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Abstract
In this paper, we study the convergence properties of a randomized block-coordinate
descent algorithm for the minimization of a composite convex objective function,
where the block-coordinates are updated asynchronously and randomly according
to an arbitrary probability distribution. We prove that the iterates generated by the
algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to
a minimizer of the objective function. Moreover, we prove a general sublinear rate of
convergence in expectation for the function values and a linear rate of convergence in
expectation under an error bound condition of Tseng type. Under the same condition
strong convergence of the iterates is provided as well as their linear convergence rate.
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1 Introduction

We consider the composite minimization problem

minimize
x∈H F(x) := f (x) + g(x), g(x) :=

m∑

i=1

gi (xi ), (1.1)

where H is the direct sum of m separable real Hilbert spaces (Hi )1≤i≤m , that is,
H = ⊕m

i=1 Hi and the following assumptions are satisfied unless stated otherwise.

A1 f : H → R is convex and differentiable.
A2 For every i ∈ {1, . . . , m}, gi : Hi →] − ∞,+∞] is proper convex and lower

semicontinuous.
A3 For all x ∈ H and i ∈ {1, . . . , m}, the map ∇ f (x1, . . . , xi−1, ·, xi+1, . . . , xm) :

Hi → H is Lipschitz continuous with constant L res > 0 and the map
∇i f (x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → Hi is Lipschitz continuous with con-
stant Li . Note that Lmax:=maxi Li ≤ L res and Lmin:=mini Li .

A4 F attains its minimum F∗ := min F on H.

To solve problem 1.1, we use the following asynchronous block-coordinate descent
algorithm. It is an extension of the parallel block-coordinate proximal gradient method
considered in [42] to the asynchronous setting, where an inconsistent delayed gradient
vector may be processed at each iteration.

Algorithm 1.1 Let (ik)k∈N be a sequence of i.i.d. random variables with values in
[m] := {1, . . . , m} and pi be the probability of the event {ik = i}, for every i ∈ [m].
Let (dk)k∈N be a sequence of integer delay vectors, dk = (dk

1, . . . ,d
k
m) ∈ N

m such
that max1≤i≤m dk

i ≤ min{k, τ } for some τ ∈ N. This delay vector is deterministic and
independent from the block coordinates selection process (ik)k∈N. Let (γi )1≤i≤m ∈
R

m++ and x0 = (x01 , . . . , x0m) ∈ H be a constant random variable. Iterate

for k = 0, 1, . . .⎢⎢⎢⎢⎣
for i = 1, . . . , m⌊

xk+1
i =

{
proxγik gik

(
xk

ik
− γik ∇ik f (xk−dk

)
)

if i = ik

xk
i if i �= ik,

(1.2)

where xk−dk = (x
k−dk

1
1 , . . . , x

k−dk
m

m ).

In this work, we assume the following stepsize rule

(∀ i ∈ [m]) γi (Li + 2τ L respmax/
√
pmin) < 2, (1.3)

where pmax := max1≤i≤m pi and pmin := min1≤i≤m pi . If there is no delay, namely
τ = 0, the usual stepsize rule γi < 2/Li is obtained [14, 43].

The presence of the delay vectors in the above algorithm allows to describe a parallel
computational model on multiple cores, as we explain below.
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1.1 Asynchronousmodels

In this section we discuss an example of a parallel computational model, occurring in
shared-memory systemarchitectures,which can be covered by the proposed algorithm.
Consider a situation where we have a machine with multiple cores. They all have
access to a shared data x = (x1, . . . , xm) and each core updates a block-coordinate
xi , i ∈ [m], asynchronously without waiting for the others. The iteration’s counter k is
increased any time a component of x is updated. When a core is given a coordinate to
update, it has to read from the shared memory and compute a partial gradient. While
performing these two operations, the data x may have been updated by other cores.
So, when the core is updating its assigned coordinate at iteration k, the gradient might
no longer be up to date. This phenomenon is modelled by using a delay vector dk and

evaluating the partial gradient at xk−dk
as in Algorithm 1.1. Each component of the

delay vector reflects how many times the corresponding coordinate of x have been
updated since the core has read this particular coordinate from the shared memory.
Note that different delays among the coordinates may arise since the shared data may
be updated during the reading phase, so that the partial gradient ultimately is computed
at a point which may not be consistent with any past instance of the shared data. This
situation is called inconsistent read [6] and, in practice, allows a reading phase without
any lock. By contrast, in a consistent read model [30, 39], a lock is put during the
reading phase and the delay originates only while computing the partial gradient. The
delay is the same for all the block-coordinates, so that the value read by any core is a
past instance of the shared data. However, for our theoretical study it does not make
any difference considering an inconsistent or a consistent reading setting, because in
the end only the maximum delay matters. Inconsistent read model is also considered
in [8, 16, 31].

We remark that, in our setting, for all k ∈ N, the delay vector dk is considered to be
a parameter that does not dependent on the random variable ik , similarly to the works
[16, 23, 30, 31]. In this way, the stochastic attribute of the sequence (xk)k∈N is not
determined by the delay, but it only comes from the stochastic selection of the block-
coordinates. Some papers consider the case where the delay vector is a stochastic
variable that may depend on ik [8, 45] or that it is unbounded [23, 45]. Those setting
are natural extensions to our work that we are considering for future work. Finally, a
completely deterministic model, both in the block’s selection and delays is studied in
[12].

1.2 Related work

The topic of parallel asynchronous algorithm is not a recent one. In 1969, Chazan and
Miranker [9] presented an asynchronous method for solving linear equations. Later
on, Bertsekas and Tsitsiklis [6] proposed an inconsistent read model of asynchronous
computation. Due to the availability of large amount of data and the importance of
large scale optimization, in recent years we have witnessed a surge of interest in
asynchronous algorithms. They have been studied and adapted to many optimization
problems and methods such as stochastic gradient descent [1, 20, 29, 39, 40], ran-
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domized Kaczmarz algorithm [32], and stochastic coordinate descent [2, 30, 41, 45,
51].

In general, stochastic algorithms can be divided in two classes. The first one is
when the function f is an expectation i.e., f (x) = E[h(x; ξ)]. At each iteration k only
a stochastic gradient ∇h(·; ξk) is computed based on the current sample ξk . In this
setting, many asynchronous versions have been proposed, where delayed stochastic
gradients are considered, see [3, 10, 20, 28, 34, 36]. The second class, which is the
one we studied, is that of randomized block-coordinate methods. Below we describe
the related literature.

The work [31] studied a problem and a model of asynchronicity which is similar to
ours, but the proposed algorithm AsySPCD requires that the random variables (ik)k∈N
are uniformly distributed (i.e, pi = 1/m) and that the stepsize is the same for all the
block-coordinates. This latter assumption is an important limitation, since it does not
exploit the possibility of adapting the stepsizes to the block-Lipschitz constants of
the partial gradients, hence allowing longer steps along block-coordinates. A linear
rate of convergence is also obtained by exploiting a quadratic growth condition which
is essentially equivalent to our error bound condition [18]. For a discussion on the
limitations of [31] and the improvements we bring, see Remark 3.2 point (vi) and
Sect. 6 on numerical experiments.

In the nonconvex case, [16] considers an asynchronous algorithmwhich may select
the blocks both in an almost cyclic manner or randomly with a uniform probability.
In the latter case, it is proved that the cluster points of the sequence of the iterates are
almost surely stationary points of the objective function. However, the convergence
of the whole sequence is not provided, nor is given any rate of convergence for the
function values. Moreover, under the Kurdyka-Łojasiewicz (KL) condition [7, 18],
linear convergence is also derived, but it is restricted to the deterministic case.

To conclude, we note that our results, when specialized to the case of zero delays,
fully recover the ones given in [42].

1.3 Contributions

The main contributions of this work are summarized below:

• We first prove the almost sure weak convergence of the iterates (xk)k∈N, generated
by Algorithm 1.1, to a random variable x∗ taking values in argmin F . At the same
time,we prove a sublinear rate of convergence of the function values in expectation,
i.e, E[F(xk)]−min F = o(1/k). We also provide for the same quantity an explicit
rate of O(1/k), see Theorem 3.1.

• Under an error bound condition of Luo-Tseng type, on top of the strong conver-
gence a.s. of the iterates, we prove linear convergence in expectation of the function
values and in mean of the iterates, see Theorem 4.2.

We improve the state-of-the-art under several aspects: we consider an arbitrary prob-
ability for the selection of the blocks; the adopted stepsize rule improves over the
existing ones, and coincides with the one in [16] in the special case of uniform selec-
tion of the blocks—in particular, it allows for larger stepsizes when the number of
blocks grows; the almost sure convergence of the iterates in the convex and stochastic
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setting is new and relies on a stochastic quasi-Fejerian analysis; linear convergence
under an error bound condition is also new in the asynchronous stochastic scenario.

The rest of the paper is organized as follows. In the next subsection we set up
basic notation. In Sect. 2 we recall few facts and we provide some preliminary results.
The general convergence analysis is given in Sect. 3 where the main Theorem 3.1 is
presented. Section4 contains the convergence theory under an additional error bound
condition, while applications are discussed in Sect. 5. The majority of proofs are post-
poned to Appendices 1 and 2.

1.4 Notation

We set R+ = [0,+∞[ and R++ = ]0,+∞[. For every integer � ≥ 1 we define
[�] = {1, . . . , �}. For all i ∈ [m], we denote indifferently the scalar products of H and
Hi by 〈·, ·〉 and:

(∀x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ H) 〈x, y〉 =
m∑

i=1

〈xi , yi 〉.

