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Abstract

I discuss the derivation and applications of a non-perturbative Renormalization
Group (RG) equation for gauge theories and quantum gravity in Lorentzian space-
times.

A key ingredient to derive the RG equation in Lorentzian spacetimes is the use
of a local regulator, acting as an artificial mass for correlation functions. A local reg-
ulator is compatible with the unitarity and Lorentz invariance of the theory, and it
gives raise to a local RG equation. A Hadamard-type point-splitting regularisation
guarantees that the RG equation is finite. The RG equation depends on the choice
of a state, a distinctive feature that is not present in the Euclidean case.

If the effective average action describing the theory does not contain deriva-
tives higher than second order, and it is local in the fields, an application of the
renown Nash-Moser theorem proves that the RG equation for scalar fields admits
local, exact solutions.

For gauge theories, the symmetries of the theory are controlled by an extended
Slavnov-Taylor identity, that can be studied with the cohomology of the Batalin-
Vilkovisky operator.

Assuming the Local Potential Approximation in the case of an interacting scalar
field, in 3 dimensions the RG flow exhibits the well-known Wilson-Fisher fixed
point. In 4 dimensions, the flow has no non-trivial fixed point in the vacuum, but it
exhibits a novel non-trivial fixed point in the high-temperature limit of a thermal
state for the free theory. Moreover, the Bunch-Davies state in de Sitter spacetime
also has a non-trivial fixed point in the inflationary regime.

Finally, the flow is applied to the case of quantum gravity. Taking into account
only state- and background-independent terms, the RG flow exhibits a non-trivial
fixed point in the Einstein-Hilbert truncation, providing a mechanism for Asymp-
totic Safety in Lorentzian quantum gravity.

In the second part, I study the relative entropy for a free scalar field propagating
over a dynamical, spherically symmetric black hole. Considering the back-reaction
of the relative entropy on the black hole horizon, it is possible to write a flux bal-
ance equation for the generalised entropy of quantum and gravitational degrees
of freedom. Similar considerations lead to a conservation law for the generalised
entropy in de Sitter spacetime.
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1 Introduction. The Universe in a glass of wine

A poet once said that every glass of wine contains a Universe [114]; I wonder if she
were not actually an expert of renormalization in disguise. In fact, you can learn
a great deal on our Universe watching closely the light that reflects on the glass
of wine. The scents from the wine are molecules that evaporate from its surface,
heated by the Sun; the minerals that make the glass were mined from the sands of
the oceans’ beaches, but they were originatedmillions of years ago, in the spectacu-
lar explosions of dying stars. And the light, scattered form the glass, interacts with
myriads of molecules in the most complicated ways, and after its journey through
the density of atoms it give raise to this simple, burgundy translucency that shines
in our eyes, exciting our nervous system.

Of the countless interactions amongmolecules and light, all that remains at the
macroscopic level are just a handful of simple effects, that can be described by sim-
ple quantities like the temperature of the wine, or the intensity of light’s radiation.
We cannot comprehend the chaotic behaviour of an astronomical number ofmicro-
scopic objects; but what we see and taste, what we measure with our macroscopic
tools is simple, and tells us almost nothing of this microscopic cosmos: the temper-
ature tells us a little about the molecules’ average speeds, the volume about their
repulsive interactions. If everything influenced everything else, we would need to
discover the origin of the Universe before drinking a glass of wine! Instead, phys-
ical phenomena arrange themselves in a hierarchy of layers, roughly separated by
their energy scale: from the lowest energies of light travelling through the Uni-
verse, to pulleys and heat engines and waterfalls and all the energy exchanges of
animals and plants around us, to the dynamics of molecules and atoms and then to
particles and even below that, to the highest energy scale that excites the quanta of
spacetime itself.

The principal tool to investigate how themacroscopic world emerges from the
microscopic one goes by the unfortunate name of renormalization. Together with
gauge invariance, renormalization is one of the main organising principles behind
modern physics.

In theWilsonian picture of renormalization [249, 250], the basic building blocks
are themicroscopic degrees of freedom of the system one is interested in, and their
symmetries. All possible interactions between the degrees of freedom are then con-
strained by the symmetries, and organised in inverse powers of some energy scale
𝑀, provided by some dimensionful, effective coupling constant. In principle, the
degrees of freedom interact through all possible terms allowed by the symmetries;
however, at a given energy scale 𝑘, only those terms whose inverse coupling is of
order 𝑘 contribute, while all the others are suppressed by increasing powers of
𝑀. It follows that any given system can be described by an infinite family of ef-
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introduction. the universe in a glass of wine 9

fective field theories, with different interactions emerging at different scales. The
Wilsonian renormalization starts from a bare, microscopic action and arrives at a
coarse-grained description of a system at macroscopic scales. This coarse-graining
is described by a family of different effective field theories at different energy scales,
and the Renormalization Group (RG) governs the flow of all possible theories under
changes in the energy scale 𝑘.

The combination of the RG flow with gauge symmetry produced one of the
most fruitful programs in modern physics, the renormalizability of the Standard
Model of particle physics [1]. By now, the Standard Model shows some of the most
accurate agreements of theory with experiments [145].

If possible, gauge symmetry is an even stranger foundation for modern physics
than renormalization. More than describing a symmetry of Nature, gauge theory
is a redundancy in our description of Nature. Yet, this redundancy is at the heart of
Yang-Mills theories, describing the electromagnetic, weak, and strong forces form-
ing our core understanding of fundamental interactions. In retrospect, it is also
possible to interpret the invariance of General Relativity under diffeomorphisms
as a gauge symmetry of gravity; so it seems that all the fundamental forces that we
know of are invariant under some gauge symmetry.

The Functional Renormalization Group (fRG) represents one of the modern
implementations of the Wilsonian RG [41, 102, 132, 201, 223]. In this approach, the
insertion in the microscopic action of a quadratic regulator term, depending on
an external mass scale 𝑘, provides the coarse-graining of correlation functions. In
fact, the regulator term acts as an artificial mass term, effectively suppressing long-
range modes. In the most studied Euclidean setting, the regulator usually depends
onmomentum, and it behaves as amomentumdependentmass, suppressingmodes
with 𝑝 ≤ 𝑘 and vanishing for higher modes. In general, however, even a simple
momentum-independent mass term acts as an infra-red cut-off.

The main object of study in the fRG is the effective average action, defined as a
shifted Legendre transformof the generating functional of connectedGreen’s func-
tions at scale 𝑘. In flat space, this is the generating functional for the 1PI Feynman
diagrams [243]. In the limits 𝑘 → ∞ and 𝑘 → 0 the effective average action inter-
polates between the classical action and the full quantum action, and its flow under
the scale 𝑘 thus defines a Wilsonian RG flow. The effective average action acts as a
microscopewith variable resolution, which permits tomove from the fine-grained,
microscopic description to the rough, macroscopic view. The equation governing
this flow is the RG flow equation. In the case of momentum-dependent regulator,
this equation is usually calledWetterich equation orWetterich-Morris equation [191,
221, 245, 247], and it has been developed from earlier ideas of Polchinski [208]. In
the special case of a momentum-independent regulator, the Wetterich equation is
also known as a functional Callan-Symanzik equation [5]. The Wetterich equation
has been particularly useful as it is amenable to numerical manipulations. More-
over, contrary to the ill-defined path integral from which it is formally derived,
the Wetterich equation is a well-defined functional differential equation.

The fRG has been successfully applied to many different physical situations,
from condensed matter systems to high-energy physics, most notably QCD (see
e.g. the reviews [41, 102] and references therein). In particular, since its first devel-
opments the Wetterich equation has been extensively used to study gauge theo-
ries [105, 178, 201, 217]. The extension of the Wetterich equation to gauge theories
provided the principal tool of investigation of the Asymptotic Safety scenario in
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quantum gravity [103, 152, 202, 204, 205, 214, 219, 220, 226]. In fact, thanks to the
structure of the Wetterich equation, the fRG admits non-perturbative approxima-
tion schemes that can go beyond usual perturbation theory, allowing the study of
strongly coupled systems and perturbatively non-renormalizable theories such as
quantum gravity.

Despite its successes, the fRG still lacks a mathematically rigorous formula-
tion, in particular in Lorentzian spacetimes. In fact, most results within the fRG
approach have been derived in Euclidean spaces. Moreover, the fRG usually starts
from a formal path-integral representation of the regularised generating functional
𝑍𝑘 ( 𝑗); a finite solution of the Wetterich equation in the limit 𝑘 → 0 determines a
posteriori a good definition of the path integral. Investigations on Lorentzian sig-
nature fRG flows, based on analytic continuation of Euclidean correlation func-
tions, has been initiated in [115]. A different approach, based on real-time Schwinger-
Keldysh formalism and the spectral representation of correlation functions inMinkowski
spacetime, has been developed [40, 163, 164, 167, 170, 203] and is currently under in-
vestigation. Finally, the Asymptotic Safety scenario in Lorentzian quantum gravity
has been studied assuming a 3+1 decomposition of the metric [184].

There are many advantages in working with Euclidean spaces. Themain differ-
ence from the Lorentzian case is that the equations of motion in Euclidean spaces
are elliptic, instead of hyperbolic: this implies that there is a unique Euclidean-
invariant vacuum state, and thus a unique preferred inverse for the quantum wave
operator (Γ𝑘 + 𝑄𝑘) (2) , which is a fundamental ingredient of the Wetterich equa-
tion. In Euclidean space, the addition of a positive contribution 𝑄 (2)

𝑘
means that

the quantumwave operator is non-vanishing, and thus always invertible. This regu-
lates theUVdivergences of the propagator in theWetterich equation. Thanks to the
regulator term, the Wetterich equation is then both ultraviolet (UV) and infrared
(IR) finite. Finally, Euclidean signature allows for a representation of the singular-
ity structure of th interacting propagator using heat kernel techniques, providing
an algorithmic evaluation of the operators in the right-hand side (r.h.s.) of the Wet-
terich equation particularly efficient for numerical implementations.

The picture changes drastically when one switches to Lorentzian signature.
First of all, due to the minus sign in the time-like direction of the momentum cov-
ector, a regulator term cannot completely eliminate UV divergences. Moreover, a
momentum-dependent regulator can change the principal symbol of the equations
of motion determining the interacting propagator: if the regularised equations of
motion are not normally hyperbolic, a fundamental solution might even not exist.

Perhaps the most important conceptual difference from the Euclidean case is
the fact that the quantum equations of motion, determining the interacting prop-
agator, are hyperbolic, not elliptic. This implies that there is no distinguished fun-
damental solution, and different interacting propagators differ by the choice of an
arbitrary smooth function. Physically, this corresponds to the arbitrariness in the
choice of a state. Since the RG flow equations depend on the interacting propaga-
tor, in Lorentzian spacetimes the flow acquires a non-trivial state dependence.

Lorentzian RG flow equations

The derivation and applications of amathematically rigorousRGflow for Lorentzian
gauge theories is the main topic of this thesis. The Lorentzian RG flow equation
is based on the functional Renormalization Group and the perturbative Algebraic
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approach to Quantum Field Theory on curved spacetimes (pAQFT) [56, 112, 118, 158,
160, 162, 211] in the functional approach [57]. Even though the approach is based
on a representation of interacting observables in perturbative formal power se-
ries, the 𝐶∗−algebraic approach to AQFT [58–60, 68, 69] can provide a basis to
formulate the results in an exact, non-perturbative setting. The approach is fully
Lorentzian, and allows for a generalization of the Wetterich equation to generic
Hadamard states and curved backgrounds, where there is no distinguished vacuum
state. These Lorentzian RG flow equations exhibit a state dependent flow, and are
based on a Hadamard regularisation.

In pAQFT, a quantumfield theorymodel on a globally hyperbolic spacetime
is given as a net of formal power series (in the coupling constant _, and potentially
also in the reduced Planck constant ℏ) with coefficients in topological ∗−algebras
assigned to relatively compact regions  ⊂ . The net satisfies the axiom of
causality ([A(1),A(2)] = 0 if2 is not causally connected to1), and typically
isotony (i.e., the algebraA(1) associated to a subregion1 ⊂  of a larger region
 is contained in the algebra of the larger region, A1(1) ⊂ A()) and the time-
slice axiom (quantum version of the well-posedness of the Cauchy problem). Using
the framework of locally covariant quantum field theory and the language of cate-
gory theory, pAQFT can be formulated “on all spacetimes at once”, complying with
the principle of general covariance of General Relativity. More specifically, pAQFT
is a functor from the category of globally hyperbolic spacetimes to the category of
∗−algebras satisfying Einstein causality [38, 66].

In the case of gauge theories, these axioms have to be slightly weakened, as alge-
bras are replaced by differential graded algebras [35, 37, 39, 139]. The generalisation
of pAQFT to gauge theories includes the BRST formalism for Yang-Mills theory
[156] and the Batalin-Vilkovisky formalism for general gauge theories and effective
quantum gravity [64, 65, 116, 119].

In pAQFT, interacting observables are represented as formal power series in
a ∗−algebra. The construction uses the Epstein-Glaser renormalization procedure,
which works in curved spacetimes and for perturbatively non-renormalizable the-
ories, such as quantum gravity. Thanks to the Epstein-Glaser renormalization, ev-
ery element of the theory is by construction ultraviolet regular.

After the construction of the interacting algebra, states are defined as normalised,
positive, linear functionals, mapping an element of the algebra of observables to
its expectation value 𝜔 : A→ C. Among all possible states, the Hadamard condi-
tion selects the state that have finite renormalized stress-energy tensor [171]. Since
in general curved spacetimes there is no distinguished vacuum, the separation be-
tween states and observables allows to study the algebra of observables without
referring to a particular state.

Given an algebra and a state, the Gelfand-Naimark-Segal (GNS) construction
provides a representation of observables as operators on a Hilbert space. However,
the representation depends on the state, and different representations are not uni-
tarily equivalent. Therefore, pAQFT is a generalisation of flat space QFT, and it
is well-suited to handle generic states on possibly curved Lorentzian spacetimes.
Thanks to its generality and flexibility, pAQFT is a good candidate to overcome
some of the difficulties of the standard fRG approach.

In the formal ∗−algebra of interacting observables, it is now possible to intro-
duce the generalisation of generating functionals to curved spacetimes and of their
regularised counterparts, and in particular to define an effective average action.
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As we said, the construction of the effective average action requires the inser-
tion of a regulator term in the generating functional for time-ordered correlation
functions. However, thanks to the Epstein-Glaser renormalization procedure, the
regulator needs not to regularise UV divergences, as these are already renormal-
ized. Moreover, the Epstein-Glaser procedure only works for local functionals.
Therefore, the regulator added to the generating functionals is local in position,
preserving Lorentz symmetry. A local regulator 𝑄𝑘 acts as an artificial mass con-
tribution to the field, to tame infrared problems.

