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Abstract— Prostate cancer is the second most aggressive 

type of cancer among men aged over 45, and it has a major 

effect on people's lives. Early diagnosis and grading of 

prostate cancer from tissue images is necessary. Large scale 

inter observer reproducibility exists in grading the prostate 

biopsies. This leads us to move towards a computer based 

model that can accurately detect and grade the cancerous 

prostate from non-cancerous one. The paper is focused on 

deep learning based models to automatically grade the 

prostate cancer from tissue microarray images. Deep learning 

models directly learn the features via convolutional layers. 

Two datasets have been used for implementation of our 

proposed model, Harvard dataset and Gleason Challenge 

2019. Our proposed UNET based architecture is used for 

training as well as validation and testing. We used four 

different deep learning models, VGG19, ResNet50, 

Mobilenetv2 and ResNext50 for our UNET based encoder. 

With our proposed framework, we have achieved 0.728 and 

0.732 average Cohen’s kappa with F1 on both datasets 

respectively. The results show that our proposed UNET based 

deep learning model shows better performance as compared 

to other state of the art models.  

Keywords— Tissue Microarray (TMA), Gleason Score, 

Convolutional Neural Network (CNN), Prostate Cancer (PCa), 

Deep Learning. 

I. INTRODUCTION  

In the United States, prostate cancer is the second most 
aggressive form of cancer found in men [1]. In developed 
countries, prostate cancer is increasing exponentially due to 
high living standards and population explosion. Whereas in 
Pakistan prostate cancer ratio is 10.7% which is increasing 
in recent years. Large number of prostate cancer patients die 
every year due to insufficient diagnosis environment and 
large-scale inter-observer variation between pathologists. 
This leads to design a model that can early detect and 
correctly classify the cancerous grade. Since 1960, the 
Gleason grading algorithm has been the most reliable and 
effective prognostic predictor for prostate cancerous cells 
[2]. The World Health Organization (WHO) strongly 
recognizes the Gleason scoring algorithm, which was 
modified and revised by the International Society of 
Urological Pathology in 2005 and 2014 (ISUP) [3]. Despite 
numerous advances in the clinical diagnosis of prostate 
cancerous cells, histology-based Gleason scoring remains 
the most effective prognostic indicator of prostate 
carcinoma early detection and grading. [4]. The 
architectural pattern of cancerous cells is used to render the 
histological evaluation. The architecture pattern consists of 
well-differentiated cell to the poor ones. This architectural 
pattern is entirely responsible for the Gleason score. Fig. 1 
shows the tissue micro arrays (TMAs) of benign, Gleason 
score 6, Gleason 7 and Gleason score 8. The Gleason score 
is assigned on the basis of tissue structural patterns. Gleason 

6 contains well-formed glands, Gleason score 7 contains 
well-formed glands with lesser component of cribriform 
glands and Gleason score 8 contains only poorly form 
cribriform glands with lesser component of well-formed 
glands. 

 

Fig. 1. Example of Tissue Microarray Images with Benign to Gleason 

Score 6, Gleason Score 7 and Gleason Score 8 [5].      

The pathological analysis determines the Gleason 
ranking, which is a time-consuming and important process 
with a lot of inter-and intra-observer variance. This problem 
occurs when Gleason grade 3 is distinguished from Gleason 
grade 4 with a Gleason score of 7 (4+3 or 3+4), which can 
have a complicated effect on subsequent care. Since major 
medical decisions are focused on the evaluation of biopsy 
specimens, there is a clear need for an automated prostate 
cancer grading model [5]. Many feature engineering based 
techniques are used for automatic Gleason grading [6]. The 
success of feature engineering based techniques is totally 
dependent on how accurately features are extracted and its 
compatibility with model. Recently, computer-assisted 
method of grading using convolutional neural network has 
considered to play a significant role in medical image 
analysis [7, 8]. This method has replaced the traditional way 
of drawing out features for image categorization with totally 
different approach of allowing the network to finalize which 
features have to be considered. The outstanding results on 
standard dataset have made CNN a widely used technique 
for pattern identification. Here, we have worked on CNN 
based system to analyze different tissue microarray images 
and assign them Gleason score.  

