depends only on linear terms of δΓab

c, which
is a completely different scenario from those studied above. Then we obtain

f ′R(ab) −
1
2

f gab = 8πGNΨab, (2.55)

and

1√−g

[
∇d

(√
−g f ′gbd

)
δa

c −∇c

(√
−g f ′gab

)]
+

+ f ′
√
−g
(

gabTdc
d − gbpTdp

dδa
c + gbdTcd

a
)
= 8πGN∆ab

c.
(2.56)

Contracting the indices b and c, we have

∆ab
b = 0, (2.57)

that is, the hypermomentum associated with the matter Lagrangian density is traceless.
However, Eq. (2.57) is too stringent as a constraint to be a property of any form of matter,
so we have an inconsistency in the field equations.

The reason for this inconsistency is found in projective invariance, which is a symme-
try related to connection transformations that preserve the autoparallelism of a curve up
to a reparametrization, thus leaving the paths followed by the test particles unchanged.
Moreover, the Ricci scalar is also preserved under such transformations [34, 96, 97]. Let
us consider the projective transformation

Γab
c −→ Γab

c + δc
bξa, (2.58)

with ξb an arbitrary vector field. Under this transformation, the Ricci tensor transforms
as

Rab −→ Rab + 2∂[aξb]. (2.59)
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Therefore, the Ricci scalar is invariant under projective transformations since the metric
is a symmetric tensor 5. On the other hand, the matter Lagrangian is in general not invari-
ant under projective transformations, so we have inconsistency in the action. Hence, we
must break the invariance to have the correct field equations. There are several possibil-
ities to achieve our purpose, such as choosing a non-symmetric metric or modifying the
action by adding extra terms. The path we follow includes constraints on the connection
that fix the four extra degrees of freedom due to the projective invariance. A first choice
was made in [98], in which the vector component qa, see Eq. (1.17), of the nonmetricity,
was fixed by adding to the action the term∫

λaqa
√
−gd4x, (2.60)

where λa is a Lagrange multiplier. However, this proposal has no other solution than
a linear function f (R). The same result is obtained by choosing Qa instead of qa [99].
On the other hand, a consistent system of field equations is obtained by fixing the vec-
tor component Ta of the torsion [47]. The variations with respect to the metric and the
connection are

δ
∫

λaTa
√
−gd4x =

∫ [
λaTb −

1
2

gabλcTc

]
δgab√−gd4x, (2.61)

and
δΓ

∫
λaTa

√
−gd4x =

∫ (
λaδb

c − λbδa
c

)
δΓab

c√−gd4x, (2.62)

respectively, whereas the field equations are

f ′R(ab) −
1
2

f gab = 8πGN

(
Ψab − λ(aTb) +

1
2

gabλcTc

)
, (2.63)

1√−g

[
∇d

(√
−g f ′gbd

)
δa

c −∇c

(√
−g f ′gab

)]
+

+ f ′
√
−g
(

gabTdc
d − gbpTdp

dδa
c + gbdTcd

a
)
= 8πGN

(
∆ab

c − λaδb
c + λbδa

c

)
,

(2.64)

Ta = 0. (2.65)

The contraction of indices b and c in Eq. (2.64) gives the value of the Lagrange multipliers
so that the field equations are consistent,

λa =
1
3

∆ab
b. (2.66)

Furthermore, from the antisymmetric part in the upper indices of Eq. (2.64), we derive
Tab

c = 0 if ∆[ab]
c = 0. Similarly, the symmetric part provides Qabc = 0 assuming ∆(ab)

c =
0. Both results imply that torsion and nonmetricity are connected to the antisymmetric
and symmetric parts of the hypermomentum, respectively.

5Projective invariance implies that the metric-affine approach is subject to additional gauge freedom,
due to considering the connection as an independent variable, which is not present in the metric one.
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3
Symmetric Teleparallel Gravity and

extensions

The first appearance of nonmetricity in theories of gravitation is due to Weyl in his at-
tempt to unify gravity and electromagnetism [49]. However, nonmetric theories came
into the limelight only in 1999 when the so-called Symmetric Teleparallel Gravity (STG)
[64–66, 100] was proposed. In this theory, gravitation is strictly connected to the non-
metricity tensor and the related nonmetricity scalar Q, while both curvature and torsion
are set to zero. Among them, a theory that recently has gained great attention is the f (Q)
gravity [69], where the action of the gravitational field is described by a generic func-
tion of the nonmetricity scalar. In this chapter, we will focus on the description of the
Symmetric Teleparallel Equivalent of General Relativity (STEGR), a STG theory whose
metric field equations are equivalent to Einstein’s, and its extensions, which are the main
theories of this thesis.

3.1 Symmetric Teleparallel Equivalent of General Relativ-
ity

As mentioned above, in STEGR both curvature and torsion are zero, thus the nonmetric-
ity satisfies the identity

∇[dQc]ab = 0. (3.1)

The action is equal to

A =
∫ [
−1

2
√
−gQ+ λa

bcdRa
bcd + λc

abTab
c +

√
−gLm(gab, Γab

c, ψ)

]
d4x, (3.2)

where Q is the nonmetricity scalar (1.59),

Q =
1
4

QcabQcab − 1
2

QcabQabc − 1
4

qaqa +
1
2

qaQa, (3.3)

while λa
bcd and λc

ab are Lagrange multipliers introduced to impose the vanishing of
curvature and torsion. Henceforth, we set c = 8πGN = 1.
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Writing the Ricci scalar as in Eq. (1.58), that is,

R̃ = −Q− ∇̃a (qa −Qa) , (3.4)

allows us to highlight that the Lagrangian of STEGR and GR one are equivalent except
for a total divergence term. Thereafter, we will prove that the metric field equations of
the STEGR can be recast as Einstein equations as well.

The variation with respect to the Lagrangian multipliers gives the constraints

Ra
bcd = 0 and Tab

c = 0, (3.5)

while the one with respect to the metric gab yields

δA =
∫ [
−1

2
√
−gδQ+

1
4

gab
√
−gQδgab + δ

(√
−gLm

)]
d4x. (3.6)

Let us focus on the variation of the nonmetricity scalar. Foremost, we evaluate the varia-
tion of the nonmetricity tensor with respect to the metric,

δQcab = ∇cδgab = −∇c

(
gaigbjδgij

)
= −Qcaigbjδgij −Qcbjgaiδgij − gaigbj∇cδgij, (3.7)

then we rewrite the nonmetricity scalar as follows

Q = gchgaigbj
(

1
4

QhijQcab −
1
2

QhijQ(ab)c −
1
4

QhaiQcbj +
1
2

QhaiQbcj

)
. (3.8)

Therefore, we have

δQ =

[
1
4

QacdQb
cd − 1

2
QcdaQcd

b −
1
4

qaqb −
1
2

qcQcab +
1
2

Qcabqc − 1
2

QcabQc
]

δgab+

+

[
−1

2
Qc

ab + Qab
c +

1
2

qcgab −
1
2

Qcgab −
1
2

qaδc
b

]
∇cδgab =

=

[
1
4

QacdQb
cd − 1

2
QcdaQcd

b +
1
2

QcdaQdc
b +

1
2

Qcabqc − 1
4

qaqa −
1
2

QcQcab

]
δgab+

+ 2Pc
ab∇cδgab.

(3.9)

where we used the relation
δgcd = −gacgbdδgab. (3.10)

In the last line of Eq. (3.9), we have defined the nonmetricity conjugate tensor

Pc
ab = −

1
4

Qc
ab +

1
2

Q(ab)
c +

1
4

qcgab −
1
4

Qcgab −
1
4

q(aδc
b), (3.11)

which is symmetric in the last two indices,

Pc
ab = Pc

ba, (3.12)

and its contraction with Qcab gives the opposite of nonmetricity scalar,

Q = −QcabPcab. (3.13)
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Moreover, the terms in brackets can be recast as follows

1
4

QacdQb
cd − 1

2
QcdaQcd

b +
1
2

QcdaQdc
b+

+
1
2

Qcabqc − 1
4

qaqa −
1
2

QcQcab = 2Qcd
aPcdb − PacdQb

cd.
(3.14)

Returning to Eq. (3.6), we find

δA =
∫ [
−1

2
√
−g
(

2Pc
ab∇cδgab + 2Qcd

aPcdbδgab − PacdQb
cdδgab

)
+

+
1
4

gab
√
−gQδgab + δ

(√
−gLm

)]
d4x =

=
∫ {1

2
√
−g
[

2√−g
∇c
(√
−gPc

ab
)
− 2Qcd

aPcdb + PacdQb
cd +

1
2

gabQ
]

δgab+

−∇c

(√
−gPc

abδgab
)
+ δ

(√
−gLm

) }
d4x.

(3.15)

The term
∇c

(√
−gPc

abδgab
)

(3.16)

is a covariant derivative of a tensor density due to the presence of
√−g and for this

reason it is a boundary term linear in δgab,

∇h

(√
−gPc

abδgab
)
=∇̃c

(√
−gPc

abδgab
)
+

+ Ldc
d√−gPc

abδgab − Lcd
d√−gPc

abδgab =

=∇̃h

(√
−gPc

abδgab
)
= ∂c

(√
−gPc

abδgab
)

,

(3.17)

thus we neglect it. We finally find the first set of field equations

2√−g
∇c
(√
−gPc

ab
)
+

1
2

gabQ+ PacdQb
cd − 2Qcd

aPcdb = Ψab, (3.18)

with

Ψab = −
2√−g

δ (
√−gLm)

δgab . (3.19)

Now, let us vary the action with respect to the connection Γab
c,

δΓ A =
∫ [
−1

2
√
−gδΓQ+ λa

bcdδΓRa
bcd + λc

abδΓTab
c + δΓ

(√
−gLm

)]
d4x (3.20)

The variation of the nonmetricity scalar gives

δΓQ =− 2PcabδΓQcab = −2PcabδΓ
(
∂cgab − Γca

pgpb − Γcb
pgap

)
=

=2PcabgpbδΓΓca
p + 2PcabgapδΓΓcb

p = 4Pab
cδΓΓab

c.
(3.21)
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On the other hand, the variations of the Riemann and torsion tensors are equal to,

λa
bcdδΓRa

bcd = (∇cδΓΓdb
a −∇dδΓΓcb

a) λa
bcd =

=∇c

(
λa

bcdδΓΓdb
a
)
−∇c

(
λa

bcd
)

δΓΓdb
a −∇d

(
λa

bcdδΓΓcb
a
)
+

+∇d

(
λa

bcd
)

δΓΓib
a =

=∇̃c

(
λa

bcdδΓΓdb
a
)
+ Ncp

cλa
bpdδΓΓdb

a − ∇̃d

(
λa

bcdδΓΓcb
a
)
+

− Ndp
dλa

bcpδΓΓcb
a − Ncp

cλa
bpdδΓΓdb

a + Ndp
dλa

bcpδΓΓcb
a+

−∇c

(
λa

bcd
)

δΓΓdb
a +∇d

(
λa

bcd
)

δΓΓcb
a =

=∇̃c

(
λa

bcdδΓΓdb
a
)
− ∇̃d

(
λa

bcdδΓΓcb
a
)
+ 2∇p

(
λh

dcp
)

δΓΓcd
h,

(3.22)

and
λc

abδΓTab
c = λc

abδΓ (Γab
c − Γba

c) = 2λc
abδΓΓab

c, (3.23)

respectively. We used the fact that the Lagrangian multipliers are density tensors and
antisymmetric in the last two indices. In the first line of Eq. (3.22), we omitted the torsion
because of the constraints (3.5), whereas in the last line, the first two terms are boundary
ones. Hence, the field equations derived by varying with respect to the connection are

∇dλc
bad + λc

ab −
√
−gPab

c = ∆ab
c, (3.24)

where

∆ab
c = −

1
2

δ (
√−gLm)

δΓab
c (3.25)

is the hypermomentum tensor. Due to the flatness and torsionless conditions, from Eq.
(3.24) we can also derive the relation

∇a∇b

(√
−gPab

c + ∆ab
c

)
= 0. (3.26)

Let us take a more detailed look at the consequences of the constraints (3.5). The
flatness condition implies that the connection can be parameterized by general elements
Λa

b of GL(4, R),
Γab

c = (Λ−1)c
d∂aΛd

b. (3.27)

In addition, from the vanishing of torsion, we have

(Λ−1)c
d∂[aΛd

b] = 0, (3.28)

and arbitrary coordinates ξa = ξ(xa) can be introduced, such that

Γab
c =

∂xc

∂ξd ∂a∂bξd. (3.29)

Comparison with Eq. (1.7) makes manifest that the connection in Eq. (3.29) is purely
inertial since it differs from the trivial one by a generic coordinate change. Therefore,
in STEGR the connection vanishes using an appropriate diffeomorphism. The gauge in
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which the connection is null is called coincident gauge. In this gauge, the nonmetricity
tensor is just the partial derivative of the metric,

Qcab = ∂cgab, (3.30)

being the covariant derivative equal to the partial one, and the Levi-Civita connection is
the opposite of the disformation tensor,

Γ̃ab
c = −Lab

c. (3.31)

The possibility to eliminate inertial effects by canceling the connection and the resulting
great computational simplifications are some properties that make the theory fascinat-
ing. However, we will see that the coincident gauge is not the most viable choice in any
situation (see Ch. 8).

It is worth noticing that from Eq. (3.26) we can fix the four degrees of freedom given
by the four functions ξa that determine the connection Γ via Eq. (3.29). Once the connec-
tion is chosen, via choice of a gauge or Eq. (3.29), the only use of the equations (3.24) is to
derive the Lagrange multipliers. However, the metric field equations (3.18) are indepen-
dent of the multipliers, so their determination is irrelevant in the STEGR1, which would
not be in the case of TEGR [102, 103].

Now, we derive the energy-momentum conservation in STEGR. We start by raising
an index in Eq. (3.18),

2√−g
∇c
(√
−gPca

b
)
+

1
2

δa
bQ+ Pa

cdQb
cd = Ψa

b, (3.32)

and considering its Levi-Civita divergence,

2√−g
∇̃a∇c

(√
−gPca

b
)
+

1
2

δa
b∇̃aQ+ ∇̃a

(
Pa

cdQb
cd
)
= ∇̃aΨa

b. (3.33)

Since the following relations hold,

∇a∇c
(√
−gPca

b
)
= ∇̃a∇c

(√
−gPca

b
)
− Lab

d∇c
(√
−gPca

d
)

, (3.34)

∇c
(√
−gPca

d
)
=
√
−g
(
∇cPca

d − Lcp
pPca

d
)

, (3.35)

and
∇̃a

(
Pa

cdQb
cd
)
= ∇a

(
Pa

cdQb
cd
)
− Laq

aPq
cdQb

cd + Lab
qPa

cdQq
cd, (3.36)

by using the equations (3.26), we obtain

∇̃aΨa
b +

2√−g
∇a∇c∆ac

b =
1
2
∇̃bQ+∇a

(
Pa

cdQb
cd
)
+ 2Lab

d∇cPca
d+

− 2Lab
dLcp

pPca
d − Laq

aPq
cdQb

cd + Lab
qPa

cdQq
cd.

(3.37)

Let us prove that the right-hand side of the above equation is zero. The sum of the first
three terms is equal to

1
2
∇̃bQ+∇a

(
Pa

cdQb
cd
)
+ 2Lab

d∇cPca
d = 2Lab

dQcdqPcaq −∇bPacdQacd −
1
2
∇bQ, (3.38)

1Because of the symmetries of the Lagrange multiplier, not all their independent components are com-
pletely determined by the field equations. However, as we pointed out in the text, their determination
does not affect the metric equations, so having indeterminate components is not a problem [101].
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where we used Eq. (3.1). From the explicit evaluation of

−∇bPacdQacd =−∇b

(
ga,mgc,ngd,lPacd

)
Qacd =

=− 1
4

Qb
acQa

dlQcdl + Qb
acQa

dlQdcl −
1
2

Qb
acQd

a
lQdcl+

+
1
2

Qb
acQd

a
lQlcd +

1
4

qaQacdQb
cd − 1

4
qaQcadQb

cd+

− 1
4

QaQacdQb
cd − 1

2
qaQcQbac +

1
4

qaqcQbac+

+
1
4

Qacd∇bQacd −
1
2

Qacd∇bQcda +
1
4

qa∇bQa −
1
4

qa∇bqa +
1
4

Qc∇bqc,

(3.39)

and

−1
2
∇bQ =

1
4

QbdeQac
dQace − 1

4
QbdeQca

dQace − 1
4

QbceQc
adQaed+

+
1
8

QbaeQa
cdQecd +

1
4

QaqcQbac −
1
8

qaqcQbac+

− 1
4

Qa∇bqa −
1
4

Qacd∇bQacd +
1
2

Qacd∇bQcad +
1
4

qa∇bqa −
1
4

qc∇bQc,

(3.40)

we find

−∇bPacdQacd −
1
2
∇bQ =− 1

8
Qb

acQa
deQcde +

1
2

Qb
acQa

deQdce −
1
4

Qb
acQd

aeQdce+

+
1
4

Qb
acQd

aeQecd +
1
4

qaQb
cdQacd −

1
4

qaQb
cdQcad+

− 1
4

QaQb
cdQacd −

1
4

qaQcQbac +
1
8

qaqcQbac.

(3.41)

On the other hand, we have

2Lab
dQcdqPcaq − 2Lab

dLcp
pPca

d − Laq
aPq

cdQb
cd + Lab

qPa
cdQq

cd =

=
1
8

Qb
acQa

deQcde −
1
2

Qb
acQa

deQdce +
1
4

Qb
acQd

aeQdce+

− 1
4

Qb
acQd

aeQecd −
1
4

qaQb
cdQacd +

1
4

qaQb
cdQcad+

+
1
4

QaQb
cdQacd +

1
4

qaQcQbac −
1
8

qaqcQbac,

(3.42)

which is exactly the right-hand side of Eq. (3.41) but with opposite sign. Hence, we
obtain the following energy-momentum conservation equations,

∇̃aΨa
b +

2√−g
∇a∇c∆ac

b = 0. (3.43)

They reduce to the usual ones, ∇̃aΨa
b = 0, for ∆(ac)

b = 0. We can, of course, use Eqs.
(3.43) and (3.33) to derive Eq. (3.26). Hence, for any solution of the metric field equa-
tions (3.18), if the energy-momentum conservation (3.43) holds, the equations (3.26) are
necessarily satisfied.
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Finally, we prove the equivalence between the Einstein field equations and Eq. (3.18).
Due to the condition Ra

bcd = 0, the Levi-Civita Ricci tensor is equal to

R̃ab = −∇̃cLab
c + ∇̃bLca

c − Lcd
cLab

d + Lbd
cLca

d. (3.44)

Moreover, because of the identities

2√−g
∇c
(√
−gPc

ab
)
=2∇̃cPc

ab − 2Lca
dPc

db − 2Lcb
dPc

da, (3.45)

and

Lbd
cLca

d − Lcd
cLab

d = −2Lca
dPc

db − 2Lcb
dPc

da + PacdQb
cd − 2Qcd

aPcdb, (3.46)

Eq. (3.18) can be recast as

2∇̃cPc
ab +

1
2

gabQ+ R̃ab + ∇̃cLab
c − ∇̃bLca

c = Ψab. (3.47)

Now, if we substitute Eq. (3.4) and we use the relation

2∇̃cPc
ab + ∇̃cLab

c − ∇̃bLca
c − 1

2
gab∇̃c (qc −Qc) = −1

2
Řab = 0, (3.48)

we obtain the Einstein equations,

R̃ab −
1
2

gabR̃ = Ψab. (3.49)

This result allows us to highlight the main difference between a generic STG theory
and STEGR. STG uses the most general quadratic scalar we can build with the nonmetric-
ity tensor, i.e.,

Q = c1QcabQcab + c2QcabQabc + c3qaqa + c4QaQa + c5qaQa, (3.50)

with ci (i = 1, ..., 5) arbitrary coefficient, and not the scalar Q given in Eq. (3.3), which is
recovered for

c1 = −c3 =
1
4

, c2 = −c5 = −1
2

, c4 = 0.

Therefore, in a generic STG, the metric field equations are not equivalent to GR ones.

3.2 Extensions of STEGR

In the previous section, we showed that STEGR and GR have equivalent metric field
equations, so the two theories have both equal metric solutions and corresponding short-
comings. For this reason, generalizations and modifications of STEGR have been pro-
posed as well.

Along the same line as the f (R) theories, the most straightforward modification is
the generalization of the STEGR action to an arbitrary function f (Q) of the nonmetricity
scalar [69, 70, 73],

A =
∫ [
−1

2
√
−g f (Q) + λa

bcdRa
bcd + λc

abTab
c +

√
−gLm(gab, Γab

c, ψ)

]
d4x. (3.51)

36



CHAPTER 3. SYMMETRIC TELEPARALLEL GRAVITY AND EXTENSIONS

By varying with respect to the Lagrange multipliers, we again obtain the constraints

Ra
bcd = 0 and Tab

c = 0, (3.52)

whereas variations with respect to the metric and the connection produce field equations
of the form

2√−g
∇c
(√
−g f ′Pc

ab
)
+

1
2

gab f + f ′
(

PacdQb
cd − 2Qcd

aPcdb

)
= Ψab, (3.53)

and
∇dλc

bad + λc
ab −

√
−g f ′Pab

c = ∆ab
c, (3.54)

respectively, with f ′ = d f /dQ. The energy-momentum conservation is derived by a
procedure similar to that used for the STEGR and the expression is the same,

∇̃aΨa
b +

2√−g
∇a∇c∆ac

b = 0. (3.55)

The most significant difference is just the use in the derivation of (3.55) of the following
relation,

2∇b f ′Pbc
dLd

ca + ∇̃c f ′PcdqQadq = ∇b f ′Pbcd (2Ldca + Qacd) = 0. (3.56)

Although f (R) theories are a guideline for f (Q) gravity, they are completely different
theories, and in particular the last one has no issues related to projective invariance.

Another extension of STEGR is represented by theories in which nonmetricity is non-
minimally coupled to the matter Lagrangian. As an example, in [104], the following
action is considered

A =
∫ [1

2
f1(Q) + λa

bcdRa
bcd + λc

abTab
c + f2(Q)Lm(gab, Γab

c, ψ)

]√
−gd4x, (3.57)

where f1 and f2 are generic functions of Q. The field equations are equal to

2√−g
∇c
(√
−gFPc

ab
)
+

1
2

gab f1 + F
(

PacdQb
cd − 2Qcd

aPcdb

)
= − f2Ψij, (3.58)

and
∇a∇b

(√
−gFPab

c − f2∆ab
c

)
= 0, (3.59)

where
F = f ′1(Q) + 2 f ′2(Q)Lm, (3.60)

has been introduced. The non-minimal coupling leads to the non-conservation of the
energy-momentum tensor,

∇̃aΨa
b +

2√−g
∇a∇c∆ac

b =−
2√−g

[
δac

b∇a∇c f2 + 2∇(a f2∇c)δ
ac

b

]
+

− (Ψa
b − δa

bLm)∇a log f2.
(3.61)

In addition, it is worth highlighting the f (Q, T ) theory, which was first used in [105]
and has been quite popular over time. Here, the nonmetricity is non-minimally cou-
pled with the trace T of the matter energy-momentum tensor, and the gravitational La-
grangian density is given by a general function of both Q and T 2,

A =
∫ [1

2
√
−g f (Q, T ) + λa

bcdRa
bcd + λc

abTab
c +

√
−gLm(gab, Γab

c, ψ)

]
d4x. (3.62)

2To adopt the convention used in the literature, we used T instead of Ψ to refer to the energy-
momentum tensor.
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The variation of the action yields the following field equations

− 2√−g
∇c
(√
−g fQPc

ab
)
− 1

2
gab f + fT (Tab + Θab)− fQ

(
PacdQb

cd − 2Qcd
aPcdb

)
= Tab,

(3.63)
∇a∇b

(√
−g fQPab

c + ∆ab
c

)
= 0, (3.64)

with fQ = ∂ f /∂Q, fT = ∂ f /∂T , and

Θab = gcd δTcd

δgab . (3.65)

Also in this theory, the energy-momentum tensor is not preserved.
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4
Homogeneous cosmology

The cosmological principle states that at large scales the universe is homogeneous and
isotropic, that is, all points of the universe and all spatial directions of observation are
equivalent. It stems from philosophical arguments based on a generalization of the
Copernican idea that the Earth does not occupy a privileged position in the universe.
This idea was generalized to the fact that no point in the universe occupies a privileged
position but that they are all perfectly equivalent to each other. These assumptions were
later supported (e.g., CMB [106]) showing that the structures are more and more homo-
geneous and isotropic as the scale increases.

In this chapter, we will initially examine the geometric description of homogeneity
and isotropy. Next, we will introduce Friedmann-Lemaître-Robertson-Walker (FLRW)
universes and see why introducing the concepts of cosmological constant and dark en-
ergy becomes necessary in GR [10, 11].

Although the present universe is believed to be essentially isotropic, it is possible
that it may not have been so at its beginning and may not necessarily be so in the fu-
ture. Moreover, homogeneity and isotropy are witnessed only at large scales. There-
fore, the suitability of the FLRW metric in describing the universe at every epoch and
scale is not certain. We will relax the isotropy assumption, and consider homogeneous
but anisotropic cosmological models, introducing the Bianchi classification1 for homoge-
neous spacetimes [108].

4.1 Homogeneity and isotropy

We say that a spacetime is homogeneous [78, 80] if there exists a one-parameter family of
spacelike hypersurfaces Σt foliating the spacetime2 such that for each t and for any points P, Q
∈ Σt, there exists an isometry of the metric tensor gab which takes P into Q.

On the other hand, a spacetime is isotropic at each point if there exists a congruence3

1Homogeneous and anisotropic models also include Kantowski–Sachs universes [107] which are not
included in the Bianchi classification.

2This means that spacetime is decomposed into hypersurfaces of dimension n = 3.
3A congruence of curves is a set of curves that do not intersect and thus for each event there is only and

only one curve of the congruence.
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of timelike curves, which represent the observers, with 4-velocity ua and satisfying the following
property: given any point P and any two unit vectors s1

a and s2
a, which are orthogonal to ua,

there exists an isometry of the metric tensor gab that leaves P and ua at P fixed but rotates s1
a

into s2
a.

We should stress that at each event of spacetime there may be only one isotropic
observer. To show this, let us represent the isotropic observer by a timelike curve, which
we refer to as world line, with 4-velocity uaand such that it is a rest frame for the matter
filling the universe. If we consider another observer characterized by a 4-velocity va,
which is in motion with respect to ua, this observer will perceive matter flows in some
direction, and thus the two observers see the universe in two different ways.

For the spacetime to be both homogeneous and isotropic, the congruence of timelike
curves must be orthogonal to the spatial hypersurfaces4. If the 4-velocity of an observer
were not perpendicular to the spatial hypersurfaces, we would have a projection of ua

onto Σt that selects preferred a direction, which is in contrast to the isotropy principle.
Let us now focus on a single hypersurface and introduce the metric hab induced by

gab on it, whose signature is (+,+,+). The corresponding Levi-Civita curvature tensor
on Σt is denoted by 3R̃a

bcd, where we emphasize that the hypersurface has dimension 3.
On the other hand, we denote with D̃a the Levi-Civita covariant derivative on Σt with
D̃chab = 0. Homogeneity and isotropy conditions must be satisfied even for isometries
of the induced metric.

Considering the Killing vectors ξa of the isometries of hab, they satisfy the correspond-
ing 3-dimensional equation of Eq. (1.97),

D̃bD̃cξd = 3R̃a
bcdξa. (4.1)

However, from the Ricci identity (1.48), we have

D̃cD̃dD̃aξb − D̃dD̃cD̃aξb = − 3R̃e
acdD̃eξb − 3R̃e

bcdD̃aξe, (4.2)

which, using Eq. (4.1), can be recast as(
− 3R̃e

dabhp
c +

3R̃e
cabhp

d +
3R̃e

acdhp
b −

3R̃e
bcdhp

a

)
D̃pξe =

(
D̃c

3R̃e
dab − D̃d

3R̃e
cab

)
ξe,
(4.3)

where with hb
a we refer to the 3-dimensional Kronecker delta, ha

a = 3. From the concept
of isotropy with respect to a given point P, we know that isotropy corresponds to an in-
finitesimal isometry that leaves the point P fixed, which implies, according to Eq. (1.92),
that ξe(P) = 0. Moreover, the first derivative D̃pξe assumes all possible values with
the only constraint to be antisymmetric given by the Killing equation [78]. Hence, the
bracketed term in the l.h.s. of Eq. (4.3) must be symmetric in the contravariant indices,

− 3R̃e
dabhp

c +
3R̃e

cabhp
d+

3R̃e
acdhp

b −
3R̃e

bcdhp
a =

= − 3R̃p
dabhe

c +
3R̃p

cabhe
d +

3R̃p
acdhe

b −
3R̃p

bcdhe
a.

(4.4)

Contracting p with c,

−3 3R̃e
dab +

3R̃e
dab +

3R̃e
abd − 3R̃e

bad = − 3R̃e
dab +

3R̃adhe
b −

3R̃bdhe
a (4.5)

and by using the Bianchi identity (2.18), we obtain

2 3R̃edab =
3R̃bdhea − 3R̃adheb. (4.6)

4The requirements for ua to be orthogonal to the spatial hypersurfaces are given in Appendix B.
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However, 3R̃edab is antisymmetric in the first two indices, so

3R̃bdhea − 3R̃adheb = − 3R̃behda − 3R̃aehdb, (4.7)

and the contraction of e with b yields

3R̃ad =
1
3

3R̃had. (4.8)

Thus,
3R̃edab =

1
6

3R̃ (hbdhea − hadheb) . (4.9)

From the contracted Bianchi identity (2.21), we have

0 = D̃a

(
3R̃a

b −
1
2

ha
b

3R̃
)
= −1

3
∂b

3R̃, (4.10)

that is, the 3-dimensional Ricci scalar is independent of the spatial coordinates. It is
useful to introduce the function K(t) that depends only on the parameter t that identifies
the hypersurfaces, such that

3R̃ = 6K(t). (4.11)

In this way we find
3R̃abcd = K (hachdb − hadhcb) . (4.12)

A space endowed with a curvature given by Eq. (4.12) is called space of constant curva-
ture.

It can be shown that for every real value of K, there exists one and only one 3-
geometry with constant curvature. This means that if we have two metric tensors with
the same signature, for which the values of K are equal, then it is always possible to find
a diffeomorphism that carries one metric into the other [78]. It is then sufficient to con-
struct a 3-dimensional metric for each value of K to classify all possible 3-dimensional
geometries.

The simplest geometry is clearly the one represented by K = 0, that is, an Euclidean
geometry with null curvature,

3ds2 = dx2 + dy2 + dz2. (4.13)

For positive values of K, we have the geometry of a 3-sphere. To highlight this aspect, let
us consider a 4-dimensional Euclidean space with metric

ds2 = dx2 + dy2 + dz2 + dw2. (4.14)

A 3-sphere is represented by the equation

x2 + y2 + z2 + w2 = a2, (4.15)

with a the radius, and it is obviously a homogeneous and isotropic 3-geometry. To evalu-
ate the induced metric on this 3-sphere, we start by introducing a polar coordinate system
such that 

w = a cos ψ

x = a sin ψ sin θ cos φ

y = a sin ψ sin θ sin φ

z = a sin ψ cos θ

. (4.16)
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By differentiating Eq. (4.16), we derive the 3-dimensional metric

(3)ds2 = a2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)]
, (4.17)

and from the evaluation of 3R̃, we obtain

K =
1
a2 . (4.18)

Therefore, as the radius of the 3-sphere varies, K assumes all the positive values.
In the case of negative values of K, we consider a 4-dimensional metric with

Lorentzian signatures
ds2 = dx2 + dy2 + dz2 − dw2, (4.19)

and a hyperboloid represented by the equation

w2 − x2 − y2 − z2 = a2. (4.20)

We can once again introduce polar coordinates,
w = a cosh ψ

x = a sinh ψ sin θ cos φ

y = a sinh ψ sin θ sin φ

z = a sinh ψ cos θ

, (4.21)

leading to the following 3-dimensional metric

(3)ds2 = a2
[
dψ2 + sinh2 ψ

(
dθ2 + sin2 θdφ2

)]
. (4.22)

From the 3-dimensional Ricci scalar we have

K = − 1
a2 . (4.23)

This result proves that hyperboloids in the Lorentzian space (4.19) are spaces with con-
stant negative curvature.

