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Abstract. In this paper we present the theory behind Probabilistic
Trace Expressions (PTEs), an extension of Trace Expressions where
types of events that can be observed by a monitor are associated with
an observation probability. PTEs can be exploited for monitoring that
agents in a MAS interact in compliance with an Agent Interaction Pro-
tocol (AIP) modeled as a PTE, even when the monitor realizes that an
interaction took place in the MAS, but it was not correctly observed
(“observation gap”). To this aim, we adapt an existing approach for run-
time verification with state estimation, we present a semantics for PTEs
that allows for the estimation of the probability to reach a given state,
given a sequence of observations which may include observation gaps, we
present a centralized implemented algorithm to dynamically verify the
behavior of the MAS under monitoring and we discuss its potential and
limitations.

Keywords: Probabilistic Trace Expressions · Partial observability ·
State estimation · Multiagent systems · Agent interaction protocols

1 Introduction

Runtime verification of complex, distributed systems under ideal conditions (per-
fect observability of all the relevant events, no leaky communication channels,
etc.) is an hard task to perform, and has been addressed by many scientific
works including surveys and introductory papers [14,24,27], books [13], seminars
[18,23], and conferences1. When the conditions are not ideal and some relevant
events cannot be observed by the monitor, generating a gap in the event trace,
the problem becomes even harder [11,15,22,25,31]. A gap represents the absence
of information in the analyzed trace and corresponds to an execution point – or
to a time slot – where the monitor does not know what the system did. Gaps
may be due to the process of sampling observed events to reduce monitoring
overhead, but also to events that are partially observable or not observable at
all by the monitor: the monitor might be aware that an event took place, but
does not know which. We say that the monitor “observes a gap” to describe this
1 http://www.runtime-verification.org/.
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situation. The introduction of gaps raises problems in checking that a tempo-
ral property is verified by the system, given that a trace of events (which may
include gaps) has been observed. If the monitor does not know which event has
been observed, it cannot know whether the temporal property is satisfied or not.

In [32], each time a gap in observed a Hidden Markov Model (HMM) of the
system is queried to know which events could be observed in the current state
of the system, and with which probability. This allows the authors to estimate
the probability to reach some state si after observing obs = O1, O2, ..., Ot events,
and – by generating a monitor that combines the system HMM and the temporal
property φ into a single integrated model – to estimate the probability that φ is
satisfied after observing obs = O1, O2, ..., Ot events.

In this paper, we take [32] as our starting point, and we combine the approach
presented therein with the adoption of an existing expressive formalism to model
systems and properties, Trace Expressions [1,2,5,6,10].

After an overview of the background in Sect. 2, we present Probabilistic Trace
Expressions (PTEs) which extend Trace Expressions with probabilities associ-
ated with event types (Sect. 3). PTEs are more expressive than HMM, determin-
istic finite state machines and linear time temporal logic (LTL [28]), being able to
model more than context free languages. In Sect. 4 (1) we use PTEs to model the
probabilistic behaviour of the system under observation, possibly starting from
an HMM and then refining or extending it; (2) we show how – by applying the
rules defining the operational semantics of PTEs – we obtain the same results of
the forward algorithm presented in [32]; (3) we present the Probabilize algorithm
for transforming Trace Expressions corresponding to LTL properties into PTEs;
(4) by joining the two representations obtained in steps 1 and 3 above using the
∧ conjunction operator natively provided by PTEs, we obtain for free a way to
verify satisfaction of LTL properties in presence of observation gaps. Section 5
discusses the implementation of a centralized algorithm for Runtime Verification
of partially observable MASs and suggests that a decentralized approach may
solve some of its limitations, at the expense of communication overhead among
the monitors. Future directions of our research are addressed in Sect. 6.

2 Background

Hidden Markov Models. A Hidden Markov Model (HMM [16,30]) is a statistical
Markov model where the system being modeled is assumed to be a Markov
process with hidden states. It can be modeled as a quintuple H = 〈S,A, V,B,Π〉
where

– S = {s1, ..., sNs
} is the set of states;

– A is the Ns × Ns transition probability matrix: Ai,j = Pr(state is sj at time
t + 1 | state is si at time t);

– V = {v1, ..., vNv
} is the set of observation symbols;

– B is the Ns×Nv observation probability matrix: Bi,j , also denoted with bi(vj)
for clarity, is Pr(vj is observed at time t | state is si at time t);
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– Π = {π1, ..., πNs
} is the initial state distribution: πi is the probability that

the initial state is si.

We use as our running example the one presented in [32], where a model of a
planetary rover mission is modeled. The rover hosts two generic instruments, A
and B, and all the events generated by the rover are recorded on a log file. We
consider four different kinds of events, inspired by Barringer et al. [12]:

– command (cmd in the HMM figure), the command submitted to the rover;
– dispatch (disp), the dispatch of the command from the rover to the instru-

ment;
– success (succ), the success of the command on the instrument;
– fail (fail), the failure of the command on the instrument.