Local regulators have been already used in the literature, in particular in the
study of field theories at finite temperature, where thermal effects provide a natural
UV cut-off [178, 179]. This regulator term has been calledCallan-Symanzik-type cut-
off, and the respective RG flow equation functional Callan-Symanzik equations [5].
A Callan-Symanzik regulator has also been used to study the flow of the spectral
function of the graviton propagator in a Minkowski, flat background, one of the
first applications of the fRG to Lorentzian quantum gravity [108].

The RG flow equation in Lorentzian spacetimes and for Hadamard states then
is (5.6)

𝜕𝑘Γ𝑘 = lim
𝑦→𝑥

ℏ
2

∫
𝑥

Tr
{
𝜕𝑘𝑞𝑘 (𝑥)

[(
Γ(2)
𝑘

− 𝑞𝑘
)−1

(𝑥, 𝑦) − �̃�𝐹 (𝑥, 𝑦)
]}
.

The trace is over Lorentz as well as internal (such as colour) and field indices.
The presence of a local regulator leads to two main differences in the RG flow

equations; first of all, the RG equation itself is local. The second, related difference
is that the contribution of (Γ(2)

𝑘
+ 𝑄 (2)

𝑘
)−1(𝑥, 𝑦) needs to be evaluated at coincid-

ing points. This second modification would introduce UV divergences in standard
treatments of flat space QFT; however, since the local fields in 𝑄𝑘 are normal-
ordered, the coinciding point limit is finite without requiring extra regularisations.
In fact, on the right-hand side �̃�𝐹 (𝑥, 𝑦) is a counter-term related to a Hadamard
parametrix, and can be obtained just from the background geometry and the free
(linearised) equation ofmotion of the theory [56, 66, 158]. Its subtraction is related to
the known point-splitting regularisation, that gives the expectation values of Wick
powers in curved backgrounds. A Hadamard parametrix constructed with local
properties of the metric only, and not the subtraction of the two-point function of
a state, keeps the theory covariant [66, 158].

The fundamental difference between the Euclidean and Lorentzian case is the
state dependence of theRGequation, through the interacting propagator

(
Γ(2)
𝑘

− 𝑞𝑘
)−1

. State dependence and the necessity of theHadamard condition on the background
states appears also if one uses a regulator term that depends on the spatial mo-
menta, which is particularly suited in cosmological models [16]. The RG equation
provides a mathematically rigorous foundation to explore the RG in Lorentzian
spacetimes, with non-perturbative approximations. In fact, assuming that Γ𝑘 is at
most quadratic in derivatives, and local in the fields, it is possible to prove that the
RG equation admits local solutions, without truncation in field space. The result is
based on an application in this novel framework of the Nash-Moser theorem.

Gauge theories

The generalisation of the RG flow equations to gauge theories requires a careful
treatment of the quantum realisation of gauge symmetries along the flow.
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In QFT, the gauge symmetry of the classical action gives raise, after gauge fix-
ing, to the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. The invariance of scat-
tering amplitudes under BRST symmetry, captured by the local cohomology of the
BRSToperator, is the fundamental requirement to obtain gauge-invariant, physical
observables from a gauge-fixed action.

In pAQFT, it is possible to give a rigorous description of gauge theories as a gen-
eralisation of the Batalin-Vilkovisky (BV) formalism to infinite dimensional config-
uration spaces [116, 119, 212, 213]. The BV formalism [26–28] is a powerful method to
quantise theories with local symmetries. It is a generalisation of the BRST method
[29–31], first developed in the context of perturbative Yang-Mills theories, to arbi-
trary Lagrangian gauge theories. The space of on-shell, gauge invariant observables
is constructed as the 0-th order cohomology of the nilpotent BV operator 𝑠 [22],
and the gauge-independence of observables is guaranteed by the Quantum Master
Equation (QME).

In turn, the QME imposes the Slavnov-Taylor identities on the effective average
action, controlling its symmetries.

The main novelty in our treatment of gauge theories is the introduction of
a new field that, together with the integral kernel of the cut-off regulator, forms
a contractible pair in the cohomology of the BV operator. Thanks to this field,
the symmetry constraint on the effective average action takes the same form as in
the non-regularised case, of extended Slavnov-Taylor identity in Zinn-Justin form
[256]: in terms of Γ̃𝑘 = Γ𝑘 + 𝑄𝑘 (𝜙), it reads∫

𝑥

[
𝛿 Γ̃𝑘
𝛿𝜙(𝑥)

𝛿 Γ̃𝑘
𝛿𝜎 (𝑥) + 𝑞𝑘 (𝑥)

𝛿 Γ̃𝑘
𝛿[(𝑥)

]
= 0 .

The symmetry constraint on the effective average action, which we call effec-
tive master equation (7.35), can be interpreted in terms of an effective BV formalism,
in the space of effective fields 𝜙 and effective BRST sources 𝜎 . The construction
of admissible average effective actions Γ𝑘 then is interpreted as a cohomological
problem, as in the non-regularised case [22].

In more practical terms, this means that the effective master equation (7.21) can
be solved by cohomological means, providing the starting point for the Ansatz to
be used in the solution of the flow equation.

Black holes

Even though the renormalization of gauge theories has little to do with them, ev-
erything started from black holes. Black holes are the best laboratories to test our
theories on the Universe; thanks to their extreme conditions, we can hope to learn
something on the breaking points of General Relativity and Quantum Field The-
ory, and their partial combination, QFT on curved spacetimes, by looking in some
of their mysteries. Perhaps themost famous puzzle of theoretical physics of the last
half century is the microscopic origin of black hole entropy.

In 1975, Hawking discovered that, if we perturb their event horizon with quan-
tum effects, black holes are not entirely black, but emit a radiation of particles with
a black body spectrum. This in turn gave firm ground on the hypothesis that black
holes carry an entropy, proportional to their area [32]. In classical General Rela-
tivity, black holes are described only by a handful of parameters: their mass, their
angular momentum, and their electric charge. However, their huge entropy reveals
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that, far from being the stable, simple objects we thought, black holes hide an enor-
mous amount of microstates. In this respect, black holes are similar to the glass of
wine that started this story, as they appears simple at our ordinary scales, but re-
veal a complex dynamics of manymicroscopic degrees of freedom if we lookmore
closely. What are black holes made of? We can hope that the investigation of the
renormalization group for quantum gravity will provide us at least some hints on
this fundamental question.

The RG flow for quantum gravity is one of the main motivations to study the
renormalization of Lorentzian gauge theories. However, even simple semi-classical
arguments (the study of the propagation of quantum matter on a classical back-
ground, and the reaction of the background to quantum effects) can, as Hawking
showed, provide many useful insights for our understanding of the fundamental
theory of quantum gravity. In the last chapter, we replicate the gedanken experi-
ments of Bekenstein and Hawking, of throwing a small quantum perturbation into
a black hole, and analyse how the black hole reacts. In particular, we study how
the black hole reacts to changes in entropy of the matter fields on its background.
Since the quantum fields are dynamically evolving, we study the general case of a
dynamical black hole, but preserving the important technical assumption of spher-
ical symmetry. This allows us to show that, under changes in entropy of the matter
fields, the black hole reacts with a change of one quarter of its dynamical horizon
area. We are thus able to prove an entropy-area law, in semi-classical gravity, for
dynamical black holes.

The back-reaction problem of relative entropy on horizons can be then gener-
alised to a variety of contexts; in particular, using similar techniques it is possible
to show that the back-reaction of relative entropy equals minus one-quarter the
area of the cosmological horizon in de Sitter space.

Summary and results

The thesis is organised as follows. In the first two chapters, we review the theoret-
ical foundations of the algebraic approach for gauge theories in the BV formalism,
in globally hyperbolic spacetimes. In Chapter 2, we review the construction of the
interacting algebra of observables, of Hadamard states, and the GNS representa-
tion of the algebra for scalar fields. We also discuss in some detail the connection
of this formalism with the standard path-integral representation of flat space QFT.
In Chapter 3, we review the classical and quantum theory of gauge theories in the
BV formalism, their renormalization as effective field theories with the Epstein-
Glaser renormalization, and the derivation of the Quantum Master Equation as a
sufficient condition to have gauge-invariant, on-shell interacting observables.

We start the discussion of new results in Chapter 4, where we show how to
construct the generating functionals for correlation functions in curved spacetimes
and in general Hadamard states, providing the relevant definitions in the pAQFT
formalism. We also discuss the introduction of a local regulator in the generating
functionals, how it effectively acts as a mass parameter for correlation functions,
andwe provemany useful properties of the effective average action, that generalise
known results in Euclidean settings to curved Lorentzian spacetimes.

In Chapter 5, we derive the RG flow equations for gauge theories in globally
hyperbolic spacetimes and in generic Hadamard states. We show how to write the
RG flow equations in order to have control on the state dependence of the flow,
their connection with the standard form of the Wetterich equation, and we write
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them as partial differential equations for the effective average action, with initial
data given by the background manifold, a Hadamard reference state for the free
theory, and an initial data provided by a microscopic action in the infinite scale
limit.

In Chapter 6, we show that if the effective average action does not contain
derivatives higher than second order, and if it is a local functional of the fields, the
RG flow equations admit local solutions. The main idea is to use the Nash-Moser
theorem for the existence of an inverse of tame operators in tame Fréchet spaces.

In Chapter 7, we discuss a novel mechanism to derive Slavnov-Taylor identities
for the effective average action, in Zinn-Justin form. The main idea is to introduce
an additional auxiliary field, coupledwith the BRST variation of the regulator term,
and a scale-dependent BV differential. The original BV invariance of the classical
action is generalised to a larger, scale-dependent symmetry for an extended action.
At the quantum level, this larger symmetry gives the extended Slavnov-Taylor iden-
tities for the effective average action. Thanks to their linear structure, the extended
Slavnov-Taylor identities can be solved in cohomology, providing an exact, non-
perturbative constraint on the functional form of the effective average action. We
then show that the symmetry is compatible with the flow, in the sense that, once it
is satisfied at some scale 𝑘 = �̄�, it is satisfied at all scales.

In Chapter 8, we discuss some applications of the general formalism. We start
with an approximation scheme for the effective average action, called Local Poten-
tial Approximation for its similarity with the approximation of the same name that
is widely studied in the Euclidean literature. We then recover known results on the
fixed-point structure of the RG flow for scalar fields in Minkowski vacuum, in 3
and 4 dimensions. We then show that a thermal state introduces a new, non-trivial
fixed point in the flowof the scalar field in 4-dimensionalMinkowski space, demon-
strating the relevance of the reference state in the RG flow. We then compute the
RG flow for the scalar field, in the Bunch-Davies vacuum in de Sitter, showing that
the general formalism can be successfully applied to curved spacetimes. We again
find a non-trivial fixed in the flow.

As a last application, we study the flow of quantum gravity in the Einstein-
Hilbert truncation. Instead of choosing a background and a state for the graviton,
we are able to isolate background and state independent terms in the flow. Con-
sidering only these terms, the flow exhibit a non-trivial fixed point, supporting
the evidence that quantum gravity is non-perturbatively renormalizable also in
Lorentzian spacetimes.

Finally, in Chapter 9, we discuss the effects of relative entropy on the dynam-
ics of dynamical black holes. In this case, we consider the simple case of a free,
massless scalar field. However, even this simple model provides rich insights in the
thermodynamics of black holes, and we prove an entropy-area law for the horizon
of a dynamical black hole with spherical symmetry. Finally, we show that a similar
result holds in the case of cosmological horizons of de Sitter space.

The main results are:
⋄ The derivation of RGflow equations for gauge theories in curved spacetimes
and Hadamard states, given in Eq. (5.6);

⋄ The derivation of extended Slavnov-Taylor identities in Zinn-Justin form,
that follow from the QuantumMaster Equation, given in Eq. (7.35);

⋄ The constructive proof of existence of local solutions of the RG flow equa-
tions, based on the Nash-Moser theorem and on the assumption that the ef-
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fective potential does not contain derivatives of the Dirac delta, summarised
in Theorem (6.14);

⋄ The application of the RG flow to quantum gravity in the Einstein-Hilbert
truncation, exhibiting a non-trivial fixed point, discussed in Section 8.4;

⋄ The proof of the entropy-area law for dynamical, spherically symmetric black
holes, computed from themodular theory for a scalar field, given in Eq. (9.65).

⋄ A similar proof for an entropy-area law for the cosmological horizons in de
Sitter spacetime, given in Eq. (9.84).

The main results presented in this thesis appeared in previous publications [80,
81, 83–86]. The section on the perturbative agreement for gauge theories, Section
3.5, and the study of the Wilson-Fisher fixed point, Section 8.2.3, did not appear
elsewhere.



2 Algebraic approach to QFT

2 . 1 the necessity of the algebraic approach

The existence of particles is one of the fundamental predictions of Quantum Field
Theory (QFT) in flat, Minkowski spacetime. QFT originated from the necessity
of accommodating the principles of Special Relativity into Quantum Mechanics,
which in essentially a unique way lead to QFT as we know it today [243]. In partic-
ular, the representations of the Poincaré group, which is the group of symmetries
of Minkowski spacetime, plays a fundamental role in determining the particle con-
tent of QFT. As a matter of fact, at some point any theoretical physicist learns that
particles are certain irreducible representations of the Poincaré group, according
to Wigner’s classification [248].

However, in order to generalise QFT to curved, dynamical spacetimes, we need
to generalise the usual construction of flat space QFT to situations in which the
background geometry is curved under the influence of gravity. On a practical level,
such a generalisation is of crucial importance to understand those extreme situa-
tions in which quantum effects and the spacetime curvature are both important.
Conceptually, the principles of General Relativity, and in particular general covari-
ance, imply that the spacetime is a dynamical actor, that cannot be chosen a priori,
but must be determined from the distribution of matter via the Einstein field equa-
tions. In order to incorporate general covariance in our theories, we need to study
QFT in general curved spacetimes.

Moving away from flat space, Poincaré invariance is perhaps the most impor-
tant concept that needs to be abandoned. The absence of Poincaré invariance im-
plies that the particle concept loses its fundamental status in curved space: in fact,
in general, different observers can detect different particle contents. The Unruh ef-
fect [238] and Hawking radiation [147] can both be interpreted as instances of this
general phenomenon.