Eqs. (4.13), (4.17), and (4.22) are the only three constant curvature geometries possible
unless diffeomorphism.

Given a congruence of timelike curves, the metric of spacetime has the following form

gab = −uaub + hab, (4.24)

where the 4-velocity ua is normalized, and c = 1. We must now choose an appropriate
coordinate system to write the 4-dimensional metric gab. In considering a spatial hyper-
surface, we know that the world lines are orthogonal to it. Therefore, we can consider
spatial coordinates on the hypersurfaces that are carried along the world lines that rep-
resent the observers. In this way, by definition, isotropic observers have constant spatial
coordinates that uniquely identify each of them. Moreover, we can take the proper time
t measured by the observers as the time coordinate, which label each hypersurface. We
know that this time has the same value for each observer, since if it did not, we would
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have a criterion to distinguish points on spatial hypersurfaces, going against the princi-
ple of homogeneity. The fixed spatial coordinates we have defined are called comoving
coordinates5, whereas the proper time is the cosmic time.

In this coordinate system, the 4-dimensional metric is given by

ds2 = −dt2 + a2(t)


dx2 + dy2 + dz2

dψ2 + sin2 ψ
(
dθ2 + sin2 θdφ2)

dψ2 + sinh2 ψ
(
dθ2 + sin2 θdφ2) , (4.25)

where t is the proper time, {x, y, z} and {ψ, θ, φ} are the comoving coordinates, and a(t)
is called cosmic scale factor, which depends on the cosmic time due to Eqs. (4.18) and
(4.23). Equation (4.25) can be written in a more compact form if we consider the following
variable changes: for K(t) > 0, we can define

r = sin ψ, (4.26)

such that
(3)ds2 = a2(t)

[
dr2

1− r2 + r2
(

dθ2 + sin2 θdφ2
)]

; (4.27)

on the other hand, for K(t) < 0, if we define

r = sinh ψ, (4.28)

we have
(3)ds2 = a2(t)

[
dr2

1 + r2 + r2
(

dθ2 + sin2 θdφ2
)]

. (4.29)

So, in general, we can write

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2
(

dθ2 + sin2 θdφ2
)]

, (4.30)

which is the Friedmann-Lemaître-Robertson-Walker metric, and it is conformally flat,
that is, its Weyl tensor C̃a

bcd is null. The coordinate r is dimensionless, and k is a constant
parameter that assumes the following values

k =


1 for K > 0
0 for K = 0
−1 for K < 0

. (4.31)

Once the geometry is fixed, the only aspect that cannot be derived from the cosmolog-
ical principle is the evolution of the scale factor, which is obtained by solving the field
equations. However, before that, we need to understand the consequences of homogene-
ity and isotropy on the energy-momentum tensor Ψab describing ordinary matter. We
consider energy-momentum tensors symmetric for exchanging of indices6.

Let us consider the contraction of the energy-momentum tensor Ψab with the
4-velocity ua and call va the corresponding vector,

Ψa
bub = va. (4.32)

5The term comoving refer to the fact that the isotropic observers are at rest with respect to the matter.
6The reasoning below is not valid in the case of a non-symmetric tensor.
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So that va does not identify a preferred direction, it must be parallel to ua. This means
that the contraction of va with the hypersurface space vectors sa is zero,

vasa = 0 −→ Ta
bubsa = 0, (4.33)

so the energy-momentum tensor cannot have mixed spacetime components. On the
other hand, the spatial components of Ψab define a linear operator on the tangent spatial
vector sa of the hypersurfaces,

L̂ : L̂ si = Ψj
isi ∈ Σt i, j = 1, 2, 3. (4.34)

Since Ψab is symmetric, this operator is hermitian with respect to the scalar product in-
duced by the metric hab, and therefore L̂ have a complete set of eigenvectors. Isotropy
tells us that the associated eigenvalues must all be equal to each other, otherwise, differ-
ent eigenvalues would identify specific directions of the space. Hence, L̂ is a multiple of
the identity

Ψi
j = λ(t)δi

j, (4.35)

where λ is the eigenvalue which is constant on Σt. We obtained that the
energy-momentum tensor is diagonal, then it corresponds to the Cauchy tensor of a per-
fect fluid,

Ψab = ρ(t)uaub + p(t)hab, (4.36)

with ρ(t) the matter density, and p(t) the pressure.
The cosmological principle has the consequence that the energy-momentum tensor

describing matter on a cosmological scale must have the form of the perfect fluid one
which is at rest with respect to an isotropic observer.

4.2 FLRW metric in General Relativity

Now, we derive the dynamics of the scale factor a(t) of the metric (4.30) in GR. From the
definition (1.25), it follows that the only non-zero components of the Levi-Civita connec-
tion are

Γ̃11
0 =

aȧ
1− kr2 , Γ̃22

0 = aȧr2, Γ̃33
0 = aȧr2 sin2 θ,

Γ̃01
1 = Γ̃02

2 = Γ̃03
3 =

ȧ
a

,

Γ̃11
1 =

kr
1− kr2 , Γ̃22

1 = −r
(

1− kr2
)

, Γ̃33
1 = −r

(
1− kr2

)
sin2 θ,

Γ̃12
2 = Γ̃13

3 =
1
r

,

Γ̃33
2 = − cos θ sin θ, Γ̃23

3 = cot θ,

(4.37)

where the dot indicates the derivative with respect to time, ȧ = da/dt. Hence, the 00-
component and the 11-component of Einstein field equations (2.34) yield7

H2 =

(
ȧ
a

)2

=
1
3

ρ− k
a2 , (4.38)

7The 22-component and 33-component give the same field equation as the 11-one due to the isotropy of
the FLRW metric.
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where we have defined the Hubble parameter H = ȧ/a, and

Ḣ + H2 =
ä
a
= −1

6
(ρ + 3p) , (4.39)

respectively (we used the natural units c = 8πGN = 1). Eq. (4.39) is usually called Ray-
chaudhuri equation, and together Eq. (4.38) form the so-called Friedmann equations. On
the other hand, the contracted Bianchi identity gives the energy-momentum conserva-
tion equation,

ρ̇ + 3H (ρ + p) = 0. (4.40)

Henceforth, we will use the equation of state

p = wρ, (4.41)

with w a suitable constant. The range of validity of w for ordinary matter is imposed by
the definition of the speed of sound cS,

c2
S = c2 dp

dρ
. (4.42)

Since the speed of sound cs must be less than the speed of light c, then 0 ≤ w ≤ 1.
Two characteristic values of w are w = 0, which represents dust, and w = 1/3, which
corresponds to radiation. From Eqs. (4.40) and (4.41), we derive that for w = 0

ρ ∼ 1
a3 , (4.43)

whereas for w = 1/3

ρ ∼ 1
a4 . (4.44)

To analytically solve the Friedmann equations, we introduce the conformal time T
[109],

dT =
dt
a

. (4.45)

It is called conformal time since the metric (4.30) assumes the form

ds2 = a2(t)
[
−dT 2 +

dr2

1− kr2 + r2
(

dθ2 + sin2 θdφ2
)]

, (4.46)

which is a conformal transformation (1.78) with scale factor a2. Defining the quantity

H =
a′

a
, (4.47)

with a′ = da/dT , and considering the matter to be dust, the Friedmann equations are
recast as follows,

H2 =
1
3

ρa2 − k, (4.48)

and
H′ = −1

6
ρa2, (4.49)
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from which we derive the equation

2H′ + H2 + k = 0. (4.50)

The solutions are given by

a(T ) = a1


sin2

(
T
2

)
k = 1

T 2 k = 0

sinh2
(
T
2

)
k = −1

, (4.51)

where a1 is a constant of integration. These solutions can be used to obtain the relation
between the conformal time T and the cosmic one t,

t =
a1

2


T − sin T k = 1
2
3T 3 k = 0
sinh T − T k = −1

. (4.52)

A plot of Eqs. (4.51) is given in Figure 4.18. It is worth noticing that all solutions have
a Big Bang singularity, that is, the scale factor vanishes at the origin of time, a(0) = 0.
In addition, for k = 0 and k = −1, the universe always expands, while for k = 1 the
universe begins to collapse after an expansion phase until the scale factor returns to zero.
This phenomenon is called the Big Crunch.

As it is evident from Eq. (4.39) and Figure 4.1, for positive ρ and p, the universe
must experience a decelerated expansion phase under our assumptions. However, in the
late 1990s it was discovered through observation of distant Type Ia supernovae that the
universe undergoes an accelerated expansion instead [110, 111]. The implication is that
GR must be modified to include a new form of energy that compensates the ordinary
matter. The currently most widely accepted model for cosmology that is in accordance
with the accelerated expansion is the ΛCDM model, which assumes that the accelerated
expansion is due to a positive cosmological constant Λ [10, 11, 112–115]. In the model,
the cosmological equations are given by(

ȧ
a

)2

=
1
3

ρ− k
a2 +

Λ
3

, (4.53)

and
ä
a
= −1

6
(ρ + 3p) +

Λ
3

. (4.54)

From an analogy with the quantum field theory, we can identify the cosmological con-
stant with the energy of the vacuum with energy-momentum tensor

ΨΛ
ab = −ρΛgab, (4.55)

that can be considered as the energy-momentum of a perfect fluid with the following
equation of state

pΛ = −ρΛ = −Λ
3

. (4.56)

8Eqs. (4.52) were solved numerically for T using the bisection method.
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Figure 4.1: Evolution of the scale factor a in function of the cosmic time t with a1 = 1.

For this reason, we can refer to Λ as cosmological constant or vacuum energy.
If the universe is dominated by the cosmological constant, from Eq. (4.53) we ob-

tain that the Hubble parameter is a constant and then the scale factor is an exponential
function of cosmic time,

a(t) = a1 exp

(√
Λ
3

t

)
. (4.57)

Solution (4.57) is called de Sitter universe. This solution represents the late time evolu-
tion of the universe when both matter and radiation are considered. In fact, because of
Eqs. (4.43) and (4.44), we have that with the expansion of the scale factor, the contribu-
tions in Eq. (4.53) of matter, radiation, and curvature k are negligible with respect to the
cosmological constant. Thus, at a late epoch, the cosmological constant is the only quan-
tity contributing to the dynamics of a to persist. What has just been described is known
as the cosmological non-hair theorem.

Due to the principles of quantum field theory and the standard model, the theoretical
value of the cosmological constant can be derived. However, this value differs from
the observed value by 120 orders of magnitude [11, 116], leading to what is known as
the cosmological constant problem. As a result, there is a question of whether ρΛ truly
represents a cosmological constant or a more general fluid known as dark energy, which
is characterized by negative pressure and an equation of state that evolves over time.

Dark energy, where the word “dark” is used because of the lack of clarity regarding its
true nature, accounts for approximately 68% of the total energy in the universe [106]. The
remaining 32% is attributed to matter, with 5% being baryonic matter and the remaining
27% belonging to another "dark sector" of our understanding of the universe, known as
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cold dark matter [15, 117, 118]. The term "cold" means that it is non-relativistic matter,
while "dark" indicates its lack of interaction with the electromagnetic field. Therefore,
the ΛCDM model is so called because it considers both the cosmological constant Λ and
cold dark matter.

Among the open issues of standard cosmology, we can highlight the flatness and the
horizon problem. The first is a consequence of observations showing that the universe
is approximately flat. It represents a fine-tuning problem since any small amount of cur-
vature present in the primordial universe should grow over time. The reason is that the
curvature term in Eq. (4.38) scales as 1/a2, while both matter and radiation are washed
out faster due to Eqs. (4.43) and (4.44), respectively. Hence, the value of curvature must
be very small in the primordial universe to still be approximately zero in the present.
The second derives from CMB observations that show homogeneity on scales involving
regions that are not causally connected. One solution to both problems is an accelerated
expansion phase at the beginning of the universe, called inflation. The flatness problem
is solved by the fact that, intuitively, if we expand a curved region it will appear locally
flat. On the other hand, the horizon problem is solved since the universe is assumed to be
totally causally connected at the beginning of its life. Causality is lost as the light cones
of the various points that make up the universe move apart further and furthe0,r until
they are no longer connected to each other at the end of the inflation phase [119–123].

There are extended and alternative theories of gravity that incorporate the inflation
phase of the universe and solutions to the “dark sector” [16–18]. Among the simplest
extensions are certainly the theories that consider the addition of a scalar field as a medi-
ator of gravity in addition to the metric, the aforementioned scalar-tensor theories (see.
Sec. 2.2). Examples are the quintessence, a scalar field used as a substitute for the cosmo-
logical constant, or the inflaton, which instead is a scalar field that guides inflation as it
unfolds [122–127]. We will see in Ch. 5 that nonmetricity can play both of these roles in
f (Q) gravity.

4.3 The Bianchi classification

In this section, we describe the Bianchi classification of 3-dimensional Lie algebras. Al-
though the way of deriving the classification was introduced by Bianchi [128], we will
follow the method invented by Schücking [129, 130] and later used in [131, 132].

Let us assume we have only homogeneity and consider a spatial hypersurface Σt
[108, 133–135]. The homogeneity is represented by an isometry of the metric generated by
infinitesimal translations of three independent Killing vector fields ξα, with α = 1, 2, 39.
We showed in Sec. 1.5 that the Killing vectors form a Lie algebra. The commutator of the
basis of the Lie algebra is given by [

ξα, ξβ

]
= Cγ

αβξγ, (4.58)

where Cγ
αβ are called structure constants and are antisymmetric in the two lower indices,

Cγ
αβ = −Cγ

βα. Moreover, the Jacobi identity (1.99) implies the following constraint on
the structure constants,

Cµ
αβCγ

µν + Cµ
βνCγ

µα + Cµ
ναCγ

µβ = 0. (4.59)

9In this section, the Greek letters are used as indices that range from 1 to 3.
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With Eqs. (4.58) and (4.59), from the knowledge of structure constants, we can completely
define the Lie algebra and therefore perform a classification.

It is useful to introduce the two indices quantities Cαβ obtained by the dual transfor-
mation

Cαβ =
1
2

ϵαγµCβ
γµ ⇐⇒ Cγ

αβ = ϵµαβCµγ, (4.60)

where ϵαβγ and ϵαβγ are the Levi-Civita symbols. In this way, Eq. (4.59) can be recast as

CαβCγµϵγαβ = 0. (4.61)

The choice of the basis of generators is not unique; in fact, if ξα is a basis, so will be

ξ̄α = Aα
βξβ, (4.62)

with Aα
β a non-singular matrix of constant elements. Under such a change of basis, the

structure constants transform as follows

C̄αβ = Aγ
α Aµ

βCγµ, (4.63)

which means we have equivalent sets of structure constants related by the transforma-
tion (4.63). Hence, the classification of 3-dimensional Lie algebras, and thus homoge-
neous spaces, is related to the determination of all sets of structure constants that are not
equivalent to each other.

We decompose Cαβ in its symmetric and antisymmetric parts

Cαβ = nαβ − ϵαβγaγ, (4.64)

where nαβ is the symmetric part, whereas the antisymmetric one is expressed in terms of
the vector aγ. If we substitute the decomposition in Eq. (4.61), we obtain the relation

nαβaβ = 0. (4.65)

Under the transformations (4.62), nαβ transforms as a contravariant tensor density

n̄γµ = (det A)−1 (A−1)α
γ(A−1)β

µnαβ, (4.66)

and aβ as a covariant vector
āγ = Aγ

βaβ. (4.67)

With Eq. (4.66), being nαβ symmetric, we can diagonalize nαβ,

nαβ =

n1 0 0
0 n2 0
0 0 n3

 . (4.68)

In addition, without loss of generality, we can set aβ = (a, 0, 0). Therefore, if we assume
that the basis we choose is precisely the one in which nαβ is diagonal, from Eq. (4.65) we
find

n1a = 0, (4.69)
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Table 4.1: Bianchi classification of homogeneous spaces.

Class Bianchi type a n1 n2 n3

A I 0 0 0 0

II 0 1 0 0

VII0 0 1 1 0

VI0 0 1 −1 0

IX 0 1 1 1

VIII 0 1 1 −1

B V 1 0 0 0

IV 1 0 0 1

VIIh a 0 1 1

VIh a 0 1 −1

III 1 0 1 −1

and the commutators (4.58) become

[ξ1, ξ2] =aξ2 + n3ξ3,
[ξ2, ξ3] =n1ξ1,
[ξ3, ξ1] =n2ξ2 − aξ3.

(4.70)

Now, the last viable operation is a rescaling of the basis ξα without changing its direction
(the direction has been fixed by the choice of a basis that diagonalizes nαβ),

ξα = Kξ̄α, (4.71)

with a consequent change in the commutation relations,[
ξ̄1, ξ̄2

]
=

a
K1

ξ̄2 +
K3

K1K2
n3ξ̄3,[

ξ̄2, ξ̄3
]
=

K1

K2K3
n1ξ̄1,[

ξ̄3, ξ̄1
]
=

K2

K1K3
n2ξ̄2 −

a
K1

ξ̄3.

(4.72)

With this rescaling, we can normalize each structure constant to ±1. Finally, we can
classify the possible types of homogeneous spaces according to which of a, n1, n2, and n3
is zero. In particular, we distinguish two classes depending on whether a is zero or not,
which are called class A and class B, respectively. The complete classification is given in
Table 4.1

Throughout the thesis, we will consider only the Bianchi Type-I spacetimes, whose
metric can be given in the form [136, 137]

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, (4.73)
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where a(t), b(t) and c(t) are the scale factors associated to each space direction. It is
manifest that is a generalization of the spatially flat FLRW metric, since if we set a = b = c
we recover Eq. (4.30) with k = 0.

It can be easily verified that the metric (4.73) belongs to the BI case if we consider the
Killing vectors

ξa
1 = (0, 1, 0, 0), ξa

2 = (0, 0, 1, 0), ξa
3 = (0, 0, 0, 1), (4.74)

which commute between them, and we use Eq. (1.85) to verify that the Lie derivative of
the metric with respect to these vectors is zero.

4.4 Bianchi type-I in General Relativity

For the BI metric the non-zero components of the Levi-Civita connection are

Γ̃01
1 =

ȧ
a

, Γ̃02
2 =

ḃ
b

, Γ̃03
3 =

ċ
c

,

Γ̃11
0 = aȧ, Γ̃22

0 = bḃ, Γ̃33
0 = cċ,

(4.75)

so from the Einstein field equations, with the energy-momentum tensor of a perfect fluid,
we obtain

ȧḃ
ab

+
ḃċ
bc

+
ȧċ
ac

=ρ, (4.76)

− b̈
b
− c̈

c
− ḃċ

bc
=p, (4.77)

− ä
a
− c̈

c
− ȧċ

ac
=p, (4.78)

− ä
a
− b̈

b
− ȧḃ

ab
=p. (4.79)

On the other hand, the conservation of the energy-momentum tensor gives

ρ̇ +

(
ȧ
a
+

ḃ
b
+

ċ
c

)
(ρ + p) = 0. (4.80)

We can introduce the average scale factor for BI cosmologies,

τ = abc, (4.81)

and the average Hubble parameter H = τ̇/τ.
As a first step, we analyze the vacuum case, ρ = p = 0 [133, 136, 138]. Due to Eq.

(2.34), we know that in the vacuum scenario, the equations to solve are given by R̃ab = 0,
which components return the following equations,

R̃00 =− Ḣ − H2
a − H2

b − H2
c = 0, (4.82)

R̃11 =Ḣa + HHa = 0, (4.83)

R̃22 =Ḣb + HHb = 0, (4.84)

R̃33 =Ḣc + HHc = 0, (4.85)
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where we introduced the directional Hubble parameters

Ha =
ȧ
a

, Hb =
ḃ
b

, Hc =
ċ
c

. (4.86)

From Eq. (4.76) we have that

HaHb + HbHc + HaHc = 0, (4.87)

thereby
H2 = (Ha + Hb + Hc)

2 = H2
a + H2

b + H2
c , (4.88)

and Eq. (4.82) becomes a closed equation for H,

Ḣ + H2 = 0, (4.89)

which solution is
H =

1
t− t0

, (4.90)

with t0 a constant of integration that we set to zero, t0 = 0. Equations (4.83), (4.84), and
(4.85) are used to derive the directional Hubble parameters and the scale factors,

Ha =
Pa

t
−→ a = a0tPa (4.91)

Hb =
Pb
t

−→ b = b0tPb (4.92)

Hc =
Pc

t
−→ c = c0tPc , (4.93)

where Pa, Pb, Pc, a0, b0, and c0 are constants of integration. Finally, we can write the
so-called Kasner metric

ds2 = −dt2 + t2Padx2 + t2Pbdy2 + t2Pcdz2, (4.94)

where we set a0 = b0 = c0 = 1. The definition of H, Eq. (4.88), and Eq. (4.90) imply the
following constraints on the exponents,

Pa + Pb + Pc = P2
a + P2

b + P2
c = 1, (4.95)

which guarantees that pa, pb and pc cannot have all the same value and that if one of
them is negative, the other two must be positive.

These kinds of metrics were initially studied to understand how anisotropy affected
the cosmology. A clear example is how the point-like initial singularity typical of FLRW
models changes. In Kasner metric, for t tending to zero, if two of the scale factors tend
to zero, the other expands infinitely creating what is called a “cigar” singularity or to
a finite value obtaining a “barrel” singularity. On the other hand, if it is only one of the
scale factors that tends to zero, we will have the other two tend to a finite value obtaining
a “pancake” singularity [133, 136, 139].

We now turn to consider the case with matter. From the sum of Eqs. (4.76), (4.77),
(4.78), and (4.79), we obtain an equation for the average scale factor τ,

τ̈

τ
=

3
2
(ρ− p) (4.96)
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from which we can derive its evolution. On the other hand, subtracting Eq. (4.78) and
Eq. (4.79) from Eq. (4.77), we find, respectively,

d
dt

[
τ

(
ȧ
a
− ḃ

b

)]
= 0 −→ ȧ

a
− ḃ

b
=

kab
τ

, (4.97)

and
d
dt

[
τ

(
ȧ
a
− ċ

c

)]
= 0 −→ ȧ

a
− ċ

c
=

kac

τ
, (4.98)

with kab and kac constants of integration. A further integration yield

a =da
3
√

τ exp
[

1
3
(kab + kac)

∫ 1
τ

dt
]

, (4.99)

b =db
3
√

τ exp
[

1
3
(−2kab + kac)

∫ 1
τ

dt
]

, (4.100)

c =dc
3
√

τ exp
[

1
3
(kab− 2kac)

∫ 1
τ

dt
]

, (4.101)

where da, db, and dc are constants of integration as well, which satisfy the constraint

dadbdc = 1. (4.102)

Equations (4.99), (4.100), and (4.101) are the general solutions for the scale factors of the
system of equations (4.77), (4.78), and (4.79) with matter.

4.5 4-velocity with nonmetricity

So far we have introduced the FLRW spacetime and the Bianchi classification, but we
never mention the nonmetricity tensor since the Killing equations are strictly related to
the Levi-Civita connection, see Eq. (1.95). In defining the comoving coordinates we
stated that the timelike 4-velocity of the isotropic and homogeneous observer is normal-
ized and that the proper time is the curve parameter that we refer to as cosmic time.
However, these are not conditions directly fulfilled by the full connection Γab

c since we
know that nonmetricity represents the failure to covariantly preserve the norm of a par-
allel transported vector, whose consequence is also the non-coincidence of proper time t
with the curve parameter λ. Indeed, from the definition of proper time, we know that

gab
dxa

dt
dxb

dt
= −1, (4.103)

while for the 4-velocity ua = dxa/dλ we have

−l2 = gabuaub = gab
dxa

dλ

dxb

dλ
= gab

dxa

dt
dxb

dt

(
dt
dλ

)2

= −
(

dt
dλ

)2

, (4.104)

where l is a generic function which represent the norm of ua. Therefore, the proper time
and λ coincide if the 4-velocity is normalized. For this to happen, the following condition
must be satisfied if we want the norm to be preserved along the curve with tangent vector
ua:

uc∇c

(
gabuaub

)
= Qcabucuaub + 2ubuc∇cub = 0. (4.105)
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If the curve is autoparallel, then Qcabucuaub = 0. In the f (Q) gravity, since torsion is
zero, by making the Levi-Civita covariant derivative explicit in Eq. (4.105), we have

uc∇c

(
gabuaub

)
= Qcabucuaub + 2ubuc∇̃cub + 2ubucLcd

bud = 2ubuc∇̃cub = 0, (4.106)

which is identically zero if the curve is autoparallel with respect to the Levi-Civita con-
nection.

In the following chapters, we will consider different combinations of the above con-
straints that guarantee the 4-velocity normalization.
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5
Reconstructing homogeneous f (Q)

cosmologies

As we mentioned in the previous chapters, alternative theories of gravity have been de-
veloped to overcome the shortcomings of GR in describing the desired behavior of the
universe. Among the developed alternative theories there is f (Q) gravity, the general-
ization of the STEGR introduced in Ch. 3. A first approach in this direction is given
by the works [69, 70], in which it is shown that in a spatially flat FLRW metric using a
function of the type

f (Q) = Q+ αQn, (5.1)

and the coincident gauge, we can obtain solutions in which the universe goes from a
matter-dominated epoch to an asymptotically de Sitter universe without the introduction
of any cosmological constant. However, perturbation analysis shows that these solutions
present strong coupling problems due to the disappearance of the two scalar degrees of
freedom that propagate when de Sitter backgrounds are considered. The results of these
models were also tested by a comparison with experimental data showing good compat-
ibility with the theoretical results [140–143]. Other models of spatially flat FLRW cosmol-
ogy can be found in [144] and [145]; specifically, in the latter, it is shown that f (Q) gravity
can satisfy the constraints imposed by the Big Bang Nucleosynthesis. On the other hand,
studies of non-flat FLRW metrics were conducted not using the coincident gauge but the
symmetries of the metric, which impose constraints on the nonmetricity via Lie deriva-
tive [146, 147]. FLRW metric has been studied from a quantum point of view as well. For
example, in [148], the form of the function f (Q) that conducts cosmological bouncing
solutions has been selected by order reduction; moreover, the Hamiltonian formalism is
used to find the Wheeler-DeWitt equation and the wave function of the universe. On
the other hand, in [149], by introducing Dirac brackets, it results that the cosmological
quantum theory of f (Q) gravity is highly dependent on the nature of matter.

There is no shortage of studies of BI metrics, although they are far fewer than FLRW
metrics. In [150] a local rotationally symmetric BI metric is studied, where in Eq. (4.73)
the assumption b = c is set. It turns out that by choosing a second-order polynomial
function for f (Q), i.e., n=2 in Eq. (5.1), the universe approaches a phase of isotropy at
late times. The same kind of BI metric is also considered in [151] and [152] but with
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f (Q) = αQ+ β, where α and β are free parameter. Here, the solutions were compared
with experimental data by obtaining constraints on the parameters of the theory.

In all previous works, the study procedure is to choose the form of f (Q) a priori
and then determine the dynamics of the cosmology. We decided to follow a different
approach that is known as reconstruction method. Reconstruction methods were used
for the first time by G. F. R. Ellis and M. S. Madsen [153] to find the potential functions
needed in models of inflationary universes. The general idea consists of reversing the
usual procedure of resolution: a given form for the spatial scale factor is assumed and,
once substituted into the cosmological equations, further information is derived on the
remaining unknown functions of the theory, for instance, the inflaton potential func-
tion in [153]. Subsequently, reconstruction was used in various frameworks, like in the
cosmology of f (R) gravity [154], where the generic function of the Ricci scalar is recon-
structed starting from given scale factors, in scalar-tensor cosmologies [155] and in the
study of static and spherically symmetric spacetimes [156–159].

In the following, we will consider such a method to study both BI and spatially flat
FLRW universes in f (Q) gravity.

The study performed in this chapter is based on the paper “Reconstructing isotropic
and anisotropic f (Q) cosmologies” [74].

5.1 f (Q) cosmology

Let us now specialize the field equations (3.53) and (3.54) to the study of BI and FLRW
universes. These equations will constitute the core of the reconstruction method we in-
tend to apply.

In this chapter, we will consider an observer represented by an autoparallel curve
with normalized 4-velocity ua = (1, 0, 0, 0) and the coincident gauge, so the condition
(4.105) will reduce to ∂0g00 = 0, which is always satisfied by both the FLRW metric (4.30)
and the BI one (4.73).

5.1.1 Bianchi Type-I metric
As we showed in Sec. 4.3, the BI metric represents spatially flat, homogeneous but not
isotropic spacetimes,

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2. (5.2)

Because we adopt the coincident gauge1, the nonmetricity scalar is

Q = 2
(

ȧḃ
ab

+
ȧċ
ac

+
ḃċ
bc

)
, (5.3)

where the dot represents the derivative with respect to time.
To derive the cosmological equations, we assume that, at cosmological level, the hy-

permomentum tensor ∆ab
c is zero, and the matter is described by the energy-momentum

tensor of a perfect fluid,
Ψab = (ρ + p) uaub + pgab, (5.4)

1With this choice, we assert that the comoving coordinates and cosmic time used to write Eq. (5.2) are
the same ones that ensure the vanishing of the total connection Γab

c.
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where pressure p and the energy density ρ are related by the equation of state p = wρ,
with w the barotropic factor, and ρ satisfies the continuity equation derived from Eq.
(3.55),

ρ̇ +
τ̇

τ
(1 + w) ρ = 0, (5.5)

whose solution in terms of the volume of the universe τ(t) = a(t)b(t)c(t) is

ρ = ρ0τ−(1+w), (5.6)

where ρ0 is the density at a given initial time. We derive the cosmological equations from
the temporal and spatial part of Eq. (3.53),

1
2

f − 2 f ′
(

ȧḃ
ab

+
ḃċ
bc

+
ȧċ
ac

)
= −ρ, (5.7)

ḟ ′
(

ȧ
a
− τ̇

τ

)
− f ′

(
b̈
b
+

c̈
c
+

ȧḃ
ab

+
ȧċ
ac

+ 2
ḃċ
bc

)
+

1
2

f = p, (5.8)

ḟ ′
(

ḃ
b
− τ̇

τ

)
− f ′

(
ä
a
+

c̈
c
+

ȧḃ
ab

+
ḃċ
bc

+ 2
ȧċ
ac

)
+

1
2

f = p, (5.9)

ḟ ′
(

ċ
c
− τ̇

τ

)
− f ′

(
ä
a
+

b̈
b
+

ȧċ
ac

+
ḃċ
bc

+ 2
ȧḃ
ab

)
+

1
2

f = p. (5.10)

We can recast the above equations in a more useful form by performing some simple
operations.

Let us consider the combination of Eqs. (5.7)-(5.10) given by Eq. (5.7) multiplied
by −τ̇/τ and added to Eqs. (5.8), (5.9), and (5.10) multiplied by 3ȧ/a, 3ḃ/b, and 3ċ/c,
respectively. The resulting expression is an equivalent of the Raychaudhuri equation
(4.39),

f
τ̇

τ
− f ′

(
3
2
Q̇+ 2Q τ̇

τ

)
− 3 f ′′QQ̇ =

τ̇

τ
(ρ + 3p) , (5.11)

where we used that
ḟ ′(Q) = f ′′(Q)Q̇, (5.12)

and

Q̇ =
äḃ
ab

+
äċ
ac

+
ȧb̈
ab
− ȧ2ḃ

a2b
− ȧḃ2

ab2 +
ȧc̈
ac
− ȧ2ċ

a2c
− ȧċ2

ac2 +
b̈ċ
bc

+
ḃc̈
bc
− ḃ2ċ

b2c
− ḃċ2

bc2 . (5.13)

However, we can also obtain Eq. (5.11) using only Eqs. (5.5) and (5.7) taking the time
derivative of Eq. (5.7) multiplied by 3, adding Eq. (5.7) multiplied by 2τ̇/τ and sub-
stituting (5.5). Thus, if the Eqs. (5.5) and (5.7) are satisfied, so is Eq. (5.11). This step
will be crucial for developing the reconstruction algorithm as it allows us to remove one
equation.