All these events are characterized by three parameters: the instrument id (a or
b), the issued command (start or reset), and a time stamp indicating when the
event occurred. When the rover receives a command, it reports the information
to the logger and sends the command to the relevant instrument. Once received
the command, the instrument issues a dispatch event to the logger and then
executes the command. If the execution is successful (resp. fails), a corresponding
success (resp. failure) event is reported to the logger. It is also possible that the
command is simply lost for some reason and neither a success nor a fail occurs.
Events have some probability to be observed, and the chance to move from one
state to another is also modeled by a probability.

Fig. 1. An example of HMM (from [32]).

Figure 1 represents an HMM inspired to the rover example, where

– S = {s1, s2, s3};
– A1,1 = A1,3 = 0;A1,2 = 1; A2,1 = 0.07;A2,2 = 0;A2,3 = 0.93;

A3,1 = 1;A3,2 = A3,3 = 0;
– V = {C,D, S, F} (C stands for cmd, D for disp, etc.);
– b1(C) = 1; b1(D) = b1(S) = b1(F ) = 0; b2(D) = 1; b2(C) = b2(S) = b2(F ) =

0; b3(C) = b3(D) = 0; b3(S) = 0.97; b3(F ) = 0.03;
– π1 = 1, π2 = π3 = 0 (not shown in the figure).

To compute the probability that an HMM H ends in a specific state given
an observation sequence O = 〈O1, O2, ..., OT 〉, the forward algorithm can be
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used [29]. Let Q = 〈q1, q2, ..., qT 〉 denote the (unknown) state sequence that the
system passed through, i.e., qt denotes the state of the system when observation
Ot is made. Let αt(i) = Pr(O1, O2, ..., Ot, qt = si|H), i.e., the probability that
the first t observations yield O1, O2, ..., Ot and that qt is si, given the model H.
The base case is:

α1(j) = πjbj(O1) for 1 ≤ j ≤ Ns

whereas the recursive case is:

αt+1(j) = (Σi=1..Ns
αt(i)Ai,j)bj(Ot+1) for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns

Trace Expressions. Trace expressions are based on the notions of event and event
type. E denotes the fixed universe of events subject to monitoring. An event trace
over E is a possibly infinite sequence of events in E , and a Trace Expression over
E denotes a set of event traces over E . Trace expressions are built on top of event
types (chosen from a set ET ), each specifying a subset of events in E . A Trace
Expression τ ∈ T represents a set of possibly infinite event traces, and is defined
on top of the following operators:

• ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.

• ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the
event type ϑ, and the remaining part is a trace of τ .

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with

the traces of τ2.

The derived constant Trace Expression 1 is equivalent to the expression τ =
ε∨everyEvent:τ , where everyEvent = E . Trace expressions support recursion
through cyclic terms expressed by finite sets of recursive syntactic equations,
as supported by modern Prolog systems. The semantics of Trace Expressions is
specified by a transition relation δ ⊆ T × E × T , where T and E denote the set
of Trace Expressions and of events, respectively. τ1

e→ τ2 means (τ1, e, τ2) ∈ δ;
the transition τ1

e→ τ2 expresses the property that the system under monitoring
can safely move from the state specified by τ1 into the state specified by τ2 when
event e is observed. A Trace Expression models the current state of a protocol.
Protocol state transitions are ruled by the transition system shown in Fig. 2,
which define δ.

Runtime Verification with State Estimation. Given a trace (possibly with gaps),
in [32] Stoller et al. propose an approach to compute the probability that a
LTL temporal property φ is satisfied by a system modeled by an HMM H,
given that obs = O1, O2, ..., Ot have been observed. More formally, they evaluate
Pr(φ| obs,H) by applying the following steps:
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Fig. 2. Transition system for trace expressions.

1. learn the HMM H from a given set of traces without gaps, using standard
HMM learning algorithm;

2. generate the deterministic finite state machine (DFSM) corresponding to φ;
3. generate a monitor combining H and the DFSM to check the sequence obs.

Step 1 falls outside the boundaries of their investigation, and in the sequel
we will disregard how the HMM has been created as well.

3 Probabilistic Trace Expressions

A probabilistic Trace Expression (PTE) is a Trace Expression where occurrences
of event types in the expression have a probability associated with them. The
probability is written after the occurrence of the event type, in square brack-
ets. From a syntactic point of view, this extension is the only difference w.r.t.
“normal” Trace Expressions introduced in Sect. 2.