The ambiguity in the notion of particles is reflected in the mathematical struc-
ture of QFT in curved spacetimes. In QFT, observables form an algebra with an in-
finite numbers of generators, the smeared fields 𝜑(𝑓 ) labelled by test functions, sat-
isfying canonical commutation relations. As opposed to the quantum-mechanical
case, in QFT there is an infinite number of unitarily inequivalent Hilbert space rep-
resentations of the commutation relations, since in this infinite-dimensional set-
ting the Stone-von Neumann theorem does not apply [190]. In flat space, Poincaré
invariance picks a preferred vacuum state in a Hilbert space, selecting a preferred
representation; particles are then states obtained exciting the Poincaré invariant
vacuum. Even though not all states of physical interest are in this Hilbert space,
such as thermal states, the vacuum representation of QFT forms the basis to com-

17
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pute scattering amplitudes, and gives predictions that are in astonishing agreement
with experiment [145].

In the absence of Poincaré invariance, there is, in general, no preferred vac-
uum state; thus, there is no preferred Hilbert space representation of the quantum
algebra of observables, and no preferred notion of particle. Therefore, instead of
the Hilbert space of particle states, it is natural to take the algebra itself as the fun-
damental object; different algebra representations will describe different physical
situations.

The algebraic approach takes as fundamental input the algebra of observables,
generated by the smeared fields 𝜑(𝑓 ), subject to commutation relations. It is then
possible to discuss general properties of the QFT at hand from its algebra, without
referring to a particular state. The choice of the state is introduced at a second
stage, and it depends on the physical model under consideration: it is possible, for
example, to evaluate the expectation value of some observable in a vacuum state
or in a thermal state at finite temperature; the values will in general disagree, since
they correspond to different physical situations, but the observable itself remains
well-defined as an element of the underlying algebra.

None of these considerations are new. The foundations of the algebraic ap-
proach lie in Haag-Kastler axioms, first formulated in 1964 [142], that describe a
free QFT in flat spacetime as the assignment of a von Neumann algebra to each
open region in a spacetime [141]. The axioms were then modified to the assignment
of algebras to any open region in a globally hyperbolic spacetime [61, 92]. More
precisely, in order to have a QFT compatible not only with local covariance, but
with the general covariance of General Relativity, a QFT must be defined on “all
spacetimes at once”: the mathematical formulation is that of a functor from the cat-
egory of globally hyperbolic spacetimes to 𝐶∗−algebras, preserving isotony under
inclusions of open regions and satisfying Einstein causality [66].

The inclusion of interactions in the algebraic approach is based on the obser-
vation [169] that renormalization theory, in the form of Epstein and Glaser renor-
malization procedure [106], produces local nets of algebras of interacting observ-
ables. However, these algebras are not 𝐶∗−algebras but only formal power series
in a perturbative parameter _, with coefficients in an involutive ∗−algebra. The
Haag-Kastler axioms must then be relaxed to the assignment of a ∗−algebra to
open spacetime regions.

Therefore, it is possible to formulate a QFT as a generally covariant theory, as-
signing a formal power series in some ∗−algebra to any globally hyperbolic space-
time. The result is a representation of interacting observables in the free algebra as
formal power series. Causal perturbation theory allows to compute any interacting
observable as quantum corrections to its free counterpart, at the desired order in
the perturbative parameter.

InteractingQFTs in the algebraic approachwere developed in detail around the
early 2000s [61, 97], when the characterisation of the Hadamard condition frommi-
crolocal analysis by Radzikowski gave the final input for the construction of inter-
acting observables [209, 210]. Thanks to the microlocal approach, it was possible
to prove the existence of Wick polynomials in general curved spacetimes, study
the renormalization group flow, and classify possible renormalization ambiguities
[158–161]. Finally, based on causal perturbation theory, it was possible to prove the
renormalization of quantum Yang-Mills theories [156] and of general gauge theo-
ries in the Batalin-Vilkovisky formalism [116, 119]. It is important to stress that the
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Epstein-Glaser renormalization procedure works perturbatively, but it does not
assume power-counting renormalizability; as such, it can be applied to any theory
“renormalizable in the modern sense” [135], including gravity.

In this Chapter, we introduce the fundamental concepts and techniques of the
algebraic approach to QFT on curved spacetimes for scalar field theories, while
in the next one we discuss the BV formalism for gauge theories. The presenta-
tion follows the functional approach to algebraic QFT [56, 57]. We provide here a
short summary of themain steps, postponing the definitions and details in the next
sections. In this approach, classical observables are described by certain complex-
valued functionals 𝐹 ∈ F̀ 𝑐 over off-shell field configurations 𝜑, which are sections
of some vector bundle over the background manifold. The closure under point-
wise product defines the classical algebra of observables; a typical example is the
scalar field, which is a section of smooth functions on the manifold. Using the free
equations of motion, and the requirement that the algebra should include non-
linear observables, the commutative product is deformed in a non-commutative
one, defining the quantum algebra of free observables. The Feynman propagator
for the free theory provides a time-ordered product for regular functionals; time-
ordered products between local functionals are defined axiomatically, and explic-
itly constructed extending the time-ordered products for regular functionals with
the Epstein-Glaser renormalization procedure. From the time-ordered products
for local observables it is possible to construct an algebraic 𝑆−matrix and the Bo-
goliubov map, which represents interacting observables as a formal power series
in the free algebra. Any observable can then be evaluated in some Hadamard state,
that in the algebraic approach is a functional from the algebra to complex num-
bers. The perturbative expansion of the state-evaluated Bogoliubov map of some
observable corresponds to an expansion in Feynman diagrams.

2 .2 classical field theory

We start introducing the kinematical data and the classical algebra of observables,
with a particular focus on its properties underlying deformation quantization. The
whole framework is based on the functional approach to pAQFT, which has been
first introduced in [57].

In order to emphasise general covariance, it is possible to formulate pAQFT in
the language of category theory, as a functor assigning an algebra to the category
of globally hyperbolic spacetimes [66, 116, 119, 212]. Then, the construction is man-
ifestly independent on the geometric background. Here, for concreteness, we fix
an arbitrary, Hausdorff, second-countable, paracompact, orientable, smooth man-
ifold [148], with Lorentzian metric 𝑔 with signature (−,+, . . . ,+), and we call it
a spacetime (, 𝑔). We further assume that the spacetime is time-orientable and
globally hyperbolic, which means that there is no closed causal curve, and given
any two points 𝑝, 𝑞 ∈ , the intersection 𝐽+(𝑝) ∩ 𝐽− (𝑞) of the causal future 𝐽+(𝑝)
of 𝑝 with the causal past 𝐽− (𝑞) of 𝑞 is compact.

The physical content of the theory is specified by a field configuration space
E() ∋ 𝜑, assumed to be the space of real-valued smooth sections 𝜑 of some
natural vector bundle with fibre 𝑉 over , E() := Γ(, 𝑉 ). Typical exam-
ples of physical interest are scalar field theories, that have as configuration space
real-valued smooth functions 𝐶∞(,R); Yang-Mills-type theories, with configu-
ration space real-valued sections of the trivial principal bundle E = Ω1(,𝔤),



algebraic approach to qft 20

with 𝔤 some Lie algebra of some compact Lie group; and perturbative gravity,
with configuration space consisting of sections of the space of symmetric biten-
sors E= Γ(𝑇∗()⊗2). Generally speaking, the configuration space is modelled as
some locally convex topological vector space.

Classical observables are smooth maps (in the sense of Bastiani [25]) from the
configuration space to complex numbers, i.e. functionals 𝐹 : E() → C. Notice
that observables are defined as functionals of off-shell field configurations, that do
not satisfy any equation of motion. The condition of being on-shell will be imple-
mented at the level of states.

To define a class of physically interesting observables, these functionals need
to satisfy a set of conditions. First, they must be smooth with respect to functional
derivatives, defined as the Fréchet derivative.

Definition 2.1 (Fréchet derivative). Let E() be the topological vector space of
field configurations, and let 𝐹 :  ⊂ E() → C be a classical observable. If it
exists, the Fréchet derivative of 𝐹 at the point 𝜑 ∈  in the direction 𝜓 is defined
as the distribution 𝐷𝐹 ∈ E′

𝐷𝐹 (𝜑) (𝜓) := lim
𝑡→0

1
𝑡
(𝐹 (𝜑 + 𝑡𝜓) − 𝐹 (𝜑)) .

E′() denotes the space of compactly supported distributions [166].

A functional is called differentiable in 𝜑 if 𝐷𝐹 (𝜑) (𝜓) exists for all 𝜓. Higher-
order derivatives are defined by

𝐷𝑛𝐹 (𝜑) (𝜓1, . . . , 𝜓𝑛) :=

lim
𝑡→0

1
𝑡

[
𝐷𝑛−1𝐹 (𝜑 + 𝑡𝜓𝑛) (𝜓1, . . . , 𝜓𝑛−1) − 𝐷𝑛−1𝐹 (𝜑) (𝜓1, . . . , 𝜓𝑛−1)

]
.

Denoting the standard pairing on distributions ⟨·, ·⟩, the Fréchet derivative is
given by 𝐷𝑛𝐹 (𝜑) (𝜓1, . . . , 𝜓𝑛) = ⟨𝐹 (𝑛) (𝜑),

⊗𝑛

𝑖 𝜓𝑖⟩.

Definition 2.2 (Smooth functional). Let E() be the topological vector space of
field configurations, and let 𝐹 :  ⊂ E() → C be a classical observable. For
every 𝑛, the 𝑛-th functional derivative of any smooth functional 𝐹 must be a well
defined, compactly supported, symmetric distribution 𝐹 (𝑛) ∈ E′().

In the following, for notational simplicity we will often identify the distribu-
tionwith its integral kernel, simplywriting 𝐹 (𝑛) (𝑥1, . . . , 𝑥𝑛) := 𝛿𝑛𝐹 (𝜑)

𝛿𝜑(𝑥1 ) ...𝛿 𝜑(𝑥𝑛 ) .More-
over, we will write the action of linear operators as the directional derivative as
⟨𝐹 (1) (𝜑), 𝜓⟩ = 𝐹 (1) (𝜑)𝜓, omitting the pairing.

To implement locality, we require that the functionals have compact support,
where the support of a functional is defined as the support of its first derivative.

Definition 2.3 (Support of a functional). Let 𝐹 : E() → C be a smooth func-
tional on the configuration space E(). The support of the functional 𝐹 is defined
as the set supp 𝐹 ⊆  satisfying

supp 𝐹 := {𝑥 ∈ M | ∀ neighbourhoods𝑈 of 𝑥 ∃ 𝜑, 𝜓 ∈ E(),
supp𝜓 ⊆ 𝑈 : 𝐹 (𝜑 + 𝜓) ≠ 𝐹 (𝜑)} .
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Finally, the set of observables of physical interest is that ofmicrocausal function-
als, defined by a certain condition on the wavefront set of their functional deriva-
tives.

The wavefront set of a distribution encodes both its singular points and its
singular directions. The basic intuition is that the more a distribution is regular,
the faster it decays in Fourier space. The wavefront set thus encodes the directions
in which a distribution does not decay fast.

Definition 2.4 (Wavefront set [166]). The wavefront set WF of a distribution 𝜑 ∈
D′() is defined as the complement of the set of all points (𝑥0, 𝑝0) ∈ 𝑇∗(), 𝑝0 ≠

0 in which 𝜑 decays sufficiently rapidly: that is, for any 𝑛 ∈ N there exist a smooth
function 𝑓 ∈ 𝐶∞

𝑐 () with 𝑓 (𝑥0) = 1, an open conic neighbourhood 𝐶 of 𝑝0, and
a constant 𝑐𝑛 such that

�̂�(𝑓 ) (𝑝) ≤ 𝑐𝑛(1 + |𝑝|)−𝑛 ∀𝑝 ∈ 𝐶 ,

where the hat denotes the Fourier transform, �̂�(𝑓 ) (𝑝) = 𝜑(𝑒𝑖𝑝·𝑓 ).
A conical neighbourhood of a point 𝑝0 ∈ R𝑛 \ {0} is a set 𝐶 ⊂ R𝑛 such that

𝐶 contains the ball 𝐵(𝑝0, 𝜖) = {𝑝 ∈ R𝑛 | |𝑝0 − 𝑝| < 0} for some 𝜖 > 0, and ∀𝑝 ∈
𝐶,∀𝛼 > 0 𝛼𝑝 ∈ 𝐶.

The set of microcausal functionals are now identified by the following condi-
tion on the wavefront set of their derivatives.

Definition 2.5 (Microcausal functionals). The space ofmicrocausal functionals F̀ 𝑐

is the subset of the space of smooth functionals with compact support 𝐹, satisfying

WF(𝐹 (𝑛) ) ∩ (𝑉 𝑛

+ ∪ 𝑉
𝑛

−) = ∅ .

𝑉+(−) denotes the subset of the cotangent space with elements (𝑥, 𝑝) such that 𝑝 is
contained in the future (past) light-cone of 𝑥, and 𝑉+(−) denotes its closure. More-
over, a microcausal functional 𝐹 ∈ F̀ 𝑐 has only a finite number of non-vanishing
derivatives, 𝐹 (𝑛+𝑚) = 0 ∀𝜑 ∈ E(), ∀𝑚 > 0, for some order 𝑛 ∈ N+.

The vector space F̀ 𝑐 is equipped with a weak topology induced by the natural
topologies of distributions. In fact, 𝐴𝑙 ∈ F̀ 𝑐 converges to 𝐴 ∈ F̀ 𝑐 for 𝑙 → ∞
if for every 𝑛 and for every field configuration 𝜑 ∈ E(), 𝐴(𝑛)

𝑙
(𝜑) converges to

𝐴(𝑛) (𝜑) in E′(𝑛) [211].
There are two important subsets of the space of microcausal functionals. The

first is the set of regular functionalsFreg, satisfying WF(𝐹 (𝑛) ) = ∅ ∀𝑛; the prototype
is the smeared field

Φ(𝑓 ) :=
∫
𝑥∈

𝑓 (𝑥)𝜑(𝑥)d`(𝑥) , (2.1)

The notation for the integral is
∫
𝑥∈ d`(𝑥), with `(𝑥) the measure induced by the

spacetime metric 𝑔 on , and  ⊂  the region of integration. Whenever we
integrate over the whole spacetime, we will omit and the integration measure
and simply write

∫
𝑥
for

∫
𝑥∈ d`(𝑥).