‖ · ‖ and | · | represent the norms associated to their scalar product in H and in any of
Hi respectively. We also consider the canonical embedding, for all i = 1, 2, . . . , m,
Ji : Hi → H, xi �→ (0, . . . , 0, xi , 0, . . . , 0), with xi in the i th position. Random
vectors and variables are defined on the underlying probability space (�,A, P). The
default font is used for random variables while sans serif font is used for their real-
izations or deterministic variables. Let (αi )1≤i≤m ∈ R

m++. The direct sum operator
A = ⊕m

i=1 αi Idi , where Idi is the identity operator on Hi , is

A : H → H

x = (xi )1≤i≤m �→ (αixi )1≤i≤m

This operator defines an equivalent scalar product on H as follows

(∀ x ∈ H)(∀ y ∈ H) 〈x, y〉A = 〈Ax, y〉 =
m∑

i=1

αi 〈xi , yi 〉,

which gives the norm ‖x‖2A = ∑m
i=1 αi |xi |2. We let

V =
m⊕

i=1

pi Idi , Γ−1 =
m⊕

i=1

1

γi
Idi , and W =

m⊕

i=1

1

γipi
Idi ,

where for all i ∈ [m], γi and pi are defined in Algorithm 1.1. We set pmax :=
max1≤i≤m pi and pmin := min1≤i≤m pi . Let ϕ : H →] − ∞,+∞] be proper, convex,
and lower semicontinuous. The domain of ϕ is domϕ = {x ∈ H | ϕ(x) < +∞} and
the set of minimizers of ϕ is argmin ϕ = {x ∈ H | ϕ(x) = inf ϕ}. We recall that the
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proximity operator of ϕ is proxϕ(x) = argmin y∈H ϕ( y) + 1
2‖ y− x‖2. If the function

ϕ : H → R is differentiable, then for all u, x ∈ H and any symmetric positive definite
operator A, we have 〈∇Aϕ(x),u〉A = 〈∇ϕ(x),u〉, where ∇A denotes the gradient
operator in the norm ‖·‖A. If S ⊂ H and x ∈ H, we set distA(x, S) = infz∈S ‖x − z‖A.
We also denote by proxAϕ the proximity operator of ϕ with the norm ‖·‖A.

2 Preliminaries

In this section we present basic definitions and facts that are used in the rest of the
paper. Most of them are already known, and we include them for clarity.

In the rest of the paper, we extend the definition of xk by setting xk = x0 for every
k ∈ {−τ, . . . ,−1}. Using the notation of Algorithm 1.1, we also set, for any k ∈ N

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂k = xk−dk

x̄ k+1
i = proxγi gi

(
xk

i − γi∇i f (x̂k
)
)
for all i ∈ [m]

xk+1 = xk + Jik

[
proxγik gik

(
xk

ik
− γik ∇ik f (x̂k

)
)− xk

ik

]

�k = xk − x̄k+1.

(2.1)

With this notation, we have

x̄ k+1
ik

= proxγik gik

(
xk

ik
− γik ∇ik f (x̂k

)
) = xk+1

ik
; 	k

ik
= xk

ik
− xk+1

ik
. (2.2)

We remark that the random variables xk and x̄k+1 depend on the previously selected
blocks, and related delays. More precisely, we have

xk = xk(i0, . . . , ik−1,d
0, . . . ,dk−1)

x̄k+1 = x̄k+1(i0, . . . , ik−1,d
0, . . . ,dk).

(2.3)

From (2.1) and (2.2), we derive

xk
ik

− xk+1
ik

γik

− ∇ik f (x̂k
) ∈ ∂gik (xk+1

ik
) and

xk
i − x̄ k+1

i

γi
− ∇i f (x̂k

) ∈ ∂gi (x̄ k+1
i )

(2.4)

and therefore, for every x ∈ H

〈∇ik f (x̂k
) − 	k

ik

γik

, xk+1
ik

− xik 〉 + gik (xk+1
ik

) − gik (xik ) ≤ 0. (2.5)

Suppose that x and x′ in H differ only for one component, say that of index i , then it
follows from Assumption A3 and the Descent Lemma [37, Lemma 1.2.3], that

f (x′) = f (x1, . . . , xi−1, x′
i , xi+1, . . . , xm)
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≤ f (x) + 〈∇i f (x), x′
i − xi 〉 + Li

2
|x′

i − xi |2 (2.6)

≤ f (x) + 〈∇ f (x), x′ − x〉 + Lmax

2
‖x′ − x‖2. (2.7)

We finally need the following results on the convergence of stochastic quasi-Fejér
sequences and monotone summable positives sequences.

Fact 2.1 ([13], Proposition 2.3) Let S be a nonempty closed subset of a real Hilbert
space H. Let F = (Fn)n∈N be a sequence of sub-sigma algebras of F such that
(∀n ∈ N) Fn ⊂ Fn+1. We denote by �+(F ) the set of sequences of R+-valued
random variables (ξn)n∈N such that, for every n ∈ N, ξn is Fn-measurable. We set

�1+(F ) =
{

(ξn)n∈N ∈ �+(F )

∣∣∣∣
∑

n∈N
ξn < +∞ P-a.s.

}
.

Let (xn)n∈N be a sequence of H-valued random variables. Suppose that, for every z ∈
S, there exist (χn(z))n∈N ∈ �1+(X ), (ϑn(z))n∈N ∈ �+(X ), and (ηn(z))n∈N ∈ �1+(X )

such that the stochastic quasi-Féjer property is satisfied P-a.s.:

(∀n ∈ N) E
[‖xn+1 − z‖2 | Fn

]+ ϑn(z) ≤ (1 + χn(z)) ‖xn − z‖2 + ηn(z).

Then the following hold:

(i) (xn)n∈N is bounded P-a.s.
(ii) Suppose that the set of weak cluster points of the sequence (xn)n∈N is P-a.s. con-

tained in S. Then (xn)n∈N weakly converges P-a.s. to an S-valued random variable.

Fact 2.2 ([19, Example 5.1.5]) Let ζ1 and ζ2 be independent random variables with
values in the measurable spaces Z1 and Z2 respectively. Let ϕ : Z1 × Z2 → R be
measurable and suppose that E[|ϕ(ζ1, ζ2)|] < +∞. Then E[ϕ(ζ1, ζ2) | ζ1] = ψ(ζ1),
where for all z1 ∈ Z1, ψ(z1) = E[ϕ(z1, ζ2)].
Fact 2.3 Let (ak)k∈N ∈ R

N+ be a decreasing sequence of positive numbers and let
b ∈ R+ such that

∑
k∈N ak ≤ b < +∞. Then ak = o(1/(k +1)) and for every k ∈ N,

ak ≤ b/(k + 1).

Fact 2.4 Let (ak)k∈N ∈ R
N+ be a sequence of positive numbers. (∀ n, k ∈ Z, k ≥ n),

k−1∑

h=n

ah =
k−1∑

h=n

(h − n + 1)ah −
k∑

h=n+1

(h − n)ah + (k − n)ak .

2.1 Auxiliary lemmas

Here we collect technical lemmas needed for our analysis, using the notation given in
(2.1). For reader’s convenience, we provide all the proofs in Appendix 1.

The following result appears in [31, page 357].
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Lemma 2.5 Let (xk)k∈N be the sequence generated by Algorithm 1.1. We have

(∀ k ∈ N) xk = x̂k −
∑

h∈J (k)

(xh − xh+1), (2.8)

where J (k) ⊂ {k − τ, . . . , k − 1} is a random set.

The next lemma bounds the difference between the delayed and the current gradient
in terms of the steps along the block coordinates, see [31, equation A.7].

Lemma 2.6 Let (xk)k∈N be the sequence generated by Algorithm 1.1. It follows

(∀ k ∈ N) ‖∇ f (xk) − ∇ f (x̂k
)‖ ≤ L res

∑

h∈J (k)

‖xh+1 − xh‖.

Remark 2.7 Since ‖ · ‖2V ≤ pmax‖ · ‖2 and ‖ · ‖2 ≤ p−1
min‖ · ‖2V, Lemma 2.6 yields

‖∇ f (xk) − ∇ f (x̂k
)‖V ≤ √

pmax‖∇ f (xk) − ∇ f (x̂k
)‖

≤ L res
√
pmax

∑

h∈J (k)

‖xh+1 − xh‖

≤ L res

√
pmax√
pmin

∑

h∈J (k)

‖xh+1 − xh‖V.

We set LV
res = L res

√
pmax√
pmin

.

The result below yields a kind of inexact convexity inequality due to the presence
of the delayed gradient vector. It is our variant of [31, Equation A.20].

Lemma 2.8 Let (xk)k∈N be a sequence generated by Algorithm 1.1. Then, for every
k ∈ N,

(∀ x ∈ H) 〈∇ f (x̂k
), x − xk〉 ≤ f (x) − f (xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2.

The result below generalizes to the asynchronous case Lemma 4.3 in [42].

Lemma 2.9 LetH be a real Hilbert space. Let ϕ : H → R be differentiable and convex,
and ψ : H →] − ∞,+∞] be proper, lower semicontinuous and convex. Let x, x̂ ∈ H
and set x+ = proxψ(x − ∇ϕ(x̂)). Then, for every z ∈ H,

〈
x − x+, z − x

〉 ≤ ψ(z) − ψ(x) + 〈∇ϕ(x̂), z − x〉
+ ψ(x) − ψ

(
x+)+ 〈∇ϕ(x̂), x − x+〉− ‖x − x+‖2.
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3 Convergence analysis

In this section we assume just convexity of the objective function and we provide a
worst case convergence rate as well as almost sure weak convergence of the iterates.

Throughout the section we set

δ = max
i∈[m]

(
Liγi + 2γiτ LV

res
√
pmax

)
= max

i∈[m]

(
Liγi + 2γiτ L res

pmax√
pmin

)
, (3.1)

where the constants Li ’s and L res are defined in Assumption A3 and the constant LV
res

is defined in Remark 2.7. The main convergence theorem is as follows.

Theorem 3.1 Let (xk)k∈N be the sequence generated by Algorithm 1.1 and suppose
that δ < 2. Then the following hold.

(i) The sequence (xk)k∈N weakly converges P-a.s. to a random variable that takes
values in argmin F.

(ii) E[F(xk)] − F∗ = o(1/k). Furthermore, for every integer k ≥ 1,

E[F(xk)] − F∗ ≤ 1

k

(
dist2W(x0, argmin F)

2
+ C

(
F(x0) − F∗)

)
,

where C = max
{
1, (2 − δ)−1

}

pmin
− 1 + τ

1√
pmin(2 − δ)

(
1 + pmax√

pmin

)
.

Remark 3.2 (i) Theorem 3.1 extends classical results about the forward-backward
algorithm to the asynchronous and stochastic block-coordinate setting. See [43]
and references therein. Moreover, we note that the above results, when special-
ized to the synchronous case, that is, τ = 0, yield exactly [42, Theorem 4.9].
The o(1/k) was also proven in [27].

(ii) The almost sure weak convergence of the iterates for the asynchronous stochastic
forward-backward algorithm is new. In general only convergence in value is
provided or, in the nonconvex case, cluster points of the sequence of the iterates
are proven to be almost surely stationary points [8, 16].

(iii) As it can be readily seen from statement (ii) in Theorem 3.1, our results depend
only on the maximum possible delay, and therefore apply in the same way to the
consistent and inconsistent read model.