Example. We present the PTE corresponding to the rover example. Event type
cmd is { command(Inst, Comm, TS) such that Inst ∈ {a, b}, Comm ∈ {start,
reset}, TS a time stamp in the range 0...3 }; event type disp is { dispatch(Inst,
Comm, TS) }, succ = { success(Inst, Comm, TS) } and fail is { fail(Inst, Comm,
TS) }. The resulting Trace Expression can be written in two equivalent (from
the PTE semantics viewpoint) ways:

τs1 = cmd[1]:τs2

τs2 = disp[0.07]:τs1∨disp[0.93]:τs3

τs3 = succ[0.97]:τs1∨fail[0.03]:τs1

(note the disp occurrence in both branches of τs2 definition, with different prob-
abilities and different Trace Expressions after the “:” operator) and

τ ′
init = cmd[1]:τ ′

s2
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τ ′
s1

= cmd[0.07]:τ ′
s2

τ ′
s2

= disp[1]:(τ ′
s1

∨τ ′
s3

)

τ ′
s3

= succ[0.9021]:τ ′
s1

∨fail[0.0279]:τ ′
s1

The Trace Expression in the first form tells us, for example, that the probability
of the protocol to reach τs1 starting from τs2 and having observed disp is 0.07
while the probability to reach τs3 starting from τs2 and having observed disp is
0.93 (second equation of the first formulation). To make this information explicit,
the transition from state s2 to states s1 and s3 in the HMM has been modeled
by τs2 = disp[0.07]:τs1∨disp[0.93]:τs3 , introducing non-determinism due to the
occurrence of the same event type disp in both branches of the “or” operator.
While in a non probabilistic setting τs2 = disp:τs1∨disp:τs3 would be equivalent
to τs2 = disp:(τs1∨τs3) and the second version would be definitely preferred, as
– besides being more readable and compact – is deterministic, in a probabilistic
setting this simplification would cause us to lose precious information on the
probability to move to some state S, given some observed event O.

The second version overcomes this problem by propagating – via multipli-
cation – the different probabilities associated with disp in s2

′ to the states s1
′

and s3
′ that can be reached from s2

′ (second and fourth equation of the second
formulation). With this second form, we gain determinism at the price of adding
an initial state τinit for each state whose initial probability is not zero, and of
losing the one-to-one clear correspondence with the HMM. As an example, in
the fourth equation, understanding that succ[0.9021] comes from the probabil-
ity 0.97 associated with observing succ in state s3

′ multiplied by the probability
0.93 of having reached s3

′ from s2
′ is far from intuitive.

Given that a structure-driven transformation from the first form to the second
can be implemented in time linear with the Trace Expression length, we adopt
the first form for presentation purposes, since it is closer to the HMM, but we
use the second one in the implementation, since it is more efficient.

Like a “normal” Trace Expression, a PTE τ can be seen as the current state
of a protocol that started in some initial state τinit and reached τ after n events
O1...On took place, that moved τinit to τ through intermediate states τq1, τq2,

... , τqn = τ . If we denote with τ
O→ τ ′ the transition from state τ to state τ ′ due

to the event O taking place and being observed, we may write
τinit

O1→ τq1
O2→ τq2

O3→ τq3...
On→ τqn, where τqn = τ .

In order to properly manage probabilities, it is convenient to associate with
τ – in an explicit and easily computable way – the probability of the protocol
to have reached τ starting from τinit and having observed O1...On.

We define a “PTE state” (simply “state” from now on) the triple consisting
of a Trace Expression τ , a sequence of events O1...On observed before reaching
τ , and the probability πτ that the protocol reached τ . We represent the state
with the notation 〈τ, πτ , O1...On〉.

In this work, we are interested in analyzing the protocol evolution in presence
of observation gaps: in a state τc (for τcurrent), the monitor driven by a PTE
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may either observe an event O, and then its behaviour is the same as in the non-
probabilistic setting – it moves to the next state τ , if τc

O→ τ is an allowed move
–, or “observe a gap”. Observing, or perceiving, a gap means that the monitor
is aware that some event took place and hence the protocol must move one step
forward, but it is also aware that the event has not been correctly observed. The
monitor cannot commit to the τc

O→ τ move in this case, but it must remember
that many moves were possible, one for each of the events that could have taken
place in τ , and that could have filled the perceived gap: τc

gap→ τ (if the event
were O, modeled by gap(O) in the sequence of observed events), τc

gap→ τ ′ (if the
event were O′, modeled by gap(O′)), τc

gap→ τ ′′ (if the event were O′′, modeled
by gap(O′′)), etc.

Fig. 3. Transition system for probabilistic trace expressions states.

The transition rules between states are shown in Fig. 3 and follow the pattern
of the rules defined for Trace Expressions, with modifications for taking care of
the probability propagation and of observed events including gaps. The rules for
ε are the same as for normal Trace Expressions. Appendix A of the longer version
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of this paper available as a DIBRIS technical report provides a deep explanation
of each of them [8].