The second important subset is the set of local functionals Floc, that are useful
to describe local observables and interaction Lagrangians. They are defined by the
conditions that i) their 𝑛-th derivatives 𝐹 (𝑛) are only supported on the diagonal
𝑛 := {(𝑥1, . . . , 𝑥𝑛) ⊂ 𝑛 | ∀𝑖, 𝑗 𝑥𝑖 = 𝑥 𝑗} and ii) they satisfy WF(𝐹 (𝑛) ) ⊥ 𝑇𝑛,
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meaning that, for every covector 𝑝 in WF(𝐹 (𝑛) ), 𝑔−1𝑝 has vanishing scalar product
with any vector in 𝑇𝑛. The condition on the support of their derivatives implies
that local functionals takes the familiar form

𝐹 (𝜑) =
∫
𝑥

𝑓 ( 𝑗𝑥 (𝜑)) , (2.2)

where 𝑓 is a function on the jet space, and 𝑗𝑥 (𝜑) = (𝑥, 𝜑(𝑥), 𝜕𝜑(𝑥), . . . is the 𝑘-
jet space of 𝜑 evaluated at 𝑥. The condition on the wavefront set implies that local
functionals coincide with the set of additive functionals [57, 100], where a functional
is additive if, given 𝜑1, 𝜑2, 𝜑3 ∈ E() such that supp 𝜑1 ∩ supp 𝜑3 = ∅, it holds
that

𝐹 (𝜑1 + 𝜑2 + 𝜑3) = 𝐹 (𝜑1 + 𝜑2) − 𝐹 (𝜑2) + 𝐹 (𝜑2 + 𝜑3) . (2.3)

A typical example of a functional which is local but not regular are local powers of
the field at a point, Φ𝑛(𝑓 ) :=

∫
𝑥
𝑓 (𝑥)𝜑𝑛(𝑥).

Finally, we can define the space of off-shell classical observables equipping the
space of microcausal functionals F̀ 𝑐 with a pointwise product and an involution.

Definition 2.6. The product on the space of microcausal functionals F̀ 𝑐 is de-
fined as the pointwise product between 𝐹, 𝐺 ∈ F̀ 𝑐 as

𝐹 · 𝐺(𝜑) := 𝐹 (𝜑)𝐺(𝜑) .

Furthermore, on the space of microcausal functionals we define an involution ∗ as
complex conjugation,

𝐹∗(𝜑) := 𝐹 (𝜑) ,
where the over-bar denotes complex conjugation. The space of microcausal func-
tionals, equipped with the commutative product · and the involution ∗, defines
the commutative, involutive, and unital ∗−algebra of off-shell classical observables
(F̀ 𝑐 , ·, ∗).

2 .3 classical dynamics , and a teaser on symmetries

The algebra of classical observables defines the kinematical data of a classical field
theory. The dynamics is defined providing second-order partial differential equa-
tions for the fields, which usually are derived from the Euler-Lagrange derivative
of some action functional.

On globally hyperbolic spacetimes the definition of an action functional re-
quires some care: in fact, globally hyperbolic spacetimes are non-compact. Since
non-trivial solutions of globally hyperbolic wave equations have non-compact sup-
port, there is no non-trivial restriction on the support of field configurations. It
follows immediately that the usual definition of the action as the integral over the
whole spacetime of some Lagrangian density gives a divergent quantity. Instead,
dynamics needs a description in terms of a generalised Lagrangian.

Definition 2.7 (Generalised Lagrangian [61]). A Lagrangian 𝐿 is defined as a natu-
ral transformation from the space of compactly supported, smooth test functions
𝐶∞
𝑐 () to the space of local functionals Floc, satisfying supp(𝐿(𝑓 )) ⊆ supp(𝑓 )

and the additivity rule

𝐿(𝑓 + 𝑔 + ℎ) = 𝐿(𝑓 + 𝑔) + 𝐿(𝑔 + ℎ) − 𝐿(𝑔) , 𝑓 , 𝑔, ℎ ∈ 𝐶∞
𝑐 () , supp 𝑓 ∩ supp ℎ = ∅ .

(2.4)
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The additivity rule and the support properties imply that 𝐿 is a local functional.
The action 𝐼 (𝐿) is defined as an equivalence class of Lagrangians, where two La-
grangians are equivalent if

supp(𝐿1 − 𝐿2) (𝑓 ) ⊂ supp d𝑓 . (2.5)

More explicitly, the function 𝑓 in the Lagrangian acts as an IR cut-off: it is equal
to 1 on the region of spacetime where we want to study our theory, so that the
action integral is well-defined. This cut-off is eventually removed by taking the
adiabatic limit 𝑓 → 1 in a suitable way, typically at the level of expectation values
of observables or of correlation functions, where the adiabatic limit gives finite
results. Assuming without loss of generality that there exists a local chart on 
such that the function 𝑓 is equal to 1 in the vicinity of its origin, the adiabatic limit
can be taken replacing the cut-off function with 𝑓 (𝑥/𝑛), and considering the limit
𝑛→ ∞ of the expectation values.

There are various ways to introduce the IR cut-off in the typical Lagrangian
densities of QFT. In Section 3.4.1 we will comment on an explicit construction of
a generalised Lagrangian from the typical Lagrangian densities of QFT, such as
the _𝜑4−theory for self-interacting scalar fields or Yang-Mills type theories, which
preserves the symmetries of the original Lagrangian density.

The Euler-Lagrange derivative of 𝐼 is defined by

⟨𝐼 (1) (𝜑), ℎ⟩ := ⟨𝐿(1) (𝑓 ) (𝜑), ℎ⟩ , (2.6)

where ℎ is compactly supported and 𝑓 = 1 on supp ℎ. The equations of motion
(EOM) are

𝐼 (1) (𝜑) = 0 . (2.7)

The space of solutions of the equations of motion (2.7) is denoted by Eos (),
and functionals on this subspace are called on-shell functionals, Fos. This space
can be characterised as the quotient space Fos = F̀ 𝑐/F0, where F0 is the ideal
generated by the equations of motion, i.e. the space of functionals that vanish on-
shell [213].

In the case of an action 𝐼0 quadratic in the fields, the second derivative of 𝐼0
with respect to the fields defines an operator 𝑃0, called the free wave operator, which
is field-independent. 𝑃0 is a second-order partial differential operator defining the
equations of motion 𝑃0𝜑 = 𝐼 (1) (𝜑) = 0.

Definition 2.8 (Free wave operator). Let 𝐼0 be an action functional quadratic in
the field configuration. The second derivative of the action 𝐼0, with respect to the
fields is defined by

⟨𝐼 (2)0 , ℎ1 ⊗ ℎ2⟩ := ⟨𝐿(2)0 , ℎ1 ⊗ ℎ2⟩ ,

where ℎ1, ℎ2 are compactly supported and 𝑓 = 1 on the supp ℎ1 and supp ℎ2.
By definition, 𝐼 (2)0 defines a linear operator 𝐼 (2)0 : E→ 𝐿(E𝑐×E𝑐 ,C), and from

the locality of the Lagrangian it follows that it can be extended to a linear operator
on E× E𝑐 [55]. Then, by Schwartz kernel theorem 𝐼

(2)
0 induces a continuous linear

operator 𝑃0 : E→ E∗, where 𝐸∗ = Γ(, 𝑉 ∗) denotes the dual bundle, where 𝑉 ∗

is the dual bundle of 𝑉 . The free wave operator is thus determined by the second
derivatives of the free action in the adiabatic limit, 𝑃0 = 𝐼 (2) |𝑓=1.
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The off-shell algebra of classical field theory incorporates the dynamics of the
fields through the Peierls bracket, which is defined from the propagators of the free
equations of motion. Moreover, the propagators also define the quantum product
in deformation quantization. The propagators are fundamental solutions of the
EOMs satisfying a certain condition on their supports:

Definition 2.9 (Advanced and retarded propagators). If they exist, the advanced
and retarded propagators Δ𝐴,𝑅 are two linear maps from the sections of the com-
pactly supported dual bundle E∗

𝑐 = Γ(, 𝑉 ∗), to the configuration space Δ𝐴,𝑅 :
E∗
𝑐 () → E() satisfying

𝑃0Δ𝐴,𝑅 = idE∗
𝑐
, (2.8)

Δ𝐴,𝑅𝑃0 = idE𝑐 , (2.9)

and the support properties

supp(Δ𝐴,𝑅𝑓 ) ⊂ 𝐽+,− (supp 𝑓 ) ,∀𝑓 ∈ E∗
𝑐 .

𝐽+(−) (𝑥) denotes the causal future (past) of 𝑥, and to the advanced propagator cor-
responds 𝐽− in the above formula.

Normally hyperbolic operators, that are operators whose principal symbol is
𝑔−1(𝑝, 𝑝), where 𝑔 is the spacetimemetric, on globally hyperbolic spacetimes admit
advanced and retarded propagators, and they are unique. An example of normally
hyperbolic operator is the d’Alembertian□ = 𝑔(∇,∇).

We can now give some motivation for the Batalin-Vilkovisky (BV) formalism,
which provides a homological framework to quantize theories admitting local sym-
metries. In fact, an action admitting local symmetries cannot provide a normally
hyperbolic operator. This is a consequence of Noether’s identities for the classical
action [116, 134]. An action invariant under some local transformation satisfies

⟨𝑅(𝜑), 𝐼 (1)⟩ = 0 , (2.10)

where 𝑅 : E() → E() are the infinitesimal generators of the symmetry.
The above relation can be read formally as 𝛿 𝐼 = 𝑅(𝜑) 𝛿 𝐼

𝛿𝜑
= 0, so it is nothing

but the infinitesimal variation of the action under some local transformation. By
differentiating this equation with respect to the fields we get

⟨𝑅(𝜑), 𝐼 (2)⟩ + ⟨𝐼 (1) , 𝑅 (1) (𝜑)⟩ = 0 .

On the critical surface 𝐼 (1) = 0, the free wave operator 𝑃0 = 𝐼 (2) |𝑓=1 admits non-
trivial solutions 𝑅. If 𝑅 is compactly supported, 𝑃0 admits compactly supported
solutions. However, a normally hyperbolic operator on globally hyperbolic space-
time do not admit compactly supported solutions, so 𝑃0 cannot be a normally hy-
perbolic operator.

In theBV formalism, the procedure of gauge-fixing solves the problemby adding
extra terms “by hand” to the action, breaking the symmetries of the theory so that
the resulting wave operator is normally hyperbolic. The BV formalism provides
control on the symmetries of the theory and guarantees that the gauge-fixed action
describes the same physics as the original, gauge-invariant theory. We will discuss
in detail the BV formalism in the next Chapter.
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For now, we will simply assume that the free wave operator 𝑃0 is normally
hyperbolic, so that 𝐼 can either be an action that does not admit local symmetries,
or a gauge-fixed action for some gauge theory. An example is the free action for a
real scalar field,

𝐼0(𝜑) = −
∫
𝑥

(
1
2
∇𝑎𝜑∇𝑎𝜑 +

b

2
𝑅𝜑2 + 𝑚2

2
𝜑2

)
𝑓 , (2.11)

where 𝑚 is the mass of the field and b its coupling to the scalar curvature 𝑅. In
the above action we chose the IR cut-off function in the simplest possible way, as a
multiplicative cut-off in front of the Lagrangian; we will see later that, in the case
of gauge theories, a refinement is necessary in order to preserve local symmetries
of the theory.

The Euler-Lagrange derivative of the free action for the scalar field gives the
equations of motion (EOMs) 𝑃0𝜑 = 0, where 𝑃0 is the linear, normally hyperbolic
differential operator

𝑃0 = □ − 𝑚2 − b𝑅 .

From the advanced and retarded propagators Δ𝐴,𝑅 of 𝑃0 we can now define the
Pauli-Jordan commutator function, or causal propagator.

Definition 2.10 (Pauli-Jordan commutator function). The Pauli-Jordan commuta-
tor function, or causal propagator, is a continuous linear map Δ : E∗

𝑐 () → E()
defines as the difference between the retarded and advanced propagators,

Δ := Δ𝑅 − Δ𝐴 .

For every solution 𝑢 of the EOMs with compactly supported initial data on
some Cauchy surface Σ, there exists a 𝑓 ∈ E∗

𝑐 () such that 𝑢 = Δ𝑓 . Conversely,
for every 𝑓 ∈ E∗

𝑐 () such thatΔ𝑓 = 0, there exists a 𝑔 ∈ E𝑐 () such that 𝑓 = 𝑃0𝑔.
Thanks to the continuity and linearity of Δ, Schwartz kernel theorem guaran-

tees that
Δ(𝑓 , 𝑔) := ⟨𝑓 ,Δ𝑔⟩

defines a distributionΔ ∈ E∗
𝑐
′(⊗). We denote the bi-distributionΔ(𝑓 , 𝑔) and

the operator Δ𝑓 with the same symbol. Moreover, from the support properties of
the advanced and retarded propagators, the commutator function Δ(𝑓 , 𝑔) vanishes
when the supports of 𝑓 and 𝑔 are space-like separated. Additionally, again from
the properties of Δ𝐴,𝑅 , since its formal adjoint is −Δ the commutator function is
antisymmetric, Δ(𝑓 , 𝑔) = −Δ(𝑔, 𝑓 ).

In the simple case of a scalar field theory, the configuration space is the space of
real-valued smooth functions on the spacetime, E() = 𝐶∞(), and the propa-
gators are maps Δ : 𝐶∞

𝑐 () → 𝐶∞().
The commutator function provides the basic ingredient for the Peierls bracket

of classical field theory.

2 .3 . 1 Peierls bracket

The ∗−algebra of classical field theory up to now does not contain any information
about the dynamics of the fields. This is introduced by the additional structure of a
symplectic form in the algebra, defining a constant Poisson bracket known as Peierls
bracket. The Peierls bracket extends the canonical bracket on on-shell variables
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of classical mechanics to the off-shell algebra, and introduces a symplectic form
on the phase space of classical solutions independently on the choice of canoni-
cal variables, thus preserving covariance [79]. Moreover, by the principle of cor-
respondence, the Peierls bracket determines the canonical commutation relations
between quantum fields.

Definition 2.11 (Peierls bracket). Let 𝐹, 𝐺 ∈ F̀ 𝑐 be two microcausal functionals.
The Peierls bracket is defined as the bilinear operator

⌊𝐹, 𝐺⌋ := ⟨𝐹 (1) ,Δ𝐺 (1)⟩ , 𝐹, 𝐺 ∈ F̀ 𝑐 .

The Peierls bracket is antisymmetric and bilinear, by the properties of the com-
mutator function, and it satisfies the Leibniz rule.While the space of local function-
als is not closed under the Peierls bracket, the space of microcausal functionals is;
for this reason, microcausal functionals are themost important class of functionals
in classical field theory.