(iv) If we suppose that the random variables (ik)k∈N are uniformly distributed over
[m], the stepsize rule reduces to γi < 2/(Li + 2τ L res/

√
m), which agrees with

that given in [16] and gets better when the number of blocks m increases. In this
case, we see that the effect of the delay on the stepsize rule is mitigated by the
number of blocks. In [8] the stepsize is not adapted to the blockwise Lipschitz
constants Li ’s, but it is chosen for each block as γ < 2/(2L f + τ 2L f ) with
L f ≥ L res, leading, in general, to smaller stepsizes. In addition, this rule has a
worse dependence on the delay τ and lacks of any dependence on the number
of blocks.
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(v) The framework of [8] is nonconvex and considers more general types of algo-
rithms, in the flavour ofmajorization-minimization approaches [24]. On the other
hand the assumptions are stronger (in particular, they assume F to be coercive)
and the rate of convergence is givenwith respect to ‖xk −proxg(x

k −∇ f (xk))‖2,
a quantity which is hard to relate to F(xk)− F∗. They also prove that the cluster
points of the sequence of the iterates are almost surely stationary points.

(vi) The work [31] was among the first ones to study an asynchronous version of the
randomized coordinate gradient descent method. There, the coordinates were
selected at randomwith uniformprobability and the stepsizewas chosen the same
for every coordinate. However, the stepsize was chosen to depend exponentially
on τ , i.e as O(1/ρτ ) with ρ > 1, which is much worse than our O(1/τ). The
same problem affects the constant in front of the bound of the rate of convergence
which indeed is of the form O(ρτ ).
To circumvent these limitations above they put a condition in Corollary 4.2 that
bounds how large the maximum delay τ can be:

4e�(τ + 1)2 ≤ √
m, � = L res

Lmax
, (3.2)

where m is the dimension of the space. However, this inequality is never satisfied
if � >

√
m/(4e), since this would imply

(τ + 1)2 < 1,

contradicting the fact that τ is a non-negative integer. An examplewhere this hap-
pens is when we are dealing with a quadratic function with positive semidefinite
Hessian Q ∈ R

n×n . In this case

L res = max
i

‖Q·i‖2 and Lmax = max
i

‖Q·i‖∞ with Q·i the i th column of Q.

Say one column of Q has constant entries equal to p > 0, while the absolute
value of all the other entries of Q are less than p. Then,

� = p
√

m

p
= √

m >

√
m

4e
.

In Sect. 6, we show two experiments on real datasets for which condition (3.2)
is not verified.

Before giving the proof of Theorem 3.1, we present few preliminary results. The
first one is a proposition showing that the function values are decreasing in expectation.
The proof of this proposition, as well as those of the next intermediate results, are given
in Appendix 2.
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Proposition 3.3 Assume that δ < 2 and let (xk)k∈N be the sequence generated by
Algorithm 1.1. Then, for every k ∈ N,

(2 − δ)
pmin

2
‖x̄k+1 − xk‖2

Γ−1 ≤ F(xk) + αk − E
[
F(xk+1) + αk+1

∣∣ i0, . . . , ik−1
]
P-a.s.,

(3.3)

where αk = LV
res

2
√
pmax

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2V .

Lemma 3.4 Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then for every
k ∈ N, we have

〈∇ f (xk) − ∇ f (x̂k
), x̄k+1 − xk〉V ≤ τ LV

res

√
pmax

m∑

i=0

pi |x̄i
k+1 − xk

i |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1
]
,

where αk is defined in Proposition 3.3.

The next two results extend [42, Proposition 4.4, Proposition 4.5] to our more
general setting.

Lemma 3.5 Let (xk)k∈N be a sequence generated by Algorithm 1.1. Let k ∈ N and let
x be an H-valued random variable which is measurable w.r.t. i1, . . . , ik−1. Then,

E[‖xk+1 − x‖2W | i0, . . . , ik−1] − ‖xk − x‖2W = ‖x̄k+1 − x‖2
Γ−1 − ‖xk − x‖2

Γ−1

(3.4)

and E[‖xk+1 − xk‖2W | i0, . . . , ik−1] = ‖x̄k+1 − xk‖2
Γ−1 .

Proposition 3.6 Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose
that δ < 2. Let (x̄k)k∈N and (αk)k∈N be defined as in (2.1) and in Proposition 3.3
respectively. Then, for every k ∈ N,

(∀ x ∈ H) 〈xk − x̄k+1, x − xk〉Γ−1

≤ 1

pmin

(
F(xk) + αk − E

[
F(xk+1) + αk+1 | i0, . . . , ik−1

])

+ F(x) − F(xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2

+ δ − 2

2
‖xk − x̄k+1‖2

Γ−1 .

Next we state a proposition that we will use throughout the rest of this paper. It
corresponds to [42, Proposition 4.6].
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Proposition 3.7 Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose
that δ < 2. Let (αk)k∈N be defined as in Proposition 3.3. Then, for every k ∈ N,

(∀ x ∈ H) E
[‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W
+ 2

pmin

(
(δ − 1)+
2 − δ

+ 1

)

(
F(xk) + αk − E

[
F(xk+1) + αk+1 | i0, . . . , ik−1

])

+ τ L res

∑

h∈J (k)

‖xh − xh+1‖2

+ 2(F(x) − F(xk)). (3.5)

In the following,we showageneral inequality fromwhichwe derive simultaneously
the convergenceof the iterates and the rate of convergence in expectationof the function
values.

Proposition 3.8 Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose
that δ < 2. Let (αk)k∈N be defined as in Proposition 3.3. Then, for all x ∈ H,

E
[‖xk+1 − x‖2W | i0, . . . , ik−1

] ≤ ‖xk − x‖2W
+2
(
F(x) − E

[
F(xk+1) + αk+1 | i0, . . . , ik−1

])+ ξk,

where (ξ k)k∈N is a sequence of positive random variables such that

∑

k∈N
E[ξk] ≤ 2C(F(x0) − F∗), (3.6)

with C = max
{
1, (2 − δ)−1

}

pmin
− 1 + τ√

pmin(2 − δ)

(
1 + pmax√

pmin

)
.

Proposition 3.9 Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose
that δ < 2. Let (x̄k)k∈N be defined as in (2.1). Then there exists a sequence of H-valued
random variables (vk)k∈N such that the following assertions hold:

(i) ∀ k ∈ N : vk ∈ ∂ F(x̄k+1) P-a.s.
(ii) vk → 0 and xk − x̄k+1 → 0 P-a.s., as k → +∞.

We are now ready to prove the main theorem.

Proof of Theorem 3.1 (i): It follows from Proposition 3.8 that

(∀ x ∈ argmin F) E
[‖xk+1 − x‖2W | i0, . . . , ik−1

] ≤ ‖xk − x‖2W + ξk,

where (ξk)k∈N is a sequence of positive random variable which is P-a.s. summable.
Thus, the sequence (xk)k∈N is stochastic quasi-Fejér with respect to argmin F in the
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norm ‖·‖W (which is equivalent to ‖·‖). Then according to Fact 2.1 it is bounded P-a.s.
We now prove that argmin F contains the weak cluster points of (xk)k∈N P-a.s. Indeed,
let �1 ⊂ � with P(�\�1) = 0 be such that items (i) and (ii) of Proposition 3.9
hold. Let ω ∈ �1 and let x be a weak cluster point of (xk(ω))k∈N. There exists
a subsequence (xkq (ω))q∈N which weakly converges to x. By Proposition 3.9, we
have x̄kq+1(ω)⇀x, vkq+1(ω) → 0, and vkq+1(ω) ∈ ∂( f + g)(x̄kq+1(ω)). Thus, [35,
Proposition 1.6 (demiclosedness of the graph of the subgradient)] yields 0 ∈ ∂ F(x)

and hence x ∈ argmin F . Therefore, again by Fact 2.1 we conclude that the sequence
(xk)k∈N weakly converges to a random variable that takes values in argmin F P-a.s.

(ii): Choose x ∈ argmin F in Proposition 3.8 and then take the expectation. Then
we get

E[F(xk+1) + αk+1] − F∗ ≤ 1

2

(
E[‖xk − x‖2W] − E[‖xk+1 − x‖2W])+ 1

2
E[ξk].

Since
∑

k∈N(E[‖xk − x‖2W] − E[‖xk+1 − x‖2W]) ≤ ‖x0 − x‖2W, recalling the bound
on
∑

k∈N E[ξk] in (3.6), we have
∑

k∈N

(
E[F(xk+1) + αk+1] − F∗) ≤ ‖x0 − x‖2W

2
+ C(F(x0) − F∗).

Since, in virtue of Eq. (3.3), (E[F(xk+1)+αk+1]−F∗)k∈N is decreasing, the statement
follows from Fact 2.3, considering that αk ≥ 0.

4 Linear convergence under error bound condition

In the previous section we get a sublinear rate of convergence. Here we show that with
an additional assumption we can get a better convergence rate. Also, we derive strong
convergence of the iterates, improving the weak convergence proved in Theorem 3.1.

We will assume that the following Luo-Tseng error bound condition [33] holds on
a subset X ⊂ H (containing the iterates xk).

(∀x ∈ X) distΓ−1 (x, argmin F) ≤ C
X,Γ−1

∥∥x − proxΓ
−1

g

(
x − ∇Γ−1

f (x)
)∥∥

Γ−1 .

(4.1)

Remark 4.1 We recall that the condition above is equivalent to the Kurdyka-
Lojasiewicz property and the quadratic growth condition [7, 18, 42]. Any of these
conditions can be used to prove linear convergence rates for various algorithms.

The following theorem is the main result of this section. Here, linear convergence
of the function values and strong convergence of the iterates are ensured.

Theorem 4.2 Let (xk)k∈N be generated by Algorithm 1.1 and suppose δ < 2 and
that the error bound condition (4.1) holds with X ⊃ {xk | k ∈ N} P-a.s. for some
C
X,Γ−1 > 0. Then for all k ∈ N,
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(i) E
[
F(xk+1) − F∗] ≤

(
1 − pmin

κ + θ

)� k+1
τ+1 �

E
[
F(x0) − F∗],

where

κ = 1 +
(2C

X,Γ−1 + δ − 2)+
2 − δ

= max

{
1,

2C
X,Γ−1

2 − δ

}

θ = τ L resγmax

2 − δ

(
p2max√
pmin

+ 1

)
≤

√
pmin

pmax(2 − δ)

(
p2max√
pmin

+ 1

)
.

(ii) The sequence (xk)k∈N converges strongly P-a.s. to a random variable x∗ that takes

values in argmin F and E
[‖xk − x∗‖Γ−1

] = O((1 − pmin/(κ + θ)
)� k

τ+1 �/2)
.