In Fig. 3 the use of any and any(e) allows us to model the transition in
the case that an event has been observed and in the case an observation gap
took place, using the same rule. In fact, any ∈ {e, gap} and if any == e then
any(e) == e; if any == gap then any(e) == gap(e).

If any == e, then e has been observed, the arrow modeling the state tran-
sition function

any→ is actually labeled with e, and e is concatenated with the
previously observed events, obs; if any == gap, then a gap took place, the arrow
any→ is labeled with gap, and gap(e), meaning that a gap took place, and that it
could be filled with event e, is concatenated with the previously observed events.

Nondeterminism in State Transitions. The state transition function
any→ is non-

deterministic: one state can move into more than one state for many differ-
ent reasons. Let us consider the cmd event type introduced at the beginning
of this section. The transitions below can take place starting from the state
〈cmd[0.3]:τ , 0.2, obs〉 when an observation gap occurs.

– 〈cmd[0.3]:τ , 0.2, obs〉 gap→ 〈τ, 0.06, obs gap(command(a, start, 0))〉
– 〈cmd[0.3]:τ , 0.2, obs〉 gap→ 〈τ, 0.06, obs gap(command(b, start, 0))〉
– ... plus 14 more transitions.

As another example, let us consider again the event type cmd defined above
and the state 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉. If command(a, start, 3)
(abbreviated in c(a, s, 3) for presentation purposes) is observed, both branches of
the choice in cmd[0.75]:τ1∨cmd[0.25]:τ2 are valid, leading to the two transitions
below.

– 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉 c(a,s,3)→ 〈τ1, 0.3, obs c(a, s, 3)〉
– 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉 c(a,s,3)→ 〈τ2, 0.1, obs c(a, s, 3)〉

If, starting from 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉, a gap is observed, the
two sources of nondeterminism (the first due to the gap that can be filled with
many events matching the expected event type, and the second due to the non-
deterministic choice in the Trace Expression) combine together, generating 32
possible transitions. Other sources of nondeterminism in the Trace Expression
are due to the shuffle and the concatenation operators, defined by two transitions
rules each. Figure 4 presents the rules for dealing with nondeterminism and for
introducing the notion of transitive closure of transitions:

(state-to-set) The function represented by →γ takes one PTE state γ, one
observed event or gap any , and returns the set of all the PTE states that γ

can reach via
any→ .

(set-to-set) The function represented by � takes one set of PTE states {γ1, γ2,
..., γn}, one observed event or gap any , and returns the union of the sets of
PTE states that each γi ∈ {γ1, γ2, ..., γn} can reach via

any→γ .
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Fig. 4. Rules for nondeterminism and transitive closure.

(closure) We use � to denote the transitive closure of � by putting the
sequence of observed events on top of the arrow.

(closure-init) Finally, a PTE τ can evolve into any state γ ∈ Γn after observa-
tion of O1...On, if the PTE state 〈τ, 1, σ〉 can, where σ is the empty sequence.

Example. Starting from the PTE τs1 used as running example, we have:

τs1

cmd disp gap
� {〈τs2 , 0.07, cmd disp gap(cmd)〉,

〈τs1 , 0.9021, cmd disp gap(succ)〉, 〈τs1 , 0.0279, cmd disp gap(fail)〉}
because

{〈τs1 , 1, σ〉} cmd� {〈τs2 , 1, cmd〉} disp
� {〈τs1 , 0.07, cmd disp〉, 〈τs3 , 0.93, cmd disp〉} gap

�

{〈τs2 , 0.07, cmd disp gap(cmd)〉, 〈τs1 , 0.9021, cmd disp gap(succ)〉,
〈τs1 , 0.0279, cmd disp gap(fail)〉}

4 From HMMs to PTEs

A PTE where probabilities associated with event types are consistent with their
intended meaning and with the probability properties might be complex when
written from scratch. Besides needing a deep knowledge of the modeled system,
the developer would also need a means to ensure that, for example, a PTE
like cmd[0.9] : τs1 ∨ disp[0.8] : τs2 is recognized as wrong, since there are two
mutually exclusive branches and the sum of their probabilities is greater than
one. While this error is trivial and can be easily catched and corrected, if the
PTE grows in size and complexity a manual development becomes more and
more error-prone.
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A good practice in engineering new software applications is to reuse well
established approaches as much as possible. Even if we want to model proba-
bilistic systems using an extension of Trace Expressions, which is more expressive
than HMM and deterministic finite state machines, this does not prevent us from
starting from a less expressive but widely used formalism like HMM in order to
create a simple, but correct, PTE modeling the system, and extend/refine the
PTE if necessary.

