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Enhancing coherent energy transfer between quantum devices via a mediator
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We investigate the coherent energy transfer between two quantum systems mediated by a quantum bus. In
particular, we consider the energy-transfer process between two qubits and how it can be influenced by using a
third qubit or photons in a resonant cavity as mediators. Inspecting different figures of merit and considering both
on- and off-resonance configurations, we characterize the energy-transfer performances. We show that while the
qubit-mediated transfer shows no advantages with respect to a direct-coupling case, the cavity-mediated one is
progressively more and more efficient as function of the number of photons stored in the cavity that acts as a
quantum bus. The speeding-up of the energy-transfer time, due to a quantum mediator, paves the way for new
architecture designs in quantum technologies and energy-based quantum logics.
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I. INTRODUCTION

The last decades have witnessed fast developments of
quantum technologies, which are assuming a central role for a
progressively broader scientific community worldwide [1–5].
Closely related to the basic aspect of this branch of research
is the growing interest in the field of quantum thermodynam-
ics [6–15], a very active topic where classical notions such
as work and heat are reconsidered with the aim of charac-
terizing the functioning of thermal machines and batteries
based on, possibly out-of-equilibrium, quantum systems [16].
These represent highly nontrivial fundamental issues that can
both explain the behavior of quantum devices at cryogenic
temperature and influence the engineering of novel archi-
tectures. Concerning quantum batteries (QBs), starting from
the seminal ideas introduced in Ref. [17], various theoreti-
cal proposals have been elaborated with the aim of realizing
miniaturized devices able to exploit genuine quantum features
to store and release energy in a controlled way. They can
be implemented in setups conventionally used for quantum
computation [18–20], in artificial atoms [21–32], and in the
framework of cavity and circuit quantum electrodynamics
[33–37]. These theoretical investigations represent a change
of paradigm in the field of energy storage with respect to two-
centuries-old electrochemical principles which are still at the
core of current technology. Remarkably, the first experimental
realization of QBs were reported in 2021 using a collection
of fluorescent organic molecules embedded in a microcavity
[38]. Even more recently, another experiment characterizing
a QB, realized with a three-level superconducting qubit in
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the transmon regime, was carried out [39]. The possibility to
simulate the behavior of a QB in the controlled environment
offered by cloud-based IBM quantum machines has been
also recently investigated, showing that these kind of devices,
without any ad hoc optimization, are able to compete with the
performances of state-of-the-art setups [40]. This testifies as
to the great interest regarding the possibility to achieve fast
and efficient energy storage at the quantum level.

To date, the research on QBs has been devoted mainly to
finding efficient ways to store energy into quantum systems
and release it on demand to locally supply energy to minia-
turized devices [21,27,28,33,41,42]. An interesting and still
largely unexplored new development is related to the possibil-
ity of coherently transferring energy among distant quantum
systems, realizing the energetic counterpart of the two-qubit
SWAP logic gate, which plays a major role in quantum infor-
mation and quantum computation [43]. Remarkably enough,
due to the fact that the energy stored in a QB only depends
on the populations of the quantum states [27], this “energy
SWAP” should be more robust with respect to its information
counterpart, being affected mainly by relaxation and only
marginally by decoherence [44,45]. Moreover, the realization
of this kind of process represents a crucial step towards the
creation of capillary energy networks able to connect distant
parts of a fully quantum device [46,47].

This work fits into this growing field, aiming at charac-
terizing the coherent energy transfer between two quantum
systems. We will focus on the simple but experimentally rele-
vant [48,49] situation of two two-level systems (TLSs). The
energy transfer between them will be mediated by another
simple quantum system which plays the role of a quantum bus.
The two systems, exchanging energy through the mediator,
can be seen as both a QB and its charger [41,50] or as a QB
and an active user of the energy stored in the battery itself.
In our analysis, the role of mediator will be played by an
additional TLS or by the photons confined into a resonant
cavity [49]. While the former architecture has been recently
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considered to realize high-fidelity two-qubit gates [51], the
latter is routinely used, for instance, for the readout of super-
conducting qubits [52]. Moreover, the possibility to connect
qubits of a different nature by coupling them to the same
resonant cavity has been experimentally demonstrated very
recently [46,47] and represents a crucial step in the roadmap
toward the full accomplishment of the second quantum rev-
olution [53]. Interestingly, a mediated coupling can strongly
increase the range of interaction between the connected de-
vices from hundred nanometers, as in the direct capacitive or
inductive coupling between superconducting qubits [52], up
to some centimeters when a resonant cavity plays the role of
the quantum bus [54,55]. This opened new perspectives in the
domain of quantum technologies, leading to the possibility to
transfer quantum information over macroscopic lengths.

In this paper we characterize in detail the coherent energy
transfer between two TLSs in the presence of a mediator. We
investigate the cases where the TLSs are both on resonance
and off resonance, making a comparison between the medi-
ated cases and the direct-coupling case, chosen as a reference
benchmark. To this end, we will introduce and evaluate rel-
evant figures of merit such as the energy-transfer time, the
energy stored in each part of the device, the work required to
realize the energy-transfer protocol, and the overlap between
the final state of the system and an optimal reference target
state. According to this we determine the configuration in
which the first maximum of the energy stored in the QB is
achieved. We will show that the cavity-mediated transfer, in
addition to leading to a longer range coupling with relevant
impact on actual experimental implementations, is charac-
terized by a progressively faster and more efficient energy
transfer by increasing the number of photons trapped into
the cavity. Moreover, we will observe that in this case the
mediator is not only able to guarantee a complete energy
transfer in the resonant case, but can also play the role of a
facilitator which increases the efficiency of the energy transfer
off resonance.

The paper is organized as follows. In Sec. II we introduce
the model for a direct coupling between TLSs as well as the
ones for TLSs interacting through an additional TLS or the
photons in a resonant cavity. The more relevant figures of
merit to characterize the efficiency of the devices are dis-
cussed in Sec. III. The main results and the comparisons of the
performances of the different addressed models, both on and
off resonance, are reported in Sec. IV. Section V is devoted to
the conclusions. Finally technical details of the calculations
are discussed in three Appendixes.

II. MODEL

We want to investigate the energy transfer between two
quantum systems. To fix the ideas, one can consider the first
as a quantum charger (C) while the second as a QB (B).
However, other possible configurations can be described in
an analogous way. To keep the analysis as simple as possible
but still describing experimentally relevant situations, the two
quantum systems are modeled as two TLSs with energy sepa-
ration between the corresponding ground states |0C,B〉 and the
excited states |1C,B〉, given by ωC and ωB, respectively (see
Fig. 1).

FIG. 1. Schematic representation of the two quantum systems.
The first one, with energy separation ωC, acts as a charger (C), while
the second, with energy separation ωB, can be seen as a QB (B).