The Peierls bracket is equivalent, on the phase space of classical solutions, to the
canonical symplectic form (see [56], Chapter 2). Fixing an arbitrary Cauchy surface
Σ in the spacetime, the canonical phase space of classical solutions is identified
by the smooth initial data 𝑓 with space-like support on Σ, since any solution of the
EOM can be written as Eos () ∋ 𝜑𝑓 := Δ𝑓 . The phase space Eos then admits a
canonical symplectic structure

𝜎 (𝜑𝑓 , 𝜑𝑔) =
∫
Σ

(
𝜑𝑔∇`𝜑𝑓 − 𝜑𝑓∇`𝜑𝑔

)
dΣ` , (2.12)

where dΣ` is the directional volume element on Σ, dΣ𝑎 = 𝑛𝑎 |det ℎ|1/2 d3 𝑦, with 𝑛𝑎

the unit, future-pointing vector normal to the hypersurface, ℎ the induced 3-metric,
and 𝑦𝑎 the induced coordinates on the hypersurface. The field 𝜑𝑓 |Σ, 𝑛𝑎∇𝑎𝜑𝑓 |Σ can
be regarded as the initial position and velocity of the field, and form a set of initial
data for the propagation of the field 𝜑𝑓 . It is now possible to prove [56, 172] that
the Peierls bracket, restricted to the space of classical solutions, is equivalent to
the canonical symplectic form, in the sense that, given two linear functionals Φ(𝑓 ),
Φ(𝑔), it holds

⌊Φ(𝑓 ),Φ(𝑔)⌋ = 𝜎 (𝜑𝑓 , 𝜑𝑔) .

Naturally, by chain rule, the equivalence can be extended to generic functionals.

2 .4 deformation quantization

In the case of quantum theories satisfying linear hyperbolic equations of motions,
the algebra of free, quantumobservables is obtained from the classical one, (F̀ 𝑐 , ·, ∗),
by deforming the pointwise product to a suitable non-commutative, associative
productwhich encodes the canonical commutation relations. The non-commutative
product is defined from the free equation of motion and the commutator function.
In this sense, the quantum product encodes information on the causal structure of
the background geometry (via the supports of the propagators) and on the free part
of the action.

In order to quantize the theory, we assume that the free equations of motion,
i.e., the equations generated by the Euler-Lagrange derivative of the quadratic part
of the action 𝐼0, are defined by a second-order, normally hyperbolic operator 𝑃0.
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The action 𝐼0 could be the quadratic part of a scalar field theory or of the gauge-
fixed action of some gauge theory, for example.

We nowdeform the commutative pointwise product of elements ofFreg; by the
principle of correspondence, the quantum product ★must be in the form 𝐹 ★𝐺 =∑
ℏ𝑛𝑝𝑛(𝐹, 𝐺), with

𝑝0(𝐹, 𝐺) = 𝐹𝐺 , and (2.13)
𝑝1(𝐹, 𝐺) − 𝑝1(𝐺, 𝐹) = 𝑖ℏ⌊𝐹, 𝐺⌋ . (2.14)

It is possible to find a product constructed from the commutator function Δ sat-
isfying the principle of correspondence (2.13). Concretely, we define the quantum
product ★ on Freg as follows.

Definition 2.12 (Quantum product). Let 𝐹, 𝐺 ∈ Freg be two regular functionals.
The quantum product is defined by the formula

𝐹 ★ 𝐺 := M ◦ 𝑒Γ𝑖ℏΔ/2 (𝐹 ⊗ 𝐺) ,

ΓΔ :=
∫
𝑥,𝑦

Δ(𝑥, 𝑦) 𝛿

𝛿𝜑(𝑥) ⊗
𝛿

𝛿𝜑( 𝑦) 𝐹, 𝐺 ∈ Freg,

whereMmaps the tensor product to the pointwise product,M(𝐹⊗𝐺) (𝜑) = 𝐹 (𝜑)𝐺(𝜑).
More explicitly,

𝐹 ★ 𝐺 = 𝐹𝐺 +
∞∑︁
𝑛≥1

1
𝑛!
⟨𝐹 (𝑛) ,

(
𝑖ℏ
2
Δ

)⊗𝑛
𝐺 (𝑛)⟩ . (2.15)

Such a product implements the canonical commutation relations between lin-
ear fields, in the sense that

[𝜑(𝑓 ), 𝜑(𝑔)]★ = 𝜑(𝑓 ) ★ 𝜑(𝑔) − 𝜑(𝑔) ★ 𝜑(𝑓 ) = 𝑖ℏ⟨𝑓 ,Δ 𝑔⟩ , 𝑓 , 𝑔 ∈ E∗
𝑐 ()

and it is compatible with the involution ∗, (𝐹 ★ 𝐺)∗ = 𝐺∗ ★ 𝐹∗. Therefore, the
off-shell algebra of regular observables is given by

Areg = (Freg,★, ∗) .

The free algebraAreg is in fact generated by the identity, together with all possible
linear fields {𝜑(𝑓 ) | 𝑓 ∈ E∗

𝑐 ()}.
However, the algebra Areg is too small to define a quantum theory, since it

contains only linear combinations of smeared linear fields: it does not contain non-
linear local observables; for example, powers of the fieldΦ𝑛(𝑓 ) or the stress-energy
tensor are not in Areg. The reason for this restriction is that the product of deriva-
tives of local functionals with the commutator function is ill-defined, due to the
structure of its wavefront set.

In order to include non-linear observables, it is necessary to further deform
the product, so that it is well-defined between local functionals. This is done sub-
stituting a suitable bidistribution Δ+ in place of 𝑖Δ/2 in the construction of the
★-product, of the form

Δ+ := Δ𝑆 +
𝑖

2
Δ , (2.16)

whereΔ𝑆 is a real and symmetric distribution,whileΔ+ solves the linear equation of
motion 𝑃0 in the weak sense, and its wave front set satisfies themicrolocal spectrum
condition [63, 210].
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Definition 2.13 (Microlocal spectrum condition). Abi-distributionΔ+ : E∗()×
E∗() → C satisfies the microlocal spectrum condition if its wavefront is

WF(Δ+) = {(𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦) ∈ 𝑇∗(2) \ {0} | (𝑥, 𝑘𝑥) ∼ ( 𝑦,−𝑘𝑦), 𝑘𝑥 ⊲ 0} ,

where (𝑥, 𝑘𝑥) ∼ ( 𝑦,−𝑘𝑦) holds if 𝑥 and 𝑦 are joined by a null geodesic _, 𝑔−1𝑘𝑥
is tangent to 𝛾 at 𝑥 and −𝑘𝑦 is the parallel transport of 𝑘𝑥 along _. 𝑘𝑥 ⊲ 0 holds if
𝑔−1𝑘𝑥 is future pointing.

It is known that states that are quasifree and have a 2-point function 𝜔2 satis-
fying this condition exist, and their 2-point functions have an universal singular
structure given by the Hadamard parametrix [171, 210].

Given Δ+, we can equip F̀ 𝑐 with the quantum product ★Δ+ defined by

𝐹 ★Δ+ 𝐺 = M ◦ 𝑒ΓℏΔ+ (𝐹 ⊗ 𝐺) .

Of course, the canonical commutation relations between linear fields are preserved,
since Δ+ differs from the commutator function Δ by a symmetric bidistribution.
Moreover, the ∗-subalgebra (Freg,★Δ+ , ∗) is isomorphic toAreg. The isomorphism
𝛼 : Areg → (Freg,★Δ+ , ∗) is realised by

𝛼Δ𝑆 (𝐹) = 𝑒Γ̃ℏΔ𝑆 𝐹, Γ̃ℏΔ𝑆 =
1
2

∫
𝑥,𝑦

ℏΔ𝑆 (𝑥, 𝑦)
𝛿2

𝛿𝜑(𝑥)𝛿𝜑( 𝑦) . (2.17)

Equipping (F̀ 𝑐 ,★Δ+)with the involution defined by complex conjugation, 𝐹 (𝜑)∗ =
𝐹 (𝜑), defines the free algebra of quantum observables

AΔ+ := (F̀ 𝑐 ,★Δ+ , ∗) ,

containing local as well as regular functionals. This algebra contains functionals of
the fields 𝜑, and it is sufficient to describe scalar field theories or, more generally,
theories without local symmetries. In the case of gauge theories, the field config-
uration space must be enlarged to contain ghosts, antighosts, Nakanishi-Lautrup
fields and their respective antifields. The algebra of free quantum observables is
then constructed again by deforming the classical algebra of functionals on this
extended configuration space via a bidistribution Δ+. We will see in Chapter 3 how
the BV formalism takes care of this issue.

The construction we have presented depends on the non-canonical choice of
Δ𝑆 (or equivalently, of Δ+) in (2.16). However, different choices of Δ+ produce iso-
morphic extended algebras: the isomorphism is defined by

𝛼Δ̃+−Δ+ : (F̀ 𝑐 ,★Δ+ , ∗) → (F̀ 𝑐 ,★Δ̃+ , ∗) ,

with 𝛼 given in (2.17), and Δ̃𝑆 is a different choice of symmetric distribution. Hence,
∗-algebras obtained with different symmetric distributions Δ𝑆 are equivalent real-
izations of the same extended algebra of free observables, which we simply denote
by A.

In other words, for every choice of Δ𝑆 , (F̀ 𝑐 ,★Δ+ , ∗) is a faithful representation
of the same abstract ∗-algebraA, and elements ofAare represented in (F̀ 𝑐 ,★Δ+ , ∗)
by means of 𝛼Δ𝑆 . A particular choice of representation (F̀ 𝑐 ,★Δ+ , ∗) of A is analo-
gous to a choice of reference frame to represent quantum observables. However,
since every representation is isomorphic, the choice does not play any role in the
construction of observables, and in the following we drop the subscript Δ+ from
the definition of the quantum product.
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2 .5 states

In the algebraic formalism, states play the fundamental role of computing the ex-
pectation value of an observable from its corresponding element in the quantum
algebraA. Therefore, a state 𝜔 is defined as a positive, normalised, linear functional,
initially given on Areg and then extended to A.

Remark 2.1. Thanks to linearity, a state 𝜔 is determined once its 𝑛-point corre-
lation functions are known as distributions on compactly supported smooth func-
tions, defined by

𝜔𝑛(𝑓1, . . . , 𝑓𝑛) := 𝜔(𝜑(𝑓1) ★ . . . ★ 𝜑(𝑓𝑛)) .

Moreover, the collection of all Wick products 𝜑(𝑓1) ★ . . . ★ 𝜑(𝑓𝑛) generates the
free algebra of observables; it follows that knowledge of all correlation functions
allows for the reconstruction of the state evaluation of any interacting observable,
represented in the free algebra. ■

Since the algebra of observables is constructed as functionals over off-shell field
configurations, states need to be compatible with the equations of motion: the ker-
nel of the state must contain the field configurations that solve the equations of
motion:

F̀ 𝑐 · 𝜑(𝑃0𝑓 ) ⊂ Ker(𝜔) , 𝑓 ∈ E∗
𝑐 () . (2.18)

This guarantees that the 𝑛-point functions 𝜔𝑛 are weak solutions of the linear
equation of motion in any of their entries.

A particularly useful class of states are the quasifree or Gaussian states.

Definition 2.14 (Quasifree states). A quasifree state is a state satisfying
i. Every odd 𝑛-point function vanishes, and
ii. even 𝑛-point functions can be computed from the 2-point function accord-

ing to Wick’s rule [56]

𝜔𝑛(𝑓1, . . . 𝑓𝑛) =
∑︁

partitions
𝜔2(𝑓𝑖1 , 𝑓𝑖2) . . . 𝜔(𝑓𝑖𝑛−1 , 𝑓𝑖𝑛)

where the sum over partitions refers to all possible decompositions of the
set {1, . . . , 𝑛} into 𝑛/2 pairwise disjoint subsets of two ordered elements
{𝑖1, 𝑖2} . . . {𝑖𝑛−1, 𝑖𝑛}, with 𝑖2𝑘−1 < 𝑖2𝑘 for 𝑘 = 1, 2, . . . 𝑛/2 and 𝑖2𝑘−1 < 𝑖2𝑘+1.

It follows that fixing the symmetric part Δ𝑆 of the 2-point function uniquely
identifies a quasifree state.

If we are interested in computing expectation values in a state 𝜔 ofAwhose 2-
point function isΔ+, it is particularly useful to representAwith (F̀ 𝑐 ,★Δ+ , ∗)where
the ★-product is constructed with Δ+. In this case, the expectation value of 𝐹 ∈ A

in the state 𝜔 is simply the evaluation of 𝛼Δ𝑆 (𝐹) on the vanishing configuration,
namely 𝜔(𝐹) = 𝛼Δ𝑆 (𝐹) (0).

2 .5 . 1 Hadamard condition

We now need to extend states on the algebra of regular functionals Areg to A by
continuity, characterising the extended states by the same 𝑛-point functions. In
order to do so, among all possible states, we need to select a sufficiently regular
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class of states [211]. These states shall provide physically sensible expectation values
for the observables that are of most interest, such as correlation functions or the
renormalized stress-energy tensor.

The most widely accepted regularity condition on states is the Hadamard con-
dition. It was first rigorously formulated by Kay andWald [171], with the idea of gen-
eralising the local structure of the Minkowski vacuum 2-point function to curved
spacetimes.

Apart frommore exotic, non-differential objects that can arise in non-perturbative
quantumgravity [11], Lorentzian spacetimes are alwaysmodelled after some curved
manifold which, by definition, locally resembles flat Minkowski spacetime. It is
thus reasonable to assume that the local 2-point function of any physically sensible
state resembles the divergences of the vacuum state in Minkowski.

The Hadamard condition thus requires that the 2-point function exhibits a uni-
versal singular structure. Explicitly, for 𝑦 in a normal neighbourhood of 𝑥, the in-
tegral kernel of the 2-point function 𝜔2 must satisfy the Hadamard condition.