Proof. (i): From Proposition 3.6 we have

1

pmin
E
[
F(xk+1) + αk+1 − F(xk) − αk | i0, . . . , ik−1

]

≤ ‖xk − x̄k+1‖Γ−1‖xk − x‖Γ−1

+ F(x) − F(xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2

+ δ − 2

2
‖xk − x̄k+1‖2

Γ−1 ,

where αk = (L res/(2
√
pmin))

∑k−1
h=k−τ (h − (k − τ) + 1)‖xh+1 − xh‖2V . Now, taking

x ∈ argmin F and using the error bound condition (4.1) and Eq. (3.3), we obtain

1

pmin
E
[
F(xk+1) + αk+1 − F(xk)) − αk | i0, . . . , ik−1

]

≤
(

C
X,Γ−1 + δ − 2

2

)
‖xk − x̄k+1‖2

Γ−1

− (F(xk) − F∗) + τ L res

2

k−1∑

h=k−τ

‖xh − xh+1‖2

≤
(2C

X,Γ−1 + δ − 2)+
(2 − δ)pmin

E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]

− (F(xk) − F∗) + τ L res

2

k−1∑

h=k−τ

‖xh − x̄h+1‖2, (4.2)

Adding and removing F∗ in both expectation yield

κE
[
F(xk+1) + αk+1 − F∗ | i0, . . . , ik−1

]

≤ κE
[
F(xk) + αk − F∗ | i0, . . . , ik−1

]
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+ τ L resγmaxpmin

2

k−1∑

h=k−τ

‖xh − x̄h+1‖2
Γ−1

− pmin(F(xk) + αk − F∗) + pminαk, (4.3)

where κ = 1 + (2C
X,Γ−1 + δ − 2)+/(2 − δ). Now, since ‖·‖2V ≤ γmaxp2max‖·‖2W we

have

E[αk] ≤ τ L resγmaxp2max

2
√
pmin

k−1∑

h=k−τ

E[‖xh+1 − xh‖2W]

= τ L resγmaxp2max

2
√
pmin

k−1∑

h=k−τ

E[‖x̄h+1 − xh‖2
Γ−1 ], (4.4)

where in the last equality we used Lemma 3.5. From (3.3), we have, for k such that
k − τ ≥ 0,

k−1∑

h=k−τ

E[‖x̄h+1 − xh‖2
Γ−1 ]

≤ 2

(2 − δ)pmin

k−1∑

h=k−τ

E
[
F(xh) + αh

]− E
[
F(xh+1) + αh+1

]

= 2

(2 − δ)pmin

(
E
[
F(xk−τ ) + αk−τ

]− E
[
F(xk) + αk

])

≤ 2

(2 − δ)pmin

(
E
[
F(xk−τ ) + αk−τ

]− E
[
F(xk+1) + αk+1

])

= 2

(2 − δ)pmin

(
E
[
F(xk−τ ) + αk−τ − F∗]− E

[
F(xk+1) + αk+1 − F∗]) .

(4.5)

Since the sequence
(
E
[
F(xk) + αk

])
k∈N is decreasing, the transition from the second

line to the third one is allowed. Using (4.4) and (4.5) in (4.3) with total expectation
and recalling the definition of θ , we obtain

(κ + θ)E
[
F(xk+1) + αk+1 − F∗] ≤ (κ − pmin)E

[
F(xk) + αk − F∗]

+ θE
[
F(xk−τ ) + αk−τ − F∗]

≤ (κ − pmin)E
[
F(xk−τ ) + αk−τ − F∗]

+ θE
[
F(xk−τ ) + αk−τ − F∗]

= (κ + θ − pmin)E
[
F(xk−τ ) + αk−τ − F∗].

(4.6)
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That means

E
[
F(xk+1) + αk+1 − F∗] ≤

(
1 − pmin

κ + θ

)
E
[
F(xk−τ ) + αk−τ − F∗]

≤
(
1 − pmin

κ + θ

)� k+1
τ+1 �

E
[
F(x0) + α0 − F∗]. (4.7)

Now for k < τ , � k+1
τ+1� = 0. Since

(
E
[
F(xk) + αk

])
k∈N is decreasing, we know that

E
[
F(xk+1) + αk+1 − F∗] ≤ E

[
F(x0) + α0 − F∗]

=
(
1 − pmin

κ + θ

)� k+1
τ+1 �

E
[
F(x0) + α0 − F∗].

So (4.7) remains true. Also from (B.10), we have

θ ≤
√
pmin

pmax
(2 − δ)−1

(
p2max√
pmin

+ 1

)
.

(ii): From Jensen inequality, (3.3) and (4.7), we have

E
[‖xk+1 − xk‖Γ−1

] ≤
√
E
[‖xk+1 − xk‖2

Γ−1

]

≤
√
E
[‖x̄k+1 − xk‖2

Γ−1

]

≤
√

2

pmin(2 − δ)
E
[
F(xk) + αk − F∗]

≤
√√√√ 2

pmin(2 − δ)

(
1 − pmin

κ + θ

)� k
τ+1 �

E
[
F(x0) + α0 − F∗].

(4.8)

Since 1 − pmin/(κ + θ) < 1,

E
[∑

k∈N
‖xk+1 − xk‖Γ−1

]
=
∑

k∈N
E
[‖xk+1 − xk‖Γ−1

]
< ∞.

Therefore
∑

k∈N‖xk+1 − xk‖Γ−1 < ∞ P-a.s. This means that the sequence (xk)k∈N
is a Cauchy sequence P-a.s. By Theorem 3.1(i), this sequence converges weakly P-a.s.
to a random variable which takes values in argmin F . So it converges strongly P-a.s. to
that the same random variable taking values in argmin F .
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Now let ρ = 1 − pmin/(κ + θ). For all n ∈ N,

‖xk+n − xk‖Γ−1 ≤
n−1∑

i=0

‖xk+i+1 − xk+i‖Γ−1 ≤
∞∑

i=0

‖xk+i+1 − xk+i‖Γ−1 .

Letting n → ∞ and using (4.8), we get

E
[‖xk − x∗‖

Γ−1
] ≤

(
2

pmin(2 − δ)
E
[
F(x0) + α0 − F∗]

)1/2 ∞∑

i=0

ρ
� k+i

τ+1 �/2

≤
(

2

pmin(2 − δ)
E
[
F(x0) + α0 − F∗]

)1/2
ρ

� k
τ+1 �/2

∞∑

i=0

ρ
� i

τ+1 �/2

= ρ
� k

τ+1 �/2
(

2

pmin(2 − δ)
E
[
F(x0) + α0 − F∗]

)1/2 τ + 1

1 − ρ1/2
.

Remark 4.3 (i) A linear convergence rate is also given in [31, Theorem 4.1] by
assuming a quadratic growth condition instead of the error bound condition
(4.1). Their rate depend on the stepsize which in general can be very small, as
explained earlier in point (vi) of Remark 3.2.

(ii) The error bound condition (4.1) is sometimes satisfied globally, meaning on
X = dom F , so that the conditionX ⊃ {xk | k ∈ N}P-a.s. required inTheorem4.2
is clearly fulfilled. This is the case when F is strongly convex or when f is
quadratic and g is the indicator function of a polytope (see Remark 4.17(iv)
in [42]). More often, for general convex objectives, the error bound condition
(4.1) is satisfied on sublevel sets of F (see [42, Remark 4.18]). Therefore, it is
important to find conditions ensuring that the sequence (xk)k∈N remains in a
sublevel set. The next results address this issue.

We first give an analogue of Lemma 3.4.

Lemma 4.4 Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then, for every
k ∈ N,

〈∇ f (xk) − ∇ f (x̂k
), xk+1 − xk〉 ≤ τ L res‖xk+1 − xk‖2 + α̃k − α̃k+1,

with α̃k = (L res/2)
∑k−1

h=k−τ (h − (k − τ) + 1)‖xh+1 − xh‖2.

Proof Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young inequality,
and Lemma 2.5, that

〈∇ f (xk) − ∇ f (x̂k
), xk+1 − xk〉

≤ L res

∑

h∈J (k)

‖xh+1 − xh‖‖xk+1 − xk‖

≤ 1

2

⎡

⎣ L2
res

s

( ∑

h∈J (k)

‖xh+1 − xh‖
)2

+ s‖xk+1 − xk‖2
⎤

⎦
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≤ 1

2

[
τ L2

res

s

(
k−1∑

h=k−τ

‖xh+1 − xh‖2
)

+ s‖xk+1 − xk‖2
]

= s

2
‖xk+1 − xk‖2 + τ L2

res

2s

k−1∑

h=k−τ

‖xh+1 − xh‖2.

Using the same decomposition of the last term as in Lemma 3.4, we get

〈∇ f (xk) − ∇ f (x̂k
), xk+1 − xk〉

≤ s

2
‖xk+1 − xk‖2 + τ L2

res

2s

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2

− τ L2
res

2s

k∑

h=k−τ+1

(h − (k − τ))‖xh+1 − xh‖2

+ τ 2L2
res

2s
‖xk+1 − xk‖2.

So taking

α̃k = τ L2
res

2s

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2,

we get

〈∇ f (xk) − ∇ f (x̂k
), x̄ k+1 − xk〉 ≤

(
s

2
+ τ 2L2

res

2s

)
‖x̄k+1 − xk‖2 + α̃k − α̃k+1.

By minimizing s �→ (s/2 + τ 2L2
res/(2s)), we find s = τ L res. We then obtain

〈∇ f (xk) − ∇ f (x̂k
), xk+1 − xk〉 ≤ τ L res‖xk+1 − xk‖2 + α̃k − α̃k+1,

and the statement follows.

Proposition 4.5 Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then, for
every k ∈ N,

(
1

γik

− Lik

2
− τ Lres

)
‖xk+1 − xk‖2 ≤ F(xk) + α̃k − (

F(xk+1) + α̃k+1
)

P-a.s.,

(4.9)

where α̃k = (L res/2)
∑k−1

h=k−τ (h − (k − τ) + 1)‖xh+1 − xh‖2.
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Proof Using Lemma 4.4 in Eq. (B.3), we have

F(xk+1) ≤ F(xk) + 〈∇ik f (xk) − ∇ik f (x̂k), x̄k+1
ik

− xk
ik

〉 −
(

1

γik

− Lik

2

)
|x̄k+1

ik
− xk

ik
|2

= F(xk) + 〈∇ f (xk) − ∇ f (x̂k), xk+1 − xk〉 −
(

1

γik

− Lik

2

)
‖xk+1 − xk‖2

≤ F(xk) + α̃k − α̃k+1 −
(

1

γik

− Lik

2
− τ Lres

)
‖xk+1 − xk‖2.

So the statement follows.