This paper is focused on deep learning model for 
automatic grading of prostate cancerous cells. It consists of 
six sections. Section-II discusses the literature review both 
on feature engineering and deep learning based models. 
Section-III briefly presents the available working datasets 
of prostate biopsies. Section-IV explains the proposed 
experimental methodology based on deep learning. Section-
V reports our experimental results. Last section draws the 
conclusions. 

II. LITERATURE WORK 

A. Feature Engineering Based Methods  

     In recent studies, papers have been published  on 
developing of automatic computer based Gleason Grading 
methods to correctly classify the prostate cancer. A very 
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common technique is to extract the tissue features and 
applied feature engineering based classifiers on these 
features to classify the tissue as benign or cancerous. Smith 
et al [9] extracted features based on 2D-Discrete Wavelet 
Packet Decomposition and then passed to Support Vector 
Machines (SVM) classifier to predict the grade of prostate. 
Farooq et al [6] used Gabor filter and local binary patterns 
for features extraction. These selected features are used with 
KNN classifier to grade the prostate cancerous cells. The 
power distribution of histological tissue images was used by 
Smith et al. [9] to reflect texture characteristics of prostatic 
biopsies. They used nearest neighbor classifier to grade 
those characteristic features into Gleason grade 1, grade 3, 
grade 4 and grade 5. For automatic Gleason grading, Farjam 
et al. [10] suggested a multistage classifier based on 
morphometric and texture characteristics. Those 
morphometric and texture features are used to identify gland 
units. The image is then classified into grades 1 through 5 
using morphometric and texture attributes derived from 
gland units in a sequence of classification levels. Nguyen et 
al. [11] used structural features of prostate glands to classify 
pre-extracted regions of interest (ROIs) into benign, G3, and 
G4. The described papers achieved good results on their 
datasets due to high dependence on feature extraction. 

B. Deep Learning Based Methods  

Extensive research has been carried out based on deep 
learning methods to design  automatic computer based 
models for accurately grading the cancer [12]. Deep 
learning based fully convolution neural network models are 
very useful in early detection of prostate cancer as 
compared to feature engineering based models [13]. Deep 
learning models are also very successful in prostatic 
segmentation [14]. In early stages, CNN based architectures 
[15] were used for better feature extraction as compared to 
conventional feature engineering based methods. They 
analyzed deep entropy features using different CNN models 
and passed those features to random forest classifier to 
predict the Gleason score. Augmented based technique is 
proposed in [16], which uses three different CNNs, 
combined their prediction results and predict the Gleason 
score by logistic regression method. They achieved 92% 
and 86% accuracy in classifying low and high prostate 
grade. [17] used both morphological and texture features 
achieving 79% accuracy of classifying benign with other 
higher grades. A very recent study [2] classified the prostate 
TMAs into four categories benign, grade 3, grade 4 and 
grade 5. The Cohen’s kappa achieved with two pathologists 
was reported as 0.72.  

In this research, we have proposed deep learning model 
based on UNET with two phase training to achieve 
pathologist level results. We used four different CNN 
architectures Vgg19, ResNet50, mobileNetv2 and 
ResNext50 for feature extraction. Compare to other deep 
learning based models, our main contributions are: 

• Deep learning based models require very high 
amount of data for training, so due to limited data, 
we have proposed data augmentation with multi 
batches to extract the contextual information from 
each TMA. 

• For solving the class imbalance problem that exists 
in both datasets, we have proposed two phase 
training with equal and true class ratio to achieve 

state of the art results. We first trained our model on 
actual class, and after that use those trained features 
to train the model again on equal class ratio. 

• We have tested our model generalization on another 
TMAs based dataset, which again gives state of art 
performance as compared to previous work done on 
this dataset.  

III. DATASETS 

    In this section, we briefly discuss the prostatic 
datasets containing tissue microarrays (TMAs), that are 
used in our study. 