The free Hamiltonian of this composite system is (hereafter
we set h̄ = 1)

H0 = HC + HB = ωC

2
σ (C)

z + ωB

2
σ (B)

z , (1)

where σ (i)
z is the Pauli matrix along the ẑ direction, acting

on the i = C, B space. In the following we will describe
different protocols that can produce energy transfer between
these two entities. Notice that in our discussion we will
consider the composite system as a closed quantum sys-
tem, meaning that dissipative effects related to relaxation and
dephasing phenomena are not taken into account. This is
possible when the typical relaxation tr and dephasing tϕ times
are longer with respect to the considered evolution time t , i.e.,
tr, tϕ � t [56,57].

A. Direct coupling

Under the assumption of a local (short range) and direct
capacitive coupling between the TLSs, we can consider the
following interaction Hamiltonian:

H (d)
int (t ) = gf (t )[σ (C)

− σ
(B)
+ + σ

(C)
+ σ

(B)
− ], (2)

where the apex (d) stands for direct interactions, g is a cou-
pling constant, and f (t ) is a dimensionless time-dependent
function which has been introduced in order to take into
account the switching on and off of the interaction. Its precise
shape will be specified later.

Here we have defined spin ladder operators σ
(i)
± = (σ (i)

x ±
iσ (i)

y )/2, with σ (i)
x,y the Pauli matrices along the x̂, ŷ direction,

respectively. The above interaction Hamiltonian is written in
the so-called rotating wave approximation (RWA) [58–60]
and can be derived from a capacitive coupling between su-
perconducting qubits realizing the TLSs (see Appendix A 1
for more details). The common choice of working in RWA
leads to simplification in the analysis but imposes a constraint
on admissible values for the coupling constant, namely, g �
0.1ωC,B. However, this does not represent a major limitation
for our study, due to the fact that most of the experimental
realizations of such quantum systems well fit into this regime
[61,62].

According to the above considerations, the Hamiltonian for
a direct energy transfer between the charger and the QB can
be written as

H (d)
TLS(t ) = H0 + H (d)

int (t ). (3)

B. Mediated coupling

The aim here is to compare the performances of the energy
transfer for the direct coupling introduced above with those
where a quantum bus acts as a mediator between the two
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FIG. 2. Schematic representation of two possible quantum bus
schemes that mediate energy transfer between two TLSs. Panel
(a) represents the TLS-mediated scenario, where a third TLS with
energy separation ωM is locally coupled to both C and B. Panel
(b) represents the cavity-mediated one, where the photons of the
cavity with frequency ωM mediate the energy transfer.

TLSs. We will focus on two possible scenarios: in the first,
a third TLS allows the transfer [see Fig. 2(a)], while in the
second, the photons of a resonant cavity play the role of
mediators for the energy transfer [see Fig. 2(b)].

a. TLS-mediated model. We consider the system in
Fig. 2(a), where the energy transfer between C and B is
mediated by a third TLS (M), with energy separation ωM.
Extending what is discussed for the direct-coupling case and
working again in the RWA (see Appendix A for more details),
this model is described by the following Hamiltonian:

H (m)
TLS(t ) = HC + HB + ωM

2
σ (M)

z + H (m)
int,TLS(t ), (4)

where

H (m)
int,TLS(t ) = gCM f (t )[σ (C)

− σ
(M)
+ + σ

(C)
+ σ

(M)
− ]

+ gBM f (t )[σ (B)
− σ

(M)
+ + σ

(B)
+ σ

(M)
− ], (5)

with the apex (m) indicating the mediated interaction. Here
gCM and gBM are the local coupling constants between C and
M and between B and M, respectively, and no direct interac-
tion between C and B is allowed. In the above expression, it
appears as the function f (t ) whose functional form is assumed
to be the same as in the direct case.

b. Cavity-mediated model. In the second scenario, depicted
in Fig. 2(b), the transfer process is mediated by the photons
confined into a resonant cavity of characteristic frequency ωM.
The Hamiltonian of this system is

H (m)
cavity(t ) = HC + HB + ωMa†a + H (m)

int,cavity(t ), (6)

where

H (m)
int,cavity(t ) = gCM f (t )[a†σ

(C)
− + aσ

(C)
+ ]

+ gBM f (t )[a†σ
(B)
− + aσ

(B)
+ ]. (7)

Here, a (a†) is the annihilation (creation) operator of the
photons and, as before, gCM and gBM are the local coupling
constants between C and M (here represented by the photons
in the cavity) and between B and M, respectively, and again

f (t ) is the same time-dependent function introduced above.
Also, in this case we work in the RWA, which leads to the
usual Jaynes-Cummings form of the interaction [60,63]. This
kind of coupling, and the RWA scheme, can be traced back to
the capacitive coupling between superconducting circuits as
clarified in Appendix A.

Before closing this section, we mention that we will in-
vestigate both the resonant regime (ωC = ωM = ωB) and the
off-resonance regime. In particular, we will focus on the case

ωC = ωM = αωB, (8)

where α is a positive real parameter.
The motivation of considering off-resonance conditions is

due to the difficulty of realizing absolutely identical TLSs
from the experimental point of view. Therefore, following
what is reported in the literature [46,54], we will consider
mismatches in the level spacing in the range α = 0.8 ÷ 1.2.
Notice that, due to the symmetries of the considered models,
values of α > 1 can be obtained starting from the α < 1
case. Therefore in the following we will mainly address this
latter case. Moreover, due to the fact that the results do not
change qualitatively varying the interaction constant between
the systems, we will focus on the case gCM = gBM = g, with
the same value of the coupling for both mediated interaction
cases.

III. FIGURES OF MERIT

To characterize the energy transfer between the two TLSs,
we need to study how much of the energy stored in C can be
transferred to B and how fast this process can be. In addition,
we will take into account the switching on and off of the
interaction terms by evaluating the total work that should be
supplied in doing such operations.

A. Stored energy and charging time

First of all, we consider the energy stored inside C, B, and
M (if present). At time t this is given by [33,41]

Ei(t ) ≡ Tr{ρ(t )Hi} − Tr{ρ(0)Hi}, (9)

where i = C, B, M. Here, with HM we generally indicate the
Hamiltonian contribution associated to the two considered
mediators. Tr{. . . } represents the conventional trace opera-
tion; ρ(0) = |ψ (0)〉〈ψ (0)| is the total density matrix of the
system associated to the initial state at time t = 0, namely,

|ψ (0)〉 ≡ |1C, 0B〉 (10)

in the direct-coupling case, and

|ψ (0)〉 ≡ |1C, 0B, IM〉 (11)

in the mediated case; and ρ(t ) is the corresponding density
matrix operator evolved in time t according to the proper total
Hamiltonian (H (d)

TLS, H (m)
TLS or H (m)

cavity). In analogy to what is
done in Eq. (9), it is also useful to define the energy associated
to the interaction contributions, namely,

Eint (t ) = Tr{ρ(t )Hint (t )} − Tr{ρ(0)Hint (0)}. (12)

Notice that, throughout the paper, the model of the system
will not be indicated with subscripts (TLS, 3TLS, cavity)
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referring to the state of the system for the sake of notational
convenience. Here, we assume that C starts in the excited
state |1C〉 (the charger system is full), while B is initially in
the ground state |0B〉 (empty battery). Concerning the state of
M, where present, we will consider different possible initial
states, for the moment generically indicated by |IM〉, satisfying
the condition

Tr{ρ(0)Hint (0)} = 0 (13)

and thus leading to a further simplification of Eq. (12).
Moreover, we denote with

EB,max ≡ EB(tB,max) (14)

the first local maximum achievable value of the energy stored
in the QB, which occurs at the shorter charging time tB,max

and with

EC,max ≡ EC(tB,max), (15)

the value of the energy in the charger at the same time. Indeed,
as we will show below, while at resonance all the maxima are
equal, out of resonance this could not be the case. However,
the first achieved local maximum is typically characterized by
both large stored energy and average charging power [33,41],
with potentially relevant implications from the applicative
point of view.