If an HMM representing the behaviour of the modeled system exists, for
example because it has been learned using existing algorithms, we can indeed
use it to generate the corresponding PTE in an automatic way. Once such PTE
has been obtained, we can modify it in order to model those features of the
actual system that could not be directly represented with an HMM. Ensuring
consistency of the modifications is up to the developer.

The HMM2PTE Algorithm. Given an HMM H = 〈S,A, V,B,Π〉, the algorithm
to construct an equivalent PTE is the following:

1. for each observation symbol vk ∈ V , generate the corresponding singleton
event type βk = {vk} (recall that Trace Expressions are defined on top of
event types and not of events);

2. for each i = 1..Ns, for each j = 1..Ns, for each k = 1..Nv, if Ai,j 
= 0 then
τsi

=
∨

j=1..Ns,k=1..Nv
βk[Ai,j ∗ bi(vk)]:τsj

2. If, for some given i, there exists
only one j such that Ai,j is different from 0, then τsi

= βk[Ai,j ∗ bi,k]:τsj
. If,

for some given i, all Ai,j are equal to 0, then τsi
= ε.

As an example, the HMM2PTE algorithm translates the HMM presented in
Sect. 2 into the PTE τ ′

init presented in Sect. 3.

Forward Algorithm for Probabilistic Trace Expressions. Let us consider the set
of PTEs states Γ0 = {〈τs1 , πs1 , σ〉, 〈τs2 , πs2 , σ〉, ..., 〈τsN

, πsN
, σ〉}, where each

τsi
corresponds to a state si in the HMM H and has been obtained applying

the HMM2PTE translation algorithm to H. πsi
is the initial probability of si,

according to H. If πsi
= 0, the corresponding state 〈τsi

, πsi
, σ〉 is not included

in Γ0.

If Γ0

O1...Ot−1� Γt−1, all the states in Γt−1 must have the form
〈τsx

, π,O1...Ot−1〉 for some x: they are the states where τsx
can be reached

from one of the states in Γ0, upon observing O1...Ot−1. Given i1 and i2 two
indexes, we denote with Γi1(τi2) = {〈τsi2

, π,O1...Oi1−1〉 ∈ Γi1}.

Theorem 1. If Γ0

O1...Ot−1� Γt−1 and Γt−1(τst
)

Ot� Γt,
then αt(j) = Σ〈τsj ,πj ,O1...Ot〉∈Γt

πj.

We give the intuition behind the theorem by means of our running example.
Let us suppose that we want to compute the probability that, after observing

2 By
∨

h=1..m τh we mean the conjunction via the ∨ operator of the Trace Expressions
τ1, ..., τm. The notation can only be used if m ≥ 2.
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command(a, start, 0) (C in the sequel), dispatch(a, start, 1) (D in the
sequel), fail(a, start, 2) (F in the sequel), the system is in state s3.

Step 1: computation of Γ0

O1...Ot−1� Γt−1.

In our example, the first step amounts to computing Γ0
CD� Γ2.

Γ0 = {〈τs1 , 1, σ〉} C� Γ1 = {〈τs2 , 1, C〉} D� Γ2 = {〈τs1 , 0.07, CD〉, 〈τs3 , 0.93, CD〉}

Step 2: computation of Γt−1(τst
)

Ot� Γt.

In our example, this step amounts to computing Γ2(τs3)
F� Γ3.

Once reached Γ2 = {〈τs1 , 0.07, CD〉, 〈τs3 , 0.93, CD〉} we have to limit the last
transition, tagged with F , to those states whose Trace Expression corresponds
to s3, namely τs3 . We have

Γ2(τs3) = {〈τs3 , 0.93, CD〉} F� Γ3 = {〈τs1 , 0.0279, CDF 〉}

Step 3: computation of Σ〈τsj ,πj ,O1...Ot〉∈Γt
πj

In the last step, we have to sum all the probabilities of the states in Γt, namely
Γ3 in our example. There is only one state in Γ3, with probability 0.0279. It
turns out that Σ〈τsj ,πj ,O1...Ot〉∈Γ3πj = π3 = 0.0279.

Step 4: computation of αt(j) as defined in the forward algorithm [29] and
summarized in Sect. 2.
In our example, αt(j) is α3(3), namely the probability to observe CDF , with F
observed in state s3. We use the sequence of events as subscript for α instead of
their indexes for sake of clarity.
The base case leads to the following computation:

αC(1) = π1 ∗ b1(C) = 1 ∗ 1 = 1

αC(2) = π2 ∗ b2(C) = 0 ∗ 0 = 0

αC(3) = π3 ∗ b3(C) = 0 ∗ 0 = 0

The first recursive step leads to the following computation (we omit some details
and keep the result)

αCD(1) = (Σi=1..Ns
αC(i)Ai,1)b1(D) = 0

αCD(2) = (Σi=1..Ns
αC(i)Ai,2)b2(D) = 1 ∗ A1,2 ∗ b2(D) = 1 ∗ 1 ∗ 1 = 1

αCD(3) = (Σi=1..Ns
αC(i)Ai,3)b3(D) = 0

and the second recursive step leads to

αCDF (1) = (Σi=1..NsαCD(i)Ai,1)b1(F ) = 0
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αCDF (2) = (Σi=1..NsαCD(i)Ai,2)b2(F ) = 0

αCDF (3) = (Σi=1..NsαCD(i)Ai,3)b3(F ) = αCD(2)∗A2,3∗b3(F ) = 1∗0.97∗0.03 = 0.0279

Step 5: check that αt(j) and Σ〈τsj ,πj ,O1...Ot〉∈Γt
πj are equal.