A. Gleason Challenge 2019 MICCAI Dataset  

The recently published dataset from the Gleason 2019 
challenge has been used in our work [5]. Tissue microarray 
(TMA) images are included in this competition. The dataset 
contains TMAs with their corresponding masks in PNG 
format. Each mask contains pixels which shows score. 
Several specialist pathologists with years of experience in 
their fields annotate each TMA picture in great detail. Data 
is prepared by pathologists on the basis of majority voting 
annotations. The data contains samples belonging to benign 
and 3 different grades, G3, G4 and G5. The distribution of 
dataset into training, validation and testing cohorts is given 
in Table I.  

TABLE I.  THE DISTRIBUTION OF GLEASON GRADE IN THE TRAINING, 
VALIDATION AND TEST COHORTS. 

 
Total 

Cases 
Benign G 3 G 4 G 5 

Train 188 72 111 134 10 

Validation 

 
33 13 20 23 1 

Test 23 15 10 14 3 

Total 244 100 141 171 14 

 
    Training images contain 188 TMA of prostatic tissues 

with benign, Gleason 3, Gleason 4, and Gleason 5. For 
testing the deep learning model, we used 23 TMAs and for 
validation, we used 33 TMAs. Grade 3 and Grade 4 have 
high class ratio of images in data which create over fitting 
problems which are addressed by batch normalization, 
dropout and data augmentation.  

TABLE II.  THE DISTRIBUTION OF GLEASON GRADE IN THE TRAINING, 
VALIDATIO AND TEST COHORTS. 

 

 

 Benign G 6 G 7 G 8 G 9 G 10 
Total 

Images 

TMA 76 42 35 25 15 2 14 133 

TMA 80 12 88 38 91 3 13 245 

TMA 111 0 95 39 69 16 8 227 

TMA 204 0 1 17 25 8 69 105 

TMA 199 61 69 2 26 2 1 176 
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Fig. 2. Example of TMAs of MICCAI Dataset   

 

Fig. 3. Example of  true masks of corresponding TMAs. 

Fig. 2 and Fig. 3 represent the TMAs and their 
corresponding masks present in  MICCAI dataset [5]. The 
TMAs are achieved after preprocessing of original images 
with corresponding masks after data augmentation. Fig. 3 
shows ground truth of original TMAs which consist of 
Gleason score ranging from 0 to7.  

B. Harvard Dataverse V1 Dataset 

Harvard dataset is acquired from online databases of 
Harvard [2]. It contains five tissue micro arrays TMA, each 
with 200 to 300 spots, which make up the data. Objects or 
non-prostate tissue with spots (e.g. lymph node metastasis) 
is excluded from the study. The first pathologist (K.S.F.) 
identified the prostate TMA spots by carefully delineating 
cancerous areas and giving each one a Gleason pattern of 3, 
4 or 5. TMA spots without cancerous areas have also been 
discovered to be benign. The distribution of Gleason scores 
across different TMAs is seen in Table II.  

 

 

Since TMA 80 has the most events, it has been assigned 
as the study cohort. TMA 76 was used as a confirmation 
cohort because it has the most evenly distributed Gleason 
ratings. As a result three other TMAs are used as a training 
cohort. A second pathologist annotated the TMA spots in 
the research data separately, allowing the inter-pathologist 
variability to be quantified. 

The TMAs and their corresponding masks of Harvard 
Dataverse V1 Dataset  are represented in Figure 4 and 
Figure 5.[2]. The TMAs mentioned above are obtained after 
preprocessing of the original images with corresponding 
masks after  data augmentation. Figure 3 illustrates the 
ground truth masks of original TMAs with Gleason scores 
ranging from 0 to 5. 

 

 

Fig. 4. Example of TMAs of Harvard Dataverse V1 Dataset 

 

 

Fig. 5. Example of True masks of corresponding TMAs  
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IV. EXPERIMENTAL METHODOLOGY  

 
We briefly describe our proposed model in this section. 