B. Average work

To fully characterize energy-transfer processes, where the
interaction between the systems is time dependent, it is im-
portant to consider the power, defined as

P(t ) ≡ d

dt
[Tr{ρ(t )H (t )}]

= Tr

{
ρ(t )

∂H (t )

∂t

}

= Tr

{
ρ(t )

∂Hint (t )

∂t

}
. (16)

In the first line of the derivation we have considered the fact
that, for a closed system, the heat exchanged with the environ-
ment is zero and the variation of the total internal energy of the
system is only due to the work done on it [64]. In the second
line we have taken into account the fact that the density matrix
ρ(t ) evolves in time according to the total Hamiltonian H (t ).
Finally, in the last line we have made explicit the fact that only
the interaction Hamiltonian parametrically depends on time.

We remark that here H (t ) generally indicates the
Hamiltonian for the considered cases (H (d)

TLS, H (m)
TLS or H (m)

cavity).
Then the average work W (t ) at a given time t is then given by

W (t ) =
∫ t

0
dt ′P(t ′). (17)

With the above definitions we can consider the average
work done to transfer energy in the various configurations.
In all the considered cases the power can be written as (see
Appendix B for more details)

P(t ) = (1 − α)
dEB

dt
+ dEint

dt
. (18)

FIG. 3. (a) Behavior of f (t ) as function of ωBt for ωBτ = 50
and ωBt0 = 0.1. (b) Zoom of the same function corresponding to the
switching-off region.

According to the previously discussed initial conditions, the
corresponding work is then

W (t ) = (1 − α)EB(t ) + Eint (t ). (19)

In order to proceed further, we need to specify the form of
the function f (t ). From now on we will consider the following
functional form, sketched in Fig. 3:

f (t ) =
arctan

(
t − τ

t0

)
− arctan

(
t − 2τ

t0

)

2 arctan

(
τ

2t0

) , (20)

which describes a smooth switching on and off of the interac-
tion between the two quantum systems C and B or between C
and M and M and B in the mediated cases. As we can see from
Fig. 3, the parameter τ controls the time window where the in-
teraction is active, while t0 is the width of the switching ramp.
We want to underline that, despite being convenient from a
numerical point of view, the chosen function is not strictly
zero at t = 0. However, by properly setting the parameters
τ and t0 in such a way that τ � t0, its contribution at times
t � 0 is negligible for all practical purposes. We can then
assume a free dynamics of our system at t = 0. By controlling
the parameters τ and t0, it is then possible to turn off the
interaction when the first maximum of the energy stored in B
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is achieved: at time tB,max the interaction Hamiltonian Hint (t )
is switched off. Notice that other possible smooth stepwise
forms of the drive can be considered, leading to qualitatively
similar results as long as t0 is the shorter timescale involved in
the process.

From an experimental point of view, this time-dependent
modulation of the coupling could be achieved, for example, by
changing in time the capacitance connecting the various part
of the superconducting circuits discussed in Appendix A. Al-
ternative protocols involving the modulation of the Josephson
energy, realized, for example, by replacing a single junction
with a superconducting quantum interference device (SQUID)
controlled in time, should lead to an analogous behavior (see
Ref. [33] and its supporting material for a related discussion).

According to the protocol discussed above, it is instruc-
tive to inspect a relation for the average work at times such
that t
 > tB,max, where the battery has been charged and the
interaction Hamiltonian has been switched off according to
the considered protocol. In this regime the previous relation
in Eq. (19) becomes

W 
 ≡ W (t
) = (1 − α)EB,max, (21)

meaning that the work done to switch off the interaction is
constant and it only depends on how much the target system
is off resonance with respect to the original one (quantified
by α) and on the maximum value of the energy stored into B
(EB,max). Notice that in the resonant case one has α = 1 and
then W 
 = 0 [41].

C. State SWAP quantifier

Here, we introduce a quantifier for the efficiency of the
energy SWAP between C and B. In the optimal condition we
want to reach a final state of the system, after the interaction
is switched off, of the form

|ψ (tB,max)〉 = |0C, 1B, ·〉. (22)

Notice that we do not put any constraint on the final state of
M. Consequently, it is useful to define a target state that only
takes into account the configuration of C and B, namely,

|ψoptimal〉 ≡ |0C, 1B〉. (23)

We can then define a quantifier related to the overlap be-
tween the state reached at time t and the optimal state as [43]

ζ (t ) ≡ Tr{ρCB(t)�optimal}, (24)

where �optimal = |ψoptimal〉〈ψoptimal| is the projector associated
to the optimal state, and

ρCB(t ) = TrM{ρ(t)} (25)

is the reduced density matrix of the system, obtained from
the full density matrix of the system ρ(t ) by tracing out the
mediator degrees of freedom. Obviously, this trace operation
becomes trivial in the direct-coupling case, where the media-
tor M is absent.

This quantifier provides information about the possibility
to actually realize a SWAP in the quantum states of the two
TLSs, leading to a complete transfer of the quantum state
of the charger to the battery. According to the definition in

Eq. (24), ζ (t ) � 1, the equality holding when a complete
SWAP in the quantum state of C and B is achieved.

IV. RESULTS

In this section we report and discuss the main results for
the energy transfer, comparing the various mechanisms intro-
duced in the previous section.

A. Comments on the exact diagonalization

To evaluate the figures of merit and to characterize the
performances of the various configurations, we resort to
the exact diagonalization method and numerical solution of
the Schrödinger equation id|ψ (t )〉/dt = H (t )|ψ (t )〉, where
again H (t ) indicates the Hamiltonian of the considered setup
(H (d)

TLS, H (m)
TLS or H (m)

cavity). The state of the system |ψ (t )〉, at a
given time t , can be written projecting on a set of basis eigen-
states |ϕk〉 of the Hamiltonian in the absence of interactions,
with k dimension of the subset of the Hilbert space which can
be spanned according to the constraints imposed by the RWA
(see Appendix C for more details), in such a way that

|ψ (t )〉 =
∑

k

ck (t )|ϕk〉. (26)

Here, ck (t ) are time-dependent coefficients which can be
found by numerically inserting Eq. (26) into the Schrödinger
equation. Once |ψ (t )〉 is found, it is straightforward to derive
ρ(t ) and the different quantities of interest.