Instead, subtracting Eq. (5.9) and Eq. (5.10) from Eq. (5.8), we obtain, respectively:

ȧ
a
− ḃ

b
=

kab
f ′τ

→ a
b
= ed1 exp

∫ kab
f ′τ

dt (5.14)

and
ȧ
a
− ċ

c
=

kac

f ′τ
→ a

c
= ed2 exp

∫ kac

f ′τ
dt, (5.15)
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where kab, kac, d1, and d2 are constants of integration.
Therefore, we can consider the equivalent set of independent cosmological equations

given by
1
2

f − 2 f ′
(

ȧḃ
ab

+
ḃċ
bc

+
ȧċ
ac

)
= −ρ, (5.16)

ρ̇ +
τ̇

τ
(1 + w) ρ = 0, (5.17)

ȧ
a
− ḃ

b
=

kab
f ′τ

, (5.18)

ȧ
a
− ċ

c
=

kac

f ′τ
. (5.19)

One of the last two equations can be replaced, depending on the situation we are ana-
lyzing, by the relation that we derive with simple algebraic steps from Eqs. (5.18) and
(5.19),

(kab − kac)
ȧ
a
+ kac

ḃ
b
− kab

ċ
c
= 0. (5.20)

Notice that the number of cosmological equations has decreased. This is possible because
one of the Eqs. (5.8)-(5.10) can be replaced by Eq. (5.11), which is always satisfied given
the solutions of the Eqs. (5.5) and (5.7).

5.1.2 FLRW metric

If we require isotropy in the BI metric, i.e., a(t) = b(t) = c(t) in (5.2), we obtain the
spatially flat FLRW metric. The nonmetricity scalar is related to the Hubble parameter
H = ȧ/a by

Q = 6H2, (5.21)

and the Raychaudhuri equation (5.11) is equal to

1
6

f − f ′
(

Ḣ + 2H2
)
− 12 f ′′H2Ḣ =

1
6
(ρ + 3p) . (5.22)

The cosmological equations (5.16)-(5.19) reduce to the following

1
2

f − 6H2 f ′ = −ρ, (5.23)

ρ̇ + 3H(1 + w)ρ = 0. (5.24)

To facilitate the study of the examples that will be considered, it is useful to define the
deceleration parameter,

q = − äa
ȧ2 , (5.25)

and rewrite Eqs. (5.22) and (5.23) in a more expressive form,

ä
a
= −1

6
(ρ̂M + 3p̂M)− 1

6
(
ρ̂ f + 3p̂ f

)
, (5.26)

H2 =
1
3
(
ρ̂M + ρ̂ f

)
, (5.27)
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where
ρ̂M =

1
2

ρ

f ′
and p̂M =

p
f ′

(5.28)

represent the standard energy density and pressure, with an effective gravitational con-
stant regulated by f ′(Q), while

ρ̂ f =
1
4

f
f ′

, and p̂ f = 2
[
Q
4
− 1

4
f
f ′
+

f ′′

f ′
HQ̇

]
(5.29)

represent the energy density and pressure of an effective fluid associated with the pres-
ence of nonmetricity.

5.2 Reconstruction method: Bianchi Type-I

In this section, we will apply the reconstruction algorithm to investigate some exact so-
lutions in BI models. Given suitable scale factors, we will find the function f (Q), which
admits such scale factors as solutions of the corresponding cosmological equations.

5.2.1 Example 1: Power law scale factors

Let us start by assuming each scale factor as a power law as in the classical Kasner solu-
tion, but without the restrictions on the exponents (4.95),

a(t) = a0tn, b(t) = b0tm, c(t) = c0tl, (5.30)

τ = abc = a0b0c0tN (5.31)

where N = n+m+ l and a0, b0 and c0 are dimensional constants. In such a circumstance,
the nonmetricity scalar takes the form

Q = 2 (nm + nl + ml) t−2 = ξt−2, (5.32)

with ξ = 2(nm + nl + ml). Making use of Eq. (5.32), from the definition of the spatial
volume and the continuity equation we obtain the expressions of τ and ρ as functions of
Q,

τ(Q) = τ0

(
ξ

Q

) N
2

, (5.33)

ρ(Q) = ρ0τ−(1+w̄) = ρ0τ
−(1+w̄)
0

(
Q
ξ

) 1
2 (1+w̄)N

, (5.34)

where τ0 = a0b0c0. In the above expression and the following, we will use w̄ instead of w
to emphasize the fact that w̄ is just a parameter for the theory we will reconstruct, and it
is not related to any matter source the final reconstructed theory might be coupled with.
Inserting Eq. (5.34) into Eq. (5.16), we obtain the differential equation

1
2

f −Q f ′ = −ϵQ 1
2 (1+w̄)N (5.35)

with
ϵ = ρ0τ

−(1+w̄)
0 ξ−

1
2 (1+w̄)N. (5.36)
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Equation (5.35) admits the solution,

f (Q) = f0
√
Q+ 2ϵ

Q 1
2 (1+w̄)N

N(1 + w̄)− 1
, (5.37)

where f0 is a constant of integration and will be so throughout the chapter2.
Using Eqs. (5.30), (5.31) and (5.37), Eqs. (5.18), and (5.19) generate the following

constraints on the integration constants:

f0 = 0, n + m + l =
1
w̄

, (5.38)

kab =
w̄(1 + w̄)ρ0τ−w̄

0 (n−m)

2 [m + n− w̄ (m2 + mn + n2)]
, (5.39)

kac =
(1 + w̄)ρ0τ−w̄

0 (w̄m + 2w̄n− 1)
2 [m + n− w̄ (m2 + mn + n2)]

. (5.40)

Notice that relation (5.38) implies that we are forced to exclude the case w̄ = 0. If we set
w̄ = 0 from the beginning, then we would obtain:

m = n = l =
1
3

, (5.41)

i.e., an isotropic solution.

5.2.2 Example 2: More complex scale factors.

In this second example, we choose the scale factors as follows:

a(t) = αa(t) 3
√

τ(t), b(t) = βb(t) 3
√

τ(t),

c(t) = γc(t) 3
√

τ(t),
(5.42)

which is an interesting template for BI solutions (see, e.g. [136]). The quantities α, β, and
γ are generic constants.

The first step is to derive b(t) from Eq. (5.20),

b = b0a
kac−kab

kac c
kab
kac , (5.43)

where b0 is a constant of integration. Then, using the definition of τ and Q, we obtain
the scale factor

a = a0c
kab+kac

kab−2kac , (5.44)

and the relation
ċ2

c2 =
(kab − 2kac)2

18Ω2

(
2

τ̇2

τ2 − 3Q
)

, (5.45)

2One might think that the result in Eq. (5.37) is only valid for the fluid chosen in the reconstruction
process, however, such a conclusion would be incorrect. In fact, if we use Eq. (5.37) and fluids with w ̸= w̄
in Eqs. (5.7)-(5.10), then we obtain a different evolution for the scale factors from the one used for the
reconstruction method. For the sake of simplicity, we will show this explicitly in Section 5.3 for the FRLW
case.
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with
a0 = (b0αβγ)

kac
kab−2kac (5.46)

and
Ω =

√
k2

ab − kabkac + k2
ac. (5.47)

If we now extrapolate f ′(Q) from Eq. (5.16),

f ′ =
f + 2ρ0τ−(1+w̄)

2Q , (5.48)

and replace all in Eq. (5.18), then we find that particular cosmological solutions can be
found imposing the conditions,

f = K f τ−1−w̄, (5.49)

τ̇2

τ2 =
1
4
Q
(

K2
τ Q τ2w̄ + 6

)
, (5.50)

Kτ(K f + 2ρ0)− 4Ω = 0. (5.51)

Equations (5.49) and (5.50) can be resolved if we make explicit the dependence of Q on
τ. A convenient choice is

τ = ±
(
Q0

Q

) 1
n

, (5.52)

with Q0 > 0 a dimensional constant. Relation (5.52), together with Eq. (5.49), allows us
to write

f (Q) = K f

[
±
(
Q0

Q

) 1
n
]−1−w̄

, (5.53)

which, when substituted into Eq. (5.16), provides the value of the constant K f ,

K f =
2nρ0

2w̄ + 2− n
, (5.54)

and from Eq. (5.51), also the value of Kτ,

Kτ =
Ω(2w̄ + 2− n)

ρ0(1 + w̄)
. (5.55)

To proceed further, we will analyze separately three subcases: w̄ = 0, n = 2w̄, and n = w̄.

Case w̄ = 0

If we set w̄ = 0 and

τ = −
(
Q0

Q

) 1
n

, (5.56)

with n an odd integer, then the solution of Eq. (5.50) is

τ(t) = a1b1c1

[
4K2

τ

9n2 − (t− t0)
2
] 1

n

. (5.57)
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The quantities a1, b1 and c1 are constants depending on α, β, γ, b0, kab, kac, ρ0 andQ0 and
the parameter t0 is the instant of time in which the initial data are assigned. This notation
will also be used in the subsequent examples. The scale factors assume the form,

a(t) = a1

[
4K2

τ

9n2 − (t− t0)
2
] 1

3n

exp

{
−m1 tanh−1

[
3n(t− t0)

2Kτ

]}
, (5.58)

b(t) = b1

[
4K2

τ

9n2 − (t− t0)
2
] 1

3n

exp

{
−m2 tanh−1

[
3n(t− t0)

2Kτ

]}
, (5.59)

c(t) = c1

[
4K2

τ

9n2 − (t− t0)
2
] 1

3n

exp

{
−m3 tanh−1

[
3n(t− t0)

2Kτ

]}
, (5.60)

where

m1 =
2(kab + kac)

3nΩ
, (5.61)

m2 =
2(kac − 2kab)

3nΩ
, (5.62)

m3 =
2(kab − 2kac)

3nΩ
. (5.63)

Notice that the sum of m1, m2, and m3 is zero,

m1 + m2 + m3 = 0, (5.64)

and it will be the same in the other cases of BI metrics discussed in this section.
In Fig. 5.1 we show an example of the evolution of scale factors: at the beginning,

the universe is spatially one dimensional (and therefore singular) and becomes spatially
one dimensional again after a process of expansion and contraction, as described by the
behavior of τ. Hence, the relative differences between the scale factors are greatest at the
beginning and the end of cosmic history, with a time interval in which the values of the
scale factors are close to each other.

On the other hand, if

τ =

(
Q0

Q

) 1
n

, (5.65)

with n still an odd integer or a rational number with an odd denominator, the solution
of Eq. (5.50) is

τ(t) = a1b1c1

[
(t− t0)

2 − 4K2
τ

9n2

] 1
n

, (5.66)

Given Eq. (5.66), and choosing two scale factors proportional to each other, e.g. a = b,
we have

a(t) = a1

[
(t− t0)

2 − 4K2
τ

9n2

] 1
3n
[

3n (t− t0)− 2Kτ

3n (t− t0) + 2Kτ

]m1

, (5.67)

and

c(t) = c1

[
(t− t0)

2 − 4K2
τ

9n2

] 1
3n
[

3n (t− t0)− 2Kτ

3n (t− t0) + 2Kτ

]m2

, (5.68)

64



CHAPTER 5. RECONSTRUCTING HOMOGENEOUS f (Q) COSMOLOGIES

0 1 2 3 4
t

0

1

2

3

4
a
b
c

(a) Scale factors

0 1 2 3 4
t

4

3

2

1

0

1

2

3

(b) Nonmetricity scalar and τ.

Figure 5.1: Evolution of (5.57)-(5.60) with values n = 1, Kτ = 2
√

3, Q0 = 1, a1 = b1 = c1 =
3√3
2 ,

m1 = 2√
3
, m2 = 0, m3 = − 2√

3
, and t0 = 4√

3
.

where

m1 =
1

3n
, (5.69)

m2 = − 2
3n

. (5.70)

A representation of the cosmological evolution is given in Fig. 5.2. After an initial sin-
gular phase, in which the universe is spatially one dimensional, the scale factors grow
showing a similar behavior for large values of t. This trend can be immediately verified
by taking the limit for t→ ∞ of Eq. (5.67) and of Eq. (5.68).

65



CHAPTER 5. RECONSTRUCTING HOMOGENEOUS f (Q) COSMOLOGIES

0 5 10 15 20 25 30
t

0

25

50

75

100

125

150

175

200
a = b
c

(a) Scale factors

0 5 10 15 20 25 30
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) Nonmetricity scalar and τ.

Figure 5.2: Evolution of (5.66)-(5.68) with values n = 1
3 , Kτ = 10

3 , Q0 = 1, a1 = c1 = 1
24 , m1 = 1,

m2 = 2, and t0 = − 20
3 .

Case n = 2w̄

We now set n = 2w̄, w̄ ̸= 0, and

τ =

(
Q0

Q

) 1
2w̄

. (5.71)

In this case, the solution of Eq. (5.50) is

τ(t) = a1b1c1 (t + t0)
1
w̄ . (5.72)

Therefore, the scale factors are equal to

a(t) = a1 (t + t0)
1

3w̄+m1 , (5.73)
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b(t) = b1 (t + t0)
1

3w̄+m2 , (5.74)

c(t) = c1 (t + t0)
1

3w̄+m3 , (5.75)

where

m1 =
Kτ
√
Q0(kab + kac)

3w̄Ω
√
Q0K2

τ + 6
, (5.76)

m2 =
Kτ
√
Q0(kac − 2kab)

3w̄Ω
√
Q0K2

τ + 6
, (5.77)

m3 =
Kτ
√
Q0(kab − 2kac)

3w̄Ω
√
Q0K2

τ + 6
. (5.78)

With t0 = 0, we recover the results of Sec. 5.2.1,

a(t) = a1t
1

3w̄+m1 , b(t) = b1t
1

3w̄+m2 , c(t) = c1t
1

3w̄+m3 . (5.79)

We give a representation of the evolution of the system in Fig. 5.3. The scale factors are
always growing, but their growth rate is different. We notice a particular instant of time
where the scale factors coincide.

Case n = w̄

If n = w̄, w̄ ̸= 0, and

τ =

(
Q0

Q

) 1
w̄

, (5.80)

then the solution of Eq. (5.50) is

τ(t) = a1b1c1

{
sinh

[
1
4

KτQ0w̄(t + t0)

]} 2
w̄

. (5.81)

The scale factors are

a(t) = a1

{
sinh

[
1
4

KτQ0w̄(t + t0)

]} 2
3w̄

em1t, (5.82)

b(t) = b1

{
sinh

[
1
4

KτQ0w̄(t + t0)

]} 2
3w̄

em2t, (5.83)

c(t) = c1

{
sinh

[
1
4

KτQ0w̄(t + t0)

]} 2
3w̄

em3t, (5.84)

with

m1 =
KτQ0(kab + kac)

6Ω
, (5.85)

m2 =
KτQ0(kac − 2kab)

6Ω
, (5.86)

m3 =
KτQ0(kab − 2kac)

6Ω
. (5.87)
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Figure 5.3: Evolution of (5.72)-(5.75) with values w = 0.16, Kτ = 1.25, Q0 = 1, a1 = 0.25, b1 =
9.14 · 10−3, c1 = 3.42 · 10−2, m1 = 1.74, m2 = −1.52, m3 = −0.22, and t0 = 0.

Let us consider the example shown in Fig. 5.4 where two scale factors grow up to in-
finity while the third one, which in the figure is represented by the scale factor b, once
it has reached a maximum, tends to zero. Therefore, during its evolution, the universe
undergoes a first phase where the scale factors are all growing and a second one where
the spacetime tends to become spatially two-dimensional and therefore singular.

5.3 Reconstruction method: FLRW

In this section, we will consider spatially flat FLRW cosmologies. As it will be evident,
the higher symmetry of the FLRW spacetime, compared to BI, will make it easier to apply
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Figure 5.4: Evolution of (5.81)-(5.84) with values w̄ = 0.16, Kτ = 0.55,Q0 = 1, a1 = b1 = c1 = 515,
m1 = 0.17, m2 = −0.14, m3 = 3.45 · 10−2, and t0 = 0.

the reconstruction method.

5.3.1 Example 1: reconstruction from a time-dependent scale factor

To start with, we consider two scale factors a = a(t): a power law and an exponential
function of time.

Scale factor as a power law

Setting
a(t) = a0tn, (5.88)
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with a0 a dimensional constant, the nonmetricity scalar assumes the form

Q = 6H2 = 6n2t−2. (5.89)

By inverting the relation (5.89), we may express the scale factor and density ρ as function
of Q:

a(Q) = a0

(
α

Q

) n
2

(5.90)

and

ρ = ρ0a−3(1+w̄) = ρ0a−3(1+w̄)
0

(
Q
α

) 3
2 n(1+w̄)

, (5.91)

with α = 6n2. Replacing Eq. (5.91) in Eq. (5.23) and solving the resulting differential
equation, we obtain the function

f (Q) = f0
√
Q+ f1Q

3
2 (1+w̄)n (5.92)

with
f1 =

2ρ0

3n(1 + w̄)− 1
a−3(1+w̄)

0 α−
3
2 (1+w̄)n. (5.93)

The function (5.92) is similar to the ones that have been mostly used in literature so far
[69, 160]3.

Now we will show that, as anticipated in Sec. 5.2.1, the solution (5.92) is valid even
if we choose to resolve the cosmological equations in the case of fluids with w ̸= w̄. For
example, considering w̄ = 0, then

f (Q) = f0
√
Q+

2ρ0

3n− 1
a−3

0

(
Q
α

) 3
2 n

, (5.94)

and a fluid with w = 1
3 , i.e. radiation, for which

ρ1 = ρ1,0a−4. (5.95)

Substituting Eqs. (5.94) and (5.95) into Eq. (5.23), we obtain the following expression for
a(t),

a(t) =
(

2 3
√

α

3

) 9n
8

4

√
a3

0ρ1,0

ρ0

(
t + t0

n

) 3n
4

, (5.96)

which, for the same value of n, is clearly different from (5.88).

Scale factor as an exponential function

We set now
a(t) = a0em(t−t0)

2n+1
, (5.97)

where m > 0, a0 and t0 are generic constants, and n is a natural number. The scale
factor (5.97) describes a cosmic scenario in which all of the three main phases of the

3Notice that if we were to start with n = 2
3(1+w̄)

, the solution that encompasses all the classical Fried-
mannian cosmological solutions, then the (5.92) would give f (Q) ∝ Q. This result implies that f (Q)
gravity can have, at most, one cosmological solution in common with GR.
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cosmological evolution (inflation, Friedmann phase, and dark phase) are represented
(see Fig. 5.5a). The duration of the Friedmann phase is related to the value of the odd
exponent 2n + 1, which therefore plays a crucial role. The nonmetricity scalar associated
with the scale factor (5.97) has the form

Q = 6(2n + 1)2m2(t− t0)
4n. (5.98)

With the help of Eq. (5.98), we derive the expressions of the scale factor a and the density
ρ as function of Q:

a(Q) = a0 exp

[
m
(
Q
α

) 2n+1
4n
]

(5.99)

and

ρ = ρ0a−3(1+w̄)
0 exp

[
−3m(1 + w̄)

(
Q
α

) 2n+1
4n
]

, (5.100)

with α = 6(2n + 1)2m2.
Inserting Eq. (5.100) into Eq. (5.23) and solving it, we obtain the function

f (Q) = f0
√
Q− f1Q

1
2 Γ

[
− 2n

2n + 1
, 3m(1 + w̄)

(
Q
α

) 2n+1
4n
]

(5.101)

where Γ is the incomplete gamma function, and

f1 =
4n

2n + 1
ρ0

α2 a−3(1+w̄)
0 [3m(1 + w̄)]

2n
2n+1 . (5.102)

As it can be seen in Fig. 5.5b, here the effective gravitational constant 1/ f ′(Q) is pos-
itive, whereas the nonmetricity correction ρ̂ f is always negative. However, ρ̂ f grows
slower than the matter term ρ̂M, so the scale factor will always tend to increase, and the
cosmology expands.

5.3.2 Example 2: reconstruction from the time derivative of the scale
factor

The previous examples relied explicitly on the inversion of the expression of the non-
metricity scalar, i.e., we always needed to obtain a relation of the form t = t(Q). Such
inversion is not always possible analytically. Another option is to give an implicit ex-
pression for the scale factor. In particular, we can consider the scale factor a(t) as defined
by a suitable differential equation,

ȧ = h(a), (5.103)

with h(a) a generic function of the scale factor. Then, we can express the nonmetricity
scalar in the form

Q = 6
[

h(a)
a

]2

. (5.104)

As an example, let us consider the relation

ȧ =
2Ω√

Λ

√
a−Λa2, (5.105)
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Figure 5.5: Evolution of (5.97) with values n = 2, m = 1, ρ0 = 1, a0 = 10, f0 = 0, t0 = 3
2 , and

w̄ = 0.

where Ω and Λ are generic constants. From Eq. (5.105) we derive the evolution of a(t).

a(t) =
1
Λ

sin2(Ωt). (5.106)

Equation (5.104) allows us to obtain the scale factor and density ρ as a function of Q,

1
a
= Λ +

ΛQ
24Ω2 (5.107)

and

ρ = ρ0

(
Λ +

ΛQ
24Ω2

)3(1+w̄)

. (5.108)
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Replacing Eq. (5.108) in Eq. (5.23) and solving, we find the solution,

f (Q) = f0
√
Q+ 2F1

[
5
2

,−3w̄;
7
2

;− Q
24Ω2

]
f1Q3 + 2F1

[
3
2

,−3w̄;
5
2

;− Q
24Ω2

]
f2Q2+

+ 2F1

[
1
2

,−3w̄;
3
2

;− Q
24Ω2

]
f3Q− 2F1

[
−1

2
,−3w̄;

1
2

;− Q
24Ω2

]
f4,

(5.109)
where 2F1 denotes the hypergeometric function, and fi (i = 1, ..., 4) are constants depend-
ing on Λ, Ω, ρ0, and w̄.

As we can see in Fig. 5.6a, the scale factor (5.106) represents a cyclic universe in which
every cycle is separated by a singularity. As in the previous example, the term ρ̂M is al-
ways positive. However, ρ̂ f changes sign. When ρ̂ f < 0, the expansion slows up to the
point in which the cosmology reaches an equilibrium and then starts contracting. When
ρ̂ f becomes positive, the contraction is slowed down up to the point in which the space-
time reaches the singularity with zero contraction rate but with positive acceleration.
This fact suggests that the singularity might not be “stable” and, therefore, that one can
use this solution for the analysis of pre-Big Bang scenarios in f (Q) gravity.

5.3.3 Example 3: reconstruction from the deceleration parameter

Another way to avoid performing the inversion of the scale factor function is to express it
indirectly in terms of a differential equation for the deceleration parameter. More specif-
ically, we set

q̇ = h(q), (5.110)

with h(q) a generic function of the deceleration parameter. Equation (5.110) implies the
following expression for the Hubble parameter and scale factor:

1
H(q)

=
∫ 1 + q

h(q)
dq, (5.111)

a(q) = exp
[∫ H(q)

h(q)
dq
]

. (5.112)

As an example, let us consider the equation

q̇ = q0(1 + q)
√

q, (5.113)

where q0 is a generic constant. Using the above equations and remembering that H2 =
Q/6, we can write q and a as functions of Q:

q(Q) = 3
2

q2
0
Q , (5.114)

a(Q) =

√
3q2

0

3q2
0 + 2Q

. (5.115)

Replacing them in the Friedmann equation (5.23), we find

f (Q) = f0
√

Q +
4
3 2F1

[
1
2

,
1
2
(−3w̄− 1);

3
2

;−2Q
3q2

0

]
ρ0

q2
0
Q+

− 2 2F1

[
−1

2
,

1
2
(−3w̄− 1);

1
2

;−2Q
3q2

0

]
ρ0.

(5.116)
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Figure 5.6: Evolution of (5.106) with values Λ = 1, Ω = 1, ρ0 = 1, f0 = 0, and w̄ = 0.

The definition of Q, combined with the definition of q, gives a differential equation for
a(t) from which we derive

a(t) = a0 sin
[q0

2
(t− t0)

]
+ a1 cos

[q0

2
(t− t0)

]
, (5.117)

with the condition a2
0 + a2

1 = 1.
As the above solution can be negative, we will limit ourselves to studying only the

first half-period (Fig. 5.7). It is clear that this solution represents again a universe en-
closed between two singularities as it happens in Sec. 5.3.2. The difference is that
departure and approach to the initial and final singularities happen with an expan-
sion/contraction velocity different from zero. The behavior of nonmetricity terms is
similar to that in the previous subsection.
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Figure 5.7: Evolution of (5.117) with values a0 = a1 = 1√
2
, q0 = 1, ρ0 = 1, f0 = 0, t0 = π

2 , and
w̄ = 0.

5.3.4 Example 4: reconstruction from the time derivative of nonmetric-
ity scalar

In this last example, we reconstruct the scale factor and the function f (Q) by imposing a
differential constraint on the nonmetricity scalar,

Q̇(t) = −αQn(t), (5.118)

with α a dimensional constant. From Eq. (5.118), we obtain the solution

Q(t) = [α(n− 1) (t− t0)]
1

1−n . (5.119)
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Using the relation Q = 6H2, we first derive the scale factor as

a(Q) = a0 exp

[√
2
3
Q 3

2−n

α(2n− 3)

]
(5.120)

and then, from Eq. (5.119), we have

a(t) = a0 exp
{√

2
3
[α(n− 1)(t− t0)]

3−2n
2−2n

α(2n− 3)

}
. (5.121)

The scale factor (5.121) has an increasing trend for n > 3
2 and α > 0 (see Fig. 5.8a).

Equation (5.23) gives, for w̄ = 0, 1/3, 1

f (Q) = f0
√
Q+ f1

√
Q Γ

[
1

2n− 3
,
(1 + w̄)

√
6Q 3

2−n

(2n− 3)α

]
. (5.122)

where fi (i = 1, ..., 3) are constants depending on a0, α, ρ0, and n.
Looking at Fig. 5.8a, it is evident that the scale factor changes concavity. Therefore, af-

ter a decelerated phase, cosmology undergoes an accelerated expansion. The term ρ̂M is
always positive; thus, the effective gravitational constant 1/ f ′(Q) remains positive. The
fact that the contribution of ρ̂ f is also positive and that we are considering only standard
fluids suggests that nonmetric pressure term p̂ f in Eq. (5.26) must be responsible for the
accelerated expansion.

5.4 Discussions

In this chapter, we derived and analyzed some exact cosmological solutions in the context
of f (Q) theory, with the aim of understanding the role the nonmetricity might play in
the evolution of the universe.

The primary tools to perform this investigation were reconstruction techniques, in
which the form of the scale factor(s) is assumed and the form of the function f is re-
covered a posteriori. An essential step for developing the reconstruction algorithm is to
reduce the cosmological equation to the simplest set of independent equations. In this re-
spect, the relation between the different components of the Einstein equations is pivotal.
We were able to show that, as it is well known in the case of FLRW metrics, also in the
case of BI metrics one of the Einstein equations is dependent on the other when the con-
servation laws are taken into account. This feature has allowed us to reduce the number
of equations to be solved. In their original form, reconstruction techniques require some
inversion of the scale factor or other related quantities. We have been able to go around
this difficulty by assigning a differential relation rather than an exact expression for the
scale factors. This approach led to the derivation of several nontrivial solutions.

We started by studying the case of an anisotropic universe endowed with a BI metric.
In this context, we found several solutions, such as universes where initial and final
states are singular configurations with only one or two spatial dimensions (Secs. 5.2.2
and 5.2.2), and more classical solutions where the scale factors are suitable power law
functions (Secs. 5.2.1 and 5.2.2). In Sec. 5.2.2 we also obtained a universe that becomes
more and more isotropic in the future.
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Figure 5.8: Evolution of (5.121) with values n = 2, α = 2, ρ0 = 1, a0 = 1, f0 = 0, t0 = 0, and
w̄ = 0. The scale factor a has an inflection point at t = 3.

In almost all of these solutions, we found that the nonmetricity scalar presents some
special features when the difference between the behavior of the scale factors (and hence
anisotropy) has a maximum or minimum. For example, in Fig. 5.1 we see that when the
scale factors are all equal, the nonmetricity scalar has a maximum, whereas at the Big
Bang/Big Crunch when we have the maximum anisotropy, the nonmetricity scalar has
a(n infinite) minimum. Similar behaviors might be found in the other figures.

We then moved on to the study of spatially flat FLRW universes. In such a framework,
we found different solutions: some of them represent Big Crunch models (Sec. 5.3.3) or
oscillating models (Sec. 5.3.2) [161, 162], where the nonmetricity leads the universe to
contract. The solution discussed in Sec. 5.3.1 shows that in the presence of nonmetricity,
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the scale factor can present all the principal phases of the universe history (inflation,
decelerated expansion, and dark era). In this case, it turns out that the nonmetricity
terms drive all three phases.
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6
1 + 3 covariant formalism

In this chapter, we elaborate on the concept of spacetime foliation already introduced in
Sec. 4.1. We endow the spacetime with a congruence of timelike curves, whose tangent
vector field u determines, at each point, the local direction of the time flow. The existence
of this vector field implies the existence of preferred rest frames at each point. Thus, the
field u can be thought of as the 4-velocity field of a family of observers whose world
lines coincide with the congruence. This assumption is the basis of the so-called 1 + 3
formalism [89, 163, 164]. The reason behind the use of this formalism is that we do not
need to introduce any kind of coordinates system, so we have a total covariant approach.
Moreover, it gives us a direct insight into the physical relevance of nonmetricity in both
geometric and dynamical aspects of spacetime. The approach was used in nonmetric
theories of gravity for the first time in [165, 166], where both the Raychaudhuri equation
was derived.

First, we will apply the formalism to nonmetric spacetimes and then to BI cosmologies
in f (Q) gravity to study how nonmetricity affects expansion and anisotropy.

The study performed in this chapter is based on the paper “Bianchi type-I cosmolog-
ical dynamics in f (Q) gravity: a covariant approach” [75].

6.1 1 + 3 formalism with nonmetricity

In this section, we apply the 1 + 3 formalism to a spacetime endowed with a connection
with nonmetricity but torsion-free, Tab

c = 0. The aim is to analyze how nonmetricity
affects the congruence of timelike curves, or world lines, which represent our preferred
observers.

6.1.1 4-velocity

Given the congruence xa = xa(λ), expressed in terms of a parameter λ, we define the
4-velocity as the timelike vector

ua =
dxa

dλ
, ua = gabub. (6.1)
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As mentioned in Sec. 4.5, due to nonmetricity, in general, the proper time t is not an
affine parameter. Therefore, we impose the condition

Qabcuaubuc = 0, (6.2)

together with the requirement that curves of the congruence are autoparallel, which en-
sures that proper time is the curve parameter. Assuming systematically the condition
(6.2), we can arrange things to parameterize the curves using the proper time and define
the 4-velocity as,

ua =
dxa

dt
, uiui = −1. (6.3)

As we will deal exclusively with cosmological models of BI, we will assume in Sec. 6.3
that the condition (6.2) is satisfied. Indeed, we will show that, because of the gauge
choice, such a condition is not restrictive for our purposes.