The block diagram of our proposed scheme is shown in Fig. 
6. 

A. Data Preprocessing and Normalization  

 
We first pre-process the data before passing it to UNET 

model. All the images are resized to achieve better 
generalization. One hot encoding is used for better 
performance, because it allows the categorical data to be 
more expressive. TMA images and their corresponding 
masks of Gleason Challenge dataset have resolution of 4608 
x 5120. The  TMA  images have been resized to 512 x 512 
for the 2 stages of training process. In PNG masks, the pixel 
values 0, 1, 2, 3, 4, 5 and 6 show corresponding Gleason 
score. 

In Harvard Dataverse VI, the size of TMAs and masks 
are different, 3100 x 3100. We have resized the images to 
512 x 512 for better generalization of model results which 
is trained on same size of images. In PNG masks, the pixel 
values 1, 2, 3 and 4 show corresponding Gleason score. 
After getting tissue microarray TMA images, data 
augmentation is applied to increase the data size. 

 

Fig. 6.  Proposed Model Diagram 

B. Data Augmentation    

Data augmentation is considered important, particularly 
in medical application fields where the amount of data is 
small. The overall performance of deep learning algorithm 
is improved using data augmentation. Data augmentation is 
the process of creating new training data based on existing 
training data by using methods like horizontal, vertical shift, 
horizontal flip, vertical flip, rotation, scaling and zooming. 
For data augmentation, we have used augmentor library 
[18], where tissue micro array images (TMA) are rotated 
from 90 to 270 degree with 0.25 probability and also 

performed left to right flipping. Similarly top to bottom 
flipping is done with 0.15 probability. Finally we have used 
random cropping operation with 0.35 probability. During 
data augmentation, we select equal class ratio for 
augmentation to combat the data limited problems. Table III 
shows the parameters for data augmentation technique that 
we have used in this paper. 

TABLE III.  SUMMARY OF DATA AUGMENTATION IMPLEMENTATION 

Methods Range 

Rotation 90 , 270 Degree 

Flip Left to Right 15 % Probability 

Flip Top to Bottom 25 % Probability 

Random Cropping 40 % Probability 

 

C. Proposed Convolutional Neural Network (CNN) 

Deep learning based models require large amount of 
data for their training to perform well on test data. So data 
augmentation is applied using Augmenter library to reduce 
the overfitting problem and increase the generalizability of 
model. After properly resizing the TMA images and data 
augmentation, TMAs are fed into CNN. Next step is to 
extract feature maps which is very critical for pixel level 
classification, because bad features may led to poor pixel 
level classification results. CNN is used for direct feature 
learning from data. In available datasets, large amount of 
class imbalance exists due to which model shows over 
fitting. To reduce class unequal problem, we used two phase 
training which solves the class imbalance problem. In first 
phase of training, we use equal class ratio to train the model 
and then used those weights to train on true class ratio. This 
methodology leads to achieve good results.  

We have used four different CNN architectures with 
UNET. The four architectures VGG19, ResNet50, 
Mobilenetv2 and ResNext50 are used for extracting 
progressive features from pre-processed TMAs. UNET 
model used these progressive features, up sample them, 
concatenate the features and generates the predicted mask. 
The mask contains the pixel level classes. Due to ResNet50 
residual property and greater number of trainable 
parameters on both MICCAI and Harvard Dataverse V1 
datasets, we have achieved state of the art results. The 
details of architectures’ parameters are given in Table IV 
and Table V. 