From Steps 3 and 4 above, we obtain Σ〈τs3 ,π3,CDF 〉∈ΓCDF
π3 = 0.0279 and

αCDF (3) = 0.0279: for this example the theorem is satisfied.

Proof: the proof of Theorem 1 is reported in Appendix B of the extended version
of this paper [8].

Satisfying LTL Properties when Gaps Are Observed. In order to verify whether
a LTL property φ is verified by a PTE τ , also in presence of observation gaps,
we need to specify φ into the same formalism in which τ has been modelled,
namely PTEs.

The pipeline for implementing the translation from φ into an equivalent PTE
τ(φ) is the following:

1. translate φ into a non probabilistic Trace Expression τnp(φ) using the imple-
mented algorithm presented in [5];

2. translate the non probabilistic Trace Expression τnp(φ) into a probabilistic
Trace Expression τ(φ) using the “Probabilize” implemented algorithm pre-
sented below.

The first step above returns by construction a Trace Expression τnp(φ) mod-
eled as a set of equations τnp(φ)1, ..., τnp(φ)K , where τnp(φ) = τnp(φ)1 and each
τnp(φ)i has the following form: τnp(φ)i = ϑi1:Xi1 ∨ ϑi2:Xi2 ∨ ... ∨ ϑiK :XiK .

XiK can in turn be one of the τnp(φ) variables, or the constant Trace Expres-
sion 1 defined in Sect. 2.

Probabilize correctly terminates on Trace Expressions of this form. If run on
Trace Expressions which contain “∧”, “|” and “·” operators, or that just do not
meet the structure above, Probabilize fails.

Given a non probabilistic Trace Expression τnp(φ), we can obtain its corre-
sponding probabilistic version Probabilize(τnp(φ)) by adding probability param-
eters to all the event types that appear in the disjuncts of τnp(φ). To achieve
this result, we have to define an algorithm that operates on τnp following its
structure and that, when there are more than one possible moves from the cur-
rent state to the next ones due to observability of different event types, shares
the probability among these event types following some probability distribution,
the uniform one in the simplest case. For instance, if the algorithm is currently
analyzing the state cmd : τs1∨disp : τs2 and if it is using a uniform distribution
probability,

Probabilize(cmd : τs1 ∨ disp : τs2) = cmd[0.5] : τs1 ∨ disp[0.5] : τs2

If uniform distribution probability is adopted, the structure-driven definition
of Probabilize is the following:

Probabilize(ϑi1:Xi1 ∨ ϑi2:Xi2 ∨ ... ∨ ϑiK :XiK) =
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ϑi1[1/K]:Pr(Xi1) ∨ ϑi2[1/K]:Pr(Xi2) ∨ ... ∨ ϑiK [1/K]:Pr(XiK)

where Pr(Xij) = Xij if Xij 
= 1, and Pr(Xij) = ε∨everyEvent[1]:Xij other-
whise. Because of the special form of τnp(φ), and the absence of operators besides
“:” and “∨” therein, the simple rule above is the only one we need for defining
Probabilize.

Given these ingredients, satisfaction of LTL properties in presence of obser-
vation gaps can be verified in a natural and straightforward way thanks to

– the possibility to represent a LTL property as a standard Trace Expression,
– the possibility to transform such a Trace Expression into a probabilistic one

thanks to the Probabilize algorithm, and
– the “and” operator, ∧, modeling the fact that the (probabilistic) Trace

Expressions in the two branches must perform the same transitions. From
an set-theoretic viewpoint, ∧ models the intersection of the event traces rep-
resented by the two branches it joins.

Let us identify with τHMM the PTE representing an HMM, and with τnp(φ)
the standard Trace Expression representing the temporal property φ to be veri-
fied.

The PTE τHMM∧Probabilize(τnp(φ)) models the intersection of traces of
events consistent with the HMM and traces of events that satisfy φ: by making
the intersection of the states in τHMM with those in Probabilize(τnp(φ)) we
automatically constrain the evaluation process to those traces produced by the
HMM that respect φ.