Once the 4-velocity has been defined, we may introduce the projection operator along
ui defined by means of the tensor

Ua
b = −uaub, (6.4)

which satisfies the properties,

Ua
bub = ua, Ua

cUc
b = Ua

b, Ua
a = 1. (6.5)

Orthogonal projection

The choice of a preferred time direction allows us to single out a 3-dimensional subspace
of the tangent bundle, at any point, orthogonal to the 4-velocity ua. The restriction of the
metric to this spatial subspace is the so-called transverse metric,

hab = gab + uaub. (6.6)

Associated with the transverse metric (6.6) there is the spatial projection operator,

ha
b = δa

b + uaub, (6.7)

satisfying the properties

ha
chc

b = ha
b, ha

a = 3, ha
bub = 0. (6.8)

In the following discussion, we will also use the projected symmetric trace-free (PSTF)
part of a tensor. In particular, for any 1-form Vb and covariant 2-tensor Tab, the PSTF is
expressed as

V⟨a⟩ = ha
bVb, T⟨ab⟩ =

[
h(a

mhb)
n − 1

3
habhmn

]
Tmn. (6.9)

6.1.2 Time and spatial derivative

The time derivative of a generic tensor Ta···
b··· is defined as,

Ṫa···
b··· = uc∇cT

a···
b··· =

= uc∇̃cT
a···

b··· + ucLcd
aTd···

b··· + · · · − ucLcb
dTa···

d··· − · · · =
= T̊a···

b··· + ucLcd
aTd···

b··· + · · · − ucLcb
dTa···

d··· − · · ·,
(6.10)
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where
T̊a···

b··· = uc∇̃cT
a···

b··· (6.11)

is the time derivative with respect to the Levi-Civita connection.
On the other hand, the spatial derivative is defined as the spatial projection of the

covariant derivative,

DcT
a···

b··· =hc
pha

m · · · hb
n · · · ∇pTm···

n··· =

=hc
pha

m · · · hb
n · · ·

(
∇̃pTm···

n··· + Lpq
mTq···

n··· + · · ·+
−Lpn

qTm···
q··· − · · ·

)
=

=D̃cT
a···

b··· + hc
pha

m · · · hb
n · · · Lpq

mTq···
n···+

+ · · · − hc
pha

m · · · hb
n · · · Lpn

qTm···
q··· − · · ·,

(6.12)

with
D̃cT

a···
b··· = hc

pha
m · · · hb

n · · · ∇̃pTm···
n··· (6.13)

the spatial derivative with respect to the Levi-Civita connection. It is worth noticing that
the spatial derivative of the metric gij is equal to the spatial derivative of hij:

Dcgab = hc
pha

mhb
n∇pgmn = hc

pha
mhb

n∇p (hmn − umun) = Dchab. (6.14)

4-acceleration

Because of nonmetricity, scalar product, and covariant derivative do not commute in gen-
eral. For this reason, we use the convention that the contravariant, or covariant, counter-
parts of objects related to the covariant derivative are obtained raising, or lowering, the
indices by the metric. Accordingly, we define the 4-acceleration as

u̇a = ub∇bua = ůa − Lba
cucub = ůa +

1
2

Qabcubuc, (6.15)

where ůi = uh∇̃hui is the 4-acceleration with respect to the Levi-Civita connection. After
that, the contravariant counterpart of (6.15) is obtained as

u̇a = gabu̇b = gabuc∇cub = ůa +
1
2

gabQbcducud. (6.16)

If Eq. (6.2) holds, ui and u̇i are orthogonal to each other,

u̇aua = u̇aua = 0. (6.17)

6.1.3 Kinematic quantities

The covariant derivative of the 4-velocity can be decomposed in its temporal and spatial
projections,

∇aub = −uau̇b + Daub − ubha
cud∇cud =

= −uau̇b +
1
3

habΘ + σab + ωab −
1
2

ubha
cQcmnumun,

(6.18)

with
Daub =

1
3

habΘ + σab + ωab, (6.19)

and where:
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• Θ is related to the rate of volume expansion,

Θ = gabDaub = gabha
phb

q∇puq = habD̃aub − habLab
cuc = Θ̃− habLab

cuc, (6.20)

with
Θ̃ = D̃aua; (6.21)

• σab is the trace-free symmetric tensor called “shear tensor”, describing the volume
preserving distortion of the fluid flow,

σab = D⟨aub⟩ =

[
h(a

mhb)
n − 1

3
habhmn

] (
D̃mun − hm

phn
qLpq

cuc
)
=

= σ̃ab − L⟨ab⟩
cuc,

(6.22)

σabub = 0, σa
a = 0, (6.23)

with
σ̃ab = D̃⟨aub⟩, σ̃abub = 0, σ̃a

a = 0; (6.24)

• ωab is the skew-symmetric tensor called “vorticity tensor” describing rotation of
the fluid flow,

ωab = D[aub] = D̃[aub] − h[a
mhb]

nLmn
cuc = D̃[aub] = ω̃ab, (6.25)

ω̃ab = D̃[aub], ωabub = ω̃abub = 0. (6.26)

So, the vorticity is not influenced by the nonmetricity tensor.

It is useful to introduce the magnitudes of shear and vorticity tensors,

σ2 =
1
2

σabσab, ω2 =
1
2

ωabωab, (6.27)

σ̃2 =
1
2

σ̃abσ̃ab, ω̃2 =
1
2

ω̃abω̃ab, (6.28)

which will be used in the cosmological equations. By substituting Eqs. (6.20), (6.22) and
(6.25) in Eq. (6.18) and considering Eq. (6.2), we get the expression,

∇aub = ∇̃aub −
1
2

uahb
cQcmnumun − ha

mhb
nLmn

pup −
1
2

ubha
cQcmnumun =

= −uaůb +
1
3

Θ̃hab + σ̃ab + ω̃ab − u(ahb)
cQcmnumun − ha

mhb
nLmn

pup.
(6.29)

6.1.4 Intrinsic and extrinsic curvature: the Gauss Relation

Given a spatial vector field vb, we define the spatial Riemann tensor through the relation,

3Ra
bcdvb = (DcDd − DdDc) va − 2ωcduphq

a∇pvq. (6.30)

Besides the Riemann tensor, we can also define an extrinsic curvature tensor Kab that
measures the rate of change of the vector normal to a hypersurface. Therefore, in our
framework, the extrinsic curvature is defined as the spatial derivative of the 4-velocity,

Kab = Daub = ha
mhb

n∇mun = K̃ab − ha
mhb

nLmn
huh, (6.31)
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being
K̃ab = D̃aub (6.32)

the extrinsic curvature induced by the Levi-Civita connection. Raising the second index,
we obtain

Kc
a = gabKcb =K̃c

a − gabhc
ihb

jLij
kuk =

=K̃c
a + hc

ihk
aLij

kuj + ukhc
ihajQijk,

(6.33)

which will be useful in the following.
The relation between the spatial Riemann tensor and the extrinsic curvature can be

obtained by recasting Eq. (6.30). From the explicit evaluation of one of the terms in the
bracket of Eq. (6.30), we have

DcDdva =hc
ihd

jhk
a∇i

(
Djvk

)
= hc

ihd
jhk

a∇i

(
hj

ehg
k∇evg

)
=

=hc
ihd

jhk
a∇i

(
ue∇iujhg

k∇evg + hj
eug∇iuk∇evg + hj

ehg
k∇i∇evg

)
=

=hc
ihd

jhk
ahg

kue∇iuj∇evg − hc
ihd

jhk
ahj

e∇iuk (vg∇eug
)
+

+ hc
ihd

jhk
ahj

ehg
k∇i∇evg =

=Kcdhg
aue∇evg − Kc

aKdgvg + ukhc
ihajQijkKdgvg + hc

ihd
ehg

a∇i∇evg,

(6.34)

where we used that ua and va are orthogonal, so

ua∇bva = −va∇bua, (6.35)

and the relation

∇ahb
c =∇a

(
gcdhbd

)
= −Qa

cdhbd + gcd∇a (gbd + ubud) = uc∇aub + ub∇auc. (6.36)

Hence,

(DcDd − DdDc) va =
(
Kd

aKcg − Kc
aKdg

)
vg + hc

ihd
ehg

a (∇i∇e −∇e∇i) vg+

+ 2ukh[c
iKd]bhajQijkvb.

(6.37)

Finally, using the Ricci identity (1.42), we obtain the so-called “Gauss relation”,

3Ra
bcd = hc

mhd
nha

shb
rRs

rmn + Kd
aKcb − Kc

aKdb + 2h[c
mKd]bhanQmnsus, (6.38)

which proves that the 3-dimensional curvature is the projection of the 4-dimensional one
corrected by terms of the extrinsic curvature.

Since the Riemann tensor is not antisymmetric in the first two indices, we have two
“contracted Gauss relations.” The first relation is obtained by contracting the first and
third index of the Gauss relation,

3Rbd = 3Ri
bid = hs

mhd
nhb

rRs
rmn + Kd

iKib − Ki
iKdb + 2h[i

mKd]bhinbmnsus, (6.39)

and the second one by contracting the second and third indices,

3R̄bd = 3Rb
i
id = hr

mhd
nhb

sRs
r
mn + KdbKi

i − KibKd
i + 2h[i

mKd]
ihb

nbmnsus. (6.40)
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The trace of both Eqs. (6.39) and Eq. (6.40) leads to the “scalar Gauss relation”,

3R = gbd 3Rbd = −gbd 3R̄bd =

= hs
mhrnRs

rmn + KdiKid − Ki
iKd

d + 2h[i
mKd]

dhinbmnsus,
(6.41)

which generalizes the “Theorema Egregium” in the presence of nonmetricity.
It is also useful to rewrite Eq. (6.38) in a form in which the contributions due to Levi-

Civita and nonmetricity terms are made evident:

3Ra
bcd =hc

ihd
ehg

ahb
mRg

mie +
(

K̃d
a + hd

ihj
aLik

juk + hd
ihajQijkuk

)
Kcd+

−
(

K̃c
a + hc

ihj
aLik

juk + hc
ihajQijkuk

)
Kdb + 2ukh[c

iKd]bhajQijk =

=hc
ihd

ehg
ahb

mRg
mie +

(
K̃d

a + hd
ihj

aLik
juk
) (

K̃cb − hc
mhb

nLp
mnup

)
+

−
(

K̃c
a + hc

ihj
aLik

juk
) (

K̃db − hd
mhb

nLmn
pup
)
=

=hc
ihd

ehg
ahb

mRg
mie − 2K̃[c

aK̃d]b + 2K̃[c
ahd]

mhb
nLmn pup+

+ 2h[d
iK̃c]bhj

aLik
juk + 2h[c

ihd]
mhj

ahb
nLik

jLmn
pukup.

(6.42)

Now, considering the decomposition of the Riemann tensor (1.56),

hc
ihd

ehg
ahb

mRg
mie =hc

ihd
ehg

ahb
mR̃g

mie + hc
ihd

ehg
ahb

m∇̃iLem
g − hc

ihd
ehg

ahb
m∇̃eLim

g+

+ hc
ihd

ehg
ahb

mLij
gLemj − hc

ihd
ehg

ahb
mLej

gLim
j,

(6.43)

and that

2h[c
ihd]

mhj
ahb

nLik
jLmn

pukup+hc
ihd

ehg
ahb

mLij
gLemj+

−hc
ihd

ehg
ahb

mLej
gLim

j = 2h[c
ihd]

mhj
ahb

nhp
kLik

jLmn
p,

(6.44)

we find the desired relation

3Ra
bcd = 3R̃a

bcd + 2D̃[cLd]b
a + 2K̃[c

ahd]
mhb

nLmn
kuk+

+ 2K̃[c|bh|d]
mha

nLmk
nuk + 2h[c

rhd]
mhs

ahb
nhl

kLrk
sLmn

l,
(6.45)

with
3R̃a

bcd = hc
mhd

nhs
ahb

rR̃s
rmn + K̃d

aK̃cb − K̃c
aK̃db. (6.46)

6.1.5 Energy-momentum tensor
The energy-momentum tensor of the matter fluid can be decomposed in its irreducible
parts as,

Ψab = ρuaub + qaub + uaqb + phab + πab, (6.47)

where
ρ = Ψabuaub (6.48)

is the relativistic energy density,

qa = −ha
cΨcbub (6.49)

84



CHAPTER 6. 1 + 3 COVARIANT FORMALISM

the relativistic energy flux,

p =
1
3

habΨab (6.50)

the isotropic pressure, and
πab = Ψ⟨ab⟩ (6.51)

the trace-free anisotropic pressure. The trace of tensor (6.47) is equal to,

Ψ = Ψa
a = −ρ + 3p. (6.52)

6.1.6 Nonmetricity decomposition
Similarly to what we have done for the energy-momentum tensor (6.47), we can decom-
pose the nonmetricity tensor using ua and hab as follows:

Qcab =−Q0ucuaub −
1
3

Q1uchab −
2
3

Q2u(ahb)c + Q(0)
cuaub + 2Q(1)

(aub)uc+

+
1
3

Q(2)
chab +

2
3

Q(3)
(ahb)c −Q(0)

abuc − 2Q(1)
c(aub) +

3Qcab,
(6.53)

where
Q0 = Qcabucuaub, Q1 = Qcabuchab, Q2 = Qcabhcaub (6.54)

are scalar quantities,

Q(0)
c = Qpabhp

cuaub, Q(1)
c = Qpabupubha

c, (6.55)

Q(2)
c = Qpabhp

chab, Q(3)
c = Qpabha

chpb (6.56)

are covectors,

Q(0)
ab = Q(0)

ba =

[
h(a

phb)
q − 1

3
habhpq

]
Qcpquc, (6.57)

Q(1)
ab =

(
ha

phb
q − 1

3
habhpq

)
Qpcquc (6.58)

are trace-free tensors and

3Qcab = hc
pha

qhb
rQpqr −

1
3

habhqrhc
pQpqr −

1
3

hcahpqhb
rQpqr −

1
3

hcbhprha
qQpqr (6.59)

is a fully spatial tensor, whose traces are given by

3Qba
b = −1

3
Q(2)

a −
1
3

Q(3)
a and 3Qab

b = −2
3

Q(3)
a. (6.60)

It is worth noting that, unlike the energy-momentum tensor, Eq. (6.53) is not an irre-
ducible decomposition. Moreover, because of Eq. (6.2), Q0 = 0.

We can now rewrite Eqs. (6.15), (6.20), and (6.22) in terms of different contributions
of nonmetricity:

u̇a = ůa +
1
2

Q(0)
a, (6.61)

Θ = Θ̃− 1
2

Q1 + Q2, (6.62)

σab = σ̃ab −
1
2

Q(0)
ab + Q(1)

(ab). (6.63)

Eqs. (6.61), (6.62) and (6.63) show how nonmetricity affects the kinematic quantities as-
sociated with the given congruence.
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6.2 Covariant cosmological equations in f (Q) gravity

Before writing the cosmological equation in the 1 + 3 formalism, we need to recast the
field equations (3.53) in a form more suitable for the present formalism. The process is
very similar to the one used in Sec. 3.1 to show that in STEGR the field equations are
equivalent to those in GR.

Let us consider the field equation

2√−g
∇c
(√
−g f ′Pc

ab
)
+

1
2

gab f + f ′
(

PacdQb
cd − 2Qcd

aPcdb

)
= Ψab. (6.64)

From the condition Ra
bcd = 0, we know that the following relation holds for the Levi-

Civita Riemann tensor

R̃ab = −∇̃cLab
c + ∇̃bLca

c − Lcd
cLab

d + Lbd
cLca

d. (6.65)

Moreover, by inserting the identities

2√−g
∇c
(√
−g f ′Pc

ab
)
=2 f ′∇̃cPc

ab − 2 f ′Lca
dPc

db − 2 f ′Lcb
dPc

da + 2 f ′′∂cQPc
ab, (6.66)

and

Lbd
cLca

d − Lcd
cLab

d = −2Lca
dPc

db − 2Lcb
dPc

da + PacdQb
cd − 2Qcd

aPcdb, (6.67)

into Eq. (6.64), we obtain

2 f ′∇̃cPc
ab +

1
2

gab f + f ′R̃ab + 2 f ′′∂cQPc
ab + f ′

(
∇̃cLab

c − ∇̃bLca
c) = Ψab. (6.68)

From the trace of Eq. (6.68), we derive the Ricci scalar,

R̃ =
1
f ′

Ψ− 2
f
f ′
− 2∇̃cPca

a − 2∇̃[cLa]
ac − 2

f ′′

f ′
Pcab∂cQ. (6.69)

and subtracting 1
2 gijR̃ from (6.68), we find

R̃ab −
1
2

gabR̃ =
1
f ′

(
Ψab −

1
2

gabΨ
)
+

1
2

gab
f
f ′
− gab∇̃cPcd

d − ∇̃cLab
c + ∇̃bLca

c+

− 2
f ′′

f ′

(
Pc

ab −
1
2

gabPcd
d

)
∂cQ− 2∇̃cPc

ab +
1
2

gab∇̃c (qc −Qc) .
(6.70)

Using again the relation (3.48)

2∇̃cPc
ab + ∇̃cLab

c − ∇̃bLca
c − 1

2
gab∇̃c (qc −Qc) = −1

2
Řab = 0, (6.71)

and the Ricci scalar decomposition

R̃ = −Q− ∇̃a (qa −Qa) , (6.72)

we obtain the final equation,

R̃ab =
1
f ′

(
Ψab −

1
2

gabΨ
)
+

1
2

gab

(
f
f ′
−Q

)
− 2

f ′′

f ′

(
Pc

ab −
1
2

gabPcd
d

)
∂cQ, (6.73)
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or in the Einstein-like form

R̃ab −
1
2

gabR̃ =
1
f ′
(

Ψab + Ψe f f
ab

)
, (6.74)

with
Ψe f f

ab = −1
2

gab
(

f − f ′Q
)
− 2 f ′′Pc

ab∂cQ (6.75)

the effective energy-momentum tensor due to nonmetricity. By replacing f (Q) = Q into
Eq. (6.74), we recover the Einstein field equations,

R̃ab −
1
2

gabR̃ = Ψab. (6.76)

It is possible to prove that, on shell, the conditions ∂cQ = 0 and f ′′(Q) = 0 always
yield the GR regime.

For Qsol = const. we have that the function f (Qsol) and its derivatives are constant,
and Eq. (6.74) can be written as

R̃ab −
1
2

gabR̃ + gabΛe f f =
1

f ′(Qsol)
Ψab, (6.77)

with

Λe f f =
1
2

[
f (Qsol)

f ′(Qsol)
−Qsol

]
, (6.78)

an effective cosmological constant. Therefore, we obtain the GR field equations with a
cosmological constant. On the other hand, by a reductio ad absurdum, we can prove that
for f ′′(Qsol) = 0 and Qsol ̸= const., the function is necessarily linear, f (Q) = aQ + b,
with a and b arbitrary real constant. If we assume that f (Q) is a generic function, its
second derivative equal to zero imposes that Qsol is constant. Hence, we return to the
previous case of ∂cQ = 0 which we have already shown to produce Einstein equations.
Therefore, the function must be linear. However, a linear f (Q) yields Eq. (6.74). We have
thus demonstrated that both conditions ∂cQ = 0 and f ′′(Q) = 0 lead back to GR with a
cosmological constant.

6.2.1 Cosmological equations

To write the cosmological equations we first need to derive the contraction of R̃ab with ua

and ub from the Ricci identity for the Levi-Civita Ricci tensor,

R̃abuaub =ub∇̃a∇̃bua −
(
∇̃aua)· = ∇̃aůa − ∇̃aub∇̃bua − ˚̃Θ =

=− ˚̃Θ− 1
3

Θ̃2 − 2
(

σ̃2 − ω̃2
)
+ D̃hůh + ůhůh,

(6.79)

where we used that

∇̃aůa = gb
a∇̃aůb = hb

a∇̃aůb − ubua∇̃aůb = D̃aůa + ůaůa. (6.80)

In addition, we need the Levi-Civita contracted Gauss relation

3R̃bd =hb
rhd

nhs
mR̃s

rmn + K̃d
aK̃ab − K̃a

aK̃db =

=hb
rhd

nR̃rn + hd
nhbrumusR̃r

mns + K̃d
aK̃ab − K̃a

aK̃db,
(6.81)

87



CHAPTER 6. 1 + 3 COVARIANT FORMALISM

which because of the following relation

hiahj
cubudR̃a

bcd =hiahj
cud (∇̃c∇̃d − ∇̃d∇̃c

)
ua =

=hiahj
cud [∇̃c

(
K̃d

a − udůa)− ∇̃d
(
K̃c

a − ucůa)] =
=− K̃diK̃j

d − hiahj
cud∇̃dK̃c

a + D̃jůi + ůiůj

(6.82)

can be written as

3R̃bd = hb
phd

qR̃pq − K̃p
pK̃db − hd

qhb
pum∇̃mK̃qp + D̃důb + ůbůd. (6.83)

Therefore, the 1 + 3 cosmological equations for a generic f (Q) theory are given by:

• Raychaudhuri equation, obtained from Eq. (6.79),

˚̃Θ +
1
3

Θ̃2+2
(

σ̃2 − ω̃2
)
− D̃iůi − ůiůi +

1
2 f ′

(ρ + 3p) +

− 1
2

(
f
f ′
−Q

)
− 2

f ′′

f ′

(
Ph

ijuiuj +
1
2

Phk
k

)
∂hQ = 0;

(6.84)

• Spatial equations, derived from Eqs. (6.83) and (6.84), given by the 3-dimensional
Ricci scalar, i.e. the Friedmann equation,

3R̃ =
2
f ′

ρ +
f
f ′
−Q− 2

3
Θ̃2 + 2

(
σ̃2 − ω̃2

)
+ 2

f ′′

f ′
∂hQ

(
Phi

i − hijPh
ij − Ph

ijuiuj
)

,

(6.85)

and the projected traceless 3-dimensional Ricci tensor,(
ha

phb
q − 1

3
habhpq

)
3R̃pq =

1
f ′

[
πab − 2 f ′′∂hQ

(
ha

phb
q − 1

3
habhpq

)
Ph

pq

]
+

− Θ̃σ̃ab + Θ̃ω̃ab + D̃⟨aůb⟩ − D̃[aůb] + ů⟨aůb⟩+

− ˚̃σab + ˚̃ωab.

(6.86)

As we will see in the following sections, Eqs. (6.84)-(6.86), together with the energy-
momentum conservation law

∇̃aΨa
b = 0. (6.87)

and Eq. (6.53), form a closed system able to describe the evolution of BI universes.
If we impose f (Q) = Q, and the conditions that characterize FLRW universes, i.e.,

absence of acceleration, distortion, and vorticity of the fluid flow, ůa = σ̃ab = ω̃ab = 0,
and if we consider that the expansion rate Θ̃ can be defined as a function of the scale
factor a as Θ̃ = 3å/a, we obtain that Eqs. (6.84) and (6.85) are equal to Eqs. (4.39) and
(4.38), respectively.

6.3 Bianchi type-I model in 1 + 3 approach

Bianchi type-I models describe anisotropic and homogeneous universes characterized
by a timelike congruence that is orthogonal to the spatial hypersurfaces foliating the
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spacetime. Because of Frobenius’ theorem, the orthogonality condition is guaranteed
by ωab = 0 (see Appendix B). Furthermore, in BI models the spatial hypersurfaces are
assumed flat, i.e., 3Ra

bcd = 0.
The BI models’ symmetries also impact the form of the nonmetricity tensor. Remem-

bering that we have chosen Q0 = 0, we can assume without loss of generality that the
only non-zero projections of the nonmetricity tensor are Q1 and Q(0)

ab, so the nonmetric-
ity tensor results to be of the particular form

Qcab = −
1
3

Q1uchab −Q(0)
abuc. (6.88)

In local coordinates, expression (6.88), and in particular the condition Q0 = 0, can be
justified by adopting the coincidence gauge Γab

c = 0. Since the projections of the non-
metricity tensor are tensor quantities, once the identity (6.88) has been proved in the
coincidence gauge, it remains valid in any other gauge. A straightforward calculation
shows that in the coincident gauge, using the metric (5.2), the only non-zero projections
of the nonmetricity tensor Qcab are,

Q1 = 2
τ̇

τ
, (6.89)

Q(0)
11 =

(
2aȧ− 2

3
a2 τ̇

τ

)
, (6.90)

Q(0)
22 =

(
2bḃ− 2

3
b2 τ̇

τ

)
, (6.91)

Q(0)
33 =

(
2cċ− 2

3
c2 τ̇

τ

)
, (6.92)

thus Eq. (6.88) is proved. With these assumptions, and separating the Levi-Civita contri-
butions from the nonmetricity ones, we can write:

Θ = Θ̃− 1
2

Q1, (6.93)

σab = σ̃ab −
1
2

Q(0)
ab, (6.94)

and
ua∇aub = ua∇̃aub + Lac

buauc. (6.95)

However, in the formulation of f (Q) gravity that we are considering, the curvature ten-
sor is identically zero, which corresponds to flat spacetime. Therefore, from Eq. (6.38),
for Ra

bcd = 0, 3Ra
bcd = 0, and ua∇aub = 0, we can set Θ = 0 and σab = 0, in such a way

that
Θ̃ =

1
2

Q1, (6.96)

σ̃ab =
1
2

Q(0)
ab, (6.97)

Q = −1
4

Q(0)
abQ(0)ab +

1
6

Q1
2 = −2σ̃2 +

2
3

Θ̃2, (6.98)
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and, by inserting Eq. (6.88) into (6.95) we have

ůb = 0. (6.99)

In addition, Eq. (6.45) leads to
3R̃a

bcd = 0. (6.100)

In the subsequent discussion, we consider a matter source described by the energy-
momentum tensor

Ψab = ρuaub + phab + πab, (6.101)

where p and ρ satisfy the barotropic linear equation of state,

p = wρ, w = const. (6.102)

Using all the above results in Eqs. (6.84), (6.85) and (6.86), we can write the 1 + 3 cosmo-
logical equations for Bianchi type-I universes:

• Raychaudhuri equation,

˚̃Θ +
1
3

Θ̃2 + 2σ̃2 +
1

2 f ′
(ρ + 3p)− 1

2

(
f
f ′
−Q

)
+

f ′′

f ′
Θ̃Q̊ = 0; (6.103)

• Spatial equations,

2σ̃2 − 2
3

Θ̃2 +
2
f ′

ρ +
f
f ′
−Q = 0, (6.104)

˚̃σ + Θ̃σ̃ +
f ′′

f ′
σ̃Q̊ − 1

2 f ′
πabσ̃ab

σ̃
= 0; (6.105)

• Energy-momentum conservation,

ρ̊ + Θ̃ (ρ + p) + πabσ̃ab = 0. (6.106)

Equation (6.105) is obtained by multiplying Eq. (6.86) by σ̃ij/ (2σ̃), whereas Eq. (6.106) is
derived by the temporal projection of Eq. (6.87)1.

1We should remark here that the derivatives are with respect to the proper time.
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7
Dynamics of Bianchi type-I cosmology

in f (Q) gravity

In general, cosmological equations can be difficult to solve because they form a system of
non-linear (partial) differential equations, so we attempt to obtain a global picture of cos-
mic evolution by means of the so-called Dynamical Systems Approach (DSA), see e.g.,
[167, 168]. This technique allows us to study a cosmological model by analyzing the be-
havior of the orbits in a phase space connected with the geometrical features and matter
sources of spacetime. Making use of DSA, it is possible to achieve a semi-quantitative
analysis of the solutions of the dynamical equations and their stability. DSA has been
widely used in gravitational theories [63, 169–174], including the f (Q) theory [175–179],
where it is shown that in FLRW cosmologies, using different functions for f (Q), the evo-
lution of the background is the same as in the ΛCDM model; however, this behavior is
due only to the nonmetric structure of spacetime, without the need to introduce any form
of exotic energy. The 1 + 3 approach introduced above provides an ideal framework to
employ the DSA, as it makes available convenient variables for the description of the
phase space of the dynamical system. As we will see, in the context of the BI metric, the
application of the 1 + 3 approach leads to a remarkable simplification of the involved
equations. For example, we will be able to deal with complex matter sources as well as
non-trivial forms of the function f (Q).

The study performed in this chapter is based on the paper “Bianchi type-I cosmolog-
ical dynamics in f (Q) gravity: a covariant approach” [75].

7.1 Dynamical Systems Approach

Let us consider a phase space, that is, the space where each point x = (x1, x2, ..., xn)
corresponds to a possible state of our system. The dynamical system is defined as the
system of equation

ẋ = f(x), (7.1)

where the function f is a vector field such that

f(x) = ( f1(x), ..., fn(x)) , (7.2)
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and the dot represents a derivative with respect to a generic time parameter. In cosmol-
ogy, we are used to dealing with finite and continuous dynamical systems, so we will
restrict ourselves to dealing only with these cases. We define critical points as points
x = x0 in the phase space for which f(x0) = 0. These points can be stable or asymptoti-
cally stable:

• Stable critical point. Let x0 be a critical point of the system (7.1). It is called stable if for
every ϵ > 0 we can fund a δ such that if ψ(t) is any solution of (7.1) satisfying ∥ψ(t0)−
x0∥ < δ, then the solution ψ(t) exists for all t ≥ t0 and it will satisfy ∥ψ(t0)− x0∥ < ε
for all t ≥ t0;

• Asymptotically stable critical point. Let x0 be a critical point of the system (7.1). It is
called asymptotically stable if there exists a number δ such that if ψ(t) is any solution of
(7.1) satisfy ∥ψ(t0)− x0∥ < δ, then limt−>∞ ψ(t) = x0.

Thus, for asymptotically stable points, the trajectories that represent a solution of the
system, also called orbit, will sooner or later reach the critical point; while for stable
points, it is not certain that trajectories will reach the critical point, however they will
remain in a region close to it. On the other hand, a point is said to be unstable if the
trajectories move away from the critical point.

There are various techniques for studying the stability of these points; we will use the
so-called linear stability theory, based on the idea of linearizing the system near a fixed
point. Since we consider smooth functions, we can use the Taylor expansion near x0 up
to the first order,

fi(x) = fi(x0) +
n

∑
j=1

∂ fi

∂xj
(x0)(xj − x0j). (7.3)

The study of the eigenvalues of the Jacobian at the critical point is what gives us infor-
mation about the stability of the point. A critical point is said hyperbolic if none of the
eigenvalues have zero real part. Otherwise, it is called non-hyperbolic. If the critical
point is not a point but is represented by a submanifold of dimension greater than or
equal to 1, we will have that hyperbolic submanifold has a number of zero eigenvalues
equal to the dimension of the submanifold.

Now, from the Hartman-Grobman theorem we know that near a hyperbolic critical
point, the nonlinear system (7.1) has the same qualitative structure as the linear system
given by the combination of Eqs. (7.1) and (7.3) [167]. Therefore, the study of the stability
of the linearized system gives the stability of the nonlinear one. In case the points are non-
hyperbolic we have to refer to other analysis techniques such as the Lyapunov’s method
or the center manifold theorem [167, 168]. A critical point is called an attractor (sink) if
all the eigenvalues of the Jacobian have a negative real part; it is called a repeller (source)
if all the eigenvalues of the Jacobian have a positive real part, and it is called a saddle if
at least two eigenvalues of the Jacobian have real parts with opposite signs. Due to the
definition given above, attractors are stable points, whereas repellers are unstable ones.
The saddle points instead attract trajectories in some directions but repel them along
others.
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7.1.1 Dynamical systems in the ΛCDM model

Before studying the BI model in f (Q) gravity, we give an example of how to use the DSA
by analyzing spatially flat ΛCDM model1.

Let us consider Eqs. (4.53), (4.54), and (4.40) with k = 0 and with both matter and
radiation not interacting with each other,

3H2 = ρm + ρr + Λ, (7.4)

Ḣ + H2 = −1
6
(ρm + 2ρr) +

Λ
3

, (7.5)

ρ̇m + 3Hρm = 0, (7.6)

ρ̇r + 4Hρr = 0, (7.7)

where ρm and ρr are the energy density of matter and radiation, respectively. Now, we
introduce the dimensionless variables

Ωm =
ρm

3H2 , Ωr =
ρr

3H2 , ΩΛ =
Λ

3H2 , (7.8)

where we assume that H ≥ 0, so we have an expanding universe. This dimensionless
representation minimizes the number of parameters needed to describe the system and
can provide additional insight into the influence of parameters on the dynamic response.
Also, we normalized with respect to the rate of expansion to have comoving quantities.