Definition 2.15 (Hadamard condition). Given a bidistribution 𝜔2(𝑓 , 𝑔) with inte-
gral kernel 𝜔2(𝑥, 𝑦), we say that 𝜔2 is of Hadamard form if, for any 𝑥 ∈  and any
𝑦 in a normal convex neighbourhood of 𝑥, the integral kernel 𝜔2(𝑥, 𝑦) takes the
following expression

𝜔2(𝑥, 𝑦) = lim
𝜖→0+

[
𝑢(𝑥, 𝑦)
𝜎𝜖 (𝑥, 𝑦)

+ 𝑣(𝑥, 𝑦) log
(
𝜎𝜖 (𝑥, 𝑦)
`2

)]
+ 𝑤(𝑥, 𝑦) (2.19)

:= 𝐻𝑆 (𝑥, 𝑦) +
𝑖

2
Δ(𝑥, 𝑦) + 𝑤(𝑥, 𝑦) (2.20)

:= 𝐻 (𝑥, 𝑦) + 𝑤(𝑥, 𝑦) . (2.21)

where 𝑢, 𝑣, and 𝑤 are smooth functions, 𝜎𝜖 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) + 𝑖𝜖(𝑡(𝑥) − 𝑡( 𝑦)) with
𝑡 a generic time function, and 𝜎 , known as the Synge world function, is one half
of the squared geodesic distance taken with sign. The function 𝑢 is the square root
of the van-Vleck-Morette determinant [207], so it is a purely geometric object; 𝑣
is uniquely fixed by geometry, the coupling constants and mass parameters of the
theory, and can be expanded in a formal power series of 𝜎 :

𝑣(𝑥, 𝑦) =
∑︁
𝑛≥0

𝑣𝑛(𝑥, 𝑦)𝜎 𝑛(𝑥, 𝑦) ,

so that only 𝑣0 is relevant in the coincidence limit without derivatives. The se-
ries for 𝑣 converges on analytic spacetimes, while in general smooth Lorentzian
spacetimes, the series is only asymptotic [128, 143]. Finally, 𝑤 remains an arbitrary,
smooth function, containing the residual freedom in the choice of the state. The
additional freedom in the constant ` is required to have a dimensionless argument
in the logarithm. In the coincidence limit, the divergent part of the 2-point func-
tion is encoded in the Hadamard function 𝐻 (𝑥, 𝑦) and in the commutator function
Δ, which are known a priori.

Non quasi-free states are Hadamard states if their 2-point function satisfies the
Hadamard condition, and the other truncated n-point functions are smooth.

Many states of physical interest satisfy the Hadamard condition. Known ex-
amples, apart naturally from the Minkowski vacuum, are KMS states for free the-
ories in flat spacetime, the Bunch-Davies states for linear fields on De Sitter space-
time, and the Unruh state in Schwarzschild [88] and Kerr-de-Sitter black holes [173].
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The Hadamard condition allows for the construction of Wick polynomials, and
Hadamard states are thosewith finite renormalised stress-energy tensor; thus, they
are now regarded as the physically acceptable states [113].

The Hadamard condition (2.19) stems from the requirement that the UV diver-
gence of the 2-point function is no worse than the Minkowski vacuum. However,
the vacuum in flat space QFT itself is usually not defined by a condition on its
UV behaviour, but rather by imposing that it is the state with minimal energy in a
Hilbert space representation (originating from the GNS construction, see Section
2.10). In turn, this requires the positivity of the energy spectrum, or more precisely
on the requirement that the energy spectrummust be bounded from below, called
spectrum condition.

In flat space QFT, quantization proceeds by constructing a Fock space and an
operator-valued distribution 𝜋 (Φ) (𝑓 ). As we will explain later in Section 2.10, the
operator 𝜋 (Φ) (𝑓 ) is the GNS representation of the element of the algebra Φ as
an operator on a Hilbert space, and it coincides with the familiar field operator
introduced in flat space QFT. The field operator 𝜋 (Φ) (𝑓 ) is subject to Poincaré
covariance. In particular, this means that translations, 𝑥 → 𝑥 + 𝑎, 𝑎 ∈ R4, are rep-
resented in the Hilbert space by a strongly continuous unitary group of operators
𝑈 (𝑎) := 𝑒𝑖𝑎·𝑝. The spectrum condition on the positivity of the energy requires that
the generator 𝑝 ∈ 𝑇∗(R4), called the energy-momentum covector, lies in the fu-
ture light-cone. The field operator 𝜋 (Φ) (𝑓 ) can be represented in terms of creation
and annihilation operators 𝑎, 𝑎‡ on the Hilbert space,

𝜋 (Φ) (𝑓 ) =
∫
p

d3p
(2𝜋)3

1√︁
2𝜔p

(𝑒𝑖𝑝·𝑥𝑎(𝑓 ) + 𝑒−𝑖𝑝·𝑥𝑎†(𝑓 )) .

The vacuum state |Ω⟩ in the Hilbert space is then defined by the requirement that
it is annihilated by the annihilation operator, 𝑎(𝑓 ) |Ω⟩ = 0. This in particular im-
plies that the action of the field on the state 𝜋 (Φ) (𝑓 ) |Ω⟩ contains only negative
frequencies.

Of course, general curved spacetimes are not translation invariant. Therefore,
there is no natural action of the Poincaré subgroup of translations, and there is no
reason to ask for a Poincaré invariant vacuum state.

However, using microlocal analysis [166], and in particular the wavefront set,
Definition 2.4, it is still possible to give a condition on the positivity of the energy-
momentum covector 𝑝 to select a ground state, in analogy with the flat space case.

In terms of the wavefront set, the fundamental condition that translates the
spectrum condition to curved spacetimes is the microlocal spectrum condition [63,
210], Definition 2.13. The definition requires that only positive frequencies enters
the wavefront set, and thus it generalises to curved spacetimes, the requirement
that the energy-momentum four-vector 𝑝 lies in the future light-cone. In turn, it
is possible to prove that a state satisfies the microlocal spectrum condition if and
only if its GNS representation |Ω⟩ satisfies [231]

WF(𝜋 (Φ) (𝑓 ) |Ω⟩) ∈ 𝑉− .

The last condition requires the natural generalisation of thewavefront set to operator-
valued distributions. It generalises the vacuum condition in Minkowski 𝑎 |Ω⟩ = 0.
Notice however that, while the wavefront set of the 2-point function Δ+ satisfying
the microlocal spectrum condition must not contain positive frequencies, the state
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𝜋 (Φ) |Ω⟩ can still be a sum of positive and negative modes. The Hadamard con-
dition thus is not a direct translation of the vacuum, but rather a generalisation;
for example, thermal states for free theories are Hadamard, but still exhibit both
negative and positive frequencies.

The microlocal spectrum condition is a natural generalisation of energy pos-
itivity, and it selects ground states in general curved spacetimes. We can now go
full circle, and connect it with the Hadamard condition: in fact, based on previous
work by Duistermaat and Hörmander [101, 165], Radkizowski showed that if a state
is such that: i) the 2-point function satisfies the microlocal spectrum condition 2.13,
and ii) the one-point function and the truncated 𝑛-point functions, with 𝑛 > 2, are
smooth, then it locally satisfies the Hadamard condition (2.19) [209, 210, 225]. Impos-
ing the microlocal spectrum condition is thus equivalent to require the Hadamard
condition on the UV behaviour of the 2-point function.

2 .6 normal ordering

Consider a representation (F̀ 𝑐 ,★Δ+ , ∗) of A. The deformed ★-product on F̀ 𝑐 au-
tomatically implements the Wick theorem for the product of non-linear observ-
ables; in fact, consider for example the field square Φ2:

Φ2(𝑥) = lim
𝑦→𝑥

[
Φ(𝑥) ★Δ+ Φ( 𝑦) − Δ+(𝑥, 𝑦)

]
,

where Φ(𝑥) ★ Φ( 𝑦) is the integral kernel of Φ(𝑓 ) ★ Φ(𝑔), seen as a distribution
tested on 𝑓 ⊗ 𝑔. The above expression for Φ2 is finite by construction. It is easy to
see that the same holds for higher polynomials. This means that local functionals
like Φ𝑛(𝑓 ) in (F̀ 𝑐 ,★Δ+ , ∗) are Wick-ordered monomials of the fields, where the
Wick ordering is with respect to Δ+. More explicitly,

:Φ𝑛(𝑓 ) :Δ+ :=
∫
𝑥

:Φ𝑛 :Δ+ 𝑓 ∈ A

where
:Φ𝑛(𝑓 ) :Δ+ := 𝛼−Δ+ (Φ(𝑓 )).

In this way : Φ𝑛(𝑓 ) :Δ+∈ A is represented in (F̀ 𝑐 ,★Δ+ , ∗) as 𝛼Δ𝑆 : Φ𝑛(𝑓 ) :Δ+=

𝛼Δ𝑆 𝛼−Δ+Φ
𝑛(𝑓 ) = Φ𝑛(𝑓 ).

However, such normal ordering is not covariant, becauseΔ+ is globally defined,
since it depends on the non canonical choice of its symmetric partΔ𝑆 . The quasifree
state constructed with Δ+ would represent a preferred reference state, in contra-
diction with the requirements of the Equivalence Principle.

A possibility to perform normal ordering with local quantities only is to use
the Hadamard function 𝐻 given in (2.19): since 𝐻 contains the singularities of Δ+,
a new normal ordering prescription again implements the Wick theorem,

:Φ2 :𝐻 (𝑥) = 𝛼−𝐻Φ(𝑥)2 = lim
𝑦→𝑥

[
Φ(𝑥)Φ( 𝑦) − ℏ𝐻 (𝑥, 𝑦)

]
, (2.22)

which is local and generally covariant [158–160]. The drawback is that now one
needs to pay attention to the correction introduced in representing Wick-ordered
polynomials with respect to 𝐻 , in the algebra constructed with the ★-product de-
fined byΔ+ = 𝐻+𝑤. For example, in viewof (2.22) we have that :Φ2 :𝐻= 𝛼−𝐻Φ2 ∈ A

is represented in F̀ 𝑐 as

𝛼Δ𝑆 :Φ2 :𝐻 (𝑥) = Φ2(𝑥) + 𝑤(𝑥, 𝑥) .
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It is easy to see that this normal ordering implements the Wick’s theorem with re-
spect to the Hadamard function 𝐻; in fact, consider for example the representation
in the quantum algebra of the product Φ2(𝑥)Φ2( 𝑦): in the algebraic setting, this is
understood as the quantum product between two normal-ordered quantities, so
that

𝛼Δ𝑆
(
:Φ2 :𝐻 (𝑥)★ :Φ2 :𝐻 ( 𝑦)

)
=𝛼Δ𝑆 (:Φ2 :𝐻 (𝑥)) ★Δ+ 𝛼Δ𝑆 (:Φ2 :𝐻 ( 𝑦))
=(Φ2(𝑥) + 𝑤(𝑥, 𝑥)) (Φ2( 𝑦) + 𝑤( 𝑦, 𝑦))+
+ 4ℏΔ+(𝑥, 𝑦)Φ(𝑥)Φ( 𝑦) + 2ℏ2Δ+(𝑥, 𝑦)2 ,

(2.23)

and so its expectation value, in the quasifree state 𝜔 whose 2-point function is Δ+,
is

𝜔(:Φ2 :𝐻 (𝑥)★ :Φ2 :𝐻 ( 𝑦)) = 𝑤(𝑥, 𝑥)𝑤( 𝑦, 𝑦) + 2ℏΔ2
+(𝑥, 𝑦) .

The square of the distribution Δ+(𝑥, 𝑦) is well-defined thanks to the microlocal
spectrumcondition on itswavefront set. The requirement of local covariance leaves
some residual freedom in the construction of normal-ordering quantities. First of
all, there is some freedom in the choice of 𝐻 , as the length scale ` in the logarith-
mic contribution to 𝐻 . Secondly, adding a covariantly constructed smooth func-
tion to 𝐻 does not break general covariance, and preserve the finiteness of normal-
ordered quantities. However, general covariance strongly constrains the form of
these possible smooth additions, and the freedom in the choice of the Wick pow-
ers has been completely classified [158, 160, 161]. For example, at the level of theWick
square this freedom reduces to the choice of two real “regularisation” constants 𝑐1
and 𝑐2

:Φ2 :𝐻=:Φ2 :�̃� +𝑐1𝑚
2 + 𝑐2𝑅 . (2.24)

In equation (2.23), we kept explicit both the normal ordering prescription and
the dependence on Δ+ in the ★-product, to clarify their relationship. In the usual
QFTnotation, onewould leave implicit the★-product,writing explicitly the normal-
ordering prescription; in what follows, adopting the more usual notation in the
mathematical physics literature, we will keep the ★-products explicit but, without
referring to a particular representation, we drop the subscript Δ+; at the same time,
if not strictly necessary, we keep the covariant normal ordering implicit.

2 .7 the weyl algebra of a free scalar field theory

Before discussing interacting QFTs we take here a moment to introduce an alter-
native construction of the algebra of observables for the free, quantum scalar field,
which will be the basis for the Tomita-Takesaki modular theory and the definition
of relative entropy relevant in Chapter 9.

Let’s consider a scalar field configuration 𝜑 ∈ 𝐶∞() on some globally hyper-
bolic spacetime, with action 𝐼 (𝑓 ) = − 1

2

∫
𝑥
𝑓∇𝑎𝜑∇𝑎𝜑; since themass will not play

a role in the following discussion, we consider a massless field for simplicity. The
function 𝑓 as usual is the IR cut-off function, that renders the action functional fi-
nite. From the action, we derive the Klein-Gordon equation for the massless scalar
field

□𝜑 = 0 , (2.25)

where □ = 𝑔(∇,∇). The free wave operator 𝑃0 = □ is normally hyperbolic, and
thus admits advanced and retarded propagators Δ𝐴,𝑅. From the commutator func-
tion Δ we can construct the algebra of classical observables (Freg, ·, ∗) equipped
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with the Peierls bracket ⌊𝐹, 𝐺⌋ := ⟨𝐹 (1) ,Δ𝐺 (1)⟩. As we discussed in Section 2.3.1,
the Peierls bracket is equivalent to a symplectic form on the space of solutions with
space-like compact initial data, defined by

𝜎 (𝜑𝑓 , 𝜑𝑔) =
∫
𝑥∈Σ

(
𝜑𝑔∇`𝜑𝑓 − 𝜑𝑓∇`𝜑𝑔

)
dΣ` ,

where 𝜑𝑓 = Δ𝑓 , and 𝜑𝑔 = Δ𝑔.
Since the field is free, and we are not interested in non-linear observables for

the moment, we consider here only regular functionals Freg. The ∗−algebra of
quantum observables then is generated by the symbols 1, Φ(𝑓 ), together with the
relations

Φ(𝑓 )∗ = Φ(𝑓 ) , (2.26)
Φ(𝑎𝑓 + 𝑏𝑔) = 𝑎Φ(𝑓 ) + 𝑏Φ(𝑔) , (2.27)

Φ(𝑃0𝑓 ) = 0 , (2.28)
[Φ(𝑓 ),Φ(𝑔)] = 𝑖ℏΔ(𝑓 , 𝑔) · 1 . (2.29)

The first relation encodes reality of the field, where 𝑓 denotes complex conjugation;
the second encodes linearity for every 𝑎, 𝑏 ∈ C and real-valued test functions 𝑓 , 𝑔 ∈
𝐶∞
𝑐 ; the third relation encodes the EOM, and the last the canonical commutation

relations.
In the case of the free scalar field, there is however an equivalent construction

which admits the structure of𝐶∗−algebra, calledWeyl algebra and denoted W. The
Weyl algebra is generated by the symbols 1 and𝑊 (𝑓 ), labelled by real-valued test
functions 𝑓 ∈ 𝐶∞

𝑐 () and subject to relations

𝑊 (0) = 1 (2.30)

𝑊 (𝑓 )∗ = 𝑊 (−𝑓 ) = 𝑊 (𝑓 )−1 (2.31)

𝑊 (𝑓 )𝑊 (𝑔) = 𝑒− 𝑖
2 ⟨𝑓 ,Δ𝑔⟩𝑊 (𝑓 + 𝑔) , (2.32)

for every 𝑓 , 𝑔 ∈ 𝐶∞
𝑐 (,R). The Weyl algebra is unique up to isomorphisms [190],

and can be considered as the “exponentiated” version of the infinitesimal relations
(2.26), by the formal identification

𝑊 (𝑓 )“ = ”𝑒𝑖Φ(𝑓 ) . (2.33)

Notice that the above relation is only formal, since there is no notion of functional
calculus in a ∗−algebra.