TABLE IV.  DETAIL OF PARAMETERS OF FOUR ENCODER ARCHITECURE 

WITH UNET  ON MICAAI DATASET 

Model Trainable Non Trainable Total 

VGG19 29,058,807 4,032 29,062,839 

ResNext50 31,993,850 70,214 32,064,064 

MobileNetv2 8,012,215 36,096 8,048,311 

ResNet50 32,514,426 47,558 32,561,984 
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TABLE V.  DETAIL OF PARAMETERS OF FOUR ENCODER ARCHITECURE 

WITH UNET  ON HARVARD   DATASET 

Model Trainable 
Non 

Trainable 
Total 

VGG19 9,033,988 20,028,416 29,062,404 

ResNext50 25,121,345 7,140,105 32,261,450 

MobileNetv2 5,822,020 2,225,856 8,047,876 

ResNet50 9,059,079 23,502,470 32,561,549 

 

UNET architecture was first introduced by [13]for 
biomedical image segmentation. This model make its place 
in the field of medical image segmentation in recent times 
due to its uniqueness. UNET model has the capability of 
contracting the input images into multiple feature maps. 
After contraction, it uses its previous feature maps to 
expand till it reaches its output level. Due to its contraction 
and expansion capability with concatenation power, it 
preserves the structural integrity of images. The layer 
details of UNET model with all four CNN architectures are 
given in Table VI. 

TABLE VI.  UNET LAYERS OF ENCODING OF OUR FOUR ARCHITECURES 

Model Convolution layers Pooling Layers 

VGG19 16 5 max pool 

ResNext50 48 
1 max pool, 1 global 

avg pool 

MobileNetv2 10 1 avg pool 

ResNet50 48 
1 max pool, 1 avg 

pool 

 

D. Results Evaluation  

To assess the efficiency of segmentation models, 
different evaluation criteria are used. We have used 
standard evaluators that are currently being used in 
automatic Gleason grading of TMA images and also being 
used in clinical process of calculating inter observer 
variation. Our literature reveals that TMA based datasets are 
evaluated on Cohen’s Kappa [19] , F1 Score and Dice score 
[20]. We have also used them to assess the performance of 
our proposed model. Another reason for choosing these 
evaluators is to perform comparison with previous reported 
results in literature on automatic Gleason grading.  

Cohens Kappa = Po − Pe
1 − Pe                                         �1�  

Equation (1) shows the Cohen’s Kappa, where Po is 
observed agreement among ratters and Pe is hypothetical 
probability of chance agreement.  

 

F1 Score = 2 � Precision .  Recall
Precision + Recall�                      �2� 

 F1 score is the function of Precision and Recall. The 

calculation of precision and recall is dependent on true 
positive and the sum of true positive and false positive 
which is shown in Equation (3) and (4). 

F1 Score = TP
TP +  1

2 �FP + FN�
                            �3� 

Dice Score = 2 × TP
�TP + FP� + �TP + FN�              �4� 

       

Overall Score = Cohens Kappa + F1 Score
2     �5� 

V. EXPERIMENTAL RESULTS  

In this section we briefly discuss the experimental 
results. We have performed our experimentation on 
Gleason Challenge 2019 and Harvard datasets. Both 
datasets contain TMAs which have pixel level annotations 
by expert pathologists. Gleason Challenge 2019 dataset 
contains 244 TMAs, 188 are used as training by applying 
data augmentation, 33 TMAs are used as independent 
validation and 23 are used as testing cohort. While on 
Harvard dataset, we have 509 TMAs as training, 133 TMAs 
as validation set and 245 TMAs as independent test cohort. 
Both datasets contain Gleason score of 3, 4 and 5. 

A. Results on Gleason MICAAI Dataset 

In MICAAI dataset, four different CNN architectures 
are used as our UNET model encoder. We have achieved 
high scores on all four encoder architectures evaluated using 
Dice Score, Cohen’s kappa and F score. ResNet50 has 
performed well as compared to other encoder architectures 
due to its residual property and faster convergence. 
Categorical cross entropy is used as loss function with 
learning rate of 0.0001. ResNet50 has achieved overall 
score of 0.728, which is highest as compared to other three 
architectures.  