B. Direct coupling

To begin with, we discuss the direct energy transfer be-
tween TLSs, which acts as a reference for the mediated cases.
We will focus on the case g = 0.05ωB (where the RWA is well
justified). In addition, as stated above, the charger-QB system
will always be in the initial state |ψ (0)〉 = |1C, 0B〉.

In passing, we mention that in the case of piecewise con-
stant interaction this problem can be solved analytically [41].
Moreover, as long as the switching time t0 is the shortest
timescale involved in the problem, the numerical results, de-
rived in the time-dependent coupling case, differ only slightly
from those derived in this simple analytical model.

In Fig. 4 we report the time evolution of various figures of
merit discussed in Sec. III for both the resonant case (panel a)
and for the off-resonance case α = 0.8 (panel b). Notice that,
as stated above, we are considering only a value of α < 1,
since the opposite case leads to qualitatively similar behavior.
Moreover, from now on ωB will be the reference scale for all
the energies.

When the system is on resonance we see that the energy
EC(t ) stored into the charger goes from zero to −ωB (the
negative sign indicating a reduction of energy), while EB(t )
evolve in a mirrored way from 0 to +ωB. During this process
both the energy associated to the interaction Eint (t ) and the
work W (t ) remains zero as a consequence of the considered
initial state (|ψ (0)〉 = |1C, 0B〉) and of the fact that the final
state reached by the system is |ψ (tB,max)〉 = |0C, 1B〉. These
observations allow us to conclude that, in this case, all the
energy can be transferred directly from the charge to the QB.
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FIG. 4. Behavior (in units of ωB) of EB(t ) (blue curves), EC(t ) (purple curves), Eint (t ) (green curves), and W (t ) (orange curves) as a
function of ωBt in the case of direct energy transfer. Here we report the resonant ωC = ωB (a) and off-resonant case ωC = 0.8ωB (b). The
values ωBτ = 32 and ωBτ = 14.5 are respectively considered to switch off the interaction when the first maximum of the transferred energy
is achieved. Other parameters are g = 0.05ωB and ωBt0 = 0.1.

In particular, while the first can be completely discharged, the
second can achieve a perfect charging.

Different is the situation when the system is off resonance.
Here, in fact, the charger loses only a fraction of its energy,
and the remaining part of the energy transferred to the QB is
provided by the interaction term. However, even combining
these two contributions the charging of the QB is limited to
∼20%. In this case the final state is not characterized by a
perfect SWAP but is given by a coherent superposition of the
basis states used to numerically diagonalize the Hamiltonian
H (d)

TLS (see Appendix C). This reflects in the fact that both the
energy due to the interaction and the work done to switch it off
are different from zero. Moreover, we notice that, due to the
fact that we are considering the evolution of a closed system,
in this case one has

EC(t ) + EB(t ) + Eint (t ) = W (t ). (27)

In the following we will compare the above results with those
obtained when a mediator of the energy transfer is added to
the composite system.

C. TLS-mediated coupling

We now focus on the first mediated case, where an addi-
tional TLS is introduced between C and B.

In Fig. 5 we report the time evolution of the various
figures of merit discussed in Sec. III for both the resonant case
(left panels) and for the off-resonance case with α = 0.8 (right
panels). We also address two different initial states, namely,
|ψ (0)〉 = |1C, 0B, 0M〉 (upper panels), where the mediator is
in its ground state, and |ψ (0)〉 = |1C, 0B, 1M〉 (lower panels),
where the mediator is in its excited state.

When the system is on resonance and the mediator is ini-
tially in the ground state [see Fig. 5(a)], C starts transferring
energy to M. Only at a later time can B extract energy to
M. Even if quite slow, this sort of bucket brigade procedure
results in a complete energy transfer form C to B, in analogy
with what is observed in the direct-coupling case, and in a
SWAP of the states of C and B (see parameters reported in
Table I). Similarly to what was discussed previously, this reso-
nant condition is characterized by zero interaction energy and
work. What is different is the situation where the system is of
resonance and the mediator is initially in the ground state [see

Fig. 5(b)]. Here C does not discharge completely and transfers
only a fraction of its energy to M. However, M is not able to
pass its energy to B, which reaches a charge lower than ∼10%
of the maximum possible value. In this case the interaction
energy, and consequently, the work required to switch it off,
is close to zero. Moreover, as reported in Table I, the target
state is almost completely missed in this case. Extending what
was discussed in the off-resonant direct-coupling case, here
we have the overall constraint

EC(t ) + EB(t ) + EM(t ) + Eint (t ) = W (t ). (28)

We consider now a situation in which the mediator is ini-
tially in the excited state. When the system is on resonance
[see Fig. 5(c)], B reaches a complete charging. However, in
this case the energy is provided by M, whose energy is only
subsequently reestablished by C. This process is characterized
by a timescale identical to that of the case in Fig. 5(a) (see
Table I) and similarly leads to a perfect energy and state
transfer from C to B with zero interaction energy and work.
Conversely, of resonance [see Fig. 5(d)] M transfers its energy
to B with a minor help from the interaction. However, this
energy contribution is only poorly reestablished by C. This
also makes this configuration inefficient from the point of
view of the energy transfer (see also the other data reported
in Table I). As before, the energy balance is given by Eq. (28).

In passing, we comment on an initial condition in which
the mediator is in a superposition state [|ψ (0)〉 = |1C, 0B〉 ⊗

1√
2
(|0M〉 + |1M〉)]. This is characterized by charging times and

energy transfer in between the two “classical” configurations
of the mediator described above (not shown). This seems
to indicate the fact that, in actual experiments, there is no
advantage in carefully engineering a quantum state for M in
order to boost the overall performance of the device.

To summarize the results of this part, the addition of a
TLS as a mediator for energy-transfer processes offers no
advantages in improving performance with respect to the
direct-coupling case.

D. Cavity-mediated coupling

We analyze now the case in which the energy transfer is
mediated by photons in a resonant cavity. Here it is possi-
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FIG. 5. Behavior (in units of ωB) of EB(t ) (blue curves), EC(t ) (purple curves), EM(t ) (red curves), Eint (t ) (green curves), and W (t ) (orange
curves) as function of ωBt in the case of coupling mediated by a TLS. Here we report the resonant ωC = ωB (a)–(c) and off-resonant case
ωC = 0.8ωB (b)–(d) for different initial conditions of the mediator. The values ωBτ = 45 (a), ωBτ = 23 (b), ωBτ = 45 (c), and ωBτ = 15
(d) are respectively considered to switch off the interaction when the first maximum of the transferred energy is achieved. Other parameters
are g = 0.05ωB and ωBt0 = 0.1.

ble to exploit the additional degree of freedom offered by
the number of photons n to improve the performance of
the energy transfer in the composite system. As before, we
will start from two possible initial states: one where there is
only one photon into the cavity (upper panels of Fig. 6 with
|ψ (0)〉 = |1C, 0B, 1M〉) and a Fock state with a higher number
of photons. In particular, in the following we will focus as
an example on the case n = 8 (lower panels of Fig. 6 with
|ψ (0)〉 = |1C, 0B, 8M〉). Notice that an initial state with no
photons in the cavity shows the same behavior as in the case
in which the interaction is mediated by an empty TLS [see
Figs. 5(a) and 5(b)]. Also in this case, we will consider both a
resonant (left panels of Fig. 6) and an off-resonant case with
α = 0.8 (right panels of Fig. 6).