The Friedmann equation (7.4) can be rewritten as

1 = Ωm + Ωr + ΩΛ. (7.9)

We can use this equation as a constraint to derive ΩΛ, so the dynamical system reduces
to a system of only two dimensions. Since we consider positive energy densities and
positive cosmological constant, we also have the constraint Ωm + Ωr ≤ 1, which bounds
the physically significant region of the phase space. To obtain the final dynamical system,
we have to introduce a dimensionless time variable,

T = ln a, (7.10)

and perform the derivative with respect to it of the dynamical variables,

dΩm

dT =
1
H

dΩm

dt
=

ρ̇m

3H3 −
2
3

Ḣ
H3 ρm, (7.11)

dΩr

dT =
1
H

dΩr

dt
=

ρ̇r

3H3 −
2
3

Ḣ
H3 ρr. (7.12)

Finally, using Eqs. (7.4), (7.5), (7.6), and (7.7) we find

ΩΛ =1−Ωm −Ωr (7.13)
dΩm

dT =Ωm (3Ωm + 4Ωr − 3) (7.14)

dΩr

dT =Ωr (3Ωm + 4Ωr − 4) (7.15)

1In this example we do not use the 1 + 3 formalism, because given the simplicity of the field equations
the only difference would be the use of Θ̃ instead of H.
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Figure 7.1: Phase space portrait of the system (7.52)-(7.53) for w = 0 and n = 3.

The system has three critical points

Pm = {Ωm = 1, Ωr = 0, ΩΛ = 0}, Pr = {Ωm = 0, Ωr = 1, ΩΛ = 0},
PΛ = {Ωm = 0, Ωr = 0, ΩΛ = 1},

(7.16)

with eigenvalues of the Jacobian equal to {−1, 3}, {1, 4}, and {−4,−3}, respectively.
Therefore, the point Pm is a saddle, Pr is a repeller, whereas the point PΛ is an attractor.
Hence, in its evolution, the universe starts from a situation of radiation dominance, and
then reaches a situation of dark energy dominance, with an intermediate phase domi-
nated by matter. This description is in agreement with what was said in Sec. 4.2 where
it was shown that the universe tends to be de Sitter type at a late epoch. A graphic
representation of the phase space is given in Figure 7.1.

In Eqs. (7.14) and (7.15), the conditions Ωm = 0 and Ωr = 0 identify what are called in-
variant submanifold. The name is due to the fact that they correspond to a null variation
of the dynamical variables with respect to the dimensionless time. So, an orbit belong-
ing to an invariant submanifold at a certain instant will always belong to that invariant
submanifold. Invariant submanifolds split the phase space into separate regions that are
not connected by orbits, because if they were, the solutions would have a discontinuity
in their first derivative at the invariant submanifold, but we assumed smooth functions.
A consequence is that the only global critical points are given by the intersections of the
invariant submanifolds. In FLRW cosmology the point PΛ is a global attractor since it is
the intersection between Ωm = 0 and Ωr = 0.

7.2 Dynamical Systems in f (Q) gravity

In this section, we will apply the DSA to analyze the dynamics of BI universes in the
framework of f (Q) gravity. We will deal with some specific models associated with
particular functions f (Q), all widely used in the literature. In one of the examples, we
will also consider the presence of anisotropic pressure.
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In our analysis, we will always consider an expanding universe. This means that if
we define the “average length scale” l by using the expansion rate Θ̃ as follows

l̊
l
=

1
3

Θ̃, (7.17)

then we have to impose Θ̃ > 0.

7.2.1 f (Q) as a power law without anisotropic pressure

As a first example, we consider the function2

f (Q) = αQn, (7.18)

with α a dimensional constant, and a null anisotropic pressure πij = 0. In this case, Eqs.
(6.103)-(6.106) assume the form,

˚̃Θ +
1
3

Θ̃2 + 2σ̃2 +
n− 1

2n
Q+ (n− 1) Θ̃

Q̊
Q +

1
2αn

(1 + 3w)Q1−nρ = 0, (7.19)

2σ̃2 − 2
3

Θ̃2 +
1− n

n
Q+

2
αn
Q1−nρ = 0, (7.20)

˚̃σ + Θ̃σ̃ + (n− 1) σ̃
Q̊
Q = 0, (7.21)

ρ̊ + Θ̃ (1 + w) ρ = 0. (7.22)

In order to recast these equations in a form more suitable for dynamical system analysis,
we define the following dimensionless variables 3,

Σ2 = 3
σ̃2

Θ̃2
, Ω2 = 3

1
α

1
Θ̃2n

ρ. (7.23)

Notice that the dynamical variables related to the shear and the matter sources have been
chosen non-negative, offering the advantage of a partial compactification of the phase
space. The choice of the matter variable should also be discussed. In general, one chooses
as the variable associated with ρ, simply 3ρ2/Θ̃2 or 3ρ2/( f ′Θ̃2), which directly relates to
the cosmic matter parameters, and therefore, it is easier to compare with observational
results. These parameters appear via Eq. (6.104) in many observable quantities, such
as the luminosity distance relation of the look back time, etc. However, here and in the
following examples, except for Sec. 7.2.4, we choose a different form for Ω. The reason
is that such a form allows us to introduce fewer dynamical variables. In addition, our
choice allows us to obtain a variable that involves only the expansion rate and energy
density, which can be measured independently, leading to an equally good variable in
terms of comparison with observations.

Introducing the dimensionless time variable,

T = ln l, (7.24)

2In this example, the case n = 1 and α = 1 correspond to GR solutions.
3In the natural units we are using (i.e., c = 8πGN = 1), the quantities Θ2, σ2, ρ, and Q have the

dimension of a length to the power of −2.
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Table 7.1: The stability of the fixed points and evolution of l, σ̃, and ρ for f (Q) = αQn and πij = 0.
The parameters t0, l0, σ0, σ1, ρ0, and ρ1 are constants of integration.

w = 0 0 < w ≤ 1

Point Attractor Repeller Saddle Attractor Repeller Saddle

P1 n ≥ 1
2

1
2 ≤ n < 1+w

2w n > 1+w
2w

Average length Shear Energy density

P1 l = l0 (t− t0)
2n

3(1+w) σ̃ = σ0 = 0 ρ = ρ0 +
ρ1

(t−t0)
2n

making use of the above variables and recalling the identity (6.98), we can rewrite the
system of cosmological equations in the new form,

(1− 2n)
(

1− Σ2
)
+

(
3
2

)n−1

Ω2
(

1− Σ2
)1−n

= 0, (7.25)

dΣ
dT =

1
3n

Σ
(

Σ2 − 1
) [

3(n + 1)− 3n(3w + 1)
(

2− 2Σ2
)−n

Ω2
]

. (7.26)

From Eq. (7.25) we derive Ω as a function of Σ,

Ω =
√

2n− 1
(

3
2

) 1−n
2 (

1− Σ2
) n

2 , (7.27)

which makes Eq. (7.26) a differential equation for Σ,

dΣ
dT =

3
2n

Σ
(

1− Σ2
)
[(2n− 1)w− 1] . (7.28)

A first consideration about the above equations is that Σ = 1 is not an acceptable value,
since we derive Eq. (7.27) from Eq. (7.25), assuming that Σ ̸= 1. The same problem will
occur in Sec. 7.2.2, in which the function f (Q) is again (7.18).

Furthermore, being Ω and Σ real, Eq. (7.27) is only meaningful if n ≥ 1/2 and 0 ≤
Σ < 1, and for some values of n in the intervals n ≥ 1/2 and Σ > 1, or n ≤ 1/2
and Σ > 1. However, we consider only the condition 0 ≤ Σ < 1. This choice has two
motivations. The first is that, from a physical point of view, we are interested in the states
of phase space describing an isotropic universe, i.e. Σ = 0. This state cannot be reached
by any orbit starting at Σ > 1. A second motivation is that in Eq. (7.27) there is the term(
1− Σ2) n

2 , the value of which depends strictly on the choice of n (e.g. even, odd, or a
rational number) when Σ > 1. The case n ≥ 1/2 and 0 ≤ Σ ≤ 1, on the other hand,
being a continuous interval for n, offers a wider setting for a parameter analysis aimed at
comparison with observations. Similar constraints will be necessary also in the models
we will consider in the following sections.

The system (7.27) and (7.28) presents only one critical point,

P1 =

{
Σ = 0, Ω =

√
2n− 1

(
3
2

) 1−n
2
}

, (7.29)
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Figure 7.2: Evolution of Σ(l) and Ω(l) with: (a) w = 0, n = 3, and Σ1 = −1/3; (b) w = 1/3,
n = 3, and Σ1 = 2/3; (c) w = 1/3, n = 3/2, and Σ1 = −1/4. The empty (half-)circles represent
the conditions Σ ̸= 1 and Ω ̸= 0.

which represents a universe where the shear is negligible with respect to the matter.
The derivative of Eq. (7.28) with respect to Σ allows us to discuss the stability of the

solutions near the critical point, which depends on the values of w and n. The results are
shown in Table 7.1.

We can obtain an “approximation” for the time dependence of l, σ̃, and ρ near a critical
point by substituting Eq. (7.23) into Eqs. (7.19), (7.21), and (7.22). The results are again
reported in Table 7.1.

Equation (7.28) can be solved analytically, so we can also obtain exact solutions for Σ
and Ω as a function of average length scale l,

Σ(l) =
1√

1 + e2Σ1 l
3(1+w−2nw)

n

,

Ω(l) =
√

2n− 1
(

3
2

) 1−n
2
(

e2Σ1 l
3(1+w−2nw)

n

1 + e2Σ1 l
3(1+w−2nw)

n

)n/2

,

(7.30)

where Σ1 is a constant of integration. Using Eq. (7.30), we can compare the evolution of Σ
and Ω with the results coming from the stability analysis in Table 7.1. As it can be seen in
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Figure 7.3: (a) Evolution of the scale factor a, b, and c in function of the proper time t, with w = 0,
n = 3, Kτ = 10

3 , a1 = c1 = 1
24 , and t0 = − 20

3 . (b) Evolution of Σ, and Ω in function of the average
length scale l, with w = 0, n = 3, Kτ = 10

3 , and a1 = c1 = 1
24 . The empty (half-)circles represent

the conditions Σ ̸= 1 and Ω ̸= 0.

Figure 7.2, once the appropriate parameters have been chosen, the results are consistent
with Table 7.1. In Figure 7.2a, where w = 0 and n ≥ 1/2, we have that P1 is an attractor,
whereas in Figure 7.2b, and Figure 7.2c, with 0 < w ≤ 1, P1 is a repeller or an attractor,
respectively, depending on the value of n.

In Sec. 5.2.2, the reconstruction method was used to find exact Bianchi type-I cos-
mologies in f (Q) gravity. It is interesting to compare these results with the more general
description we have obtained from the above phase space analysis.

For example, we found, for f (Q) = βQn, w = 0 and n an odd integer, the following
solution for the scale factors4,

a(t) =a1

[
(t− t0)

2 − 4n2K2
τ

9

] n
3
[

3 (t−t0)
n − 2Kτ

3 (t−t0)
n + 2Kτ

] n
3

,

c(t) =c1

[
(t− t0)

2 − 4n2K2
τ

9

] n
3
[

3 (t−t0)
n − 2Kτ

3 (t−t0)
n + 2Kτ

]− 2n
3

,

(7.31)

represented by Figure 7.3a. As has been pointed out previously, it is clear that the scale
factors tend to have the same expansion rate as the time increases, thus describing a
universe that tends to isotropize. To perform the comparison we need the dynamical
variables Σ and Ω calculated for the (7.31). Since we can impose without loss of generally
τ = l3, from Eq. (5.66) we derive the proper time t as a function of l. Therefore, from Eqs.

4In Sec. 5.2.2 we have f (Q) = βQ 1
n , thus here we perform the transformation 1

n → n.
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(6.89), (6.90), (6.91), (6.92), (6.96), and (6.97), we obtain

Σ2 =
4K2

τ

9
n2

(
l3

a1b1c1

) 1
n
+ 4K2

τ

,

Ω2 =
1
α

31+2n

4na2
1b2

1c2
1

(
1
n

)4n
ρ0

 9
n2

(
l3

a1b1c1

) 1
n

+ 4K2
τ

−n

l3.

(7.32)

The isotropization is evident in Figure 7.3b, which shows the behavior of Σ and Ω. As
expected, this behavior matches exactly the one of Figure 7.2a once the parameters are
chosen consistently.

7.2.2 f (Q) as a power law with anisotropic pressure

We consider again the function f (Q) = αQn, but now we add an anisotropic pressure of
the form (see e.g. [163, 180, 181]),

πij = −µσ̃ij, (7.33)

being µ a suitable dimensional constant.
Under these assumptions, the dynamical equations are:

˚̃Θ +
1
3

Θ̃2 + 2σ̃2 +
n− 1

2n
Q+ (n− 1) Θ̃

Q̊
Q

+
1

2αn
(1 + 3w) Q1−nρ = 0, (7.34)

2σ̃2 − 2
3

Θ̃2 +
1− n

n
Q+

2
αn
Q1−nρ = 0, (7.35)

˚̃σ + Θ̃σ̃ + (n− 1) σ̃
Q̊
Q

+
µ

αn
Q1−nσ̃ = 0, (7.36)

ρ̊ + Θ̃ (1 + w) ρ− 2µσ2 = 0. (7.37)

In this case, we have an additional variable related to the anisotropic pressure,

M =
µ

α
Θ̃1−2n, (7.38)

together with

Σ2 = 3
σ̃2

Θ̃2
, Ω2 = 3

1
α

1
Θ̃2n

ρ. (7.39)

By following a similar procedure as in the previous example, we obtain the final system
of dynamical equations:

Ω =
√

2n− 1
(

3
2

) 1−n
2 (

1− Σ2
) n

2 , (7.40)

dΣ
dT =− 1

2n

(
3
2

)n
Σ
(

1− Σ2
)1−n [

4M+ 31−n
(

2− 2Σ2
)n

(1 + w− 2nw)
]

, (7.41)

dM
dT =

3n

2n
M
{

8 (n− 1)MΣ2
(

2− 2Σ2
)−n

+

− 31−n(2n− 1)
[
Σ2 (2nw− w− 1)− w− 1

] }
. (7.42)
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Table 7.2: The stability of the fixed points and evolution of l, σ̃, and ρ for f (Q) = αQn and
πij = −µσij. The parameters t0, l0, σ0, ρ0, and ρ1 are constants of integration.

w = 0 0 < w ≤ 1

Point Attractor Repeller Saddle Attractor Repeller Saddle

P1 n ≥ 1
2 n > w+1

2w
1
2 ≤ n < w+1

2w

Average length Shear Energy density

P1 l = l0 (t− t0)
2n

3(1+w) σ̃ = σ0 = 0 ρ = ρ0 +
ρ1

(t−t0)
2n

As anticipated in Sec. 7.2.1, in the above system of equations, Σ = 1 is not an acceptable
value. In addition, the conditions to have Ω and Σ real are n ≥ 1/2 and 0 ≤ Σ < 1.

The invariant submanifolds of the system include Σ = 0 and M = 0. Notice that
the invariant submanifold Σ = 0 represents isotropic universes, whereasM = 0 implies
that either we are in a situation in which the terms associated with the coupling µ are
negligible (and therefore the universe described in Sec. 7.2.1) or that the expansion is
going to infinity. However, it is not immediate in this framework to distinguish these two
cases. Only a more detailed analysis of the equations or a different choice of variables
might shed clarity on this point. We will not attempt such an analysis here.

In the parameter range we consider, there is one critical point,

P1 =

{
Σ = 0, M = 0, Ω =

√
2n− 1

(
3
2

) 1−n
2
}

, (7.43)

where matter dominates over the shear and the anisotropic pressure. The analysis of the
stability and the approximate evolution of l, σ̃ and ρ are summarized in Table 7.2.

The phase space is described in Figures 7.4a, 7.4b and 7.4c, for different values of w
and n. To proceed in the analysis, we define

P2 :=
{

Σ = 1, M = 0, Ω = 0
}

, (7.44)

which is not a critical point, but it will be useful to describe the orbits of the phase space.
The phase space we obtained shows several types of cosmic evolutions. For exam-

ple in Figure 7.4a, close to P2, with M positive, we are in a universe where matter is
negligible compared to shear. As the time progresses, the universe isotropizes with a
decreasing expansion rate. In contrast, in the negative half-plane for M, after a phase
of isotropization and approach to P1, the orbits return to their starting point, i.e. to an
anisotropic state. A similar behavior is found in Figure 7.4c. On the other hand, in Fig-
ure 7.4b we have that orbits move away from an isotropic universe, represented by the
points of the phase space near P1. In the positive half-plane, the region near P2 is a transi-
tion phase for the system leading to a decelerated isotropization, whereas in the negative
half-plane, there are decelerated and accelerated expansion phases that lead the universe
to anisotropy.

As expected, the invariant submanifoldM = 0 mirrors exactly the phase space of the
case of Section 7.2.1.
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Figure 7.4: Phase space portrait of the system (7.41)-(7.42) with (a) w = 0 and n = 3, (b) w = 1
3

and n = 3, (c) w = 1
3 and n = 3/2.

7.2.3 The case f (Q) = α
(√
Q+ βQn

)
We now consider the following function,

f (Q) = α
(√
Q+ βQn

)
, (7.45)
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Table 7.3: The stability of the fixed points and evolution of l, σ̃, and ρ for f (Q) = α
(√
Q+ βQn)

and πij = 0. The parameters t0, l0, σ0, σ1, and ρ0 are constants of integration.

0 ≤ w ≤ 1

Point Attractor Repeller Saddle

P1 n > 1
2

P2 n > 1
2

Average length Shear Energy density

P1 l = l0 (t− t0)
2n

3(1+w) σ̃ = σ0 = 0 ρ = ρ0 = 0

P2 l = l0 (t− t0)
2n

3(1+2n+w) σ = σ0 + σ1 (t− t0)
−1 ρ = ρ0 = 0

where α and β are dimensional constants, and set the anisotropic pressure πij equal to
zero. The resulting cosmological equations are,

˚̃Θ +
1
3

Θ̃2 + 2σ̃2 +
Q
2
− Q+ βQn+ 1

2

1 + 2βnQn− 1
2
+

− 1
2
Q̊
Q

1− 4β(n− 1)nQn− 1
2

1 + 2βnQn− 1
2

Θ̃ +

√
Q

α
(

1 + 2βnQn− 1
2

) (1 + 3w) ρ = 0,
(7.46)

2σ̃2 − 2
3

Θ̃2 −Q+ 2
Q+ βQn+ 1

2

1 + 2βnQn− 1
2
+

4
√
Q

α
(

1 + 2βnQn− 1
2

)ρ = 0, (7.47)

˚̃σ + Θ̃σ̃− 1
2
Q̊
Q

1− 4β(n− 1)nQn− 1
2

1 + 2βnQn− 1
2

σ̃ = 0, (7.48)

ρ̊ + Θ̃ (1 + w) ρ = 0. (7.49)

By defining the dynamical variables,

Σ2 = 3
σ̃2

Θ̃2
, B = βΘ̃2n−1, Ω2 = 3

1
α

1
Θ̃

ρ, (7.50)

the reduced system of dynamical equations is

Ω =

(
3
2

) 1−n
2 √

(2n− 1)B
(

1− Σ2
) n

2 , (7.51)

dΣ
dT =

3Σ
(
Σ2 − 1

)
3n
√

2 + 2n+1
√

3nB (1− Σ2)
n− 1

2

[
3n
√

2 + 2n
√

3B(1 + w− 2nw)
(

1− Σ2
)n− 1

2
]

,

(7.52)
dB
dT =

3 (1− 2n)B

n
[
3n
√

2 + 2n+1
√

3nB (1− Σ2)
n− 1

2
]{3n

√
2nΣ2+

102



CHAPTER 7. DYNAMICS OF BIANCHI TYPE-I COSMOLOGY IN f (Q) GRAVITY

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

P1 P2

Figure 7.5: Phase space portrait of the system (7.52)-(7.53) for w = 0 and n = 3.

+
3n
√

2
(1 + w) + 2n

√
3nB

[
1 + w + (1 + w− 2nw)Σ2

] (
1− Σ2

)n− 1
2
}

. (7.53)

We assume B ≥ 0, n ≥ 1/2, and 0 ≤ Σ ≤ 1, so that Ω is real.
The invariant submanifold Σ = 0 represents isotropic universes, whereas Σ = 1

anisotropic ones, and B = 0, similarly to the previous section, a surface where the La-
grangian function is f (Q) = α

√
Q, when β is negligible, or the expansion rate Θ̃ is zero.

The critical points are

P1 = {Σ = 0, B = 0, Ω = 0}, (7.54)
P2 = {Σ = 1, B = 0, Ω = 0}. (7.55)

Both critical points have B and Ω equal to zero, and they are distinguished by the pres-
ence or absence of the shear Σ. The stability of the system and the approximate solutions
are summarized in Table 7.3.

A representation of the stability is given in Figure 7.5. We notice that all the orbits
converge in P1, which is a global attractor. Hence, in this theory the universe always
becomes isotropic.

7.2.4 f (Q) as Lambert function
For this last example, we consider the function,

f (Q) = Q eαQ, (7.56)

where α is a dimensional constant, and the anisotropic pressure πij is zero.
The cosmological equations are,

˚̃Θ +
1
3

Θ̃2 + 2σ̃2 +
αQ2

2 (1 + αQ) +
α(2 + αQ)

1 + αQ Q̊Θ̃ +
e−αQ

2 (1 + αQ) (1 + 3w) ρ = 0, (7.57)

103



CHAPTER 7. DYNAMICS OF BIANCHI TYPE-I COSMOLOGY IN f (Q) GRAVITY

2σ̃2 − 2
3

Θ̃2 −Q+
Q

1 + αQ +
2 e−αQ

1 + αQρ = 0, (7.58)

˚̃σ + Θ̃σ̃ +
α (2 + αQ)

1 + αQ Q̊σ = 0, (7.59)

ρ̊ + Θ̃ (1 + w) ρ = 0. (7.60)

The introduction of the following dynamical variables,

Σ2 = 3
σ̃2

Θ̃2
, A = αΘ̃2, Ω2 = 3

1
Θ̃2

ρ, (7.61)

leads to the equation for Ω,

Ω =

√
(1− Σ2)

[
1 +

4
3
A (1− Σ2)

]
e

1
3A(1−Σ2) (7.62)

and the system of two differential equations,

dΣ
dT =−

3Σ
(
1− Σ2) {3− w

[
3 + 4A

(
1− Σ2)] }

2 [3 + 2A (1− Σ2)]
, (7.63)

dA
dT =6wA Σ2 − 9

2
(1 + w)A

{
2Σ2

3 + 2A (1− Σ2)
+

+
2
[
3 + 4A

(
1− Σ2)]

9 + 2A (1− Σ2) [15 + 4A (1− Σ2)]

}
. (7.64)

To guarantee that ρ > 0, we need to impose that Ω is real, which in turn implies the
conditions,

A ≤ −3
4

and
1
2

√
3 + 4A
A ≤ Σ ≤ 1 (7.65)

or
A > −3

4
and 0 ≤ Σ ≤ 1. (7.66)

We identify the invariant submanifolds Σ = 0, Σ = 1, and A = 0. The first two outline
isotropic and anisotropic universes, respectively; A = 0 is the surface where the theory
reduces to f (Q) = Q, or to a cosmology where Θ̃ = 0.

In the range given by Eqs. (7.65) and (7.66), the critical points are,

P1 = {Σ = 0, A = 0, Ω = 1}, (7.67)
P2 = {Σ = 1, A = 0, Ω = 0}, (7.68)

P3 =

{
Σ = 0, A = −3

4
, Ω = 0

}
. (7.69)

Moreover, for w = 1 and A = 0, the system of Eqs. (7.63) and (7.64) admits the solution,

P4 =

{
Σ = Σ∗, A = 0, Ω =

√
1− (Σ∗)2

}
, (7.70)

where Σ∗ is an arbitrary constant.
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Table 7.4: The stability of the fixed points and evolution of l, σ̃, and ρ for f (Q) = QeαQ and
πij = 0. The parameters t0, l0, σ0, ρ0 and ρ1 are constants of integration.

Point Attractor Repeller Saddle

P1 0 ≤ w < 1

P2 0 ≤ w < 1

P3 0 ≤ w ≤ 1

P4 w = 1

Average length Shear Energy density

P1 l(t) = l0 (t− t0)
2

3(1+w) σ̃ = σ0 = 0 ρ(t) = ρ0 +
ρ1

(t−t0)
2

P2 l(t) = l0 3
√

3 (t− t0) σ̃(t) = σ0 +
1√

3(t−t0)
ρ(t) = ρ0 = 0

P3 l(t) = l0e
t

t0 σ̃ = σ0 = 0 ρ(t) = ρ0 = 0

P4 l(t) = l0 3
√

3 (t− t0) σ̃(t) = σ0 +
Σ∗√

3(t−t0)
ρ(t) = ρ0 +

1−Σ∗2

3(t−t0)
2

The results of the stability analysis near the critical points and the approximate solu-
tions are outlined in Table 7.4.

The phase space of the Eqs. (7.63), and (7.64) is represented in Figure 7.6. In Figure
7.6a, P1 and P3 are attractors, and P2 is a saddle point. In Figure 7.6b, in addition to the
point P3, all the space identified by A = 0, i.e. the central heavy line in the figure, is an
attractor. In both figures, the phase space is divided into three regions by two curves.
The dash-dotted line indicates the curve

3 + 4A
(

1− Σ2
)
= 0, (7.71)

determining the lower boundary for which, by Eq. (7.65), Ω is real. Therefore, the phase
space is not physical below this line, and in the figures, this area corresponds to the
shaded one. Instead, the dashed curve represents one of the denominators of Eq. (7.64),

9 + 2A
(

1− Σ2
) [

15 + 4A
(

1− Σ2
)]

= 0, (7.72)

the other denominator of Eq. (7.64) is irrelevant as it lies below the dash-dotted curve.
The presence of the sectors delimited by the dashed and dash-dotted curves is an

essential difference from the other examples discussed above. In Sec. 7.2.2 we have an-
alyzed different behaviors of the orbits according to the positivity or negativity of the
constants related to the dynamical parameter. Here, however, for α < 0, there are dif-
ferent attractors, depending on whether an orbit is above or below the divergence line.
Therefore, the final state of cosmology depends crucially on the initial conditions. For
example, in the case w = 1, the orbits below the divergence line describe universes that
tend toward isotropy, whereas orbits above it tend to a finite value of Σ, i.e. the universe
approaches an anisotropic state.
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Figure 7.6: Phase space portrait of the system (7.63)-(7.64) for (a) w = 0, and (b) w = 1. Shaded
areas are non-physical regions for the phase space.

7.3 Discussions

We investigated the dynamics of Bianchi type-I cosmologies within the framework of
f (Q) gravity using a combination of the 1 + 3 covariant formalism and the dynamical
systems approach.

The 1 + 3 formalism allowed us to obtain a very clear and detailed description of the
geometric and dynamic properties of f (Q) cosmologies. In particular, we were able to
characterize the effect of nonmetricity on the autoparallel motion of the observers and to
obtain cosmological equations that are independent of any specific coordinate system. In
addition, the 1 + 3 decomposition made it possible to single out the different contribu-
tions of the nonmetricity tensor Qabc, making more explicit the effect of nonmetricity on
the kinematic quantities. We proved that in Bianchi type-I metric the decomposition of
the tensor Qabc involves only the scalar and traceless symmetric tensors which affect the
expansion rate Θ and shear σ.

One of the main difficulties of applying the 1 + 3 formalism to nonmetric theories of
gravity is that in general one cannot assume proper time to be an affine parameter along
the timelike congruence. However, in the case of Bianchi type-I cosmologies, this prob-
lem can be overcome, thus obtaining complete equivalence between the affine parameter
of the world lines and the proper time of the observers associated with the congruence.
This aspect is crucial, allowing the introduction of an unambiguous cosmic time and then
the definition of a cosmic history.

After writing the cosmological equations in the 1 + 3 framework, we separated the
contributions due to Levi-Civita from the nonmetricity terms, to better understand the
differences between GR and f (Q) gravity. As it happens in many other extensions of
GR, we were able to describe in a complete way the additional terms that nonmetricity
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induces in the gravitational field equations as contributions due to an effective energy-
momentum tensor. This formulation allowed an immediate application of the DSA. We
considered here four applications, involving different functions f (Q) and thermodynam-
ical properties of the sources.

In the first application, the function f (Q) was a power law (Sec. 7.2.1), which was
chosen because of its simplicity and because it is commonly used in literature. We ob-
tained a one-dimensional dynamical system that was solvable analytically. We compared
the results with those of Sec. 5.2.2, exhibiting a perfect match when the universe, filled
with dust, is initially anisotropic and then isotropizes. This is not surprising as the phase
space contains all cosmological solutions, and thus it must include the one reconstructed
in Sec. 5.2.2.

We also analyzed a cosmology with the same power law action but in the presence of
an anisotropic pressure which we assumed proportional to the shear (Sec. 7.2.2). In this
scenario, an isotropic universe is seen to have a transition phase associated with a saddle
point, from which the orbits either diverge completely from it or return to the anisotropic
state from which they started. This behavior suggests a universe with a “cyclic” evolu-
tion, in which after a phase of isotropy, anisotropies start to grow again.

In Sec. 5.2.2 it was found that the reconstructed forms of f (Q) always have a
√
Q term

which plays a role similar to an integration constant. As another application (Sec. 7.2.3),
we investigated the effect of this term when it is added in the functions f (Q) used in
the previous two examples. Our analysis showed that the main effect of this additional
term is, as expected, constraining the sign of the nonmetricity scalar Q, which in turn
excludes some possible cosmic histories (the ones for Σ > 1). In the cases we considered,
the additional term forces all cosmologies to become isotropic in the future.

As a final example, we attempted the evaluation of the effects due to a gravitational
action consisting of an infinite series of power-law terms. Such effects can be evaluated
considering a function f (Q) as the Lambert function (Sec. 7.2.4). In this case, the phase
space differs considerably from the ones in the previous examples. The most important
difference turned out to be the appearance of separate regions of the phase space. The
presence of these regions shows that the cosmology will have different behaviors and
different final attractors depending on the initial conditions.

In all the examples we considered, some areas of the phase space needed to be ex-
cluded. We saw that these forbidden regions can appear for different reasons. For in-
stance, in Secs 7.2.1 and 7.2.2, the chosen dynamical variables and the request to have a
matter with physical thermodynamical quantities implied the exclusion of the line Σ = 1.
In other cases, like the ones given in Sec. 7.2.3 and 7.2.4, the limitations were related to
the nature of the function f (Q). For example, the condition Σ ̸= 1 is connected to the
fact that the function f (Q) might take, along an orbit, values that change dramatically the
structure of the gravitational field equations, giving rise to singularities or degeneracies.
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8
1 + 1 + 2 covariant formalism

In this chapter, we aim to provide a new framework to study static and spherically sym-
metric solutions in f (Q) gravity. The usual “coincident gauge”, which is characterized
by a null connection, fails to describe spherically symmetric spacetimes in vacuum un-
less the function f (Q) is linear. Because of this limitation, various approaches have been
proposed. For example, the total connection is made to coincide with the Levi-Civita
one in the gravity-free case [182–184], or alternatively, via the imposition of connection
invariance under SO(3) group transformations, restrictions are found on the connection
itself [185–189].

We will analyze the class of spacetimes which are static and Locally Rotationally Sym-
metric (LRS) which contain, as a particular case, static and spherically symmetric space-
times. Our analysis will be performed using the 1 + 1 + 2 covariant formalism, a natural
extension of 1 + 3 formalism [190–194] that we have used in Ch. 6. In this approach, in
addition to splitting spacetime in a preferred time direction and spatial hypersurfaces,
the space itself is split into a preferred spatial direction and surfaces orthogonal to it.
Therefore, it is well adapted to describe LRS spacetimes, which have a local preferred
spatial direction corresponding to the local axis of symmetry. We will see that the com-
bination of the formalism and the symmetries of LRS spacetimes will allow us to build
a complete set of scalar quantities able to describe the structure of static and spherically
symmetric spacetimes and to deduce the physical consequences of nonmetricity in this
framework.

The study performed in this chapter is based on the paper “Static and LRS spacetimes
of type II in f (Q) gravity” [76].

8.1 Static and Locally Rotationally Symmetric spacetime

Considering the splitting 1 + 3 introduced in Ch. 6, a spacetime is said to be locally ro-
tationally symmetric in a neighborhood N(P∗) of a point P∗, if at each point P in N(P∗)
there exists a non-discrete subgroup G of the Lorentz group in the tangent space TP which leaves
invariant ua, the curvature tensor and their derivatives up to third order [195]. If G is one-
dimensional, there is a single preferred spatial direction that constitutes a local axis of
symmetry. Therefore, the LRS definition implies that all the spacelike projections of ten-
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sors in spatial directions different from the axis of symmetry must be zero. Three differ-
ent classes of LRS spacetime can be distinguished:

• LRS spacetime of class I, the preferred spatial direction is hypersurface orthogonal;

• LRS spacetime of class II, both the preferred spatial direction and timelike congru-
ence are hypersurface orthogonal;

• LRS spacetime of class III, the timelike congruence is hypersurface orthogonal.