TABLE VII.  COMPARISON OF UNET BASED MODEL RESULTS ON 

MACCAI DATASET 

UNET 

Model 

Encoder 

Backbone 

Dice 

Score 

Cohen’s 

Kappa 

F 

Score 

Overall 

Score 

1 VGG-19 0.49 0.30 0.31 0.31 

2 ResNext 50 0.47 0.28 0.29 0.29 

3 MobileNET 0.63 0.63 0.61 0.62 

4 ResNet 50 0.68 0.72 0.73 0.72 

 

Table VII results clearly indicate that when ResNet 50 
is used as backbone with UNET, it outperforms all other 
architectures. The Dice Score for ResNet50 exceeds 
MobileNetv2 by 7.5%. While the increase is more 
significant when compared with ResNext50 and VGG-19 
scores. This score go past ResNext50 and VGG-19 scores 
by 31% and 28% respectively. Similarly, ResNet 50 shows 
better results than other frameworks for both Cohen’s 
Kappa and F1 score. A significant rise of 0.42 and 0.44 can 
be seen in overall score of our encoder from VGG-19 and 
ResNext50. However, there is an increase of 14.7% from 
MobileNetv2, proving it to be the best encoder for Gleason 
score assignment. Due to its residual blocks and identity 
mapping, ResNet50 has produced optimal feature maps. 
Those optimal feature maps contain all the pertinent 
features which can perfectly classify the image to its 
ground-truth class that is why ResNet50 gives state of art 
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results as compared to other encoder architectures.For 
evaluating our model. Overall score is calculated which is 
the average of both Cohen’s kappa and F1 score.  

TABLE VIII.  COMPARISON OF OUR MODEL WITH BEST 

PERFORMING MODEL IN TERM OF COHEN’S KAPPA ON 

MACCAI 2019 DATASET. 

 

 

 

Fig. 7. Results on best performing model UNET-ResNet50                  
(a) Original TMA images  (b) Original masks (c) Predicted mask 

Fig 7.(a) shows original images of MICCAI dataset, (b) 
shows the original masks which contains pixels ranging 
from 0 to 7 and (c) shows the predicted masks based on our 
best performing architecture. Fig. 8 and Fig. 9 show the 

training and testing accuracy of ResNet50 model with their 
corresponding losses. We trained our model on 50 epochs, 
the graphs show that training as well as testing accuracy 
gradually increases as number of epochs increases. The 
training and testing loss gradually decreases as the number 
of epochs increase due to  increment of learning.  

 

 
Fig. 8. Graphical Representaion of ResNet50 accuracy on MICAAI 

dataset 

 
Fig. 9. Graphical Representaion of ResNet50 loss on MICAAI dataset 

In Gleason Challenge 2019 [5], teams from all over the 
world have participated and are working on MICCAI 
dataset. Table VIII shows the comparison of top selected 
teams taken from Gleason Challenge with our top 
performing model UNET-ResNet50. Most of the teams 
have managed to achieve good results. However their 
methodology and results have not been published so far. We 
have still managed to achieve competitive results on the 
Gleason Challenge dataset.  

B. Results on Harvard Dataset       

Table IX shows the results of Harvard dataset. On 
Harvard dataset, we have implemented VGG19, 
ResNext50, MobileNetV2 and ResNet50 architectures as 

Model Team F1 Score 
Cohen’s 

Kappa 
Score 

YujinHu 0.84 0.84 0.84 

Nitinsinghal 0.79 0.79 0.79 

Ternaus 
 

0.78 

 

 
0.78 

 

 
0.78 

 

Zhangjingmri 

 

0.77 

 

 

0.77 

 

 

0.77 

 

sdsy888 0.75 0.75 0.75 

 
cvblab 

 

 
0.75 

 

 
0.75 

 

 
0.75 

 

XiaHua 0.71 0.71 0.71 

AlirezaFatemi 

 

0.71 

 

 

0.71 

 

 

0.71 

 

Jpviguerasguillen 0.64 0.64 0.64 

qq604395564 

 

0.64 

 

 

0.64 

 

 

0.64 

 

Unipabs 

 

0.58 

 

 

0.58 

 

 

0.58 

 

Our Proposed 0.72 0.73 0.73 

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 29,2024 at 00:31:59 UTC from IEEE Xplore.  Restrictions apply. 



encoder with UNET. It is readily apparent from Table IX 
that ResNet50 is again the top model in comparison to other 
encoders with regard to all variables. Dice score of ResNet 
50 is greater by 2.6%, while Cohen’s score by 5.5% from 
VGG-19, hence attaining the highest accuracy among the 
four models. ResNet 50 stands out from the rest in terms of 
overall score as well, with 5.5% increase from VGG-19 and 
Mobile Net and 7% greater than ResNext50. 