On the Weyl algebra W, quasifree states are determined by their action on the
Weyl operator: it must be equal to

𝜔(𝑊 (𝑓 )) = 𝑒− 1
2Δ𝑆 (𝑓 ,𝑓 ) . (2.34)

Δ𝑆 (𝑓 , 𝑓 ) is a symmetric bi-distribution that uniquely determines the state, and it
corresponds to the 2-point function of the ∗−algebra for Φ(𝑓 ). In fact, it is pos-
sible to check that Δ+(𝑓1, 𝑓2) = 𝜔(Φ(𝑓1)Φ(𝑓2)), explicitly computing 𝜔(𝑊 (𝑓 )) =

𝜔
[∑

𝑛
𝑖𝑛

𝑛!Φ(𝑓 )
𝑛
]
. A quasi-free state for theWeyl algebra Wis Hadamard if and only

if Δ+ satisfies the Hadamard condition.
From the Weyl 𝐶∗−algebra W, the GNS reconstruction theorem recovers the

usual description of a QFT as a theory of linear operators acting on a Hilbert space.
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If 𝜔 is a quasifree state, it is possible to give a Fock representation of the𝐶∗−algebra,
in which |Ω𝜔⟩ is the vacuum vector of the Fock space. The double commutant of
the representation of the algebra on a Hilbert space defines a von Neumann algebra
vN= 𝜋𝜔 (A)′′. We will discuss the GNS theorem in more detail in Section 2.10.

2 .8 interactions

2 .8 . 1 Time-ordered products between regular functionals

Up to now, the discussion took into account only quantum algebras associatedwith
free (quadratic) actions 𝐼0, whose equations of motion are normally hyperbolic and
linear in the field 𝜑, and that admit exact propagators. It is now time to introduce
interacting QFTs, defined by equations of motion that are non-linear in the fields,
or, equivalently, by an action that is more than quadratic in the fields. In general,
solutions to non-linear, second-order partial differential equations can be found
only perturbatively. The algebra of interacting fields will then be constructed via
perturbation theory from elements of the algebra of free observables. However,
in the typical QFTs that are of physical interest, such as those appearing in the
Standard Model, the perturbative series defining interacting observables do not
converge. Interacting observables can only be represented as a formal power series,
in the coupling constant _ governing the strength of the interaction, in the algebra
of free observables. If the observables are non-polynomial in the fields, interacting
observables are a formal power series also in the reduced Planck constant ℏ.

Let’s start with an action functional, 𝐼 (𝜑), which is more than quadratic in the
fields. In the case of gauge theories, the action will depend on the gauge fields 
as well as on the ghosts, antighosts, Nakanishi-Lautrup fields and their respective
antifields; we denote the collection of the fields by the field multiplet 𝜑 = {𝜑𝑖}𝑖,
where 𝑖 runs over the field species. In this way, formulas for the scalar case and the
gauge field case are formally identical. For example, the action of _𝜑4−scalar field
theory takes the form

𝐼 (𝜑) = 𝐼0 + _𝑉 = −
∫
𝑥

(
1
2
∇𝑎𝜑∇𝑎𝜑 +

b

2
𝑅𝜑2 + 𝑚2

2
𝜑2 + _ 𝜑

4

𝑛!

)
𝑓 , (2.35)

where 𝑓 is a compactly supported IR cut-off function introduced to keep 𝐼 (𝜑) ∈
F̀ 𝑐 , and equals 1 on the causal completion of the region where we want to test our
theory.

In order to proceed to perturbation theory, the action 𝐼 must be split in a free,
quadratic part 𝐼0 and an interaction term 𝑉 . This can be done on general grounds
as follows. Let’s shift the field configuration, writing 𝜑 → �̄� + 𝜑 as a sum over a
non-dynamical background �̄� and a fluctuation field 𝜑. The expansion of the action
in Taylor series up to second order is

𝐼 (�̄� + 𝜑) = 𝐼 (�̄�) + ⟨𝐼 (1) (�̄�), 𝜑⟩ + 1
2
⟨𝐼 (2) (�̄�), 𝜑 ⊗ 𝜑⟩ + 𝑉 (�̄�, 𝜑) ,

where 𝑉 (�̄�, 𝜑) contains all higher-order terms. Notice that, when the background
field satisfies the equations of motion (i.e., for on-shell backgrounds) the linear term
vanishes and the action reduces to the sum of a quadratic part and interactions,
since the field-independent constant 𝐼 (�̄�) does not play any role in the equations of
motion nor in quantization.However, in certain situations it is desirable to keep the
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background arbitrary: this is particularly important in any candidate theory of non-
perturbative quantum gravity, where the background geometry cannot be fixed a
priori but it is the variable to quantise. In this case, it is possible to proceedwith the
algebraic approach treating the linear term as an external source in the equations
of motion, and constructing the propagators for these equations. Alternatively, it
is also possible to include the source term in the interaction part of the action, and
construct solutions of the full equations of motion perturbatively.

Either way, in the following we will assume that the action takes the general
form

𝐼 (𝜑) = 𝐼0(𝜑) + 𝑉 (𝜑) ,

where 𝐼0 is a quadratic action providing normally hyperbolic equations of motion,
and 𝑉 remains an unspecified, interacting term, which is overall proportional to
some coupling constant _.

Thanks to the construction of the last sections, we can associate the free alge-
bra A to the free action 𝐼0; interacting observables will be represented as a formal
power series in the coupling constant _ with coefficients in the free algebra A.

The perturbative construction of interacting fields makes use of a new opera-
tion, the time-ordered product 𝑇 . In order to understand the algebraic structure,
we first define the 𝑇-product in the subset of regular functionals Freg, in a way
similar to the quantum product (2.15).

Definition 2.16 (Time-ordered products). Consider two regular functionals in the
algebra of regular observables, 𝐹, 𝐺 ∈ Areg. The time-ordered product between any
two elements of Areg is defined by the formula

𝐹 ·𝑇 𝐺 := M ◦ 𝑒ΓΔ𝐹 (𝐹 ⊗ 𝐺) 𝐹, 𝐺 ∈ Freg ,

where we recall that

ΓΔ𝐹 :=
∫
𝑥,𝑦

Δ𝐹 (𝑥, 𝑦)
𝛿

𝛿𝜑(𝑥) ⊗
𝛿

𝛿𝜑( 𝑦) ,

andMmaps the tensor product to the pointwise product,M(𝐹⊗𝐺) (𝜑) = 𝐹 (𝜑)𝐺(𝜑).
More explicitly,

𝐹 ·𝑇 𝐺 = 𝐹𝐺 +
∞∑︁
𝑛≥1

1
𝑛!
⟨𝐹 (𝑛) ,Δ⊗𝑛

𝐹
𝐺 (𝑛)⟩ ,

where Δ𝐹 is a Feynman propagator associated with Δ+,

Δ𝐹 := Δ+ + 𝑖Δ𝐴 = Δ𝑆 +
𝑖

2
(Δ𝑅 + Δ𝐴) . (2.36)

Notice the formal similarity between the time-ordered and the quantum product,
Definition 2.12. Thanks to the properties of the Feynman propagator, the time-
ordered product is associative and commutative.

2 .8 .2 Algebraic renormalization

Even if we are working with normal-ordered quantities, the 𝑇-product defined
on Freg cannot be extended to F̀ 𝑐. The basic reason is the incompatibility of the
wavefront set of the Feynman propagator with the wavefront set of the functional
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derivatives of local functionals: the Hörmander criterion is not satisfied, and thus
the product of these distributions is ill-defined. Physically, the divergences that
arise in the products of local functionals coincide with the well-known UV diver-
gences of QFT arising in the loop contributions of Feynman diagrams to corre-
lation functions. The simplest of such divergences is the one-loop contribution
to the 2-point function of a scalar field theory, which arises from the product of
two Feynman propagators at the same spacetime point. In Fourier space, the diver-
gence arises due to the ill-defined convolution of two Feynman propagators, which
diverges because of their behaviour at arbitrarily high momentum 𝑝.

When the support of two functionals 𝐹, 𝐺 is non-overlapping, the time-ordered
product in Definition 2.16, 𝐹 ·𝑇 𝐺, is everywhere well-defined and produces a new
distribution.More precisely, given twodistributionswith integral kernel 𝐹 (𝑛) (𝑥1, . . . , 𝑥𝑛)
and𝐺 (𝑛) ( 𝑦1, . . . , 𝑦𝑛), the time-ordered product 𝐹 ·𝑇 𝐺 is ill-defined at order 𝑛 only
when two points coincide, 𝑥𝑖 = 𝑦𝑖 for some 𝑖 ∈ {1, . . . 𝑛}. The problem of renor-
malization in QFT is the problem of dealing with the UV divergences arising in
Feynman diagrams. In the context of distribution theory, the renormalization pro-
cedure is cast as an extension of the products of distributions to the diagonal, in
order to have awell-defined product among local functionals at the same spacetime
point.

In pAQFT, the preferred method of renormalization is based on the Epstein-
Glaser procedure, which was developed on ideas of Stuckelberg and Bogoliubov
[106]. The Epstein-Glaser procedure is based on a local treatment in position space,
in contrast with themost used techniques of renormalization in physics that are de-
veloped in momentum space. This allows for a straightforward generalization to
curved spacetimes. Moreover, even if the Epstein-Glaser renormalization proce-
dure works perturbatively, it does not assume power-counting renormalizability,
and so it can be applied to any effective field theory. In fact, Epstein-Glaser renor-
malization has been first developed for scalar theories [57], and then extended to
Yang-Mills theories [156], general gauge theories [116, 119] and perturbative quantum
gravity [65].

The Epstein-Glaser renormalization procedure starts with an axiomatic pre-
scription for the𝑇-product on local functionals, seen as a symmetric and multilin-
ear map frommultilocal functionalsF⊗𝑛

loc toA, satisfying a set of conditions [57, 61,
158, 160, 161]. First, we define the family of linear maps 𝑇𝑛 : F⊗𝑛

loc → F̀ 𝑐 [[ℏ]] , with

supp𝑇𝑛(𝐹1, . . . , 𝐹𝑛) ⊂
⋃

supp 𝐹𝑖 ,

and satisfying the following set of five axioms.
⋄ A1 Causal factorization property: whenever there is a Cauchy surface Σ such
that the functionals 𝐹1, . . . , 𝐹𝑘 are localized in the future of Σ, and the func-
tionals 𝐹𝑘, . . . , 𝐹𝑛 in its past, we have

𝑇𝑛(𝐹1, . . . , 𝐹𝑛) = 𝑇𝑘 (𝐹1, . . . , 𝐹𝑘) ★ 𝑇𝑛−𝑘 (𝐹𝑘+1, . . . , 𝐹𝑛) . (2.37)

⋄ A2 Identity map: we define themap𝑇1 : F1
loc → 𝐹`𝑐 [[ℏ]] as𝑇1 := 𝑒Γ𝑤 , where

𝑤 is the smooth part of Δ+. Up to an arbitrary length scale 𝑇1 is uniquely
determined by this formula, and using𝑤 ensures good covariance properties
of 𝑇1. Notice that, for Minkowski vacuum, 𝑤 = 0 and 𝑇1 coincides with the
identity. More details can be found in [159].
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⋄ A3 symmetry: if the configuration space contains only bosons, the time-ordered
products 𝑇𝑛 must be symmetric in their arguments; if fermions are also
present, the time-ordered products must be graded symmetric;

⋄ A4 field-independence: as an element of microcausal functionals F̀ 𝑐 , the
time-ordered products depend on the field 𝜑 only through their arguments,
so that

𝛿

𝛿𝜑(𝑥)𝑇𝑛(𝐹1, . . . 𝐹𝑛) =
𝑛∑︁
𝑖

𝑇𝑛

(
𝐹1, . . .

𝛿 𝐹𝑖

𝛿𝜑
, . . . 𝐹𝑛

)
;

⋄ A5 Field locality:

𝑇𝑛(𝐹1, . . . 𝐹𝑛) = 𝑇𝑛
(
𝐹
[𝑁 ]
1 , . . . , 𝐹

[𝑁 ]
𝑛

)
+ (ℏ𝑁+1) ,

where 𝐹 [𝑁 ] denotes the covariant Taylor expansion of 𝐹 with respect to 𝜑
up to order 𝑁 .

Using locality of the factors, multilinearity and field independence, the prob-
lem of constructing the time-ordered product with 𝑛 elements reduces to the prob-
lem of extending suitable distributions 𝑡𝑛 ∈ 𝐶∞

𝑐 (𝑛 \ 𝑑𝑛) defined outside the thin
diagonal 𝑑𝑛, that is, outside the coincidence limit of any two points, to the whole
𝑛 [61, 158].

The Epstein-Glaser renormalization procedure provides a concrete, inductive
method to construct renormalized time-ordered products between local function-
als satyisfying axioms A1-A5 [158, 160]. The existence of a starting element 𝑇1 from
axiom A2 is straightforward. From the starting element, the Epstein-Glaser pro-
cedure inductively constructs the 𝑇𝑛 map from 𝑇𝑛−1 maps. For arguments with
pairwise non-overlapping supports, the causal factorization property and the sym-
metry of 𝑇𝑛 determine that 𝑇𝑛 is given by Def. 2.16. The extension of 𝑇𝑛 to local
functionals with overlapping supports proceeds recursively on the number of fac-
tors, extending the maps 𝑇𝑛 to the thin diagonal 𝑑𝑛. The extension can be done
assuming fixed the Steinmann scaling degree of the distribution [230], up to some
known ambiguities. These correspond to the well-known renormalization free-
dom, which is parametrised by an 𝑛−linear map

𝑧𝑛 : F⊗𝑛
loc → Floc [[ℏ]] . (2.38)

By the Main Theorem of Renormalization [57, 100], the map 𝑧𝑛 belongs to the
Petermann-Stückeberg Renormalization Group, and if two renormalization pre-
scriptions provide two different renormalized 𝑆−matrices, there must be an ele-
ment of the renormalization group connecting the two 𝑆−matrices.