Corollary 4.6 Let (xk)k∈N be generated by Algorithm 1.1 with the γi ’s satisfying the
following stepsize rule

(∀ i ∈ [m]) γi <
2

Li + 2τ L res
. (4.10)

Then

(∀ k ∈ N) F(xk) ≤ F(x0) P-a.s. (4.11)

So if the error bound condition (4.1) holds on the sublevel set X = {F ≤ F(x0)}, then
the assumptions of Theorem 4.2 are met.

Proof. The left hand side in (4.9) is positive and hence (F(xk)+ α̃k)k∈N is decreasing
P-a.s. Therefore, we have, for every k ∈ N

F(xk) ≤ F(xk) + α̃k ≤ F(x0) + α̃0 = F(x0).

Remark 4.7 The rule (4.10) yields stepsizes possibly smaller than the ones given in
Theorem 3.1, which requires γi < 2/(Li + 2τ L respmax/

√
pmin). Indeed this hap-

pens when pmax/
√
pmin < 1. For instance if the distribution is uniform, we have

pmax/
√
pmin = 1/

√
m < 1 whenever m ≥ 2. On the bright side, there may exist

distributions for which pmax/
√
pmin > 1.

5 Applications

Here we present two problems where Algorithm 1.1 can be useful.

5.1 The Lasso problem

We start with the Lasso problem [47], also known as basis pursuit [11]. It is a least-
squares regression problemwith an �1 regularizer which favors sparse solutions. More
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precisely, given A ∈ R
n×m and b ∈ R

n , one aims at solving the following problem

minimize
x∈Rm

1

2
‖Ax − b‖22 + λ‖x‖1 (λ > 0) . (5.1)

We clearly fall in the framework of problem (1.1) with f (x) = (1/2)‖Ax − b‖22 and
gi (xi ) = λ|xi |. The assumptions A1, A2, A3 and A4 are also satisfied. In particular,
here Li = ‖A.i‖2, where A.i is the i-th column of A, L res = maxi ‖(AᵀA)·i‖2, with
(AᵀA)·i the i-th column of AᵀA, and F = f + g attains its minimum.

The Lasso technique is used in many fields, especially for high-dimensional prob-
lems – among others it is worth mentioning statistics, signal processing, and inverse
problems; see [4, 5, 17, 25, 46, 48] and references therein. Since there is no closed
form solution for this problem, many iterative algorithms have been proposed to solve
it: forward-backward, accelerated (proximal) gradient descent, (proximal) block coor-
dinate descent, etc. [4, 15, 21, 22, 38, 49]. In the same vein, applying Algorithm 1.1
to the Lasso problem (5.1) yields the iterative scheme:

for n = 0, 1, . . .⎢⎢⎢⎢⎣
for i = 1, . . . , m⌊

xk+1
i =

{
softλγik

(
xk

ik
− γik aᵀ

ik
(Axk−dk − b)

)
if i = ik

xk
i if i �= ik,

(5.2)

where, for everyρ > 0, softρ : R → R is the soft thresholding operator (with threshold
ρ) [43]. Thanks to Theorem3.1we know that the iterates (xk)k∈N generated areweakly
convergent and the function values have a convergence rate of o(1/k). On top of that
the cost function of the Lasso problem (5.1) satisfies the error bound condition (4.1)
on its sublevel sets [50, Theorem 2]. So, following Corollary 4.6 and Theorem 4.2, the
iterates converge strongly (a.s.) and linearly inmean,wheneverγi < 2/ (Li + 2τ L res),
for all i ∈ [m].

5.2 Linear convergence of dual proximal gradient method

We consider the problem

minimize
x∈H

m∑

i=1

φi (Aix) + h(x), (5.3)

where, for all i ∈ [m],Ai : H → Gi is a linear operator between Hilbert spaces,
φi : Gi →] − ∞,+∞] is proper convex and lower semicontinuous, and h : H →
]−∞,+∞] is proper lower semicontinuous and σ -strongly convex (σ > 0). The first
termof the objective functionmay represent the empirical data loss and the second term
the regularizer. This problem arises in many applications in machine learning, signal
processing and statistical estimation, and is commonly called regularized empirical
risk minimization [44]. It includes, for instance, ridge regression and (soft margin)
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support vector machines [44], more generally Tikhonov regularization [26, Section
5.3].

In the following we apply Algorithm 1.1 to the dual of problem (5.3). Below we
provide details. Set G = ⊕m

i=1 Gi and u = (u1, u2, . . . , um). Then, the dual of
problem (5.3) is

minimize
u∈G

F(u) = h∗
(

−
m∑

i=1

A∗
i ui

)
+

m∑

i=1

φ∗
i (ui ), (5.4)

where, A∗
i is the adjoint operator of Ai h∗ and φ∗

i are the Fenchel conjugates of h and
φi respectively. The link between the dual variable u and the primal variable x is given
by the rule u �→ ∇h∗(−∑m

i=1 A
∗
i ui ). Since h∗ is (1/σ)-Lipschitz smooth, the dual

problem above is in the form of problem (1.1). Thus, Algorithm (1.1) applied to the
dual problem (5.4) gives

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎣

for i = 1, . . . , m⎢⎢⎢⎣uk+1
i =

⎧
⎨

⎩
proxγik φ∗

ik

(
uk

ik
+ γikAik ∇h∗(−∑m

j=1 A
∗
j u

k−dk
j

j )
)

if i = ik

uk
i if i �= ik,

(5.5)

Suppose that∇h∗ = B is a linear operator and that the delay vector dk = (dk
1, . . . ,d

k
m)

is uniform, that is, dk
i = dk ∈ N. Then, using the primal variable, the KKT condition

xk = ∇h∗(−∑m
j=1 A

∗
j u

k
j ) = −∑m

j=1 BA
∗
j u

k
j , and the fact that uk+1 and uk differ

only on the ik-component, the algorithm becomes

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣

uk+1
i =

{
proxγik φ∗

ik

(
uk

ik
+ γikAik x

k−dk )
if i = ik

uk
i if i �= ik .

xk+1 = xk − BA∗
ik
(uk+1

ik
− uk

ik
).

(5.6)

The above algorithm requires a lock during the update of the primal variable x. On the
contrary, the update of the dual variable u is completely asynchronous without any
lock as in the setting we studied in this paper. To get a better understanding of this
aspect, we will expose a concrete example: the ridge regression.

5.2.1 Example: ridge regression

The ridge regression is the following regularized least squares problem.

minimize
w∈H

1

λm

m∑

i=1

(yi − 〈w, xi 〉)2 + 1

2
‖w‖2. (5.7)
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Its dual problem is

minimize
u∈Rm

1

2
〈(K + λmIdm)u,u〉 − 〈y,u〉,

where K = XX∗ and X : H → R
m , with Xw = (〈w, xi 〉)1≤i≤m . We remark that, in

this situation, Ai = 〈·, xi 〉, A∗
i = xi and B = Id. Let dk = (dk,dk, . . . ,dk). With

wk = X∗uk and considering that the non smooth part g is null, the algorithm is given
by

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣

uk+1
i =

{
uk

ik
− γik

(〈xik ,w
k−dk 〉 + λmuk−dk

ik
− yik

)
if i = ik

uk
i if i �= ik .

wk+1 = wk − γikxik

(
uk+1

ik
− uk

ik

)
.

(5.8)

Remark 5.1 Nowwewill compare the above dual asynchronous algorithm to the asyn-
chronous stochastic gradient descent (ASGD) [1, 39]. We note that (5.8) yields

wk+1 = wk − γikxik

(
uk+1

ik
− uk

ik

)

= wk − γik

(〈xik ,w
k−dk 〉xik + λmuk−dk

ik
xik − yikxik

)
.

Instead, applying asynchronous SGD to the primal problem (5.7) multiply by λm, we
get

wk+1 = wk − γ ′
k

(〈xik ,w
k−dk 〉xik + λmwk−dk − yikxik

)
.

We see that the only difference is the second term inside the parentheses in both

updates. Indeed the term wk−dk = X∗uk−dk = ∑m
i=1 uk−dk

i xi in ASGD is replaced by

only one summand uk−dk

ik
xik in our algorithm. However, a major difference between

the two approaches lies in the way the stepsize is set. Indeed, in ASGD, the stepsize γ ′
k

is chosen with respect to the operator norm of K+ λmId i.e., the Lipschitz constant of
the full gradient of the primal objective function, see [1, Theorem 1]. By contrast, in
algorithm (5.8), for all i ∈ [m], the stepsizes γ k

i are chosenwith respect to theLipschitz
constant of the partial derivatives of the dual objective function i.e., Ki,i + λm. Not
only the latter are easier to compute, they also allow for possibly longer steps along
the coordinates.
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6 Experiments

In this section, we will present some experiments with the purpose of assessing our
theoretical findings and making comparison with related results in the literature. All
the codes are available on GitHub.1

We coded the mathematical model of asynchronicity in (1.2). At each iteration we
compute the forward step using gradients that are possibly outdated. The delay vector
components are a priori chosen according to a uniform distribution on {0, 1, . . . , τ }.
The block coordinates are updated with a uniform distribution independent from the
delay vector. We considered three kinds of experiments: in the first one we did a
speedup test for our algorithm on the Lasso problem. This allows to check whether
the speed of convergence increases linearly with the number of machines used. Then,
we considered a comparison with the synchronous version of the algorithm in order to
show the advantage of the asynchronous implementation. Finally, in the third group
of experiments we compared our algorithm with those by Liu et al. [31] and Cannelli
et al. [8].

6.1 Speedup test

In this section we consider the Lasso problem (5.1) with n = 100 and m ∈
{500, 1000, 2000, 8000}. The parameter λ is chosen small enough so that the min-
imizer x∗ has non zero components. For more flexibility, we used synthetic data,
which were generated using the function make_correlated_data of the Python
library celer. This function creates a matrix A with columns generated according to
the Autoregressive (AR) model.2 Then b is generated as b = Aw + ε, where ε is a
Gaussian random vector, with zero mean and variance equal to the identity, such that
the signal to noise ration (SNR) is 3 and w is a vector with 1% of nonzero entries. The
nonzero blocks of w are chosen uniformly and their entries are generated according
to the standard normal distribution. As in [8, 31], we make the assumption that τ is
proportional to the number of machines. Since we use 10 cores, we fix τ = 10 like in
[28]. For a fixed data, we run the algorithm 10 times and average it. Similarly to [8,
31], in our experiment the speedup gets better when we increase the number of blocks,
see Fig. 1. This can be explained by the fact that the algorithm has to run long enough
in order to minimize the cost of parallelization—the initialization cost, the mandatory
locks in order to avoid data racing, etc. Also, if there are more blocks, the probability
of two machines having to write on the same block at the same time is reduced and so
is the number of locks. All these observations align with the known fact that the more
there are cores, the more the problem should be complex to see good speedup.