When the system is on resonance and only one photon
is initially confined into the cavity [see Fig. 6(a)], both the

energy transfer from C to M and from M to B occurs si-
multaneously, leading to a complete discharging of C and
charging of B in a time which is shorter with respect to both
the direct-coupling and the TLS-mediated case (see Table II).
This situation is also characterized by a perfect SWAP and by
zero interaction energy and work. When the system is off
resonance [see Fig. 6(b)], C releases a consistent fraction of
its energy. Part of it remains trapped into M; however, also
thanks to a contribution from the interaction, B can be charged
more than ∼20%. This value is slightly greater than what
is observed in the direct-coupling case and is achieved in a
comparable time (see Table II). Notice that the overall energy
balance is again constrained by Eq. (28).

More interesting is the situation in which the mediator
is characterized by a higher number of photons. When the
system is on resonance [see Fig. 6(c)], the behavior is quite

TABLE I. Charging time tB,max (in units of ω−1
B ), maximum of the energy in the QB EB,max (in units of ωB), corresponding energy in

the charger EC,max (in units of ωB), and maximum of the overlap quantifier ζmax in the direct-coupling (as reference benchmark) and in the
TLS-mediated model, for different initial states |ψ (0)〉 and values of α.

|ψ (0)〉 = |1C, 0B〉 |ψ (0)〉 = |1C, 0B, 0M〉 |ψ (0)〉 = |1C, 0B, 1M〉
tB,max EB,max EC,max ζmax tB,max EB,max EC,max ζmax tB,max EB,max EC,max ζmax

α = 1 64 1 −1 1 90 1 −1 1 90 1 −1 1
α = 0.8 29 0.197 −0.157 0.197 46 0.080 −0.623 0.071 30 0.203 −0.029 0.037
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FIG. 6. Behavior (in units of ωB) of EB(t ) (blue curves), EC(t ) (purple curves), EM(t ) (red curves), Eint (t ) (green curves), and W (t ) (orange
curves) as a function of ωBt in the case of coupling mediated by photons trapped in a cavity. Here we report the resonant ωC = ωB (a)–(c) and
off-resonant case ωC = 0.8ωB (b)–(d) for different initial conditions of the mediator. The values ωBτ = 26.5 (a), ωBτ = 13.5 (b), ωBτ = 10.5
(c), and ωBτ = 9.5 (d) are considered to respectively switch off the interaction when the first maximum of the transferred energy is achieved.
Other parameters are g = 0.05ωB and ωBt0 = 0.1.

similar to the one discussed above for a single photon. How-
ever, the energy dynamics of M is less pronounced, and the
energy transfer and state SWAP from C to B occur faster (see
Table II). The impact of this richer structure of the mediator
in the off-resonant case is relevant also [see Fig. 6(d)]. Here,
C releases almost all its energy. Even if a quite important
fraction of this energy remains trapped into M, it is possible,
thanks also to a small contribution from the interaction term,
to charge B being more than ∼60% in a very short time (see
Table II). In this case the mediator plays the role of facilitator
for the energy transfer. This represents a major improvement
with respect to both the direct and the TLS-mediated coupling
and could have an important impact for practical applications.

These features are further enhanced by increasing the num-
ber of photons n into the cavity. This can be seen from Fig. 7,
where the maximum of energy stored in the QB [panel (a)] and

the energy-transfer times [panel (b)] are reported as function
of n. From panel (a) we can see that by increasing the number
of photons in the cavity it is possible to consistently improve
the energy transferred in the QB also in the off-resonant case.
In fact, for α = 0.8 at large n, we obtain a charging of B
exceeding ∼80%, which is significantly better than the one
reported in Table II for n = 8. The advantages in using a larger
number of photons can also be seen from the charging times.
Indeed, at large values of n the energy-transfer timescales as
tB,max ∝ n−1/2, both on and off resonance [see Fig. 7(b)].

It is worth mentioning that in this case also, when the
state of the cavity is a superposition between two Fock states
at different n (not shown), the obtained performances are
in between the results for the fixed n cases involved in the
superposition. In addition, coherent states in the cavity (not
shown) at average photon number n are less performant with

TABLE II. Charging time tB,max (in units of ω−1
B ), maximum of the energy in the QB EB,max (in units of ωB), corresponding energy in

the charger EC,max (in units of ωB), and maximum of the overlap quantifier ζmax in the direct-coupling (as reference benchmark) and in the
cavity-mediated model, for different initial states |ψ (0)〉 and values of α.

|ψ (0)〉 = |1C, 0B〉 |ψ (0)〉 = |1C, 0B, 1M〉 |ψ (0)〉 = |1C, 0B, 8M〉
tB,max EB,max EC,max ζmax tB,max EB,max EC,max ζmax tB,max EB,max EC,max ζmax

α = 1 64 1 −1 1 53 1 −1 1 21 1 −1 1
α = 0.8 29 0.197 −0.157 0.197 27 0.237 −0.529 0.149 19 0.667 −0.780 0.587
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FIG. 7. (a) EB,max (in units of ωB) and (b)
√

nωBtB,max as a func-
tion of the number of photons n for the cavity-mediated model for
ωC = ωM = ωB (black full squares) and ωC = ωM = 0.8ωB (blue full
dots). In panel (a) the large n values EB,max ∼ 1.0ωB and EB,max ∼
0.821ωB are represented by the black and blue dashed lines for the
resonant and α = 0.8 cases, respectively. In panel (b) the large n
value of the energy-transfer time

√
nωBtB,max ∼ 66.63 is represented

by the black dashed line, and
√

nωBtB,max ∼ 60.82 is represented by
the blue dashed line. Other parameters are g = 0.05ωB and ωBt0 =
0.1. Values of τ are chosen for each point in such a way to switch
off the energy transfer in the system when the first maximum of the
energy stored in the QB is achieved.

respect to the corresponding Fock states at fixed n as long as
this number is small. For large n the performances in these
two cases tend to overlap [36,41].

To summarize these results, we remark that there is a
relevant advantage in performing energy transfer using the
photons in a resonant cavity as the mediator. Indeed, we have
obtained better performances concerning both the charging
times and the transferred energy. In addition, the possibility
to control and increase the number n of photons into the
cavity allows the performance of the device to improve also in
the off-resonant cases, with important implications for actual
experimental implementations [46,54].