5 Minding Gaps in a Centralized Setting

All the algorithms presented in the previous sections have been implemented
using SWI-Prolog3. The code and the examples used for our experiments can be
downloaded from https://vivianamascardi.github.io/Software/PTE.pl.

PTEs can be modelled as Prolog terms; by exploiting syntactic equations
where the same variable appears both to the left and to the right of the “=”
syntactic equality symbol, recursive PTEs can be easily defined. This feature is
supported by most Prolog implementations, including SWI-Prolog, and allows
us to define the PTEs shown in the examples provided so far, with almost the
same syntax used in the paper. The adoption of Prolog is a winning choice not
only for representing PTEs, but also for implementing their semantics and for
manipulating them. Thanks to Prolog’s rule-based, declarative interpretation,
the rules defining PTE operational semantics have a one-to-one correspondence
with Prolog clauses: backtracking and “all-solutions” predicates are powerful
tools to deal with the generation of multiple PTE states, when gaps introduce
nondeterminism (set-to-set rule). A SWI-Prolog PTE-driven monitor observing
events taking place in the system under verification, and checking whether they
3 http://swi-prolog.org/.

https://vivianamascardi.github.io/Software/PTE.pl
http://swi-prolog.org/
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comply with the PTE or not, can be automatically generated from the PTE
Prolog representation. Connectors with such SWI-Prolog PTE-driven monitors
exist both for MASs [2,20,21] and for other systems, including Internet of Things
[9,26] and object oriented applications [3]. So far, the algorithms for RV of
partially observable MASs have been tested in a simulated environment, namely,
with no real connection with implemented systems.

Events can be observed as an online stream while they are generated by the
system (online RV ), or can be recorded on a log file and then inspected (offline
RV ). In both scenarios there may be gaps, due to different reasons. In offline RV,
gaps might be caused by event sampling, as usually done to reduce the monitor
workload. In online RV, a gap indicates lack of information (a lost message, event
or perception); in this case, the absence of information may be due to technical
constraints of the system or of the monitor observation capabilities rather than
to optimization purposes.

The set-to-set semantic rule generates a set of states each time it is applied.
The states are maintained by SWI-Prolog in its local knowledge base, to allow
the monitor to retrieve the current set of states, query each of them, and update
the knowledge base with newly generated states. Unfortunately, a rule like set-to-
set suffers from state space explosion, in particular when there are many sources
of nondeterminism. Each time a gap takes place, the monitor must make guesses
on the possible actual events that the gap represents and save all the states gen-
erated by these guesses. A possibly huge logical tree-like structure with states as
nodes, and moves from states to states as edges, represents these open possibili-
ties. If RV takes place online, the exploration of this logical structure must follow
a breadth-first strategy (more space needed but possibly less time required to
recognize that the trace is not compliant with the expected behaviour), as the
final trace of events is unknown and the levels of the structure are generated and
explored at the same time. When, instead, a log file is analyzed offline, the trace
in the log is already complete and the logical tree-like structure can be explored,
looking for violations, following a depth-first search (less space needed, but the
violation could be discovered after exploring all the structure).

Online RV is definitely more challenging: if the log file is analyzed offline,
after the system has completed its execution, discovering a violation with some
(further) delay is not an issue. But if RV takes place online, it must be performed
as efficiently as possible, and in such a way that violations are discovered as
soon as possible, to take actions including repairing the system if possible or
even stopping its execution, to avoid more serious consequences. This paves the
way to two more scenarios: centralized online RV, discusses in this paper, and
decentralized online RV, discussed in the companion paper presented at CILC
2022 [7]. In this section we present the reader with an example to understand how
a centralized PTE-driven monitor works, and what the state explosion problem
means in practice.

Let us consider a MAS involving four agents: {alice, bob, charlie, dave}.
The set of events of our interest in this scenario is the set of messages Msgs
that these agents can use to communicate with each other. Such events can
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be represented as a1
c=⇒ a2, meaning that agent a1 sends a message to a2

with content c. Since messages are composed by (at least) three mandatory
components, sender, receiver and content, besides the totally uninstantiated gap
where nothing is known, there may be many partially instantiated gaps such as:

– gap(a1 =⇒ a2), where the content of the message is unknown;
– gap( m=⇒ a2), where the sender is unknown;
– gap(a1

m=⇒ ), where the receiver is unknown.