1 https://github.com/cheiktraore/Codes_Paper_Asc_Coord_Desc.
2 The code is available at https://github.com/mathurinm/celer/blob/501788e/celer/datasets/simulated.py#
L10.
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Fig. 1 The plots showed the speedup obtain by Algorithm 1.1 compared to the ideal speedup for different
number of blocks. The shaded zones illustrate the standard deviation of the results over 10 trials

Fig. 2 Comparison of Algorithm
1.1 to its synchronous
counterpart

6.2 Comparison with the synchronous version

We compared Algorithm 1.1 to its synchronous counterpart in the Lasso case. The
data, as well as the parameters, is generated as in the speedup experiment. The step
size of the synchronous algorithm is set as suggested in [42] for a non sparse matrix A.
We run both algorithms for 120 seconds and compare the distances of their function
values to the minimum. As expected, Algorithm 1.1 is faster; see Fig. 2.
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6.3 Comparison with other asynchronous algorithms

In this section we illustrate the results of the comparison with the algorithms proposed
in [31] and [8]. As for [8], we set (in the notation of the paper) the relaxation parameter
γ = 1 and c f̃ = 2β so that

xk+1
i =

{
prox(1/2β)gi

(
x

k−dk
i

i − (1/2β)∇i f (xk−dk
)
)

if i = ik

xk
i if i �= ik .

Then, according to Theorem 1 in [8], we choose 2β > L f (1 + δ2/2) where δ = τ is
the maximum delay. We note that this model is slightly different from ours since the
delay is present not only in the gradient.

In [31], the same algorithm as (1.2) is considered, but with a stepsize γ which is
the same for all the blocks. In our comparisons, we choose the step according to the
conditions required by themain Theorem 4.1 in [31], since the hypotheses of Corollary
4.2 are not satisfied for our datasets3, see the discussion in Remark 3.2 (vi). If τ is
the maximum delay, Theorem 4.1 in [31] requires the following conditions on the
stepsize:

γ <

√
n(1 − ρ−1) − 4

4(1 + θ)L res/L ′
max

with θ = ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
,

which only make sense if the right hand side is strictly positive, so when n > 16 and

ρ >
1+4/

√
n

1−16/n (instead of ρ > 1 + 4/
√

n as claimed in [31]). So, in the experiments,

we set ρ >
1+4/

√
n

1−16/n . This leads in general to very small stepsizes, as we will further
discuss in the next section.

6.3.1 Lasso problem

In this section we consider the Lasso problem (5.1) with m = 90, n = 51630, and
λ = 0.01. We use the data YearPredictionMSD.t from libsvm4 to generate the
matrix A. Before showing the results, we briefly comment on the experimental set-up.
As shown in Sect. 5.1, in this case Li = ‖A·i‖22 and L res = maxi ‖(AᵀA)·i‖2. In [8],
L f = L res and in [31] L ′

max = maxi ‖(AᵀA)·i‖∞.
Looking at the results, we see that our algorithm outperforms those in [31] and [8],

see Fig. 3. This difference is due to the fact that our stepsize is bigger than the other two.
Indeed, in [31] and [8] the stepsizes have a worse dependence on the maximum delay
τ (inverse quadratically in [8] and exponentially in [31]), which ultimately shorten the
stepsizes. Also, in both [31] and [8] the stepsize is the same for all the blocks, so the

3 For the two datasets we used, YearPredictionMSD.t and Splice.t, we have that
√

m/(4e�) is equal
to 0.62084123 0.00459623 respectively, so that condition (3.2) is never satisfied by any nonnegative integer
τ .
4 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Fig. 3 The plots show the behavior of F(xk )− F∗ for the 3 algorithms applied to a lasso loss with different
values of τ : 5, 10, 15, 20

Fig. 4 This figure shows how the minimum of our stepsizes fares against the two others when τ increases
on a lasso problem

algorithm is more sensitive to the conditioning of the problem. An overall comparison
of the effect of τ on the stepsize is shown in Fig. 4.

6.3.2 Logistic regression

For another comparison, next we consider the �1 regularized logistic loss:

F(x) = 1

n

n∑

i=1

log(1 + exp{−bi 〈ai , x〉}) + λ‖x‖1. (6.1)
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Fig. 5 The plots show the behavior of F(xk ) − F∗ for the 3 algorithms applied to a regularized logistic
loss for different values of τ : 5, 10, 15, 20

For this experiment we use the data Splice.t from libsvm5 with m = 60, n = 2175,
and λ = 0.01. Let A ∈ R

m×n be the matrix with columns the ai ’s (i ∈ [n]). We denote
by ‖ · ‖, ‖ · ‖∞, ‖ · ‖F , the spectral norm, the infinity norm, and the Frobenius norm
of matrices, respectively. The relevant constants for the stepsizes are

• L res = 1
n ‖A‖max j ‖A j ·‖2 for our algorithm and [31],

• L ′
max = 1

n ‖A‖∞ max j ‖A j ·‖∞ for [31],
• L j = 1

n ‖A j ·‖22, j ∈ [m], for our algorithm, where A j · is the j-th row of A.
• L f = 1

n ‖A‖F max j ‖A j ·‖2 for [8].

So, the stepsizes range from about 1.1191 ∗ 10−3 to 7.5164 ∗ 10−3 for [8],
5.6537 ∗ 10−8 to 2.1571 ∗ 10−10 for [31], and 2.2605 ∗ 10−2 to 6.1590 ∗ 10−3 for
our algorithm. The results show the same trend as in the Lasso case, actually with
even larger differences, see Fig. 5.
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Appendices

Proofs of the auxiliary Lemmas in Sect. 2

In this section, for reader’s convenience, we provide detailed proofs of the Lemmas
presented in Sect. 2, even though they are mostly not original. They are adapted from
or can be found, e.g., in [31, 42].

Proof of Lemma 2.5 Let k ∈ N. Since, for every i ∈ [m], dk
i ≤ min{k, τ }, we have

xk−dk − xk =
m∑

i=1

Ji (x
k−dk

i
i − xk

i )

=
m∑

i=1

Ji

( k−1∑

h=k−dk
i

(xh
i − xh+1

i )

)

=
m∑

i=1

Ji

( k−1∑

h=k−τ

δh,i (xh
i − xh+1

i )

)

=
k−1∑

h=k−τ

m∑

i=1

Ji
(
δh,i (xh

i − xh+1
i )

)
. (A.1)

where δh,i = 1 if h ≥ k − dk
i and δh,i = 0 if h < k − dk

i . Note that for any
h ∈ {k − τ, . . . , k − 1}, in the sum

m∑

i=1

Ji
(
δh,i (xh

i − xh+1
i )

)
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at most one summand is different from zero, because the difference between xh and
xh+1 is only in the ih-th component. So

m∑

i=1

Ji
(
δh,i (xh

i − xh+1
i )

) =
{
Jih (xh

ih
− xh+1

ih
) = xh − xh+1 if h ≥ k − dk

ih

0 if h < k − dk
ih

.

Therefore setting J (k) = {
h ∈ {k − τ, . . . , k − 1} | h ≥ k − dk

ih

}
, (A.1) yields

(2.8). Note that, since ih is a random variable, J (k) is a random set in the sense that
J (k)(ω) = {

h ∈ {k − τ, . . . , k − 1} | h ≥ k − dk
ih(ω)

}
.

Proof of Lemma 2.6 Let k ∈ N, let p = card(J (k)), and let (h j )1≤ j≤p be the elements
of J (k) ordered in (strictly) increasing order. Then, from Lemma 2.5 we have

xk − x̂k =
p∑

j=1

(xh j +1 − xh j ). (A.2)

Let’s set, for each t ∈ {0, . . . , p}

x̂k,t = x̂k +
t∑

j=1

(xh j +1 − xh j ).

Then it follows

x̂k,0 = x̂k
, x̂k,p = xk, and ∀ t ≥ 1 x̂k,t − x̂k,t−1 = xht +1 − xht .

Therefore

xk − x̂k =
p∑

t=1

(x̂k,t − x̂k,t−1
)

and x̂k,t
, x̂k,t−1 differ only in the value of a component. Thus

‖∇ f (xk) − ∇ f (x̂k
)‖ =

∥∥∥
p∑

t=1

∇ f (x̂k,t
) − ∇ f (x̂k,t−1

)

∥∥∥

≤
p∑

t=1

‖∇ f (x̂k,t
) − ∇ f (x̂k,t−1

)‖

≤ L res

p∑

t=1

‖x̂k,t − x̂k,t−1‖

= L res

p∑

t=1

‖xht +1 − xht ‖
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= L res

∑

h∈J (k)

‖xh+1 − xh‖.

from which the result follows.

Proof of Lemma 2.8 Let k ∈ N and x ∈ H. Then

〈∇ f (x̂k
), x − xk〉 = 〈∇ f (x̂k

), x − x̂k〉 + 〈∇ f (x̂k
), x̂k − xk〉

= 〈∇ f (x̂k
), x − x̂k〉 +

p−1∑

t=0

〈∇ f (x̂k
), x̂k,t − x̂k,t+1〉

= 〈∇ f (x̂k
), x − x̂k〉

+
p−1∑

t=0

〈∇ f (x̂k,t
), x̂k,t − x̂k,t+1〉

+ 〈∇ f (x̂k
) − ∇ f (x̂k,t

), x̂k,t − x̂k,t+1〉.
Thanks to the convexity of f and (2.7), it follows

〈∇ f (x̂k), x − xk〉 ≤ f (x) − f (x̂k) +
p−1∑

t=0

f (x̂k,t ) − f (x̂k,t+1) + Lmax

2
‖x̂k,t − x̂k,t+1‖2

+
p−1∑

t=0

〈∇ f (x̂k) − ∇ f (x̂k,t ), x̂k,t − x̂k,t+1〉

= f (x) − f (xk) + Lmax

2

p−1∑

t=0

‖x̂k,t − x̂k,t+1‖2

+
p−1∑

t=0

t−1∑

s=0

〈∇ f (x̂k,s) − ∇ f (x̂k,s+1), x̂k,t − x̂k,t+1〉

≤ f (x) − f (xk) + Lmax

2

p−1∑

t=0

‖x̂k,t − x̂k,t+1‖2

+ Lres

p−1∑

t=0

t−1∑

s=0

‖x̂k,s − x̂k,s+1‖‖x̂k,t − x̂k,t+1‖.