TABLE IX.  COMPARISON OF OUR MODEL WITH BEST PERFORMING   

MODEL IN TERM OF COHEN’S KAPPA ON HARVARD 

DATAVERSE DATASET 

 

Fig 10.(a) shows the example images from the dataset 
(b) shows the ground truth masks of Harvard dataset which 
contains pixels ranges from 0 to 4 and (c) shows the 
predicted masks using our best performing architecture.  

 

Fig. 10. Results on best performing model UNET-ResNet50                  
(a)  Original TMA images (b) Original masks (b) Predicted masks 

ResNet50 contains 48 convolution layers stacked one 
after the other, with max and average pooling. It is a long 
deep trained model with residual block, which gives us state 
of the art results as compared to other models. Due to 
identity mapping property, gradient loss problem is solved 
and network learning speed increases. That is why we have 
achieved best results with UNET-ResNet50 architecture. In 
testing our model generalization, we have used the same 
Harvard dataset as used in  [2]  and have managed to achieve 
slightly better results as compared to them. 

 

Fig. 11. Graphical Representaion of ResNet50 accuracy on Harvard 

dataset 

 

Fig. 12. Graphical Representaion of ResNet50 accuracy on Harvard  

dataset 

Fig. 13. Results on  least performing model UNET-ResNext 50                  
(a)  Original TMA images (b) Original masks (b) Predicted masks 

 

UNET 

Model  

Encoder  

Backbone 

Dice 

Score   

Cohen’s 

Kappa  

Overall 

Score  

1 VGG-19 0.75 0.69 0.69 

2 ResNext 50 0.62 0.68 0.68 

3 MobileNETV2 0.70 0.63 0.69 

4 ResNet 50 0.77 0.73 0.73 
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Fig. 11 and 12 show the training and testing accuracy 
with corresponding loss. As the number of training epochs 
are increased, the training accuracy is increased and loss 
decreases. We test our model using same parameters and 
achieved state of the art results. This shows that our 
proposed architecture is effective as it outperforms previous 
results on the same dataset. The detailed comparison of our 
results with other results reported in literature is shown in 
Table X. Fig 13. (a), (b), (c) shows the least performing 
model ResNext-50 on both datasets. 

TABLE X.  COMPARISON OF UNET BASED MODEL RESULTS ON 

HARVARD DATASET 

 

VI.          CONCLUSIONS  

In this paper, we have implemented deep learning based 
models on two different datasets for automatic prostate 
cancer grading. We have proposed a methodology which is 
based on UNET model for automatic prostate cancer 
grading at pixel level and predicted the pathologist level 
results on both datasets. We used four different CNN 
architectures, VGG19, ResNext50, MobileNetV2 and 
ResNet50 as an encoder to UNET model. UNET with 
ResNet50 encoder gives us state of the art results as 
compared to other encoder architectures due to its unique 
identity mapping. Due to lesser number of samples, we have 
also implemented data augmentation on both datasets which 
increases the overall performance of UNET model. Our 
experimental results show that our proposed deep learning 
based model achieved competitive results on Gleason 
Challenge dataset and higher results on Harvard dataset, as 
compared to previous reported results. In future, availability 
of large amount of data with less class imbalance problem 
may improve segmentation and prove to be helpful in the 
development of clinically acceptable methods for grading 
of prostate cancer. Moreover depending on resources, large 
scale CNN based architectures can be deployed for more 
robustness and better generalization. 
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Model No. of Images  Cohen’s Score 

Eirini et al. [2] 640 0.72 

UNET-ResNet 50 640 0.73 
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