E. Further comparison between the models

In this last part of the paper we focus on the comparison be-
tween the models for what it concerns regarding the maximum
energy stored into the QB (EB,max), the energy extracted from
the charger [EC,max = EC(tB,max)], and the charging times
(tB,max), as a function of the mismatch in the level spacing
of the TLSs. We will consider the direct-coupling model and
compare it with the mediated models where the initial state
of the mediator is |1M〉 (completely full for the TLS-mediated
case and occupied by a single photon in the cavity-mediated
one) and also with the case where there are n = 8 photons in
the cavity (|8M〉), as a representative example of multiphoton
state. The plots are given as a function of the off-resonance
parameter β = 1 − α, in the range −0.2 ÷ 0.2, and show a
symmetry for positive and negative β as a consequence of the
connections between α < 1 and α > 1 mentioned above.

Comparing Figs. 8(a) and 8(b), we can see that for β = 0
all the models allow a complete energy transfer from C to
B. However, when we considered off-resonant regimes, the
cavity-mediated model, even in the presence of a single pho-
ton, has the best performances in terms of energy transfer
for all considered values of β. Moreover, we observe that a
cavity with a high number of photons (n = 8 for the magenta
curve) is characterized by both a greater energy stored in B
and a greater energy extracted C with respect to all the other
considered devices, even far from resonance.

The importance of a cavity-mediated coupling also
emerges when we consider the energy-transfer time tB,max [see
Fig. 8(c)], which is shorter with respect to the other considered
models. In addition, when we consider a cavity with a larger
number of photons (n = 8 for the considered case), we ob-
serve that this quantity is only marginally affected by the value
of the parameter β. These aspects can play a role in situations
where the average energy-transfer power, namely, the energy
transferred in a given time, becomes the relevant parameter to
judge the functionality of a device [18,19,33,65].

Moreover, the same qualitative behavior can be observed
for different values of the coupling constant g, with the charg-
ing times of all the considered systems which scale as g−1 as
long as the RWA holds.

V. CONCLUSIONS

We have investigated the coherent energy transfer between
two TLSs mediated by an additional simple quantum sys-
tem, namely, a TLS or the photons in a resonant cavity.
We have considered the TLSs sending and receiving energy
both on and of resonance and compared the energy-transfer
performances with the case of direct coupling. We have char-
acterized various figures of merit, focusing in particular on the
energy stored in the receiving TLS, initially empty, the energy
extracted from the charger, and the work done to switch off
the interaction. We have shown that while the TLS-mediated
case shows no advantages with respect to the direct-coupling
case, in the cavity-mediated case the infinite Hilbert space of
the harmonic oscillator can be exploited to improve the per-
formance of the device. This analysis, together with the fact
that the cavity-mediated interaction can lead to long-distance
connections between TLSs, can open new perspectives in the
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FIG. 8. (a) EB,max, (b) EC,max (in units of ωB), and ωBtB,max (c) as
function of β for the direct energy transfer (red dots), the TLS-
mediated model (blue dots), the cavity-mediated model with n = 1
(green dots), and the cavity-mediated model with n = 8 (magenta
dots). Other parameters are g = 0.05ωB and ωBt0 = 0.1. Values of τ

are chosen for each point in such a way to switch off the energy trans-
fer in the system when the maximum energy transfer is achieved.

domain of quantum devices for energy storage and transfer,
and more, in general, in the context of quantum technologies.

Possible further developments of our study could address
the robustness of the discussed phenomenology with respect
to dissipation and interaction with an external environment.
This will allow identification of experimental platforms which
are more suitable for actual implementation of these devices.

FIG. 9. Two superconducting circuits, with capacitance C1/2 and
Josephson energy EJ,1/2, play the role of qubits and are connected by
means of the capacitance Cg. The crossed square symbols represent
the Josephson junctions, while the voltages across each circuit are
indicated with V1/2.
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APPENDIX A: CAPACITIVE COUPLING BETWEEN
SUPERCONDUCTING CIRCUITS

In this Appendix we consider simple superconducting cir-
cuits whose effective low-energy descriptions map into the
model Hamiltonians introduced in Sec. II of the main text. For
this analysis we will follow closely the derivation reported in
Ref. [52].

1. Direct coupling between TLSs

Let us consider the scheme in Fig. 9 where two super-
conducting circuits, each composed of a capacitor and a
Josephson junction, are capacitively coupled through the ca-
pacitance Cg.

The associated Hamiltonian can be written as

H (d) = H1 + H2 + H (d)
int , (A1)

where the Hamiltonians of the two separated circuits can be
written as

Hk = 4EC,kn2
k − EJ,k cos φk (k = 1, 2), (A2)

with

EC,k = e2

2(Ck + Cg)
(A3)

the charging energy of each circuit due to the capacitances Ck

and Cg (see Fig. 9) and EJ,k the Josephson energy. With nk we
indicate the Cooper pair number operator (with respect to a
given background) and with φk the conjugate phase operator
such that [φk, nk] = i. The direct capacitive coupling between
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the two circuits is described by the interaction Hamiltonian

H (d)
int = CgV1V2, (A4)

with V1/2 the voltage operators corresponding to the nodes in
Fig. 9. In the limit Cg � C1,2 one can write

H (d)
int � 4e2 Cg

C1C2
n1n2. (A5)

Due to the cosine term in Eq. (A2), we can then consider
the circuits as coupled anharmonic oscillators. In the transmon
regime [66], where the condition EC,k � EJ,k is satisfied, the
free Hamiltonian in Eq. (A2) can be rewritten (up to the fourth
order in φk) as an anharmonic oscillator of the Duffing type:

Hk � 4EC,kn2
k + EJ,k

2
φ2

k − EJ,k

24
φ4

k . (A6)

In terms of bosonic ladder operators such that

nk = i

(
EJ,k

32EC,k

) 1
4

(b†
k − bk ) (A7)

φk =
(

2EC,k

EJ,k

) 1
4

(b†
k + bk ), (A8)

the previous Hamiltonian becomes

Hk � ωkb†
kbk − αk (b†

k + bk )4, (A9)

with ωk = √
8EC,kEJ,k and αk = EC,k/12.

Moreover, the interaction Hamiltonian in Eq. (A5) be-
comes

H (d)
int � −g(d)(b†

1 − b1)(b†
2 − b2), (A10)

where we have introduced the coupling constant

g(d) = 2
√

2

e2
CgE

3
4

C,1E
3
4

C,2E
1
4

J,1E
1
4

J,2, (A11)

which only depends on the physical parameters of the super-
conducting circuits.

Due to the anharmonicity of the energy levels, it is possible
to focus only on the ground and the first excited state of each
superconducting circuit, neglecting the other excited states.
Then, introducing a more convenient spin-operator notation to
describe these effective TLSs (qubits), it is possible to rewrite
the initial Hamiltonian in Eq. (A9), up to a constant, as

H (d) �
∑

k=1,2

ωk

2
σz,k + g(d)σy,1σy,2, (A12)

which is the Hamiltonian of two 1/2 spins coupled through
an exchange interaction. In the framework of the RWA [60],
where g(d) � ω1, ω2 and the two level spacings are not far
from resonance, the counter-rotating terms only play a mi-
nor role and can be neglected. Under these assumptions,
Eq. (A12) can be finally rewritten as

H (d)
RWA =

∑
k=1,2

ωk

2
σz,k + g(d)(σ−,1σ+,2 + σ+,1σ−,2), (A13)

which, once considered the possibility to switch on and off the
interaction, corresponds to the expression introduced in the
main text for the direct coupling between two TLSs (H (d)

TLS) as
well as the main building block needed to realize a chain of
three TLSs with local interaction (H (m)

TLS).