Using the equality of the square of sum, Holder inequality and Lmax ≤ L res, we finally
get

〈∇ f (x̂k
), x − xk〉 ≤ f (x) − f (xk) + Lmax

2

p−1∑

t=0

‖x̂k,t − x̂k,t+1‖2

+ L res

2

[( p−1∑

t=0

‖x̂k,t − x̂k,t+1‖
)2

−
p−1∑

t=0

‖x̂k,t − x̂k,t+1‖2
]
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= f (x) − f (xk) + L res

2

( p−1∑

t=0

‖x̂k,t − x̂k,t+1‖
)2

+
(

Lmax

2
− L res

2

) p−1∑

t=0

‖x̂k,t − x̂k,t+1‖2

≤ f (x) − f (xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2.

The statement follows.

Proof of Lemma 2.9 Let z ∈ H. It follows from the definition of x+ that x − x+ −
∇ϕ(x̂) ∈ ∂ψ

(
x+) . Therefore, ψ(z) ≥ ψ

(
x+)+ 〈x − x+ − ∇ϕ(x̂), z − x+〉 , hence

〈
x − x+, z − x+〉 ≤ ψ(z) − ψ

(
x+)+ 〈∇ϕ(x̂), z − x+〉 .

Then,

〈
x − x+, z − x

〉+ 〈
x − x+, x − x+〉 ≤ ψ(z) − ψ

(
x+)+ 〈∇ϕ(x̂), z − x〉

+ 〈∇ϕ(x̂), x − x+〉 .

Rearranging the terms the statement follows.

Proofs of Sect. 3

Proof of Lemma 3.4 Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young
inequality and Remark 2.7, that

〈∇ f (xk) − ∇ f (x̂k
), x̄k+1 − xk〉V

≤ LV
res

∑

h∈J (k)

‖xh+1 − xh‖V‖x̄k+1 − xk‖V

≤ 1

2

⎡

⎣ (LV
res)

2

s

( ∑

h∈J (k)

‖xh+1 − xh‖V
)2

+ s‖x̄k+1 − xk‖2V
⎤

⎦

≤ 1

2

[
τ(LV

res)
2

s

(
k−1∑

h=k−τ

‖xh+1 − xh‖2V
)

+ s‖x̄k+1 − xk‖2V
]

= s

2
‖x̄k+1 − xk‖2V + τ(LV

res)
2

2s

k−1∑

h=k−τ

‖xh+1 − xh‖2V,

Now, thanks to a decomposition of the last term by Fact 2.4, we obtain

〈∇ f (xk) − ∇ f (x̂k
), x̄k+1 − xk〉V
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≤ s

2
‖x̄k+1 − xk‖2V + τ(LV

res)
2

2s

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2V

− τ(LV
res)

2

2s

k∑

h=k−τ+1

(h − (k − τ))‖xh+1 − xh‖2V

+ τ 2(LV
res)

2

2s
‖xk+1 − xk‖2V.

We recall that ‖xk+1 − xk‖2V = pik |x̄ k+1
ik

− xk
ik
|2. So taking

αk = τ(LV
res)

2

2s

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2V,

we get

E
[〈∇ f (xk) − ∇ f (x̂k

), x̄ k+1 − xk〉V
∣∣ i0, . . . , ik−1

]

≤ s

2
‖x̄k+1 − xk‖2V + τ 2(LV

res)
2

2s

m∑

i=0

p2i |x̄i
k+1 − xk

i |2 + αk

− E
[
αk+1

∣∣ i0, . . . , ik−1
]

Meaning

〈∇ f (xk) − ∇ f (x̂k), x̄k+1 − xk〉V

≤
m∑

i=0

pi

(
s

2
+ τ2(LV

res)
2

2s
pi

)
|x̄i

k+1 − xk
i |2 + αk − E

[
αk+1

∣∣ i0, . . . , ik−1
]

≤
m∑

i=0

pi

(
s

2
+ τ2(LV

res)
2

2s
pmax

)
|x̄i

k+1 − xk
i |2 + αk − E

[
αk+1

∣∣ i0, . . . , ik−1
]
.

By minimizing s �→
(

s

2
+ τ 2(LV

res)
2

2 s
pmax

)
, we find s = τ LV

res
√
pmax. We then get

〈∇ f (xk) − ∇ f (x̂k
), x̄ k+1 − xk〉V

≤ τ LV
res

√
pmax

m∑

i=0

pi |x̄i
k+1 − xk

i |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1
]
,

and αk = LV
res

2
√
pmax

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2V .
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Proof of Lemma 3.5 We have

‖xk+1 − x‖2W =
m∑

i=1

1

piγi
|xk+1

i − xi |2 = 1

pik γik

|x̄ k+1
ik

− xik |2

+‖xk − x‖2W − 1

pik γik

|xk
ik

− xik |2.
(B.1)

Thus, taking the conditional expectation we have

E[‖xk+1 − x‖2W | i0, . . . , ik−1] = ‖x̄k+1 − x‖2
Γ−1 + ‖xk − x‖2W − ‖xk − x‖2

Γ−1

(B.2)

and (3.4) follows. The second equation follows from (3.4), by choosing x = xk .

Proof of Proposition 3.3 Let k ∈ N. We have from the descent lemma along the ik-th
block-coordinate,

F(xk+1) ≤ f (xk) + 〈∇ik f (xk), x̄ k+1
ik

− xk
ik
〉 + Lik

2
|x̄ k+1

ik
− xk

ik
|2 +

m∑

i=1

gi (xk+1
i )

= f (xk) + 〈∇ik f (xk), x̄ k+1
ik

− xk
ik
〉 + Lik

2
|x̄ k+1

ik
− xk

ik
|2

+
(

gik (xk+1
ik

) +
m∑

i=1, i �=ik

gi (xk
i )
)

= f (xk) + 〈∇ik f (xk), x̄ k+1
ik

− xk
ik
〉 + Lik

2
|x̄ k+1

ik
− xk

ik
|2

+
(

gik (xk+1
ik

) − gik (xk
ik
) + g(xk)

)

= F(xk) + 〈∇ik f (xk), x̄ k+1
ik

− xk
ik
〉 + Lik

2
|x̄ k+1

ik
− xk

ik
|2

+
(

gik (x̄ k+1
ik

) − gik (xk
ik
)
)

= F(xk) + 〈∇ik f (xk) − ∇ik f (x̂k
), x̄ k+1

ik
− xk

ik
〉

+ Lik

2
|x̄ k+1

ik
− xk

ik
|2

+
(
〈∇ik f (x̂k

), x̄ k+1
ik

− xk
ik
〉 + gik (x̄ k+1

ik
) − gik (xk

ik
)
)
.

From (2.5), we can write that

F(xk+1) ≤ F(xk) + 〈∇ik f (xk) − ∇ik f (x̂k), x̄k+1
ik

− xk
ik

〉 −
(

1

γik

− Lik

2

)
|x̄k+1

ik
− xk

ik
|2

(B.3)
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By taking the conditional expectation and using Fact 2.2, it follows:

E
[
F(xk+1)

∣∣ i0, . . . , ik−1
]

≤ F(xk) + E
[〈∇ik f (xk) − ∇ik f (x̂k

), x̄ k+1
ik

− xk
ik
〉 ∣∣ i0, . . . , ik−1

]

−
m∑

i=1

pi

( 1

γi
− Li

2

)
|x̄ k+1

i − xk
i |2

= F(xk) +
m∑

i=1

pi 〈∇i f (xk) − ∇i f (x̂k
), x̄ k+1

i − xk
i 〉

−
m∑

i=1

pi

( 1

γi
− Li

2

)
|x̄ k+1

i − xk
i |2

= F(xk) + 〈∇ f (xk) − ∇ f (x̂k
), x̄k+1 − xk〉V

−
m∑

i=1

pi

( 1

γi
− Li

2

)
|x̄ k+1

i − xk
i |2. (B.4)

From Lemma 3.4, we have

〈∇ f (xk) − ∇ f (x̂k
), x̄ k+1 − xk〉V

≤ τ LV
res

√
pmax

m∑

i=1

pi |x̄i
k+1 − xk

i |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1
]
,

with αk = LV
res

2
√
pmax

k−1∑

h=k−τ

(h − (k − τ) + 1)‖xh+1 − xh‖2V . We then plug this result

in (B.4) obtaining

m∑

i=1

pi

( 1

γi
− Li

2

)
|x̄ k+1

i − xk
i |2 ≤ F(xk) + αk + τ LV

res
√
pmax

m∑

i=0

pi |x̄i
k+1 − xk

i |2

− E
[
F(xk+1) + αk+1

∣∣ i0, . . . , ik−1
]
.

Hence

m∑

i=1

pi

(
1

γi
− Li

2
− τ LV

res
√
pmax

)
|x̄ k+1

i − xk
i |2 ≤ F(xk)

+ αk − E
[
F(xk+1) + αk+1

∣∣ i0, . . . , ik−1
]
.

Since δ < 2, recalling (3.1), we have, for all i ∈ [m],
(
1

γi
− Li

2
− τ LV

res
√
pmax

)
= 1

2γi
(2 − Liγi − 2γiτ LV

res
√
pmax) ≥ 1

2γi
(2 − δ) > 0.
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Therefore the statement follows.

Proof of Proposition 3.6 Let k ∈ N and x ∈ H. Since 〈∇ f (x̂k
), x − xk〉 =

〈∇Γ−1
f (x̂k

), x − xk〉Γ−1 and x̄k+1 = proxΓ
−1

g

(
xk − ∇Γ−1

f (x̂k
)
)
, we derive from

Lemma 2.9 above written in weighted norm that

〈xk − x̄k+1, x − xk〉Γ−1 ≤ g(x) − g(xk) + 〈∇ f (x̂k
), x − xk〉

+ g(xk) − g(x̄k+1) + 〈∇ f (x̂k
), xk − x̄k+1〉

− ‖xk − x̄k+1‖2
Γ−1 . (B.5)

From Lemma 2.8, we have

〈∇ f (x̂k
), x − xk〉 ≤ f (x) − f (xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2.