In order to make the presentation easier to read we consider event types
containing only one message (singleton): instead of writing for example ϑ:τ where
�ϑ� = {alice

m1=⇒ bob} (event type representing the message from alice to bob

with content m1), we directly write alice
m1=⇒ bob:τ . Given the PTE

τ = τ1∨τ2

τ1 = alice
msg1=⇒ bob[0.7] : (bob

msg2=⇒ charlie[0.6] : τ1 | bob
msg3=⇒ dave[0.4] : ε)

τ2 = alice
msg4=⇒ dave[0.3] : (charlie

msg5=⇒ dave[0.3] : ε | bob
msg3=⇒ dave[0.7] : τ2)

and initial probability of τ equal to 1, a centralized monitor Mc observing all
the interactions among the agents starting from the state τ would behave in
the following way. Let us identify with M0,c where c stands for “centralized”,
the initial state of Mc. M0,c = 〈τ, 1, σ〉. We highlight that τ contains the shuffle
operator | and hence cannot be the output of the HMM2PTE algorithm. It
has been designed “by hand”, to show that PTEs can be also designed and
developed from scratch, besides being automatically generated from a HMM.
Being very simple, we can easily check that it is consistent w.r.t. the properties
that probability of events must ensure. In the general case, a manual consistency
check may be hard to carry out, and its automation is out of the scope of this
paper. Let us suppose that the first observed event is a totally uninstantiated
gap. Starting from τ , the only two possible evolutions of the protocol are those
where either alice sends msg1 to bob (alice

msg1=⇒ bob) or alice sends msg4 to dave

(alice
msg4=⇒ dave). These evolutions may be formalized as (we use ch instead of

charlie for space constraints)

M0,c

gap
� M1,c = {〈bob

msg2=⇒ ch[0.6] : τ1 | bob
msg3=⇒ dave[0.4] : ε, 0.7, gap(alice

msg1=⇒ bob)〉,

〈ch msg5=⇒ dave[0.3] : ε | bob
msg3=⇒ dave[0.7] : τ2, 0.3, gap(alice

msg4=⇒ dave)〉}

If another totally uninstantiated gap is observed, each state in M1,c can
evolve in two different ways because of the shuffle, leading to

M1,c

gap
� M2,c = {〈τ1 | bob

msg3=⇒ dave[0.4] : ε, 0.42, gap(alice
msg1=⇒ bob) gap(bob

msg2=⇒ ch)〉,

〈bob
msg2=⇒ ch[0.6] : τ1, 0.28, gap(alice

msg1=⇒ bob) gap(bob
msg3=⇒ dave)〉,
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〈bob
msg3=⇒ dave[0.7] : τ2, 0.09, gap(alice

msg4=⇒ dave) gap(ch
msg5=⇒ dave)〉

〈ch msg5=⇒ dave[0.3] : ε | τ2, 0.21, gap(alice
msg4=⇒ dave) gap(bob

msg3=⇒ dave)〉}

It is easy to see that the number of states can rapidly grow, because one
single monitor is in charge for the RV of all the MAS and takes care of all the
possibilities that open up when gaps are observed, that is the main limitation
and bottleneck of the approach implemented so far. One approach to cope with
state space explosion is to split the centralized monitor into a set of decentralized
ones, each observing a portion of the MAS. Since each decentralized monitor has
to make its guesses about gaps, when a gap is observed there may be different
opinions about its possible values. With respect to a centralized approach, differ-
ent perspectives due to decentralization need to be managed through synchro-
nization between the monitors, which generates some communication overhead.
The algorithm for “minding gaps in a decentralized way” is presented in [7].
The experiments presented in that paper show that, despite the communication
overhead due to synchronization, decentralization reduces the search space, in
particular when the number of components that generate observable events in
the system, be them agents, actors, artefacts, sensors, increases.

6 Conclusions and Future Work

In this paper, we addressed the presence of gaps in observed traces and the
need to estimate the probability that the (incomplete) traces satisfy some LTL
properties, when the system is modelled by a PTE.

Differently from the work by Stoller at al. we took inspiration from [32], to
perform runtime verification using PTEs, we need that each gap represents one
single unobserved event: if we have a sequence of three unobserved events, we
must have three different gaps in the observed trace. If, in the real system, this
one event-one gap correspondence cannot be achieved, we should estimate the
number of unobserved events that took place in a time slot T by computing
the average rate of the event generation G, and inserting T ∗ G gaps in the
event trace. As an example, if the monitor pauses for 3 s and the average events
generation rate is 4 events for second, the trace should have 12 consecutive gaps
corresponding to what happened in the time slot T .

Although PTEs have a higher potential expressive power than HMM and
LTL, being able to express traces like anbncn, in this work we start from an HMM
of the real system and generate an equivalent PTE from it, which of course is as
expressive as the HMM it originates from. This is a safe approach to generate
a PTE consistent with the known probability distribution of events, which can
then be refined in such a way that its expressivennes is fully exploited. Providing
guidelines and automatic tools to support the developer in this refinement step
is part of our future investigations: we plan to extend RIVERtools [4] towards
this direction. More urgent, both the centralized and the decentralized versions
of the algorithm have been experimented in a simulated setting; implementing
them on top of a real MAS framework like JADE [17] or Jason [19] is the first
item in our agenda.
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