FIG. 10. Two superconducting circuits, with capacitance C1/2

and Josephson energy EJ,1/2, are connected through a LC resonator
with capacitance Cr and inductance Lr . The crossed square symbols
represent the Josephson junctions, while the voltages across each
circuit are indicated by V1/2.

2. Cavity-mediated coupling

Let us consider now the scheme in Fig. 10, where two
superconducting circuits are coupled through an LC resonator
with capacitance Cr and inductance Lr , which play the role of
a cavity.

In analogy to what was done above, we can write the
Hamiltonian of the system as

H (m) =
∑

k=1,2

4EC,k (nk + nr )2 − EJ,k cos φk + ωra†a, (A14)

where ωr = 1/
√

CrLr is the frequency of the harmonic
oscillator describing the LC circuit, and

nr = i

2e

Cg

Cr

(
Cr

4Lr

) 1
4

(a† − a), (A15)

with a (a†) the annihilation (creation) operator for the photons
in the resonant cavity.

Taking into account again the transmon limit in Eq. (A6)
and in terms of the bk operators introduced in Eqs. (A7) and
(A8), the Hamiltonian in Eq. (A14) can be rewritten as

H (m) �
∑

k=1,2

[ωkb†
kbk − αk (b†

k + bk )4

− g(m)
k (b†

k − bk )(a† − a)] + ωra†a, (A16)

where we have considered a renormalization of the LC fre-
quency ωr due to the n2

r term, and we have introduced the
effective dipole coupling between matter and radiation:

g(m)
k = 2

1
4

e
E

3
4

C,kE
1
4

J,k

Cg

Cr

(
Cr

4Lr

) 1
4

. (A17)

Considering again the anharmonicity of the qubits and
performing the RWA one obtains, up to a constant,

H (m)
RWA =

∑
k=1,2

[
ωk

2
σz,k + g(m)

k (a†σ−,k + aσ−k )

]
+ ωra†a,

(A18)
which, once considered as a possibility to switch on and
off the interaction, leads to the cavity-mediated interaction
between TLSs discussed in the main text (H (m)

cavity).
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APPENDIX B: CONSIDERATIONS ABOUT POWER AND
WORK

Here we demonstrate that, after switching off the interac-
tion, the work done on the three different models discussed in
the main text has the same expression.

We start by recalling and further specifying the definition
of power given in the main text, namely,

P(t ) ≡ d

dt
[Tr{ρ(t )H (t )}]

= Tr{ρ(t )[H (t ), H (t )]} + Tr

{
ρ(t )

∂H (t )

∂t

}
. (B1)

Notice that the commutator in the last line is obviously zero;
however, we have written it explicitly in order to better clar-
ify the following considerations. In the section below, we
will investigate this quantity for the various cases discussed,
connecting it to the work needed to switch on and off the
interaction.

1. TLS-TLS model

In the case of a direct energy transfer between two TLSs,
the total Hamiltonian of the system [indicated with H (t ) in
Eq. (B1)] is given by the sum of Eqs. (1) and (2). According
to this, it is possible to rearrange Eq. (B1) in such a way that

P(t ) = dEC

dt
+ dEB

dt
+ dEint

dt

= ig f (t )(1 − α)ωBTr{ρ(t )(σ (C)
− σ

(B)
+

− σ
(C)
+ σ

(B)
− )} + dEint

dt

= (1 − α)
dEB

dt
+ dEint

dt
, (B2)

where we have used the fact that ωC = αωB, as in Eq. (8).
Now, integrating Eq. (B2) between times 0 and t , and taking
into account the definitions and the initial conditions dis-
cussed in Sec. III A, we obtain the expression for the work
at a given time t :

W (t ) =
∫ t

0
dt ′P(t ′) = (1 − α)EB(t ) + Eint (t ). (B3)

If we consider a time t
 > τ such that the interaction is
turned off and the energy stored in the battery has reached its
maximum EB,max, the work reduces to

W 
 ≡ W (t
) = (1 − α)EB,max. (B4)

Notice that for such times the work done on the system is
constant and only depends on the maximum value of the
energy stored in the QB and on the mismatch α in the level
spacing between the TLSs.

To better understand the previous discussion, in Fig. 11
we report the power, as in Eq. (B2), expected for an off-
resonant case. As we can see, this quantity is zero everywhere,
except for a very small negative peak in correspondence to
the switching on of the interaction (see inset) and a more
pronounced peak when the interaction is switched off. This
peaked structure is a direct consequence of the functional
behavior of the time derivative of the function f (t ), hidden

FIG. 11. Behavior of the power P(t ) (in units of ω2
B) as a function

of ωBt for the direct-coupling case at α = 0.8. The inset shows a
zoom of the curve corresponding to the injection time [dashed circle
in panel (a)]. Other parameters are those in Fig. 3 of the main text.

in the last term of Eq. (B2), while the intensity of the peaks
is related to the state of the system at the considered time.
Indeed, the first peak is closed to be zero due to the con-
sidered initial conditions and becomes null in the case of an
infinitely sharp switching on of the interaction (ωBt0 → 0).
Conversely, the second peaks reduce to zero only when the QB
is perfectly charged, a situation which is not achieved in the
off-resonant case.

2. TLS-mediated model

For a system composed by three TLSs, H (t ) in Eq. (B1) is
given by Eq. (4). According to this and by properly rearrang-
ing the terms in Eq. (B1) we can write the power as

P(t ) = dEC

dt
+ dEB

dt
+ dEM

dt
+ dEint

dt

= ig f (t )(1 − α)ωBTr{ρ(t )(σ (B)
+ σ

(M)
−

− σ
(B)
− σ

(M)
+ )} + dEint

dt

= (1 − α)
dEB

dt
+ dEint

dt
, (B5)

where we have considered ωC = ωM = αωB. The power just
obtained naturally leads to the same expression of W ∗ derived
in Eq. (B5) for times t
 > τ . Moreover, the same qualitative
behavior discussed above for the power as a function of time
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is obtained in this case. Therefore, in order not to be pedantic,
we do not report the associated figure for the present model.

3. Cavity-mediated model

In the case of a cavity-mediated interaction between TLSs,
H (t ) in Eq. (B1) is given by Eq. (6). According to this and by
properly rearranging the terms in Eq. (B1), the power can be
written as

P(t ) = dEC

dt
+ dEB

dt
+ dEM

dt
+ dEint

dt

= ig f (t )(1 − α)ωBTr{ρ(t )(a†σ
(B)
−

− aσ
(B)
+ )} + dEint

dt

= (1 − α)
dEB

dt
+ dEint

dt
, (B6)

where we have again taken into account the condition ωC =
ωM = αωB in Eq. (8). Also, in this case, after integration we
obtain the same expression of W ∗ derived in Eq. (B5) for
times t
 > τ . Moreover, the qualitative behavior of the power
is again analogous to the one depicted in Fig. 11.