So (B.5) becomes

〈xk − x̄k+1, x − xk〉Γ−1 ≤ F(x) − F(xk) + τ L res

2

∑

h∈J (k)

‖xh − xh+1‖2

+ g(xk) − g(x̄k+1) + 〈∇ f (x̂k
), xk − x̄k+1〉

− ‖xk − x̄k+1‖2
Γ−1 . (B.6)

Next, recalling that xk and xk+1 differs only in the ik-th component, we have

g(xk ) − g(x̄k+1) + 〈∇ f (x̂k ), xk − x̄k+1〉

= E

⎡

⎣
m∑

i=1

1

pi

(
gi (xk

i ) − gi (xk+1
i ) + 〈∇i f (x̂k ), xk

i − xk+1
i 〉) | i0, . . . , ik−1

⎤

⎦

Moreover,

m∑

i=1

1

pi

(
gi (xk

i ) − gi (xk+1
i ) + 〈∇i f (x̂k

), xk
i − xk+1

i 〉)

= 1

pmin

(
g(xk) − g(xk+1) + 〈∇ f (x̂k

), xk − xk+1〉)

−
m∑

i=1

(
1

pmin
− 1

pi︸ ︷︷ ︸
≥0

)
(
gi (xk

i ) − gi (xk+1
i ) + 〈∇i f (x̂k

), xk
i − xk+1

i 〉)

≤ 1

pmin

(
g(xk) − g(xk+1) + 〈∇ f (x̂k

), xk − xk+1〉)

−
(

1

pmin
− 1

pik

)
1

γik

|	k
ik
|2
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where in the last inequality we used that

−
(

gik (xk
ik
) − gik (xk+1

ik
) + 〈∇ik f (x̂k

), xk
ik

− xk+1
ik

〉
)

≤ − 1

γik

|	k
ik
|2,

which was derived from (2.5). So

g(xk) − g(x̄k+1) + 〈∇ f (x̂k
), xk − x̄k+1〉

≤ 1

pmin
E
[
g(xk) − g(xk+1) + 〈∇ f (x̂k

), xk − xk+1〉 ∣∣ i0, . . . , ik−1
]

− 1

pmin

m∑

i=1

pi

γi
|	k

i |2 + ‖xk − x̄k+1‖2
Γ−1 .

Now, by Lemma 3.4 and the block-coordinate descent lemma (2.6), we have

E[〈∇ f (x̂k
), xk − xk+1〉 | i0, . . . , ik−1]

≤ E
[〈∇ f (x̂k

) − ∇ f (xk), xk − xk+1〉 ∣∣ i0, . . . , ik−1
]

+ E
[〈∇ f (xk), xk − xk+1〉 ∣∣ i0, . . . , ik−1

]

= 〈∇ f (x̂k
) − ∇ f (xk), xk − x̄k+1〉V + E[〈∇ f (xk), xk − xk+1〉 | i0, . . . , ik−1]

≤ τ LV
res

√
pmax

m∑

i=1

pi |x̄i
k+1 − xk

i |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1
]

+ E
[

f (xk) − f (xk+1) + Lik

2
|	k

ik
|2
∣∣∣ i0, . . . , ik−1

]
,

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h − (k − τ) + 1)‖xh+1 − xh‖2V for all k ∈ N.

Therefore

g(xk) − g(x̄k+1) + 〈∇ f (x̂k), xk − x̄k+1〉
≤ 1

pmin
E[F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1]

+ 1

pmin

m∑

i=1

pi

(
Li

2
+ τ LV

res
√
pmax − 1

γi

)
|	k

i |2 + ‖xk − x̄k+1‖2
Γ−1 .

(B.7)

Since γi Li + 2γiτ LV
res

√
pmax ≤ δ < 2, we have

Li

2
+ τ LV

res
√
pmax − 1

γi
= 1

2γi
(γi Li + 2γiτ LV

res
√
pmax − 2) < 0,

and hence (B.7) yields

g(xk) − g(x̄k+1) + 〈∇ f (x̂k
), xk − x̄k+1〉

123



Convergence of an asynchronous block-coordinate... 339

≤ 1

pmin
E[F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1]

+ δ − 2

2

m∑

i=1

1

γi
|	k

i |2 + ‖xk − x̄k+1‖2
Γ−1 .

The statement follows from (B.6).

Proof of Proposition 3.7 We know that

‖xk − x‖2
Γ−1 − ‖x̄k+1 − x‖2

Γ−1 = −‖xk − x̄k+1‖2
Γ−1 + 2〈xk − x̄k+1, xk − x〉Γ−1 .

We derive from Proposition 3.6, multiplied by 2, that

‖x̄k+1 − x‖2
Γ−1 ≤ ‖xk − x‖2

Γ−1

+ 2

pmin
E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]

+ 2(F(x) − F(xk)) + τ L res

∑

h∈J (k)

‖xh − xh+1‖2

(δ − 1)‖xk − x̄k+1‖2
Γ−1 . (B.8)

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h − (k − τ)+ 1)‖xh+1 − xh‖2V . It follows from

Lemma 3.5 that

E
[‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W
+ (δ − 1)‖xk − x̄k+1‖2

Γ−1

+ 2

pmin
E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]

+ 2(F(x) − F(xk)) + τ L res

∑

h∈J (k)

‖xh − xh+1‖2. (B.9)

Plugging (3.3) in (B.9) the statement follows.

Proof of Proposition 3.8 Let k ∈ N and x ∈ H. From Proposition 3.7, we have

E
[‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W
+ 2

pmin

(
(δ − 1)+
2 − δ

+ 1

)
E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]

+ τ L res

∑

h∈J (k)

‖xh − xh+1‖2
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+ 2(F(x) − E
[
F(xk+1) + αk+1 | i0, . . . , ik−1

]
)

− 2(E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]
) + 2αk .

Set for all k ∈ N,

ξk = 2

(
max{1, (2 − δ)−1}

pmin
− 1

)
E
[
F(xk) + αk − F(xk+1) − αk+1 | i0, . . . , ik−1

]

+ τ L res

∑

h∈J (k)

‖xh − xh+1‖2 + 2αk .

Now, on the one hand, recalling (B.14), (3.3) and Lemma 3.5, we have

E
[∑

k∈N

∑

h∈J (k)

‖xh − xh+1‖2
]

≤ τγmaxpmax
∑

k∈N
E[‖xk − xk+1‖2W]

≤ 2τγmaxpmax

(2 − δ)pmin

∑

k∈N

(
E[F(xk) + αk ] − E[F(xk+1) − αk+1]

)

≤ 2τγmaxpmax

(2 − δ)pmin
(F(x0) + α0 − F∗) < +∞.

Recalling the definition of αk in Proposition 3.6 and of LV
res in Remark 2.7, this also

yields

E
[∑

k∈N
αk

]
≤ τ LV

res

2
√
pmax

E
[∑

k∈N

k−1∑

h=k−τ

‖xh − xh+1‖2V
]

≤ τ LV
respmax

2
√
pmax

E
[∑

k∈N

k−1∑

h=k−τ

‖xh − xh+1‖2
]

≤ τ L resp2max√
pmin

τγmax

(2 − δ)pmin
(F(x0) + α0 − F∗).

On the other hand, setting ηk = F(xk) + αk − E
[
F(xk+1) − αk+1 | i0, . . . , ik−1

]
,

which in virtue of (3.3) is positive P-a.s., we have

E
[∑

k∈N
ηk

]
=
∑

k∈N
E[ηk] = sup

n∈N

n∑

k=0

E[F(xk) + αk] − E[F(xk+1) − αk+1]

≤ F(x0) + α0 − F∗ < +∞.

Let C = max
{
1, (2 − δ)−1

}

pmin
− 1 + τ 2

L resγmaxpmax

pmin(2 − δ)

(
1 + pmax√

pmin

)
. We then get

∑

k∈N
E[ξk] ≤ 2C(F(x0) − F∗).
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We remark that (∀ i ∈ [m]) γi (Li + 2τ L respmax/
√
pmin) < 2. So γiτ L res <

2−γi Li
2

√
pmin
pmax

. This implies τγmaxL res <
2−γmaxLi0

2

√
pmin
pmax

, where i0 ∈ [m] such that
γi0 = γmax. Thus

τγmaxL res <
2 − γmaxLmin

2

√
pmin

pmax
. (B.10)

Using this in C , we get

C ≤ max
{
1, (2 − δ)−1

}

pmin
− 1 + τ

2 − γmaxLmin

2
√
pmin(2 − δ)

(
1 + pmax√

pmin

)

≤ max
{
1, (2 − δ)−1

}

pmin
− 1 + τ

1√
pmin(2 − δ)

(
1 + pmax√

pmin

)
.

The statement follows.

Proof of Proposition 3.9 It follows from (3.3) that

(2 − δ)
pmin

2
E
[‖x̄k+1 − xk‖2

Γ−1

] ≤ E
[
F(xk) + αk

]− E
[
F(xk+1) + αk+1

]
.

This means that
(
E[F(xk) + αk]

)
k∈N is a nonincreasing sequence and

(2 − δ)
pmin

2
E
[∑

k∈N
‖x̄k+1 − xk‖2

Γ−1

]
= (2 − δ)

pmin

2
sup
k∈N

k∑

h=0

E
[‖x̄h+1 − xh‖2

Γ−1

]

≤ sup
k∈N

E
[
F(x0) + α0

]− E
[
F(xk+1) + αk+1

]

≤ F(x0) + α0 − F∗ < +∞.

Therefore, since ‖·‖2 ≤ (maxi γi )‖·‖2
Γ−1 , we derive that

∑

k∈N
‖x̄k+1 − xk‖2 < ∞ P-a.s. (B.11)

So, it follows that

‖x̄k+1 − xk‖ → 0 P-a.s, (B.12)

and, since ‖xk+1 − xk‖ ≤ ‖x̄k+1 − xk‖ for all k ∈ N, we have also

∑

k∈N
‖xk+1 − xk‖2 < ∞ and ‖xk+1 − xk‖ → 0 P-a.s. (B.13)

123



342 C. Traoré et al.

Now, by Lemma 2.5, we have ‖x̂k − xk‖2 ≤ τ
∑

h∈J (k)‖xh − xh+1‖2 and, moreover,

∑

k∈N

∑

h∈J (k)

‖xh − xh+1‖2 ≤
∑

k∈N
τ‖xk − xk+1‖2 < ∞ P-a.s., (B.14)

so that

‖x̄k+1 − x̂k‖ ≤ ‖x̄k+1 − xk‖ + ‖xk − x̂k‖ → 0 P-a.s. (B.15)

Define, for all i ∈ [m],

vk
i = ∇i f (x̄k+1) − ∇i f (x̂k

) + 	k
i

γi
. (B.16)

Then, thanks to the second equation in (2.4), we have

vk = (vk
1, · · · , vk

m) ∈ ∇ f (x̄k+1) + ∂g(x̄k+1) = ∂ ( f + g) (x̄k+1). (B.17)

Moreover, since∇ f is Lipschitz continuous, definition (B.16) and Eqs. (B.12), (B.15)
yield vk → 0 P-a.s.
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