The spacetime is said stationary if it admits a timelike Killing vector field X such that

LXgab = 0. (8.1)

In our geometrical setting in which torsion is zero, we also require the further condition

LXQabc = 0, (8.2)

i.e., both metric and nonmetricity tensors are invariant under the action of the
1-parameter group of local diffeomorphisms generated by X.

If the congruence associated with X is hypersurface orthogonal, the spacetime is said
static.

Before moving on to the description of the 1+ 1+ 2 formalism and LRS spacetimes in
f (Q) gravity, we will derive the simplest static and LRS solution in GR, the
Schwarzschild metric.

8.1.1 Schwarzschild solution in General Relativity

In deriving the Schwarzschild metric we will also prove Birkhoff’s theorem, which states
that all spherically symmetric solutions of the Einstein field equations in vacuum must
be static and asymptotically flat.

A metric is spherically symmetric if the metric tensor gab preserves its form under
coordinate change of kind {

t′ = t
x′a = Aa

bxb , (8.3)

with Aa
b ∈ SO(3). Therefore, to construct the most general metric such that the above

condition is satisfied, we must find all the possible invariants under rotation. First, surely
there are the time t and the radius r =

√
x2 + y2 + z2 of the 2-sphere. The only other two

are given by the quantities x · dx = xdx + ydy + zdz and dx2 = dx2 + dy2 + dz2. Hence,
the most general metric constructed with the rotational invariants is equal to (c = 1)

ds2 = −C(t, r)dt2 + 2A(t, r) (x · dx)dt + B(t, r) (x · dx)2 + H(t, r)dx2, (8.4)

where A, B, C, H are arbitrary functions. Introducing the polar coordinate system,
x = r sin Θ cos φ

y = r sin Θ cos φ

z = r cos Θ
, (8.5)

we have
x · dx = rdr, (8.6)
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and
dx2 = dr2 + r2

(
dΘ2 + sin Θ2dφ2

)
, (8.7)

thus the metric takes the form

ds2 = −C(t, r)dt2 + 2E(t, r)dtdr + D(t, r)dr2 + H(t, r)r2
(

dΘ2 + sin2 Θdφ2
)

, (8.8)

with
E(t, r) = rA(t, r), and D(t, r) = r2B(t, r) + H(t, r), (8.9)

Because H(t, r) must be positive to preserve the signature, we can redefine the radial
coordinate as follows,

r′ =
√

H(t, r)r, (8.10)

thereby we obtain

ds2 = −C(t, r′)dt2 + 2E(t, r′)dtdr′ + D(t, r′)dr′2 + r′2
(

dΘ2 + sin2 Θdφ2
)

. (8.11)

Now, we can rewrite the first two terms in such a way as to complete the square, namely,

−C(t, r′)dt2 + 2E(t, r′)dtdr′ = −
(√

C(t, r′)dt− E(t, r′)√
C(t, r′)

dr′
)2

+
E2(t, r′)
C(t, r′)

dr′2, (8.12)

then the line element is equal to

ds2 = −
(√

C(t, r′)dt− E(t, r′)√
C(t, r′)

dr′
)2

+ D̃(t, r′)dr′2 + r′2
(

dΘ2 + sin2 Θdφ2
)

, (8.13)

where

D̃(t, r′) = D(t, r′) +
E2(t, r′)
C(t, r′)

. (8.14)

We want to redefine the terms in parentheses so that√
C(t, r′)dt− E(t, r′)√

C(t, r′)
dr′ = dt′, (8.15)

with t′ = t′(t, r′). The redefinition is possible if the r.h.s. of Eq. (8.15) is an exact differ-
ential form. However, in the plane identified by t and r′, the differential forms are exact
minus an integrating factor α,√

C(t, r′)dt− E(t, r′)√
C(t, r′)

dr′ = α(t, r′)dt′, (8.16)

and since the domain we are considering is simply connected, we just need to prove that
the differential form is closed. The condition that guarantees that a form is closed gives
the following

∂

∂r′

(
1

α(t, r′)

√
C(t, r′)

)
+

∂

∂t

(
E(t, r′)

α(t, r′)
√

C(t, r′)

)
= 0, (8.17)
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which is a first-order partial differential equation whose solution always exists given the
initial conditions. Thus, α can always be derived and defined in such a way that Eq.
(8.16) holds.

So, the metric can be recast as follows

ds2 = −B(t, r)dt2 + A(t, r)dr2 + r2
(

dΘ2 + sin2 Θdφ2
)

, (8.18)

where we dropped the ′ from t and r and renamed the arbitrary functions.
Now, we have to apply the Einstein equations R̃ab = 0. The components of the Ricci

tensors that are not identically null are given by

R̃00 =
B′′

2A
− 1

4
A′B

A2 +
B′

rA
− 1

4
B′2

AB
, (8.19)

R̃11 = −B′′

2B
+

1
4

B′2

B2 +
1
4

A′B′

AB
+

A′

rA
, (8.20)

R̃01 =
Ȧ

rA
, (8.21)

R̃22 = 1− 1
A

+
1
2

rA′

A2 −
1
2

rB′

AB
, (8.22)

R̃33 = R̃22 sin2 Θ , (8.23)

where ˙ and ′ represent the derivative with respect to the time and radius, respectively.
From the component R̃01 we obtain that the function A is independent of t, whereas from
the sum

1
B

R̃00 +
1
A

R̃11 =
B′

rA2 +
A′

rA2 =
1

rA

(
A′

A
+

B′

B

)
= 0 −→ ∂

∂r
ln (AB) = 0, (8.24)

we have that the product AB depends on time only. This implies

A(r)B(t, r) = k1 f (t), (8.25)

with k1 an arbitrary constant. Redefining the time as

dt −→
√

f (t)dt, (8.26)

the metric assumes the form

ds2 = − k1

A(r)
dt2 + A(r)dr2 + r2

(
dΘ2 + sin2 Θdφ2

)
. (8.27)

This metric is static since it is stationary and the scalar products of the vectors tangent
to the hypersurfaces with the vectors tangent to the timelike congruence are zero, being
the metric diagonal. Therefore, the congruence is hypersurface orthogonal, and we have
proved our previous statement that all spherically symmetric solutions of the Einstein
field equations in vacuum must be static. If we substitute

A(r) =
k1

B(r)
(8.28)
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in R̃22 and R̃11, we have

R̃22 = 1− B

k1
− r

B′

k1
, (8.29)

R̃11 = −1
2

B′′

B
− 1

r
B′

B
=

k1

2rB
R̃′22. (8.30)

Therefore, we just need to solve R̃22 = 0. From this it follows

d
dr

(rB) = k1 −→ B = k1

(
1 +

k2

k1

1
r

)
. (8.31)

Imposing that the metric is asymptotically flat,

lim
r→∞

A = lim
r→∞

B = 1, (8.32)

and that we must recover the Newtonian limit, we set

k1 = 1 and k2 = −2GN M, (8.33)

where M is the mass that generates the gravitational field. Finally, we can write the
so-called Schwarzschild metric

ds2 =
(

1− rS

r

)
dt2 +

(
1− rS

r

)−1
dr2 + r2

(
dΘ2 + sin2 Θdφ2

)
, (8.34)

where rS = 2GN M is the Schwarzschild radius.
In the case the cosmological constant Λ is considered, the metric becomes

ds2 =

(
1− rS

r
− 1

3
Λr2

)
dt2 +

(
1− rS

r
− 1

3
Λr2

)−1

dr2 + r2
(

dΘ2 + sin2 Θdφ2
)

, (8.35)

which is called Schwarzschild-de Sitter metric. It is worth noticing that Eq. (8.35) is no
longer asymptotically flat.

8.2 1 + 1 + 2 decomposition

As for the 1 + 3 formalism, here we consider a spacetime endowed with a torsion-free
connection.

Let us introduce a congruence of timelike curves xa = xa(λ), expressed in terms of an
affine parameter λ and filling all spacetime. The vector field tangent to the congruence is

ua =
dxa

dλ
, ua = gabub. (8.36)

At any point, we can identify a 3-dimensional subspace of the tangent bundle orthogonal
to ua. The projector onto the spatial subspace is defined as

hab = gab + uaub, (8.37)

and satisfies the properties

ha
chc

b = ha
b, habub = 0. (8.38)
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The 1 + 1 + 2 decomposition is implemented by introducing a congruence of spacelike
curves with tangent vector field e everywhere orthogonal to u: gabuaeb = 0. This allows
us to split the spatial subspace into a preferred direction parallel to e and a 2-dimensional
subspace, called “sheet”, orthogonal to e. The projection tensor onto the sheet is given by

Nab = hab − eaeb, (8.39)

with
Na

cNc
b = Na

b, Nabub = Nabeb = 0. (8.40)

Norm conservation of vectors u and e along both the congruences, and with respect to
the covariant derivative induced by the full connection Γab

c, as well as the preservation
of their orthogonality impose restrictions on the nonmetricity tensor Qcab:

uc∇c

(
gabuaub

)
= Qcabucuaub + 2ubuc∇cub = 0

−→ Qcabucuaub = 2ubuc∇cub,
(8.41)

ec∇c

(
gabeaeb

)
= Qcabeceaeb + 2ebec∇ceb = 0

−→ Qcabeceaeb = 2ebec∇ceb,
(8.42)

ec∇c

(
gabuaub

)
= Qcabecuaub + gabec∇c

(
uaub

)
= 0

−→ Qcabecuaub = 2ubec∇cub,
(8.43)

uc∇c

(
gabeaeb

)
= Qcabuceaeb + gabuc∇c

(
eaeb

)
= 0

−→ Qcabuceaeb = 2ebuc∇ceb,
(8.44)

uc∇c

(
gabuaeb

)
= Qcabucuaeb + gabuc∇c

(
uaeb

)
= 0

−→ Qcabucuaeb = ubuc∇ceb + ebuc∇cub,
(8.45)

ec∇c

(
gabuaeb

)
= Qcabecuaeb + gabec∇c

(
uaeb

)
= 0

−→ Qcabecuaeb = ubec∇ceb + ebec∇cub.
(8.46)

The normalization of ua (gabuaub = −1) and ea (gabeaeb = 1) implies the following prop-
erties for the projector tensors:

ha
a = 3, and Na

a = 2. (8.47)

Making use of hab and Nab, we can define the projected symmetric trace-free (PSTF) part
of a tensor with respect to ua and ea, respectively: given a second rank covariant tensor
Tab we have,

T⟨ab⟩ =

[
h(a

chb)
d − 1

3
habhcd

]
Tcd, (8.48)

and

T{ab} =

[
N(a

cNb)
d − 1

2
NabNcd

]
Tcd. (8.49)

It is also useful to introduce the volume elements derived from the Levi-Civita tensor
εabcd,

εabc = εabcdud εab = εabcec, (8.50)
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which are characterized by the following properties:

εabc = ε [abc], εab = ε [ab], (8.51)

εabcuc = 0, εabcεdec = 2h[a
dhb]

e, εabcεabd = 2hc
d (8.52)

εabeb = εabub = 0, εa
cεcb = Nab,

εabc = eaεbc − ebεac + ecεab.
(8.53)

Given a generic tensor Ta···
b···, there are several kinds of covariant derivative we can

define in the 1 + 1 + 2 formalism. In particular:

• the time derivative, the covariant derivative along ua,

Ṫa···
b··· = uc∇cT

a···
b···; (8.54)

• the spatial derivative, the covariant derivative projected onto the 3-dimensional
subspace orthogonal to ua,

DcT
a···

b··· = hc
dha

e · · · hb
f · · · ∇dTe···

f ···; (8.55)

• the hat derivative, the covariant spatial derivative along ea,

T̂a···
b··· = ecDcT

a···
b···; (8.56)

• the δ-derivative, the covariant spatial derivative projected onto the sheet orthogo-
nal to ea,

δcT
a···

b··· = Nc
dNa

e · · · Nb
f · · · DdTe···

f ···. (8.57)

As we have done in Ch. 6, we now decompose the covariant derivative of the 4-velocity,

∇aub =Daub − ua

(
Ab + ebA(u)

)
+

1
2

uaubQcdeucudue+

− 1
2

ubeaQcdeecudue − 1
2

ubNa
cQcdeudue.

(8.58)

where
A(u) = eaub∇bua, and Ab = Nb

auc∇cua. (8.59)

Moreover, the spatial derivative of ua can be expressed as

Daub =
1
3

habΘ + σab + ωab, (8.60)

where
Θ = habDaub (8.61)

represents the expansion of the time congruence,

σab =

[
h(a

chb)
d − 1

3
habhcd

]
Dcud = Σab + 2Σ(aeb) + Σ

(
eaeb −

1
2

Nab

)
(8.62)

is the shear tensor, with

Σab = σ{ab}, Σa = Na
cebσcb, Σ = eaebσab = −Nabσab, (8.63)
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the tensor, vector, and scalar parts of the shear, respectively. Finally, the quantity

ωab = D[aub] = εabΩ + εabcΩc (8.64)

is the vorticity tensor with

Ωc =
1
2

NcdεabdDaub, Ω =
1
2

εabNa
cNb

dDcud. (8.65)

In an analogous way, the covariant derivative of ea can be expressed as,

∇aeb =Daeb − uaαb −A(e)uaub +

(
1
3

Θ + Σ
)

eaub + Σaub − εabΩdub+

− 1
2

uaebQcd f ucede f − Na
cubQcd f ude f − eaubQcd f ecude f .

(8.66)

The spatial derivative of ea is given by

Daeb =
1
2

Nabϕ + ζab + εabξ + eaab − Na
cebL f

cdede f +
1
2

eaebQcd f ecede f (8.67)

where
ϕ = Nabδaeb ζab = δ{aeb} ξ =

1
2

εabδaeb (8.68)

are the analogous of expansion, shear, and vorticity for the spatial vector ea. The scalar

A(e) = −ubua∇aeb (8.69)

is the projection of the temporal acceleration of ea along ua, the vector

αb = ucNb
d∇ced (8.70)

is the projection of the temporal acceleration of ea onto the sheet, and

ab = ecNb
d∇ced (8.71)

is the projection of the spatial acceleration onto the sheet.
In addition to this, making use of the Weyl tensor (1.76), we introduce six new tensors

Hcd =
1
2

εc
abueCabde,

H̄ab =
1
2

εa
cdueCbecd = Hab +

1
2

εa
cdueZ(1)

becd,

Ȟab =
1
2

εa
cdueCebcd = −Hab +

1
2

εa
cdueZ(1)

ebcd,

(8.72)

Eac = Cabcdubud, Ēbc = Cabcduaud, Ěcd = Cabcduaub, (8.73)

which are the “magnetic” and “electric” parts of the Weyl tensor, respectively. These
tensors satisfy the following properties:

The magnetic and electric parts can be decomposed as well:

Hab = Hab +Haeb + eaHb +

(
eaeb −

1
2

Nab

)
H, (8.74)
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H̄ab =H̄ab + H̄aeb + eaHb − ˇ̄Haub + εabH− eaub
ˇ̄H+

(
eaeb −

1
2

Nab

)
H̄, (8.75)

Ȟab =Ȟab + Ȟaeb + eaȞb −Haub + εabȞ− eaubH+

(
eaeb −

1
2

Nab

)
Ȟ, (8.76)

Eab =Eab + Eaeb + eaEb − uaĚb + εabE− uaebĚ +
(

eaeb −
1
2

Nab

)
E , (8.77)

Ēab =Ēab + Ēaeb + eaĒb − ua
ˇ̄Eb + εabĒ− uaeb

ˇ̄E +
(

eaeb −
1
2

Nab

)
Ē , (8.78)

Ěab = Eab + 2E[aeb] − 2Ě[aub]. (8.79)

Eqs. (8.74)-(8.79) involve the following tensor, vector, and scalar quantities:

Hab =

(
Na

cNb
d − 1

2
NabNcd

)
Hcd, (8.80)

Ha = Na
cedHcd, H = eaebHab = −NabHab, (8.81)

H̄ab =

(
N(a

cNb)
d − 1

2
NabNcd

)
H̄cd, H̄a = Na

cedH̄cd, Hb = ecNb
dH̄cd, (8.82)

ˇ̄Ha = Na
cudH̄cd, H̄ =

1
2

εabH̄ab, ˇ̄H = eaubH̄ab, H̄ = eaebH̄ab = −NabH̄ab, (8.83)

Ȟab =

(
N(a

cNb)
d − 1

2
NabNcd

)
Ȟcd, Ȟa = Na

cedȞcd, Ȟb = ecNb
dȞcd, (8.84)

Ha = Na
cudȞcd, Ȟ =

1
2

εabȞab, H = eaubȞab, Ȟ = eaebȞab = −NabȞab, (8.85)

Eab =

(
N(a

cNb)
d − 1

2
NabNcd

)
Ecd, (8.86)

Ea = Na
cedEcd, Eb = ecNb

dEcd, Ěb = ucNb
dEcd, (8.87)

E =
1
2

εabEab, Ě = uaebEab, E = eaebEab = −NabEab, (8.88)

Ēab =

(
N(a

cNb)
d − 1

2
NabNcd

)
Ecd, (8.89)

Ēa = Na
cedEcd, Ēb = ecNb

dEcd, ˇ̄Eb = ucNb
dEcd, (8.90)

Ē =
1
2

εabĒab, ˇ̄E = uaebĒab = Ě , Ē = eaebĒab = −NabĒab, (8.91)

Eab = Na
cNb

d, Ea = Na
cedĚcd, Ěa = Na

cudĚcd. (8.92)

Finally, we perform the decomposition of the (symmetric) energy-momentum tensor Ψab
with respect to ua, ea and Nab:

Ψab =ρuaub + 2qe(aub) +

(
p− 1

2
π

)
Nab+

+ (p + π) eaeb + 2q̄(aub) + 2π(aeb) + πab,
(8.93)
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with

ρ = uaubΨab, q = −eaubΨab, p =
1
3

habΨab, π =
1
3

(
2eaeb − Nab

)
Ψab,

qa = −Na
bucΨbc, πa = Na

becΨbc, πab =

(
Na

cNb
d − 1

2
NabNcd

)
Ψcd.

(8.94)

The quantities p⊥ =
(

p− 1
2 π
)

and pr = (p + π) represent the transverse and radial
pressure of the fluid, respectively.

8.3 Static and LRS spacetime in 1 + 1 + 2 formalism

In the 1 + 1 + 2 formalism, the natural choice for the local axis of symmetry is the above-
defined spatial vector ea. The non-zero kinematic and thermodynamic quantities are the
scalars

{Θ, Σ, Ω, ϕ, ξ,A(u),A(e), µ, p, q, π,H, H̄, H̄, ˇ̄H, E , E, Ě , Ē , Ē, ˇ̄E}. (8.95)

As we said above, in our framework the torsion is zero. On the other hand, torsion is
strictly related to vorticity (see [164] for details) and therefore we assume the condition

Ω = ξ = 0. (8.96)

Under this assumption, because of Frobenius’s theorem (see Appendix B), both timelike
and spacelike congruences are hypersurface orthogonal, i.e., we are working within an
LRS spacetime of class II.

8.3.1 Decomposition of nonmetricity tensor

In an LRS spacetime, the decomposition of the nonmetricity tensor involves only scalar
quantities, according to1

Qabc =−Q0uaubuc + Q1eaebec −Q2uaebec − 2Q3eau(bec)+

+ Q4eaubuc + 2Q5uae(buc) −
1
2

Q6uaNbc −Q7u(bNc)a+

+
1
2

Q8eaNbc + Q9e(bNc)a −Q10εa(buc) + Q11εa(bec),

(8.97)

with

Q0 = Qabcuaubuc, Q1 = Qabceaebec, Q2 = Qabcuaebec, Q3 = Qabceaebuc,

Q4 = Qabceaubuc, Q5 = Qabcuaubec, Q6 = QabcuaNbc, Q7 = QabcNabuc,

Q8 = QabceaNbc, Q9 = QabcNabec, Q10 = Qabcεabuc, Q11 = Qabcεabec.

(8.98)

As a consequence, the nonmetricity scalar Q is seen to assume the form

Q =
1
2

Q0 (Q3 + Q7) +
1
2

Q1 (−Q5 + Q9) +
1
2

Q2 (Q3 + Q6 −Q7) +

− 1
2

Q4 (Q5 −Q8 + Q9) +
1
8

Q6 (−4Q3 + Q6)−
1
8

Q8 (4Q5 + Q8) +

− 1
2

Q10
2 +

1
2

Q11
2.

(8.99)

1In LRS spacetime, both the vector and tensor components are zero.
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In view of Eq. (8.97), Eqs. (8.58) and (8.66) are now written as

∇aub =
1
3

habΘ +

(
eaeb −

1
2

Nab

)
Σ− uaebA(u) + εabΩ +

1
2

uaubQ0 −
1
2

eaubQ4, (8.100)

and

∇aeb =
1
2

Nabϕ +

(
1
3

Θ + Σ
)

eaub − uaubA(e) + εabξ +
1
2

eaebQ1 −
1
2

uaebQ2 − eaubQ3.

(8.101)

For later use, it is useful to distinguish the contributions due to the Levi-Civita connection
from the ones due to nonmetricity in the following scalars,

Θ = Θ̃− 1
2

Q2 + Q3 −
1
2

Q6 + Q7, Σ = Σ̃− 1
3

Q2 +
2
3

Q3 +
1
6

Q6 −
1
3

Q7,

ϕ = ϕ̃− 1
2

Q8 + Q9, A(u) = Ã+
1
2

Q4, A(e) = Ã+
1
2

Q4 −Q5.
(8.102)

8.3.2 Static spacetime

With nonmetricity, the Killing equations (8.1) assume the form

0 = LXgab =2∇(aXb) + 2XcLabc =

=2∇̃(aXb).
(8.103)

In the following analysis, the form involving the total covariant derivative will be used.
We choose the Killing vector expressed as

X = C(x)u, (8.104)

where C(x) is a generic smooth function of the coordinates. Contracting Eq. (8.103) twice
with ua, we obtain

Ċ = 0, (8.105)

that is, the function C is independent of time. On the other hand, the contraction with ua

and eb gives the hat derivative of the function C,

Ĉ = ÃC. (8.106)

Finally, from the contraction with hc
ahd

b we find

C
[

Nab

(
2
3

Θ− Σ +
1
2

Q6 −Q7

)
+ eaeb

(
2
3

Θ + 2Σ + Q2 − 2Q3

)]
= 0, (8.107)

from which we derive
Θ = −1

2
Q2 + Q3 −

1
2

Q6 + Q7,

Σ = −1
3

Q2 +
2
3

Q3 +
1
6

Q6 −
1
3

Q7.
(8.108)

The condition (8.2) and Eq. (8.108) ensure that the time derivative of the scalar com-
ponents of nonmetricity tensor is zero. Hence, because of the LRS symmetries and the
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stationary conditions, the covariant derivatives of the scalars (8.95) are zero except those
along the radial direction ea.

Because of condition (8.96), we have that X is hypersurface orthogonal since it is pro-
portional to the 4-velocity. Thus, our spacetime is static.

By a direct comparison of Eq. (8.102) with Eq. (8.108), we obtain the identities

Θ̃ = 0, and Σ̃ = 0. (8.109)

This is not a surprising result, since Θ̃ and Σ̃ are respectively the expansion and shear
we would have in GR, where both quantities are known to be null in a stationary LRS
spacetime of class II. Moreover, it is a direct consequence of the Killing equations (8.103)
when using the form with the Levi-Civita covariant derivative.

Equation (8.108) means that in the presence of a nonmetric connection, expansion,
and shear can manifest exclusively due to the nonmetricity tensor.

8.4 f (Q) gravity

Here, we use the same metric field equations derived for the 1 + 3 formalism in Sec. 6.2

R̃ab =
1
f ′

(
Ψab −

1
2

gabΨ
)
+

1
2

gab

(
f
f ′
−Q

)
− 2

f ′′

f ′

(
Pc

ab −
1
2

gabPcd
d

)
∂cQ, (8.110)

We will perform projections along both the timelike and spacelike curves as well as onto
the sheets.

8.4.1 1 + 1 + 2 field equations in LRS spacetimes of class II

To make explicit the field equations in the 1+ 1+ 2 formalism, we need the Ricci identity
for the Levi-Civita Riemann tensor, written for both ua and ea,[

∇̃c∇̃d − ∇̃d∇̃c
]

ub = −R̃a
bcdua,

[
∇̃c∇̃d − ∇̃d∇̃c

]
eb = −R̃a

bcdea. (8.111)

From Eqs. (6.73) and (8.111), we obtain the following relations2:

• R̃aduaud = gbcud [∇̃c∇̃d − ∇̃d∇̃c
]

ub,

ˆ̃A+ Ã2 + Ãϕ̃− 1
2

1
f ′
(ρ + 3p) +

1
2

f
f ′
− 1

2
Q− 1

2
f ′′

f ′
(Q4 − 2Q5) Q̂ = 0; (8.112)

• R̃adeaed = gbced [∇̃c∇̃d − ∇̃d∇̃c
]

eb,

ˆ̃ϕ +
1
2

ϕ̃2 + ˆ̃A + Ã2 +
1
2

1
f ′
(ρ− p + 2π) +

1
2

f
f ′
− 1

2
Q− 1

2
f ′′

f ′
(Q4 −Q8) Q̂ = 0;

(8.113)

• R̃aduaed = gbced [∇̃c∇̃d − ∇̃d∇̃c
]

ub,

f ′′ (Q0 + Q2 −Q6) Q̂ = q; (8.114)
2We report only contractions that do not return trivial results.
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• −R̃a
bcdeaubuced = ubuced [∇̃c∇̃d − ∇̃d∇̃c

]
eb,

ˆ̃A + Ã2 − Ẽ − 1
6

1
f ′
(ρ + 3p− 3π) +

1
6

f
f ′
− 1

6
Q+

− 1
12

f ′′

f ′
(4Q4 − 4Q5 −Q8 − 2Q9) Q̂ = 0;

(8.115)

• −R̃a
bcdeaubεcd = εcdub [∇̃c∇̃d − ∇̃d∇̃c

]
eb,

H̃ = 0. (8.116)

In vacuum, for Eq. (8.114) to be satisfied, there are three possible solutions: f ′′ = 0,
and Q̂ = 0, from which only Schwarzschild-de Sitter spacetime can be obtained (in Sec.
6.2 we showed that these two conditions always give the GR field equations), or Q0 +
Q2−Q6 = 0, which instead imposes a restriction on the connection. The latter condition
results in being automatically satisfied under the assumptions we will use to solve the
field equations.

8.4.2 Weyl tensor: magnetic and electric parts

Keeping in mind that the Weyl tensor is zero because the Riemann tensor is null, Ra
bcd =

0, we can make explicit the contributions due to Levi-Civita connection and nonmetricity
in the magnetic and electric parts of the Weyl tensor to derive constraints on nonmetricity.
Equations Ě = ˇ̄E = 0 are automatically satisfied, so they do not provide any constraint.
On the other hand, from the scalar part of (8.74), we have

H = 0 =H̃ − 1
8

ϕ̃Q10 +
1
4
ÃQ10 +

1
4

Q̂10 +
1

16
(Q8 − 2Q9) Q10 −

1
8
(Q6 − 2Q7) Q11,

(8.117)

from which, considering Eq. (8.116), we derive

Q10 = Q11 = 0. (8.118)

The condition (8.118) ensures H̄ = H = Ȟ = Ȟ = Ȟ = H = E = Ē = 0 as well. Now,
we just have to write the scalars E and Ē , which are derived by Eqs. (8.88) and (8.91):

E = 0 =Ẽ − 1
24
Ã (6Q1 + 2Q4 + 10Q5 − 2Q8 −Q9) +

+
1

48
ϕ̃ (6Q1 − 4Q4 + 10Q5 − 5Q8 −Q9) +

− 1
48

Q0 (6Q2 − 2Q3 − 4Q6 + Q7) +

+
1

48
Q1 (−6Q4 + 10Q5 − 3Q8 + 5Q9) +

− 1
48

Q2 (−2Q3 − 2Q6 − 5Q7 + 6Q2) +
1

48
Q3Q6+

+
1

48
Q4 (10Q5 + 2Q8 + Q9 − 6Q4) +

− 5
48

Q5Q8 +
1

32
Q6Q7 +

Q2
6

96
− 3

32
Q8Q9+

+
5Q2

8
96

+
1
6

Q̂4 −
5

12
Q̂5 +

1
12

Q̂8 −
5

24
Q̂9,

(8.119)
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and

Ē = 0 =− Ẽ − 1
24
Ã (6Q1 + 10Q4 + 2Q5 + 2Q8 − 5Q9) +

+
1

48
ϕ̃ (6Q1 + 4Q4 + 2Q5 −Q8 − 5Q9) +

− 1
48

Q0 (6Q2 − 10Q3 − 4Q6 + 5Q7) +

+
1

48
Q1 (−6Q4 + 2Q5 − 3Q8 + Q9) +

− 1
48

Q2 (−10Q3 + 2Q2Q6 + Q7 + 6Q2) +

+
5

48
Q3Q6 +

1
48

Q4 (5Q5 − 2Q8 + 5Q9 − 6Q4) +

− 1
48

Q5Q8 −
3

32
Q6Q7 +

5Q2
6

96
+

1
32

Q8Q9 +
Q2

8
96
− 1

12
Q̂4+

− 1
12

Q̂5 −
1

12
Q̂8 −

1
24

Q̂9.

(8.120)

8.4.3 Riemann tensor contractions

Besides the Weyl tensor, we can deduce constraints from the Riemann tensor itself by
considering all its possible contractions with ua, ea, Nab, εab and imposing Ra

bcd = 0.
Making use of the Ricci identity for the full connection,

[∇c∇d −∇d∇c] ub = −Ra
bcdua, [∇c∇d −∇d∇c] eb = −Ra

bcdea, (8.121)

we deduce the following relations:

• Ra
bcduaubuced = 0,

Q̂0 + 3Σ
(
A(e) −A(u)

)
− 1

3
Θ (Q4 + 2Q5)− Σ (Q4 −Q5) +

+A(u) (Q0 + 2Q3)−
1
2

Q0Q4 −
1
2

Q2Q4 + Q3Q4 = 0;
(8.122)

• Ra
bcdeaebuced = 0,

Q̂2 + 2
(

Σ +
1
3

Θ
)(
A(e) −A(u) − 1

2
Q1

)
+

+A(u) (Q2 + 2Q3) +−
1
2

Q1Q2 + Q1Q3 −
1
2

Q2Q4 = 0;
(8.123)

• Ra
bcdNa

buced = 0,

Q̂6 + ÃQ6 = 0; (8.124)

• Ra
bcduaebuced = 0,

Â(u) +A(u)2 +
1
2
A(u)Q1 −

(
Σ +

1
3

Θ
)2

− 1
2

(
Σ +

1
3

Θ
)
(Q0 + 2Q2 − 2Q3) = 0;

(8.125)
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• Ra
bcdeaubuced = 0,

Â(e) +A(e)A(u) − 1
2
A(e) (Q1 + 2Q4)−

(
Σ +

1
3

Θ
)2

+
1
2

(
Σ +

1
3

Θ
)
(Q0 + 4Q3) +

+
1
2

ϕ
(
A(e) −A(u) + Q5

)
−Q2

3 −
1
2

Q0Q3 = 0;
(8.126)

• Ra
bcdNa

cubud = 0, (
Σ− 2

3
Θ
)2

+

(
Σ− 2

3
Θ
)
(Q0 + 2Q7) +

−2ϕA(u) + 2ϕQ5 + 2A(e)Q9 + Q0Q7 + Q2
7 = 0;

(8.127)

• Ra
bcdNa

cebed = 0,

ϕ̂− Q̂9 +
ϕ2

2
+

1
2

Q2
9 + Σ2 − 2

9
Θ2 − 1

3
ΘΣ +

1
2

ϕ (Q1 − 2Q9) +

+
1
3

ΘQ7 + ΣQ7 −
1
2

Q1Q9 = 0;
(8.128)

• Ra
bcdNa

cubed = 0,

Σ̂− 2
3

Θ̂ + Q̂7 +
3
2

Σϕ− 1
2

Σ (Q4 + 3Q9)− (ϕ−Q9)

(
Q3 −

1
2

Q7

)
+

+
1
3

ΘQ4 −
1
2

Q4Q7 = 0;
(8.129)

• Ra
bcdNa

cebud = 0,

1
2

Σϕ− 1
3

Θϕ−
(

Σ− 2
3

Θ
)(

Q5 +
1
2

Q9 +A(e)
)
+

−1
2
(ϕ−Q9) (Q2 −Q7)−A(u)Q7 = 0;

(8.130)

• Ra
bcdNbcuaud = 0,(

Σ− 2
3

Θ
)2

− 2ϕA(u) −
(

Σ− 2
3

Θ
)
(Q0 + Q6 −Q7) = 0; (8.131)

• Ra
bcdNbceaed = 0,

ϕ̂ +
ϕ2

2
+ Σ2 − 2

9
Θ2 − 1

3
ΘΣ− ΣQ3 +

2
3

ΘQ3 −
1
2

ϕ (Q1 −Q8 + Q9) = 0; (8.132)

• Ra
bcdNbcuaed = 0,

Σ̂− 2
3

Θ̂ +
3
2

Σϕ +
1
2

(
Σ− 2

3
Θ
)
(Q4 + Q8 −Q9) = 0; (8.133)

• Ra
bcdNbceaud = 0,

A(e) (4Θ− 6Σ) + ϕ (−2Θ + 3Q2 − 3Q6 + 3Q7 + 3Σ) = 0; (8.134)

All the remaining contractions, which are not explicitly expressed above, are identically
null.
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8.4.4 The final system of covariant equations
Before proceeding to write the final system of equations to be solved, some preliminary
considerations are in order.