APPENDIX C: CONSERVED QUANTITIES AND
CONSTRAINTS

To solve the dynamics of the discussed models, we resort
to the exact numerical diagonalization of the corresponding
Hamiltonians. In all cases the dimensions of the Hilbert spaces
are constrained by overall conservation laws valid in the RWA,
leading to a simplification of the analysis. Before addressing
separately the three cases discussed in the main text, it is
useful to recall the identities for the commutators [σz, σ±] =
±2σ±; [σ+, σ−] = σz.

1. Direct coupling between TLSs

In the case of the direct energy transfer between two TLSs,
one has that the operator

N (d)
spin ≡ σ

(C)
+ σ

(C)
− + σ

(B)
+ σ

(B)
−

= 1
2

(
σ (C)

z + σ (B)
z

) + 1, (C1)

related to the z component of the total spin of the system,
satisfies the commutation relation[

H (d)
TLS(t ), N (d)

spin

] = [
H (d)

int (t ), N (d)
spin

] = 0. (C2)

This implies that N (d)
spin is a conserved quantum number which

can be exploited to constrain the Hilbert space and conse-

quently, the dimension of the matrix Hamiltonian. Starting
from the initial state |ψ (0)〉 = |1C, 0B〉 (with eigenvalue of
N (d)

spin equal to 1), the dynamics of the system is constrained
in the two-dimensional subspace spanned by the vector
states:

|ϕ1〉 = |1C, 0B〉 |ϕ2〉 = |0C, 1B〉. (C3)
Consequently, we need to diagonalize a 2 × 2 matrix
Hamiltonian of the form

H (d)
TLS(t ) =

⎛
⎝

ωC − ωB

2
gf (t )

gf (t ) −ωC − ωB

2

⎞
⎠. (C4)

2. TLS-mediated case

In this case, extending what was done before, we can
introduce the operator

N (m)
spin ≡ σ

(C)
+ σ

(C)
− + σ

(B)
+ σ

(B)
− + σ

(M)
+ σ

(M)
−

= 1
2

(
σ (C)

z + σ (B)
z + σ (M)

z

) + 3
2 , (C5)

related again to the z component of the total spin of the system.
We then can evaluate the commutator

[
H (m)

TLS(t ), N (m)
spin

] = gf (t )
[
σ

(C)
− σ

(M)
+ + σ

(C)
+ σ

(M)
− , N (m)

spin

]
+ gf (t )[σ (B)

− σ
(M)
+ + σ

(B)
+ σ

(M)
− , N (m)

spin] = 0.

(C6)

Consequently, N (m)
spin is a conserved quantum number which

can be exploited to constrain the Hilbert space. If the initial
state of the system is in an arbitrary superposition for the
mediating TLS,

|ψ (t )〉 = |1C, 0B〉 ⊗ (a|0M〉 + b|1M〉), (C7)

with a, b ∈ C such that |a|2 + |b|2 = 1, then the evolution of
the system is limited to the space spanned by the six states
vectors with eigenvalues of N (m)

spin equal to 1 or 2, namely,

|ϕ1〉 = |1C, 0B, 0M〉 |ϕ2〉 = |0C, 1B, 0M〉
|ϕ3〉 = |0C, 0B, 1M〉 |ϕ4〉 = |1C, 0B, 1M〉
|ϕ5〉 = |0C, 1B, 1M〉 |ϕ6〉 = |1C, 1B, 1M〉. (C8)

According to the above considerations, we need to diagonalize
a 6 × 6 matrix Hamiltonian of the form

H (m)
TLS(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 ωC−ωB−ωM
2 0 gf (t )

0 0 0 0 −ωC+ωB−ωM
2 gf (t )

0 0 0 gf (t ) gf (t ) −ωC−ωB+ωM
2

gf (t ) ωC−ωB+ωM
2 0 0 0 0

gf (t ) 0 −ωC+ωB+ωM
2 0 0 0

ωC+ωB−ωM
2 gf (t ) gf (t ) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C9)
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3. Cavity-mediated coupling

In the cavity-mediated case it is possible to define the
excitation number operator [60]:

ξ (m) ≡ σ
(C)
+ σ

(C)
− + σ

(B)
+ σ

(B)
− + a†a

= 1
2

(
σ (C)

z + σ (B)
z

) + a†a + 1. (C10)

One can easily verify that

[
H (m)

cavity(t ), ξ (m)] = gf (t )
[
a†σ

(C)
− + aσ

(C)
+ , ξ (m)]

+ gf (t )[a†σ
(B)
− + aσ

(B)
+ , ξ (m)] = 0.

(C11)

In this case ξ (m) is a conserved quantum number for the
cavity-mediated system, and consequently we can exploit it

to constrain the Hilbert space. Starting from the initial state,

|ψ (t )〉 = |1C, 0B〉 ⊗ (a|n〉 + b|n + 1〉), (C12)

with n number of photons and a, b ∈ C such that |a|2 + |b|2 =
1, the dynamics of the system is limited to the space spanned
by the eight state vectors with eigenvalue of ξ (m) given by
n + 1 and n + 2, namely,

|ϕ1〉 = |1C, 1B, n − 1〉 |ϕ2〉 = |1C, 0B, n〉
|ϕ3〉 = |0C, 1B, n〉 |ϕ4〉 = |0C, 0B, n + 1〉
|ϕ5〉 = |1C, 1B, n〉 |ϕ6〉 = |1C, 0B, n + 1〉
|ϕ7〉 = |0C, 1B, n + 1〉 |ϕ8〉 = |0C, 0B, n + 2〉.

(C13)

We then need to diagonalize the 8 × 8 matrix Hamiltonian of
the form

H (m)
cavity (t )=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωC+ωB
2 +mωM g(t )

√
n g(t )

√
n 0 0 0 0 0

g(t )
√

n ωC−ωB
2 +nωM 0 g(t )

√
p 0 0 0 0

g(t )
√

n 0 −ωC+ωB
2 +nωM g(t )

√
p 0 0 0 0

0 g(t )
√

p g(t )
√

p −ωC−ωB
2 +pωM 0 0 0 0

0 0 0 0 ωC+ωB
2 +nωM g(t )

√
p g(t )

√
p 0

0 0 0 0 g(t )
√

p ωC−ωB
2 +pωM 0 g(t )

√
q

0 0 0 0 g(t )
√

p 0 −ωC+ωB
2 +pωM g(t )

√
q

0 0 0 0 0 g(t )
√

q g(t )
√

q −ωC−ωB
2 +qωM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C14)

where we have introduced the short notation g(t ) = gf (t ), m = n − 1, p = n + 1, and q = n + 2.
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