First of all, we are looking for a vacuum solution, so ρ = p = q = π = 0. Moreover,
from the static nature of spacetime, we have already deduced the relations Θ̃ = Σ̃ = 0.
In addition to this, we decide to impose the conditions Θ = Σ = 0 too. Both the total rate
of expansion Θ and shear Σ are set to zero to simplify the mathematics and because we
want a distortion-free spacetime as well. Hence, from Eq. (8.108) we get the identities

Q2 = 2Q3, and Q6 = 2Q7. (8.135)

Furthermore, we require that the curves of the timelike congruence are autoparallel, i.e.,
uc∇cua = 0, which implies

Q0 = 0, A(e) = 0, and A(u) = Q5. (8.136)

Equations (8.135), (8.136), together with Eqs. (8.122)-(8.134), give rise to the identities

Q2 = Q3 = Q6 = Q7 = 0, (8.137)

which are in agreement with Q0 + Q2 − Q6 = 0 derived from the off diagonal equation
(8.114) in vacuum.

By collecting all the obtained results, we end up with the final system of field equa-
tions:

ˆ̃A+ Ã2 + Ãϕ̃ +
1
2

f
f ′
− 1

2
Q− 1

2
f ′′

f ′
(Q4 − 2Q5) Q̂ = 0, (8.138)

Ẽ + Ãϕ̃ +
1
3

f
f ′
− 1

3
Q− 1

6
f ′′

f ′
Q4Q̂+

2
3

f ′′

f ′
Q5Q̂ −

1
12

f ′′

f ′
Q8Q̂ −

1
6

f ′′

f ′
Q9Q̂ = 0, (8.139)

ˆ̃ϕ +
1
2

ϕ̃2 − Ãϕ̃− f ′′

f ′
Q5Q̂+

1
2

f ′′

f ′
Q8Q̂ = 0, (8.140)

Q̂5 + Q5
2 +

1
2

Q1Q5 = 0, (8.141)

ϕ̂− Q̂9 +
ϕ2

2
+

Q2
9

2
− ϕ

(
Q9 −

Q1

2

)
− 1

2
Q1Q9 = 0, (8.142)

Q5ϕ = 0, (8.143)

ϕ̂ +
1
2

ϕ2 − 1
2
(Q1 −Q8 + Q9) ϕ = 0, (8.144)

0 =Ẽ − 1
24
Ã (6Q1 + 2Q4 + 10Q5 − 2Q8 −Q9) +

1
48

ϕ̃ (6Q1 − 4Q4 + 10Q5 − 5Q8 −Q9) +

− 1
8

Q1Q4 +
5

24
Q1Q5 −

1
16

Q1Q8 +
5

48
Q1Q9 +

5
24

Q4Q5 +
1
24

Q4Q8 +
1

48
Q4Q9 −

Q2
4

8
+

− 5
48

Q5Q8 −
3

32
Q8Q9 +

5Q2
8

96
+

1
6

Q̂4 −
5

12
Q̂5 +

1
12

Q̂8 −
5

24
Q̂9,

(8.145)

Q =
1
2

Q1 (−Q5 + Q9)−
1
2

Q4 (Q5 −Q8 + Q9)−
1
8

Q8 (4Q5 + Q8) . (8.146)

Eq. (8.120) is not included in the final system of equations since one can prove that
the combination (8.119)+(8.120) can always be obtained by suitable combinations of Eqs.
(8.141)-(8.144).
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8.5 Spherically symmetric solutions

In this section, we specialize the system of covariant equations (8.138)-(8.146) to a spher-
ically symmetric scenario. For this purpose, we introduce the following expression of a
static spherically symmetric metric,

ds2 = −A(r)dt2 + B(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (8.147)

where A(r) and B(r) are generic positive functions of the radial coordinate r. In this
coordinate system, the 4-velocity ua and the spatial 4-vector ea are expressed as

ua ≡
{

1√
A

, 0, 0, 0
}

, and ea ≡
{

0,
1√
B

, 0, 0
}

. (8.148)

Using Eq. (8.148) and the definitions of ϕ̃ and Ã, we obtain the relations,

A′(r)
A(r)

=
4Ã(r)
rϕ̃(r)

, (8.149)

B(r) =
4
r2

1
ϕ̃(r)2 , (8.150)

ea∇aψ = ea∇̃aψ = ea∂aψ =
1
2

ϕ̃ r ∂rψ, (8.151)

where ψ is an arbitrary scalar function. From Eq. (8.143) two conditions arise:

ϕ = 0 or Q5 = 0. (8.152)

To test the viability of both solutions (8.152), we consider the function f (Q) = Q and
verify that, in this case, the equations yield the Schwarzschild spacetime as a solution.
The condition ϕ = 0 leads to an unacceptable result for f (Q) = Q: all kinetic scalars
are null. For this reason, we discard this branch of solutions, and we will narrow down
our investigation to the branch Q5 = 0. In such a circumstance, we easily obtain the
following relations for ϕ̃ and Ã when f (Q) = Q,

ϕ̃ =
2
r

√
1− rs

r
, Ã = −1

2
Q4 =

rs

2r
√

r2 − rrs
, (8.153)

which substituted into Eqs. (8.149) and (8.150) give the Schwarzschild metric as solution,

A = B−1 = 1− rs

r
, (8.154)

being rs the Schwarzschild radius, as expected.

Coincident gauge

Before the resolution of the covariant equations, let us show that if we use the coincident
gauge and the metric given in Eq. (8.147), either the function f (Q) must be linear or the
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nonmetricity scalar must be a constant. In the coincident gauge, the nonzero components
of the nonmetricity tensor are

Q111 = −A′, Q122 = B′, Q133 = 2r,

Q144 = 2r sin2 θ, Q244 = 2r2 sin θ cos θ.
(8.155)

Now, using the field equations

Eab =
2√−g
∇c
(√
−g f ′Pc

ab
)
+

1
2

gab f + f ′
(

PacdQb
cd − 2Qcd

aPcdb

)
= 0, (8.156)

it is straightforward to derive the off-diagonal equation,

E12 = −1
2

f ′′∂rQ cot θ = 0, (8.157)

which proves the above statement. This is the reason why we chose to use the 1 + 1 +
2 formalism in studying spherically symmetric metrics: it allows us a totally different
covariant approach than the coincident gauge.

8.5.1 Schwarzschild-de Sitter solutions

For Eqs. (8.149) and (8.150) admit solutions of Schwarzschild-de Sitter type, from the
well-known results of GR, we must have that

ˆ̃ϕ +
1
2

ϕ̃2 − Ãϕ̃ = 0. (8.158)

Consequently, Eq. (8.140) and the condition Q5 = 0 imply

f ′′Q8Q̂ = 0. (8.159)

As we already know, Eq. (8.159) tells us that to have a Schwarzschild-de Sitter metric
either the function f (Q) must be linear or Q must be constant. But there is also a third
possibility given by the requirement Q8 = 0.

The condition Q8 = 0 perfectly matches the gauge choice made in other works (e.g.
[182, 183]) in which static spherically symmetric spacetimes are studied and the full con-
nection is assumed to coincide with the Levi-Civita one of a Minkowski spacetime in
spherical coordinates.

Now, we can solve the final system of equations with the constraint Q8 = 0. From
Eqs. (8.140), (8.142) and (8.144) we derive the relation

Q1 = Q4, (8.160)

which substituted into Eq. (8.146) gives Q = 0. The vanishing of nonmetricity scalar
implies

f (Q)|Q=0 = f0, f ′(Q)|Q=0 = f ′0,

f ′′(Q)|Q=0 = f ′′0 ,
(8.161)

i.e., the function f and its derivatives are constant on shell. The remaining equations
admit the solutions

ϕ̃ =
2
r

√
1− rs

r
− 1

6
f0

f ′0
r2, Ã = −1

2
Q4 =

3 f ′0rs − f0r3

6r2

√
f ′0

2
(

1− rs
r −

1
6

f0
f ′0

r2
) , (8.162)
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Q9 =
6 f ′0rs + f0r3

3r2

√
f ′0

2
(

1− rs
r −

1
6

f0
f ′0

r2
) , Ẽ = − rs

r3 , (8.163)

A = B−1 = 1− rs

r
− 1

6
f0r2

f ′0
. (8.164)

which represent the Schwarzschild-de Sitter spacetime.

8.5.2 Q-Gravastars
Among the exotic objects that have been proposed as alternatives for black holes, there
are the so-called gravitational vacuum condensate stars or Gravastars [196, 197]. A
gravastar is essentially a compact object made of a dark energy condensate that repre-
sents an alternative to black holes as the final state of gravitational collapse. As the non-
metricity terms in equations (6.73) can be considered as an effective fluid which can have
negative pressure, one might ask if f (Q) gravity can admit gravastar solutions with-
out invoking explicitly the presence of a cosmological constant. We dub these solutions
“Q-gravastars” and give their simplest realization in the following.

From the Einstein-like form of the metric field equations (8.110),

R̃ab −
1
2

gabR̃ =
1
f ′

Tab −
1
2

gab

(
f
f ′
−Q

)
− 2

f ′′

f ′
Pc

ab∂cQ, (8.165)

we have that, in the case Q = Q∗ = const., the effective energy-momentum tensor,

Te f f
ab = −1

2
gab

(
f (Q∗)
f ′(Q∗)

−Q∗
)
= −gabΛ∗, (8.166)

can be thought of as a fluid characterized by a negative pressure,

1
3

Te f f
ab hab = pe f f = −ρe f f = Te f f

ab uaub, (8.167)

if

Λ∗ =
1
2

(
f (Q∗)
f ′(Q∗)

−Q∗
)
> 0, (8.168)

which corresponds to a function f , which grows slower than linear. It is now clear that,
with our assumptions, considering a Schwarzschild radius equals zero, the solution of
the field equations will be just the de Sitter solution,

A = B−1 = 1− 1
3

Λ∗r2. (8.169)

Therefore, in this scenario, the nonmetricity tensor is the geometric object whose role is
to give rise to the dark energy that fills compact objects when a gravitational collapse
occurs.
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8.6 Discussions

In this chapter, we have developed the 1+ 1+ 2 covariant formalism for static LRS space-
times of class II in the presence of nonmetricity. The resulting geometrical setting has
been applied for studying the features of vacuum solutions arising in f (Q) gravity, in-
cluding the Birkhoff theorem and the presence of Gravastar solutions.

Our analysis shows that nonmetricity gives rise to significant kinematic and dynam-
ical differences with the purely metric case. For example, the timelike and spacelike
congruences can be associated with two different types of acceleration, provided by Eqs.
(8.59) and (8.69), respectively. The difference between the accelerations is related to the
geometric properties of the congruences themselves, like, e.g., autoparallelism.

As a first application of the general formalism, we have analyzed the case of static and
spherically symmetric spacetimes. In particular, using some simplifying assumptions
on the nonmetricity tensor connected with the requirement of autoparallelism for the
timelike congruence, we have deduced a self-consistent system of algebraic/differential
equations for the investigation of vacuum solutions. These equations allow the identi-
fication of the conditions under which the theory produces the same Einstein-like field
equations as GR. In addition, we have derived sufficient conditions that ensure the exis-
tence of a Schwarzschild-de Sitter solution in vacuum, extending the ones presented so
far in the literature. We also obtain a Q-Gravastar solution in which nonmetricity gen-
erates the dark energy filling the compact object. A similar role for nonmetricity as dark
energy is not new in literature, as it has been well explored in cosmology to justify the
expansion of the universe (see Ch. 5).
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9
Spinor fields in f (Q) gravity

In the present chapter, we study f (Q) gravity coupled to a spin-1/2 spinor field. A first
step in this direction was given in [66], in the context of the STG.

As f (Q) gravity is a metric-affine theory of gravitation where the dynamical connec-
tion is not metric compatible (but torsion-free and flat), the introduction of spinor fields
in f (Q) theory requires the definition of spinor covariant derivatives induced by a gen-
eral affine connection, not necessarily metric compatible. The spinor covariant derivative
can be obtained by using the Fock-Ivanenko coefficients with antisymmetric Lorentz in-
dices [198]. As a result, the covariant derivatives of Dirac matrices are no longer zero,
and this is reflected in the particular form of the spin conservation law.

Another peculiar aspect of the proposed approach to f (Q) gravity coupled to spinors
is the choice of the dynamical variables we used. Theories of gravity that deal with
spinor fields employ tetrad fields to represent the metric tensor. In tetrad-affine theo-
ries, the additional gravitational degrees of freedom are usually incorporated by the spin
connection: for instance, in Einstein-Cartan-like theories, the variational derivative of
the action with respect to the spin connection induces the well-known coupling between
spin and torsion. Instead, in this chapter, we make a somewhat different choice in which
the dynamical variables are a tetrad field and an affine connection expressed in coordi-
nate basis. With this choice, the Lagrange multipliers present in the action do not enter
the Einstein-like equations, and thus we obtain more manageable field equations.

For this reason, in the following, emphasis has been given to the deduction and dis-
cussion of the gravitational field equations. Using our new formulation, we will see
that the energy-momentum tensor acquires additional terms with respect to the standard
Dirac tensor form. These additional terms directly involve covariant derivatives of the
spin density related to its conservation law. The latter has been obtained by making use
of the Dirac equations derived by variations. We found that even if the final expression of
the spin conservation law is formally different from that holding in Einstein-Cartan-like
theories, it still ensures that the antisymmetrized part of the Einstein-like field equations
is identically zero, just as it happens in the theories with torsion and metricity [199]. This
was an expected result that restores equivalence between metric-affine and tetrad-affine
formulations of the theory.

In cosmology, spinor fields have been mostly considered since the 1990s. They can
drive the universe into accelerated expansion at early and late times, thus offering theo-

130



CHAPTER 9. SPINOR FIELDS IN f (Q) GRAVITY

retical frameworks for both inflation and dark energy. Cosmologies sourced by fermions
are even known to be able to avoid the initial cosmological singularity [200–205]. More-
over, when dealing with spinor fields, anisotropic models of spacetime seem more ap-
propriate (for example, think of the anisotropy induced by the spin four-vector). In con-
nection with this we will study spinor fields in a BI spacetime arising from f (Q) gravity.

Throughout the chapter, spacetime indices are indicated by Latin letters, while
Lorentz1 indices by Greek letters; both sets of indices run from 0 to 3. The metric sig-
nature is (+,−,−,−).

The study performed in this chapter is based on the paper “Spinor fields in f (Q)-
gravity” [77].

9.1 Spinor fields

Considering an arbitrary spacetime, we can define what is called tetrad field eµ
i at each

point [84]. Tetrad fields possess Lorentz indices as well as spacetime indices; they are
defined by the relation

eµ = eµ
i dxi, (9.1)

and, together with their dual fields

eµ = ei
µ

∂

∂xi , (9.2)

they satisfy the relations

ei
µeiν = ηµν, ej

µeµ
i = δ

j
i , and ej

µeν
j = δν

µ, (9.3)

with ηµν denoting the Minkowski metric with signature (1,−1,−1,−1). The metric ten-
sor gij can be described in terms of the tetrad field such that

gij = eµ
i eν

j ηµν. (9.4)

The same can be done for any generic tensor, that is, it can be represented by its compo-
nents with respect to spacetime indices or Lorentz indices, as in the following

Ti1···in j1···jm = ei1
µ1 · · · e

in
µn eν1

j1
· · · eνm

jm Tµ1···µn
ν1···νm (9.5)

Tµ1···µn
ν1···νm = eµ1

i1
· · · eµn

in ej1
ν1 · · · e

jm
νm Ti1···in j1···jm . (9.6)

Greek indices are raised and lowered by the Minkowski metric ηµν, whereas Latin indices
by the metric tensor gij.

If we perform a tetrad change via the linear transformation

ěi
µ = Λν

µei
ν, (9.7)

where Λν
µ is the matrix that define the transformation, from Eq. (9.4) we obtain the

relation
Λα

µΛβ
νηαβ = ηµν. (9.8)

1The name will be clarified in the next section.
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Assuming that the transformation (9.7) preserves the orthonormality between tetrads,
we have that the matrices Λν

µ are elements of the Lorentz group [82, 84].
The adoption of a tetrad field may be seen as a change of local trivialization of the

frame bundle over the spacetime [206]. As a consequence, the linear connection Γij
h

gives rise to the corresponding spin connection

ωi
µ

ν = −ek
ν∂ie

µ
k + ek

νΓik
jeµ

j . (9.9)

Thanks to Eq. (9.9), we can define the full covariant derivative of an arbitrary tensor with
respect to both Latin and Greek indices,

∇iTµh···
νk··· =∂iTµh···

νk··· + ωi
µ

αTαh···
νk··· + Γip

hTµp···
νk··· + · · ·+

−ωi
α

νTµh···
αk··· − Γik

pTµh···
αp···.

(9.10)

From Eqs. (9.10) and (9.9), we have that the full covariant derivative of a tetrad is null,

∇je
µ
i = ∂je

µ
i + ωi

µ
νeν

i − Γji
keµ

k = 0, (9.11)

which means that the conversion between spacetime and Lorentz indices commutes with
the full covariant derivative.

To be consistent with the literature related to spinors, we once again give the decom-
position of the affine connection but with some changed signs. Any given connection
may be expressed as

Γij
h = Γ̃ij

h − Kij
h − Lij

h, (9.12)

where
Γ̃ij

h =
1
2

ghk (∂igjk + ∂jgik − ∂kgij
)

, (9.13)

is the Levi-Civita connection induced by the metric gij, while

Kij
h =

1
2

(
−Tij

h + Tj
h

i − Th
ij

)
, and Lij

h =
1
2

(
Qij

h + Qji
h −Qh

ij

)
, (9.14)

are the contortion and the disformation tensors, respectively. As far as spin connection is
concerned, the analogous decomposition of (9.12) assumes the form

ωi
µ

ν = ω̃i
µ

ν − Ki
µ

ν − Li
µ

ν, (9.15)

where
ω̃i

µ
ν = −ek

ν∂ie
µ
k + ek

νΓ̃ik
jeµ

j , (9.16)

Ki
µ

ν = Kij
heµ

h ej
ν, (9.17)

Li
µ

ν = Lij
heµ

h ej
ν. (9.18)

9.1.1 Dirac matrices and spinors
We define the Dirac matrices as the 4x4 matrices that satisfy the identities

γµγν + γνγµ = 2ηµν I4, (9.19)
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and,
γiγj + γjγj = 2gij I4, (9.20)

with I4 the unit matrix and γi = γµei
µ. From the anticommutation relation (9.19), we

derive the following identities

γµγµ =4I4, (9.21)
γµγνγµ =− 2γν, (9.22)

γµγνγαγµ =2ηνα I4, (9.23)

γµγνγαγβγµ =− 2γβγαγν, (9.24){
γµ, γ[ν, γα]

}
=γ[µγνγα]. (9.25)

The Dirac matrices transform under a tetrad change according to the relation

γ̌µ = Λµ
νγν. (9.26)

Let L be a matrix and L−1 its inverse such that

γµ = Λµ
νLγνL−1 = Lγ̌µL−1, (9.27)

then we define as spinor ψ the quantity that transforms under (9.7) as

ψ̌ = Lψ, (9.28)

while as adjoint spinor ψ̄ the quantity that transforms as

ˇ̄ψ = ψ̄L−1. (9.29)

The product between adjoint spinor and spinor is a scalar since it is invariant under
transformation, that is

ˇ̄ψψ̌ = ψ̄ψ. (9.30)

On the other hand, the product ψψ̄ transforms as a Dirac matrix,

ψ̌ ˇ̄ψ = Lψψ̄L−1. (9.31)

For an infinitesimal Lorentz transformation Λµ
ν = δ

µ
ν + ϵµ

ν, with ϵµ
ν an infinitesimal

quantity, from Eq (9.27) we find that L assumes the form

L = I4 +
1
8

ϵµν (γ
µγν − γνγµ) . (9.32)

A special solution of Eq. (9.19) is given by the Dirac representation

γ0 =

(
I2 0
0 −I2

)
, γA =

(
0 σA

−σA 0

)
, (9.33)

where I2 is the 2x2 unit matrix and A = 1, 2, 3. The quantities σA are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (9.34)
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which are traceless and Hermitian, that is,

tr(σA) = 0 and σA† = σA. (9.35)

From these properties, we have that the Dirac matrices are traceless too, and that they
satisfy the relations

γµ† = γ0γµγ0, γµ∗ = γ2γµγ2, (9.36)

thereby, γ0 is Hermitian, γ0† = γ0, whereas the γA anti-Hermitian, γA† = −γA. Let us
consider the Hermitian conjugate of Eq. (9.32),

L† = I4 +
1
8

ϵµν

(
γν†γµ† − γµ†γν†

)
, (9.37)

and multiply it by γ0,

L†γ0 = γ0 +
1
8

ϵµν

(
γν†γµ† − γµ†γν†

)
γ0 = γ0 − 1

8
ϵµνγ0 (γµγν − γνγµ) = γ0L−1,

(9.38)

where we used Eq. (9.36), thus the quantity ψ†γ0 transforms as an adjoint spinor,

ψ†γ0 −→ ψ†L†γ0 = ψ†γL−1, (9.39)

and we can give the following new definition

ψ̄ = ψ†γ0. (9.40)

Because of Eq. (9.19) we have that

γ0γ1γ2γ3 = γ[0γ1γ2γ3], (9.41)

so we can define the matrix

γ5 = − i
24

εµναβγµγνγαγβ = iγ0γ1γ2γ3, (9.42)

which in the Dirac representation is equal to

γ5 =

(
0 I2
I2 0

)
, (9.43)

and that has the properties

tr
(

γ5
)
= 0, γ5† = γ5,

{
γµ, γ5

}
= 0,

(
γ5
)2

= I4. (9.44)

With the introduction of the gamma matrix γ5 we also have the following identity

γµγνγα = ηµνγα + ηναγµ − ηµαγν − iεµναβγβγ5. (9.45)
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9.1.2 Spinor connection
Because the ordinary derivative of a spinor is not a spinor,

∂iψ̌ = ∂iLψ + L∂iψ, (9.46)

we have to introduce a spinor connection Ωi, which transforms in the following way

Ω̌i = LΩiL−1 − ∂iLL−1, (9.47)

so that we can define the covariant derivative of a spinor

∇iψ = ∂i + Ωiψ. (9.48)

From the derivative of the scalar ψ̄ψ,

∇i (ψ̄ψ) = ∂i (ψ̄ψ) , (9.49)

we derive the covariant derivative of the adjoint spinor too,

∇iψ̄ = ∂iψ̄− ψ̄Ωi. (9.50)

We decide to use as spinor connection Ωi the Fock-Ivanenko coefficients

Ωi =
1
8

ωi
µν
[
γµ, γν

]
. (9.51)

The covariant derivate of the product ψψ̄ is equal to

∇i (ψψ̄) = (∇iψ) ψ̄ + ψ∇iψ̄ = ∂i (ψψ̄) + Ωiψψ̄− ψψ̄Ωi = ∂i (ψψ̄) + [Ωi, ψψ̄] . (9.52)

Therefore, since the Dirac matrices transform as ψψ̄, the covariant derivative of γµ is
given by

∇iγ
µ = ∂iγ

µ + ωi
µ

νγν + [Ωi, γµ] = ωi
µ

νγν + [Ωi, γmu] . (9.53)

Making use of Eq. (9.51) as well as of the algebraic identities

[γµ, [γσ, γτ]] = 4 (γτηµσ − γσηµτ) , (9.54)

from Eq. (9.53) we get the relation

∇iγ
µ = ωi

(µν)γν = −Li
(νµ)γν, (9.55)

with γν = γµηµν. Considering the identity (9.11), we also have

∇iγ
j = −Li

(hj)γh = −1
2

Qi
jhγh, (9.56)

where γh = γkgkh. Therefore, in the case of nonmetricity, Dirac matrices have in general
non-zero covariant derivatives.
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9.2 f (Q) gravity coupled to a spinor field

In this section, we shall consider f (Q) gravity coupled with a spinor field ψ. In order to
deal with spinor fields, we shall assume as gravitational fields a tetrad eµ

i and an affine
connection Γij

h, defined on the spacetime.
The action functional of the theory is

A(eµ
i , Γij

h, ψ) =
∫ [√

−g f (Q) + λh
kijRh

kij + λh
ijTij

h + LD

]
d4x, (9.57)

where LD is the Dirac Lagrangian

LD =
√
−g
[

i
2

(
ψ̄γi∇iψ−∇iψ̄γiψ

)
−mψ̄ψ

]
. (9.58)

Equation (9.58) is the simplest Lagrangian density we can construct for a spinor field that
contains the first derivatives of spinors and it is real. This is because the term

i
(

ψ̄γi∇iψ−∇iψ̄γiψ
)

(9.59)

is the simplest real linear combination of derivative that is not a total divergence,
whereas ψ̄ψ is the simplest quadratic scalar we can use to construct the mass term.

The field equations are derived by varying the action (9.57) with respect to tetrad,
affine connection, spinor field, and Lagrange multipliers. More specifically, variations
with respect to the Lagrange multipliers give rise to the two well known constraints

Rh
kij = 0 and Tij

h = 0. (9.60)

In order to carry out variations with respect to the spinor field, it is convenient to make
use of the identity (9.15) to express the covariant spinor derivative in the form

∇iψ = ∇̃iψ +
1
8

Li
νµ
[
γµ, γν

]
ψ and ∇iψ̄ = ∇̃iψ̄−

1
8

ψ̄Li
νµ
[
γµ, γν

]
(9.61)

where the constraint Tij
h = 0 has been considered. For the variation with respect to ψ̄,

we have to further elaborate the derivative term ∇iψ̄ into the Dirac Lagrangian (9.58),

− i
2
√
−g∇iψ̄γiψ =− i

2
√
−g∇̃iψ̄γiψ +

i
16
√
−gψ̄Li

νµ
[
γµ, γν

]
γiψ =

=− ∇̃
(

i
2
√
−gψ̄γiψ

)
+

i
2
√
−gψ̄∇̃i

(
γiψ
)
+

+
i

16
√
−gψ̄Lανµγα

[
γµ, γν

]
ψ− i

4
√
−gψ̄Lανµγνηαµψ+

+
i
4
√
−gψ̄Lανµγµηανψ =

=− ∇̃
(

i
2
√
−gψ̄γiψ

)
+

i
2
√
−gψ̄γi∇ψ +

i
4
√
−gψ̄

(
qh −Qh

)
γhψ,

(9.62)
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where the first term can be neglected being a boundary term, and we used the identity
(9.54). The same evaluation must be made in the variation with respect to ψ, this time
considering the derivative ∇iψ. Therefore, the Dirac equations are equal to

iγh∇hψ +
i
4

qhγhψ− i
4

Qhγhψ−mψ = 0, and

i∇hψ̄γh +
i
4

qhψ̄γh − i
4

Qhψ̄γh + mψ̄ = 0.
(9.63)

By varying with respect to the connection, we obtain the equations

2∇pλh
jip + 2λh

ij − 4
√
−g f ′Pij

h = Φij
h (9.64)

where f ′ = ∂ f
∂Q and Φij

h = − δLD
δΓij

h . As we already know from Sec. 3.1, it is not necessary

to elaborate further on this last equation.
In order to perform the variation with respect to the tetrad field, we exploit the results

already present above together with the identities

∂e
∂eµ

i
= eei

µ and
∂ej

ν

∂eµ
i
= −ei

νej
µ (9.65)

where e =
√−g. On one hand, we have

δ
√−g f (Q)

δgij δgij =
√
−g
[

2√−g
∇k

(√
−g f ′Pk

ij

)
+

1
2

gij f (Q)+

+ f ′
(

PiabQj
ab − 2Qab

iPabj

)]
δgij.

(9.66)

Making use of Eqs. (9.65), it is easily seen that

δgij

δeτ
h
= −2gjhei

τ. (9.67)

Collecting the above results, the variation of the gravitational Lagrangian with respect to
the tetrad field may be expressed as

δ
√−g f (Q)

δeτ
h

=− 2
√
−g
[

2√−g
∇k

(√
−g f ′Pk

ij

)
+

1
2

gij f (Q)+

+ f ′
(

PiabQj
ab − 2Qab

iPabj

)]
gjhei

τ.
(9.68)

For later use, saturating Eq. (9.68) by eτ
q and lowering the index h, we obtain the equiva-

lent identity

δ
√−g f (Q)

δeτ
h

eτ
q ghs =− 2

√
−g
[

2√−g
∇k

(√
−g f ′Pk

qs

)
+

1
2

gqs f (Q)+

+ f ′
(

PqabQs
ab − 2Qab

qPabs

)]
.

(9.69)

The variation of Dirac Lagrangian with respect to eτ
h deserves a little more attention.

First, we observe that Eq. (9.9) allows us to represent the full covariant derivative of the
variation δeτ

h in the form

∇i (δeτ
h) = ∂i (δeτ

h)− ∂i

(
eτ

p

)
ep

γδeγ
h − Γih

sδeτ
s + Γip

qeτ
q ep

γδeγ
h . (9.70)
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With the identity (9.70) in mind, after performing the variation of the Dirac Lagrangian
with respect to the tetrad field, we get the expression

δLD

δeτ
h

δeτ
h =eh

τLDδeτ
h −

i
2

e
[
ψ̄γµeh

µei
τ∇iψ−∇iψ̄γµeh

µei
τψ
]

δeτ
h+

− i
16

e∇i (δeτ
h) ψ̄

{
γi,
[
γτ, γh

]}
ψ,

(9.71)

where, on the r.h.s., the presence of the last term is due to the fact that we are using the
tetrad field and the affine connection to represent the spin connection (9.9), involved in
the spinor covariant derivative (9.48). Now, considering Eqs. (9.12), (9.15), (9.16) and
(9.18) as well as the constraint Tij

h = 0, we have the identity

∇i (δeτ
h) = ∇̃i (δeτ

h) + Lih
sδeτ

s − Li
τ

σδeσ
h . (9.72)

In view of Eq. (9.72), after some calculations we end up with the further identity

− i
16

e∇i (δeτ
h) ψ̄

{
γi,
[
γτ, γh

]}
ψ =

− i
16

e∇̃i

(
δeτ

h ψ̄
{

γi,
[
γτ, γh

]}
ψ
)
+

i
16

e∇̃i

(
ψ̄
{

γi,
[
γτ, γh

]}
ψ
)

δeτ
h

− i
16

eLis
hψ̄
{

γi, [γτ, γs]
}

ψδeτ
h +

i
16

eLi
σ

τψ̄
{

γi,
[
γσ, γh

]}
ψδeτ

h .

(9.73)

Notice that the first addendum on the right-hand side of Eq. (9.73) is a divergence that
leads to a boundary term. Moreover, still using Eqs. (9.12), (9.15), (9.16) and (9.18), it is
an easy matter to verify the relation

i
16

e∇̃i

(
ψ̄
{

γi,
[
γτ, γh

]}
ψ
)
− i

16
eLis

hψ̄
{

γi, [γτ, γs]
}

ψ +
i

16
eLi

σ σ
τ ψ̄

{
γi,
[
γσ, γh

]}
ψ =

i
16

e∇i

(
ψ̄
{

γi,
[
γτ, γh

]}
ψ
)
+

i
16

eLis
iψ̄
{

γs,
[
γτ, γh

]}
ψ.

(9.74)

Replacing the content of Eqs. (9.73) and (9.74) into Eq. (9.71), we obtain the identity

δLD

δeτ
h

=eh
τLD −

i
2

e
[
ψ̄γµeh

µei
τ∇iψ−∇iψ̄γµeh

µei
τψ
]
+

+
i

16
e∇i

(
ψ̄
{

γi,
[
γτ, γh

]}
ψ
)
+

i
16

eLis
iψ̄
{

γs,
[
γτ, γh

]}
ψ,

(9.75)

which, saturated by eτ
q , yields

δLD

δeτ
h

eτ
q =δh

qLD −
i
2

e
[
ψ̄γh∇qψ−∇qψ̄γhψ

]
+

+
i

16
e∇i

(
ψ̄
{

γi,
[
γq, γh

]}
ψ
)
+

i
16

eLis
iψ̄
{

γs,
[
γq, γh

]}
ψ.

(9.76)

The expression (9.76) can be further elaborated and simplified, making use of the Dirac
equations (9.63). First, it is an easy matter to verify that the Dirac LagrangianLD vanishes
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on shell. Thus, the first addendum to the r.h.s. of Eq. (9.76) may be omitted. Moreover,
once the index h is lowered, the antisymmetric part of the whole r.h.s. of Eq. (9.76)
vanishes as well. To see this point, we analyze in detail the divergence term

i
16

e∇i

(
ψ̄
{

γi,
[
γq, γh

]}
ψ
)
=

i
16

e (∇iψ̄) γi
[
γq, γh

]
ψ +

i
16

eψ̄γi
[
γq, γh

]
(∇iψ) +

+
i

16
e (∇iψ̄)

[
γq, γh

]
γiψ +

i
16

eψ̄
[
γq, γh

]
γi (∇iψ) +

i
16

eψ̄
(
∇i

{
γi,
[
γq, γh

]})
ψ.

(9.77)

By adding and subtracting the terms

i
16

eψ̄
[
γq, γh

]
γi (∇iψ) , (9.78)

and
i

16
e (∇iψ̄) γi

[
γq, γh

]
ψ (9.79)

in Eq. (9.77), we obtain the following expression

i
16

e∇i

(
ψ̄
{

γi,
[
γq, γh

]}
ψ
)
=

1
8

e
{(

i∇iψ̄γi
) [

γq, γh
]

ψ + ψ̄
[
γq, γh

] (
iγi∇iψ

)}
+

+
i
2

e
{
−1

8
(∇iψ̄)

[
γi,
[
γq, γh

]]
ψ +

1
8

ψ̄
[
γi,
[
γq, γh

]]
(∇iψ)

}
+

+
i

16
eψ̄
(
∇i

{
γi,
[
γq, γh

]})
ψ.

(9.80)

By employing the Dirac equations (9.63) and the identity (9.54), from Eq. (9.80) we easily
get

i
16

e∇i

(
ψ̄
{

γi,
[
γq, γh

]}
ψ
)
=

i
4

e
(

ψ̄γh∇qψ− ψ̄γq∇hψ−∇qψ̄γhψ +∇hψ̄γqψ
)

+
i

32
e
(

Qji
j −Qij

j
)

ψ̄
{

γi,
[
γq, γh

]}
ψ +

i
16

eψ̄
(
∇i

{
γi,
[
γq, γh

]})
ψ.

(9.81)

Except for inessential multiplying factors, Eq. (9.81) represents the conservation law of
the spin density in the current theory. Compared to that holding in Einstein-Cartan-like
theories (for example, see [199]), there are evident differences due to the explicit presence
of the nonmetricity tensor and to the fact that the covariant derivatives of Dirac matrices
are no longer zero.

To proceed further, we must elaborate the term

i
16

eψ̄
(
∇i

{
γi,
[
γq, γh

]})
ψ. (9.82)

To this end, making use of relation (9.56), we have

i
16

eψ̄
(
∇i

{
γi,
[
γq, γh

]})
ψ =

− i
32

eLi
piψ̄
{

γp,
[
γq, γh

]}
ψ− i

32
eLi

ipψ̄
{

γp,
[
γq, γh

]}
ψ+

− i
32

eQipqψ̄
{

γi,
[
γh, γp

]}
ψ− i

32
eQip

hψ̄
{

γi,
[
γq, γp]}ψ.

(9.83)
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At this point, given Eqs. (9.81) and (9.83) as well as the identities Lis
i = 1

2 Qsi
i and Li

i
p =

Qi
i
p − 1

2 Qpi
i, we can express the sum of the last two terms on the r.h.s. of Eq. (9.76) in

the form
i

16
e∇i

(
ψ̄
{

γi,
[
γq, γh

]}
ψ
)
+

i
16

eLis
iψ̄
{

γs,
[
γq, γh

]}
ψ =

=
i
4

e
(

ψ̄γh∇qψ− ψ̄γq∇hψ−∇qψ̄γhψ +∇hψ̄γqψ
)

− i
32

eQipqψ̄
{

γi,
[
γh, γp

]}
ψ− i

32
eQip

hψ̄
{

γi,
[
γq, γp]}ψ.

(9.84)

Inserting Eq. (9.84) into Eq. (9.76) and lowering the index h, we obtain the final expres-
sion

δLD

δeτ
h

eτ
q ghs =−

i
2

e
(

ψ̄γ(s∇q)ψ−∇(qψ̄γs)ψ
)
+

− i
32

eQipqψ̄
{

γi, [γs, γp]
}

ψ− i
32

eQipsψ̄
{

γi,
[
γq, γp]}ψ.

(9.85)

To conclude, by equating Eq. (9.69) with Eq. (9.85) and dividing by
√−g = e, we get the

explicit form of the energy-momentum tensor

Σij =
i
4

(
ψ̄γ(s∇q)ψ−∇(qψ̄γs)ψ

)
+

i
32

Qip(qψ̄
{

γi,
[
γs), γp

]}
ψ, (9.86)

and of the field equations deduced by varying with respect to the tetrad field, namely

2√−g
∇k

(√
−g f ′Pk

qs

)
+

1
2

gqs f (Q) + f ′
(

PqabQs
ab − 2Qab

qPabs

)
=

=
i
4

(
ψ̄γ(s∇q)ψ−∇(qψ̄γs)ψ

)
+

i
32

Qip(qψ̄
{

γi,
[
γs), γp

]}
ψ,

(9.87)

where both sides of the equation (9.87) are symmetric in the indices q and s. Further
evaluation of the r.h.s. of (9.87) shows that, by explicating the Levi-Civita derivative of
the spinors, the terms due to nonmetricity cancel out. Indeed, using Eqs. (9.61), from the
derivative terms we obtain

i
4

ψ̄γ(s∇q)ψ =
i
4

ψ̄γ(s∇̃q)ψ +
i

32
ψ̄
(

Qpi(qγs)γ
iγp −Qip(qγs)γ

pγi
)

ψ, (9.88)

and

− i
4
∇(qψ̄γs)ψ = − i

4
∇̃(qψ̄γs)ψ +

i
32

ψ̄
(

Qpi(qγiγpγs) −Qip(qγpγiγs)

)
ψ, (9.89)

whereas the remaining terms give

i
32

Qip(qψ̄
{

γi,
[
γs), γp

]}
ψ =

i
32

Qip(qψ̄
(

γs)γ
pγi − γs)γ

iγp + γpγiγs) − γiγpγs)

)
ψ.

(9.90)
Therefore, Eq. (9.87) can be recast as

2√−g
∇k

(√
−g f ′Pk

qs

)
+

1
2

gqs f (Q) + f ′
(

PqabQs
ab − 2Qab

qPabs

)
=

=
i
4

(
ψ̄γ(s∇̃q)ψ− ∇̃(qψ̄γs)ψ

)
.

(9.91)
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The same is true for the Dirac equations (9.63), which can be written as

iγh∇̃hψ−mψ = 0, and

i∇̃hψ̄γh + mψ̄ = 0,
(9.92)

in which we used the identity (9.54). Thus, both the energy-momentum tensor and Dirac
equations are what we would have in GR, which means that spinors seem to be unaf-
fected by nonmetricity. However, in the next section, we will use Eqs. (9.87), and (9.63)
as they make the math easier in the case where coincident gauge is used.

For the sake of completeness, we also write the fully developed expression of Eq.
(9.64),

2∇pλh
jip + 2λh

ij − 4
√
−g f ′Pij

h = − i
√−g
16

ψ̄
{

γi,
[
γj, γh

]}
ψ. (9.93)

9.3 Bianchi type-I cosmological models

In the coincidence gauge Γij
h = 0, we assume a BI metric of the form

ds2 = dt2 − a2(t)dx2 − b2(t)dy2 − c2(t)dz2, (9.94)

describing a homogeneous and anisotropic universe2. The components of the tetrad field
associated with the line element (9.94) are expressed as

eµ
0 = δ

µ
0 , eµ

1 = a(t)δµ
1 , eµ

2 = b(t)δµ
2 , eµ

3 = c(t)δµ
3 µ = 0, 1, 2, 3 (9.95a)

with inverse relations given by

e0
µ = δ0

µ, e1
µ =

1
a(t)

δ1
µ, e2

µ =
1

b(t)
δ2

µ, e3
µ =

1
c(t)

δ3
µ µ = 0, 1, 2, 3 (9.95b)

Moreover, homogeneity and coincidence gauge assumptions together with Eqs. (9.9),
(9.48), (9.51) and (9.95) yield the identities

∇0ψ = ψ̇, ∇Aψ = 0 A = 1, 2, 3. (9.96)

After inserting the content of Eq. (9.96) into Eqs. (9.63), Dirac equations assume the form

iγ0∂0ψ +
i
2

τ̇

τ
γ0ψ−mψ = 0 (9.97a)

i∂0ψ̄γ0 +
i
2

τ̇

τ
ψ̄γ0 + mψ̄ = 0. (9.97b)

Equations (9.97) can be easily integrated; adopting the Dirac representation (9.33) for the
matrices γµ, they possess solutions of the form

ψ =
1√
τ


c1e−imt

c2e−imt

c3eimt

c4eimt

 , (9.98)

2In this chapter, we use the same conditions on the 4-velocity of the observers given in Ch. 5
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where ci, i = 1, . . . , 4, are suitable integration constants. Moreover, from Dirac equations
(9.97) or also from their solutions (9.98), it is easily seen the following relation necessarily
holds

d
dt

(τψ̄ψ) = 0 ⇐⇒ ψ̄ψ =
K
τ

, (9.99)

with K = |c1|2 + |c2|2 − |c3|2 − |c4|2.
As for Eqs. (9.87), due to Eqs. (9.96) and (9.97), the only non-zero component of the

tensor Σij is given by

Σ00 =
i
4
(ψ̄γ0∇0ψ−∇0ψ̄γ0ψ) =

1
2

mψ̄ψ. (9.100)

In view of this, a direct calculation shows that field equations (9.87) assume the explicit
form

1
2

f + 2 f ′
(

ȧḃ
ab

+
ḃċ
bc

+
ȧċ
ac

)
=

1
2

mψ̄ψ, (9.101a)

ḟ ′
(
− ȧ

a
+

τ̇

τ

)
+ f ′

(
b̈
b
+

c̈
c
+

ȧḃ
ab

+
ȧċ
ac

+ 2
ḃċ
bc

)
+

1
2

f = 0, (9.101b)

ḟ ′
(
− ḃ

b
+

τ̇

τ

)
+ f ′

(
ä
a
+

c̈
c
+

ȧḃ
ab

+
ḃċ
bc

+ 2
ȧċ
ac

)
+

1
2

f = 0, (9.101c)

ḟ ′
(
− ċ

c
+

τ̇

τ

)
+ f ′

(
ä
a
+

b̈
b
+

ȧċ
ac

+
ḃċ
bc

+ 2
ȧḃ
ab

)
+

1
2

f = 0, (9.101d)

(
ȧb− aḃ

)
ψ̄γ5γ3ψ = 0, (9.102a)

(ȧc− aċ) ψ̄γ5γ2ψ = 0, (9.102b)(
ḃc− bċ

)
ψ̄γ5γ1ψ = 0, (9.102c)

where Eqs. (9.101) and (9.102) derive from the diagonal and the off-diagonal part of
Eqs. (9.87), respectively. It is interesting to note that the conditions (9.102) are identical
to those that arise also in f (R) theories with torsion [205]. However, in that case, these
conditions stem directly from the Dirac tensor, while in the present case, they originate
from the additional terms appearing in the r.h.s. of Eq. (9.87).

Eqs. (9.102) are automatically satisfied in the case of an isotropic universe. Instead,
anisotropic spacetimes imply stringent constraints on the spinor field i.e.,

ψ̄γ5γ1ψ = ψ̄γ5γ2ψ = ψ̄γ5γ3ψ = 0. (9.103)

In this case, the orthogonality between the current four-vector ψ̄γµψ and the spin four-
vector ψ̄γ5γµψ implies that the time component ψ̄γ5γ0ψ has to be zero. In fact, if ψ̄γ0ψ
were allowed to vanish, then the whole spinor field would be zero, but the vanishing of
the entire spin four-vector implies the condition ψ̄ψ = 0. It follows that, in the anisotropic
case, the spinor field does not enter the gravitational equations (9.101) which become
identical to the ones we would have in vacuum. Of course, there are also intermediate
situations where, in the face of partial isotropy, some constraints persist on the spin four-
vector: for instance, the case a = b and ψ̄γ5γ1ψ = ψ̄γ5γ2ψ = 0. Anyway, any constraints
imposed on the four-vector ψ̄γ5γµψ translate into restrictions on the admissible values
of the integration constants ci appearing in Eq. (9.98). For example, the sets of constants
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(c1 = eiθc4, c2 = c3 = 0) or (c2 = eiθc3, c1 = c4 = 0) make the requirement ψ̄γ5γµψ = 0
satisfied; the less restrictive choice (c2 = c3 = 0) ensure the weaker condition ψ̄γ5γ1ψ =
ψ̄γ5γ2ψ = 0.

To discuss and solve Eqs. (9.101), we preliminarily observe that Eq. (9.101a) can be
rewritten as

1
2

f (Q)− f ′(Q)Q =
mK
2τ

, (9.104)

where

Q = −2
(

ȧḃ
ab

+
ȧċ
ac

+
ḃċ
bc

)
, (9.105)

and Eq. (9.99) have been employed. Equation (9.104) highlights how the contribution of
the spinor field reduces to that of cosmological dust.

Now, given the function f (Q) and except for some pathological cases, in general from
Eq. (9.104) we may derive the expression of the nonmetricity scalar in terms of τ, i.e.
Q = Q (τ). In view of this, by subtracting Eq. (9.101b) from Eq. (9.101c) and from Eq.
(9.101d) separately, we obtain the two equations3

d
dt

[
f ′τ
(

ȧ
a
− ḃ

b

)]
= 0 (9.106a)

d
dt

[
f ′τ
(

ȧ
a
− ċ

c

)]
= 0, (9.106b)

which in turn implies the relations

a
b
= ed2 exp

∫ d1

f ′τ
dt, (9.107a)

and
a
c
= eg2 exp

∫ g1

f ′τ
dt, (9.107b)

with d1, d2, g1 and g2 suitable integration constants and where f ′(Q(τ)) is a function of
τ.

If we could now get an equation for the variable τ alone, the systems of field equations
would be entirely worked out. This goal may be achieved through a suitable combination
of Eqs. (9.101). Indeed, by summing Eqs. (9.101b), (9.101c) and (9.101d) each to the other
and subtracting Eq. (9.101a) multiplied by 3, we get the final dynamical equation for the
unknown τ

2
τ

d
dt
(

f ′τ̇
)
+ 3 f ′Q = −3mK

2τ
. (9.108)

Once Eq. (9.108) was solved, from Eqs. (9.107) together with the relation τ = abc, we
would have the expressions for the scale factors:

a(t) = 3
√

τ exp
[
(d1 + g1 + d2 + g2)

3

∫ t

t0

dt
f ′τ

]
, (9.109a)

b(t) = 3
√

τ exp
[
(−2d1 + g1 − 2d2 + g2)

3

∫ t

t0

dt
f ′τ

]
. (9.109b)

3The following procedure is similar to that described in Sec. 4.4.

143



CHAPTER 9. SPINOR FIELDS IN f (Q) GRAVITY

c(t) = 3
√

τ exp
[
(d1 − 2g1 + d2 − 2g2)

3

∫ t

t0

dt
f ′τ

]
. (9.109c)

With the only exception f (Q) = α
√
Q, the previous argument applies also to the case

ψ̄ψ = 0 (K = 0) giving rise to the condition Q = const..
At this point, the last step would be to verify that the relation (9.105) is preserved

over time. This final requirement is seen to select suitable relationships between the
admissible integration constants appearing in the found solutions.

To show how the above outlined procedure works, we consider the model f (Q) =
αQn (with n natural odd number for brevity) as an example. In this case, from Eq. (9.104)
we deduce the relation

Q =

[
H

(1− 2n) α

] 1
n
(

1
τ

) 1
n

, (9.110)

and thus

f (Q(τ)) = H
(1− 2n) τ

, and f ′(Q(τ)) = αn
[

H
(1− 2n) α

] n−1
n
(

1
τ

) n−1
n

, (9.111)

where we have set H := mK for simplicity. If we require expansion in all three spatial
directions, we must impose the condition

H
(1− 2n) α

< 0. (9.112)

Under the same hypothesis, if the exponent n had been even, we would have had to
define the quantity (9.110) with the opposite sign, demanding

H
(1− 2n) α

> 0 (9.113)

as well.
Inserting Eqs. (9.110) and (9.111) into Eq. (9.108) and after the first integration step,

we end up with the differential equation

τ̇ =
1

αn

[
α (1− 2n) τ

H

] n−1
n
[
− 3Ht

4 (1− 2n)
+ H0

]
, (9.114)

with H0 an integration constant. Eq. (9.114) admits exact solutions of the form

τ(t) =

{
− [α (1− 2n)]−

1
n

n2

[
H0 (2n− 1) H

1−n
n +

3
8

H
1
n t
]

t + H1

}n

, (9.115)

where H1 is again an integration constant. As already mentioned, the integration con-
stants H0, H1, di, and gi have to be chosen in such a way that the relation (9.105) is
preserved over time. For instance, in this specific case, it is easily seen that the conditions
H0 = 0 and H1 = 0 are only compatible with the choice d1 = g1 = 0, namely with a
totally isotropic universe; instead, the values

H0 = 0 and H1 =
2g2

1
3n2α2

(
H

α (1− 2n)

) 1−2n
n

(9.116)
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Figure 9.1: Plot of the scale factors (9.119) for H = 3, α = 2, n = 3, g1 = 1, g2 = 0. The plot has
been translated in such a way that the scale factors are zero at t = 0.

are compatible with a partially isotropic universe a = b (d1 = d2 = 0).
As a last remark, it is worth noticing that the following identity holds

f ′ (Q (τ)) τ = αn
[

H
(1− 2n) α

] n−1
n

τ
1
n , (9.117)

and therefore the scale factors (9.109) necessarily isotropize at late cosmological time.
Moreover, by suitably choosing the value of the exponent n, still at late time we may
have accelerated expansion for all the scale factors. This result is confirmed by solving
for the scale factors. Indeed, setting

A2 =
3

8n2

[
H

α(2n− 1)

] 1
n

, B2 =
2g2

1
3n2α

[
H

α(2n− 1)

] 1−2n
n

, C = αn
[

H
α(1− 2n)

] n−1
n

,

(9.118)
from Eqs. (9.109), (9.115) and (9.117) we have4

a(t) = b(t) =
[

A2t2 − B2
] n

3 e
g2
3

[
t− (B/A)

t + (B/A)

]( g1
6ABC )

, (9.119a)

c(t) =
[

A2t2 − B2
] n

3 e
−2g2

3

[
t− (B/A)

t + (B/A)

]( −g1
3ABC

)
. (9.119b)

9.4 Discussions

In this chapter, we have presented a tetrad-affine approach to f (Q) gravity coupled to
spinor fields of spin-1/2. The proposed formulation relies on the adoption of unusual

4It is the same solution we found in Sec. 5.2
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pairs of dynamical variables (eµ
i , Γij

h), consisting of a tetrad field and an affine connec-
tion. This choice has been motivated at first by the necessity to have more treatable field
equations, but then it has revealed some interesting features of f (Q) gravity.

The use of the affine connection Γij
h, instead of the commonly used spin connection

ωi
µ

ν, implies the appearance of additional terms in the energy-momentum tensor which
modify the standard Dirac tensor. These additional terms involve the covariant deriva-
tives of the spin density and can be elaborated by using the conservation law for the spin,
directly deduced by the Dirac equations.

Afterward, we have shown that in f (Q) gravity the energy-momentum tensor and
Dirac equations are unaffected by the nonmetricity tensor. Moreover, we have analyzed
BI cosmologies with the use of the coincident gauge. As in the case of f (R) theories with
torsion, we have that the off-diagonal part of the gravitational field equations imposes
restrictions on both the geometry and the spinor field.

In order for the constraints mentioned above to be satisfied, three different scenarios
are possible: i) an isotropic spacetime where no further restrictions are imposed on the
spinor field; ii) an anisotropic spacetime where both the spin four-vector and the scalar
ψ̄ψ are zero, and thus a spacetime where the spinor field does not contribute to cosmolog-
ical dynamics; iii) a universe where two scale factors are identical, and only one spatial
component of the spin four-vector does not vanish.

Finally, we have proposed a general procedure to solve the resulting field equations,
reducing the dynamical problem to a single differential equation for the spatial volume τ.
To show how the given procedure works, we have considered gravitational Lagrangians
of the kind f (Q) = αQn. The corresponding dynamical problem has been analytically
solved, showing that such models can give rise to initially anisotropic universes that
isotropize with accelerated expansion.

146





IV
Final remarks

148



10
Conclusions

In this thesis, we investigated the role of nonmetricity in metric affine theories of gravity,
mainly focusing on the f (Q) theory.

After some preliminary chapters that serve as theoretical background (Chs. 1, 2, 3,
and 4), we considered spatially homogeneous cosmological models within f (Q) grav-
ity. In particular, our attention was focused on studying the spatially flat FLRW and BI
metrics.

In Ch. 5, we obtained exact solutions of the field equations using the reconstruction
technique. We proved that nonmetricity can drive an accelerated expansion phase and,
therefore, act as an effective cosmological content. The most evident example is the expo-
nential solution given in the section 5.3.2, where it is possible to observe all three different
phases of the evolution of the universe: inflation, matter-dominated era with decelerated
expansion, and an accelerated expansion phase. However, working with coordinates
does not always provide a clear understanding of how nonmetricity affects isotropy in
anisotropic metrics like BI. For this reason, in Ch. 6, we introduced the 1 + 3 covariant
formalism, where the anisotropy is represented via one of the kinematical quantities re-
lated to cosmological observables, namely the shear tensor. Here, it was shown that the
shear is affected by the tensor components of the nonmetricity that are symmetric and
traceless. In Ch. 7, we applied the DSA to the cosmological BI equations in the 1 + 3 for-
malism so that an analysis of the stability of the solutions has been performed. Among
the four different models we have considered, the ones of the Secs. 7.2.1, 7.2.3, and 7.2.4
are important for finding solutions that isotropize. In these examples, by setting the right
parameters of the theory, we always found that the isotropic phase of the universe con-
stitutes an attractor to which the universe tends. Instead, in the model of Sec. 7.2.2, we
see that the isotropic phase constitutes a transient phase of the universe because of the
anisotropic pressure.

Instead, in Ch. 8, we focused on astrophysical aspects by considering static and LRS
metrics. Using the 1 + 1 + 2 formalism, we identified the components of the various
geometric quantities relevant for describing LRS spacetimes. As in the 1 + 3 case, we
applied the formalism to a spacetime with a torsion-free connection. The geometry of
nonmetric spacetimes presents several differences from GR. For example, we have two
different accelerations for the vectors ua and ea. Also, stationary metrics can still present
non-zero expansion θ and shear Σ due to the effects of the nonmetricity tensor. Therefore,
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in STG, it is crucial to clearly state the meaning of the commonly employed terms in GR.
In studying f (Q) gravity in vacuum, we found that Schwarzschild-de Sitter-type solu-
tions can only be obtained under specific conditions on the nonmetricity tensor. In this
context, the most significant result has been to provide a new perspective on spherically
symmetric solutions in f (Q) gravity through the 1 + 1 + 2 formalism. This perspective
might lead to new insights in studying compact objects in f (Q) theory.

Finally, in Ch. 9, we studied how to incorporate spinors within the f (Q) gravity via
the use of an affine tetrad approach. As might be expected, due to the lack of torsion, the
Dirac energy-momentum tensor and the Dirac equations result unaffected by nonmetric-
ity, retaining the same form as in GR.

The f (Q) gravity is still in its embryonic state as its theoretical development has come
to the scientific community’s attention only in recent years. Although interesting results
have already been obtained, f (Q) gravity is only one of the possible approaches to in-
corporate nonmetricity among the geometrical aspects that drive gravity. A limitation
in the early/current research on the f (Q) theory is the most used choice of the so-called
coincident gauge. This gauge seems to have less potential but is practical. In fact, the
vanishing of the connection coefficients that characterize this gauge shifts the focus to
Levi-Civita quantities, thus confining the nonmetricity tensor as an additional field me-
diating gravity.

Overall, the nonmetricity tensor is a promising geometric quantity for considering
alternative theories of gravity due to its versatility in describing phenomena not well
explained by GR (e.g., the natural introduction of dark energy). However, nonmetricity
introduces changes in parallel transport and conservation of norms that are cornerstones
of GR: in nonmetric theories, parallel transport does not preserve the norm of a vector.
In literature, for example, it was proposed to change the definition of parallel transport
to incorporate the length change [207], thereby deviating from the typical geometric def-
initions. In this thesis, we chose to use the usual definition of parallel transport, which so
far in the literature is the most widely used to study nonmetricity properties and to pre-
serve the normalization of the tangent vectors of the timelike and spacelike congruences
(see Chs. 5, 6, 8, and 9). However, this choice imposes constraints on the nonmetricity
tensor with a consequent reduction of the additional degrees of freedom that distinguish
nonmetric theories from GR [208].

A systematic characterization of transport rules in the presence of a nonmetric con-
nection would be crucial for a more complete understanding of the nonmetricity tensor,
as it could also be a promising way to assess nonmetric theories through observational
data.
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A
Boundary term in the Einstein-Hilbert

action

In Ch. 2, we said that in the variation of the Einstein-Hilbert action, the boundary term
is not zero and we need to add an additional term so that they cancel each other out.
Therefore, the correct Einstein-Hilbert action is given by

AE−H =
1

16πGN

∫
R̃
√
−gd4x +

∫
Lm
√
−gd4x +

1
8πGN

∮
∂V

εK̃
√

hd3y, (A.1)

where ∂V is the boundary surface of the integration domain V , with δgab|∂V = 0, K̃ is
the trace of the extrinsic curvature of ∂V , h is the determinant of the induced metric on
∂V , and ε is equal to −1 or 1 depending on if ∂V is a timelike or spacelike hypersurface,
respectively. Both extrinsic curvature and induced metric are defined as in Ch. 6, with ua

substituted by the vector na orthogonal to ∂V , nana = ε.
The boundary term obtained by the variations of the Ricci scalar R̃ with respect to gab

is equal to
∂c

(√
−ggabδΓ̃ba

c −
√
−ggcbδΓ̃ab

a
)

. (A.2)

Using the Stokes’ theorem we have∫
∂c

(√
−ggabδΓ̃ba

c −
√
−ggcbδΓ̃ab

a
)

d4x =
∮

∂V
ε
(

gabδΓ̃ba
c − gcbδΓ̃ab

a
)

nc
√

hd3y. (A.3)

Then, considering the variation of the Levi-Civita connection,

δΓ̃ab
c =

1
2

gcd (∂aδgbd + ∂bδgad − ∂dδgab) , (A.4)

it follows (
gabδΓ̃ba

c − gcbδΓ̃ab
a
)

nc =gab (∂aδgbc − ∂cgab) nc =

=
(

εnanb + hab
)
(∂aδgbc − ∂cgab) nc =

=hab (∂aδgbc − ∂cgab) nc.

(A.5)
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Since δgab is null on ∂V , its projected derivatives must vanish as well, i.e., hab∂aδgbc = 0.
Hence, we find

δAE−H =
1

16πGN

∫
Gabδgab√−gd4x− 1

16πGN

∮
∂V

εhabnc∂cδgab
√

hd3y+

+
∫ (
Lm
√
−g
)

d4x +
1

8πGN

∮
∂V

εK̃
√

hd3y.
(A.6)

From the definition (6.31), we know that

K̃ = hab∇̃anb = hab (∂anb − Γ̃ab
cnc
)

, (A.7)

so its variation with respect to the metric tensor is

δK̃ = −habδΓ̃ab
cnc =

1
2

habnc∂cδgab, (A.8)

where we used again that the projected derivatives of δgab vanish on ∂V . Finally, we
obtain

δAE−H =
1

16πGN

∫
Gabδgab√−gd4x− 1

16πGN

∮
∂V

εhabnc∂cδgab
√

hd3y+

+
∫
Lm
√
−gd4x +

1
16πGN

∮
∂V

εhabnc∂cδgab
√

hd3y =

=
1

16πGN

∫
Gabδgab√−gd4x +

∫
δ
(
Lm
√
−g
)

d4x,

(A.9)

which provides the Einstein field equations [1].
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B
Frobenius’ theorem

In deriving homogenous cosmologies (Ch. 4), and in applying both 1 + 3 and 1 + 1 + 2
formalism (Chs. 6 and 8), we discussed congruence of timelike curves that are hyper-
surface orthogonal. Here, we will prove Frobenius’ theorem, which provides the con-
straint for congruence to be orthogonal to hypersurfaces [87, 89, 163]. Since our studies
mainly concern torsion-free connection, we prove the theorem by imposing the condition
Tab

c = 0.
A congruence is hypersurface orthogonal if the tangent vectors ua of the curves are

proportional to the vector na normal to the hypersurfaces. Hence, if the hypersurfaces
are described by equations Φ(xa) = c, with c a constant that labels each hypersurface,
then

ua = −µ∂aΦ, (B.1)

where µ is a generic function. Let us consider the completely antisymmetric tensor

u[c∇bua] =
1
6
(uc∇bua + ub∇auc + ua∇cub − uc∇aub − ub∇cua − ua∇buc) . (B.2)

Using Eq. (B.1) and that (∇a∇b −∇b∇a)Φ = 0, we have

u[c∇bua] = 0. (B.3)

The inverse proof that from Eq. (B.3) we obtain (B.1) is trivial since we have zero torsion.
In this way, we have proved Frobenius’ theorem which states that a congruence of

curves is hypersurface orthogonal if and only if u[c∇bua] = 0, with ua the tangent vectors
of the curves.

Now, if we consider Eq. (6.18), the following relation holds,

u[c∇bua] =
1
3
(ucωba + ubωac + uaωcb) . (B.4)

Therefore, from Frobenius’ theorem, we have that ωab = 0 is a condition that ensures the
congruence to be hypersurface orthogonal if Eq. (B.3) is true.
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