The time-ordered products of 𝑛 elements of Floc [[ℏ]] then is defined by

𝐴1 ·𝑇 . . . ·𝑇 𝐴𝑛 := 𝑇𝑛(𝑇−1
1 𝐴1, . . . , 𝑇

−1
1 𝐴𝑛) . (2.39)

Notice that the action of 𝑇 on local functionals maps local functionals to co-
variant normal ordered ones [158], so that 𝑇 (𝐹) =: 𝐹 :𝐻 .

Epstein-Glaser renormalization is perturbative in nature: in the construction
of Feynman diagrams, Epstein-Glaser renormalization extends the time-ordered
products of 𝑛 factors of the interaction term 𝑉 , and each factor carries a power of
the coupling constant in the interaction term. However, it does not assume power-
counting renormalizability: this means that, while the renormalization procedure
does not need to finish at any point in the iteration procedure, it is applicable to
effective field theories, such as quantum gravity. For more details, see [57, 61, 116,
118, 119, 158, 160, 161, 211].
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2 .8 .3 Relative S-matrix and interacting observables

In the following, we assume that the procedure of renormalization has been carried
out and that the time-ordered products 𝑇𝑛 are well-defined maps 𝑇𝑛 : F⊗𝑛

loc →
A[[𝑉 ]] in the formal power series A[[𝑉 ]] with coefficients in the free algebra
A. Time-ordered products are now the fundamental operation defining the formal
𝑆-matrix.

Definition 2.17 (Formal S-matrix). Let 𝑉 ∈ A[[_]] be a microcausal functional
in the space of formal power series in the coupling constant _ with coefficients in
the free algebra of observablesA= (F̀ 𝑐 , ∗,★). The formal 𝑆−matrix (or simply the
𝑆−matrix) is a map 𝑆 : A[[_]] → A[[_]] , defined by

𝑆(𝑉 ) := 𝑒𝑖_𝑇𝑉·𝑇 = 𝑇𝑒𝑖_𝑉 =
∑︁
𝑛

𝑖𝑛_𝑛

ℏ𝑛𝑛!
𝑇 (𝑉 . . . 𝑉︸ ︷︷ ︸

𝑛 times

) .

The 𝑆-matrix is an element of A[[_]] satisfying
i. Causality:𝑆(𝐴+𝐵+𝐶) = 𝑆(𝐴+𝐵)★𝑆(𝐵)−1★𝑆(𝐵+𝐶) if 𝐽+(supp 𝐴)∩𝐽− (𝐶) =
∅;

ii. 𝑆(0) = 1, 𝑆 (1) (0) = 1;
iii. Formal unitarity: 𝑆(𝑉 )−1 = 𝑆(𝑉 )∗, where the inverse is with respect to the

star product, for any real local interaction 𝑉 ;
iv. Field independence: 𝑆 (1) (𝑉 ) = 𝑖

ℏ𝑆(𝑉 ) ·𝑇 _𝑇𝑉
(1) .

In the following, we include the coupling constant _ into the definition of the in-
teraction term 𝑉 , to keep the notation reasonably compact, denoting the algebra
of formal power series simply as A[[_]] = A[[𝑉 ]].

Notice that a sequence in A[[𝑉 ]] converges if the coefficients of the formal
power series converge in the weak topology of F̀ 𝑐. See [211] for further details.

Remark 2.2. Since the microcausal functionals we work with have only a finite
number of non-vanishing derivatives by definition, the 𝑆−matrix is a formal power
series in _, but not in ℏ. If, for the sake of generality, one is interested in studying
non-polynomialmicrocausal functionals, the non-commutative★−productwould
be defined as a formal power series inA[[ℏ]] , and the 𝑆−matrix would be a formal
power series in _ and a Laurent series in ℏ. ■

Contrary to the usual definition in QFT, the 𝑆−matrix is a local quantity de-
fined at the level of the algebra. Evaluating the 𝑆-matrix on a state reproduces the
𝑆−matrix that is more familiar in standardQFT, seen as the collection of transition
elements from the initial to final state.

The main purpose of the 𝑆−matrix is to provide a way to construct interacting
correlation functions. In fact, from the 𝑆-matrix, we define the relative 𝑆-matrix as

𝑆𝑉 (𝐹) := 𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐹) . (2.40)

Finally, the Bogoliubov map (also called quantum Møller map) represents inter-
acting fields in the free algebra.

Definition 2.18 (Bogoliubov map). Consider an element of the (abstract, unreach-
able) interacting algebra 𝐹int ∈ Aint. The Bogoliubov formula represents the inter-
acting observable 𝐹int as a formal power series in _ (and ℏ, if the functional is non-
polynomial in the fields) with coefficients in the free algebra, via the Bogoliubov
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map 𝑅𝑉 (𝐹int) applied to a corresponding element of the free algebra 𝐹 ∈ A. The
Bogoliubov map is defined by

𝑅𝑉 (𝐹int) :=
ℏ
𝑖

d
d𝑡
𝑆𝑉 (𝑡𝑇−1𝐹)

����
𝑡=0

= 𝑆(𝑉 )−1 ★ [𝑆(𝑉 ) ·𝑇 𝐹] .

Since it is in general not possible to explicitly construct the interacting observ-
able 𝐹int, the above formula is often taken as a definition for 𝐹int as a perturbative
series in terms of the free observable, and we interpret the Bogoliubov map as a
map that takes a free observable and gives the corresponding interacting observ-
able as a perturbative series 𝑅𝑉 : A→ A[[𝑉 ]] , defined by

𝐹int = 𝑅𝑉 (𝐹) := 𝑆(𝑉 )−1 ★ [𝑆(𝑉 ) ·𝑇 𝐹] .

However, the Bogoliubov map actually intertwines between the free and interact-
ing algebra: the next lemma proves that the argument of the Bogoliubov map sat-
isfies the interacting equations of motion, if the corresponding free observable 𝜑
satisfies the free equations of motion. Loosely speaking, the next lemma allows to
interpret 𝑅𝑉 (𝜑) as the interacting field.

Lemma 2.1. 𝑅𝑉 (𝜑) weakly satisfies the equation of motion,

𝑅𝑉 (𝑃0𝜑) + 𝑅𝑉 (𝑇𝑉 (1) ) = 𝑃0𝜑 .

Proof. The proof follows by the observation that, thanks to the relation between
the Feynman propagator and the 2-point function Δ+ in equation (2.36), if 𝐴 is a
functional linear in the field it holds that

𝐴 ·𝑇 𝐵 = 𝐴𝐵 + ℏ⟨𝐴(1) , (Δ+ + 𝑖Δ𝐴)𝐵(1)⟩ = 𝐴 ★ 𝐵 + 𝑖ℏ⟨𝐴(1) ,Δ𝐴𝐵
(1)⟩ . (2.41)

In particular, if 𝐴 = 𝑃0𝜑, it follows immediately that

𝑃0𝜑 ·𝑇 𝐵 = 𝑃0𝜑 ★ 𝐵 + 𝑖ℏ𝐵(1) ,

since Δ𝐴 is a propagator for the wave operator 𝑃0. Then, by direct inspection

𝑅𝑉 (𝑃0𝜑)
= 𝑆(𝑉 )−1 ★ 𝑆(𝑉 ) ·𝑇 𝑃0𝜑 = 𝑆(𝑉 )−1 ★ 𝑆(𝑉 ) ★ 𝑃0𝜑 − 𝑆(𝑉 )−1 ★ 𝑆(𝑉 ) ·𝑇 𝑇𝑉 (1)

= 𝑃0𝜑 − 𝑅𝑉 (𝑇𝑉 (1) ) .

Evaluating the above relation on a state, since the state is on-shell we have

𝜔

(
𝑅𝑉 (𝑃0𝜑 + 𝑇𝑉 (1) )

)
= 0 . (2.42)

2 .9 perturbative agreement

Deformation quantization depends on the split 𝐼 = 𝐼0 + 𝑉 into quadratic terms
and interactions. The classical action is clearly invariant under this split: the so-
lutions of EOMs and the Poisson bracket describing the dynamics do not depend
on it. In deformation quantization, however, the quadratic part and the interacting
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terms in the action play very different roles, since the quadratic part determines the
propagators and therefore the products of the algebra, while the interacting term
determines the 𝑆−matrix and the Bogoliubov map that represents interacting ob-
servables. The quantum theory should be independent on the non-canonical split
between free theory and interactions, but this is not clear a priori; for example,
choosing a different split (including, for example, the mass term in the interactions
instead of in the quadratic part) could describe different quantum theories.

The requirement that the quantum theory is independent on the split is called
Principle of (generalised) perturbative agreement (PPA) [95, 161, 254]. In this short Sec-
tion we do not review the PPA, but we only recall some basic facts that will play a
role in next sections.Wemainly follow the notation of Drago, Hack, and Pinamonti
[95].

As usual, the PPA can be rigorously formulated for scalar field theories, with
extensions to gauge theories that are complicated by controlling the symmetries
at the quantum level. Here we discuss only the properties of the PPA for the fields
𝜑, which may be the scalar field or the multiplet of gauge fields, ghosts, Nakanishi-
Lautrup fields and antighosts, 𝜑 = {, 𝑏, 𝑐, 𝑐}. In the case of gauge theories, the PPA
additionally requires that the Quantum Master Equation (the equation governing
the symmetries at the quantum level) is also independent on the split. For Yang-
Mills-type theories (that are, theories that have actions linear in antifields, such as
Yang-Mills theories and gravity), this requirement involves terms that are linear in
the antifields. The properties we prove here concern antifield-independent terms,
only; we will prove the equivalence between QMEs coming from different splits in
Section 3.5.

Let’s now start the discussion considering an action 𝐼 admitting a split 𝐼 =

𝐼0+𝑉 in a free, quadratic part 𝐼0 and interactions𝑉 .Moreover, let𝑄𝑘 be a quadratic
potential depending on a parameter 𝑘

𝑄𝑘 (𝜑) = −1
2

∫
d𝑑𝑥𝑞𝑘 (𝑥)𝜑2(𝑥), (2.43)

where 𝑞𝑘 = 𝑘2𝑓 ∈ 𝐶∞
𝑐 (), and 𝑓 ∈ 𝐶∞

𝑐 () is the usual infrared cut-off. 𝑄𝑘

describes a mass term, before the adiabatic limit, with mass 𝑘.
In what follows, we consider

𝐼𝑘 := 𝐼 + 𝑄𝑘 = 𝐼0 + (𝑉 + 𝑄𝑘) = 𝐼0𝑘 + 𝑉 = 𝐼0 + 𝑉𝑘 ,

and we denote with ★, ·𝑇 , A, 𝑆, 𝑅 (resp. ★𝑘, ·𝑇𝑘 , A𝑘, 𝑆𝑘, 𝑅𝑘) the star product, time-
ordered product, algebra of observables, 𝑆-matrix and Bogoliubov map associated
with 𝐼0 (resp. 𝐼0𝑘).

Considering the (abstract, unreachable) interacting algebra A𝐼𝑘 , we have two
maps defining a perturbative representation of A𝐼𝑘 in either A[[𝑉𝑘]] or A𝑘 [[𝑉 ]] ,
depending on whether 𝑄𝑘 is considered as part of 𝐼0 or of 𝑉 . These are the Bogoli-
ubov maps given in Def. 2.18 𝑅𝑉𝑘 and 𝑅𝑘,𝑉 , which represent the generators of the
interacting algebra in A[[𝑉𝑘]] or in A𝑘 [[𝑉 ]].

The PPA proceeds by constructing an isomorphism between the two algebras
A𝑘 andAand the time-ordered products, mapping classical observables into quan-
tum (time-ordered) observables.

First, we define an isomorphism 𝑟𝑄𝑘
: A𝑘 → A, called classical Møller map.
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Definition 2.19 (Classical Møller map). Consider an element 𝐹 ∈ A𝑘, the algebra
associated with the free action 𝐼0 +𝑄𝑘 on the field configuration space E() ∋ 𝜑.
TheMøller map is a map 𝑟𝑄𝑘

: A𝑘 → Asatisfying

(𝑟𝑄𝑘
𝐹) (𝜑) = 𝐹 (𝑟𝑄𝑘

𝜑) , 𝑟𝑄𝑘
𝜑 := (1 − Δ𝑅,𝑘𝑞𝑘)𝜑 ,

where Δ𝑅,𝑘 is the retarded operator associated to 𝐼0𝑘.

Since 𝑄𝑘 is local and does not contain second derivatives, it does not change
the principal symbol of the operator 𝑃0+𝑄 (2)

𝑘
, which remains normally hyperbolic;

it follows that Δ𝑅,𝑘 is well-defined. Moreover, 𝑟𝑄𝑘
intertwines between 𝐼0𝑘 and 𝐼0:

in fact, 𝐼 (1)0𝑘 𝑟𝑄𝑘
= 𝐼

(1)
0 .

Besides the algebras, there is an isomorphism between the time-ordered prod-
ucts ·𝑇 and ·𝑇𝑘 as well. In fact, using Γ̃ given in equation (2.17), we can define the
isomorphism

𝜌𝑘 : Floc → Floc , 𝜌𝑘𝐹 := 𝑒Γ̃Δ𝐹,𝑘−Δ𝐹 𝐹 , (2.44)

such that
𝜌𝑘 (𝐹 ·𝑇 𝐺) = 𝜌𝑘 (𝐹) ·𝑇𝑘 𝜌𝑘 (𝐺) . (2.45)

Remark 2.3. The map 𝜌𝑘 can also be used to define a Wick-ordering map for A𝑘

[95, 161]. In fact, given theWick ordering map𝑇 : Floc → Floc for the algebraA, we
consider 𝜌𝑘◦𝑇 . It is then possible to prove [161] that the renormalization ambiguities
of the Wick ordering map 𝑇 can be chosen so that 𝑇𝑘 = 𝜌𝑘 ◦ 𝑇 : Floc → Floc is a
normal-ordering map for A𝑘. ■

It is not difficult to show that, in a perturbative sense,

𝜌𝑘 = 𝑟
−1
𝑄𝑘

◦ 𝑅𝑄𝑘
, (2.46)

where 𝑅𝑄𝑘
: A𝑘 → A[[𝑄𝑘]] is the Bogoliubov map representing A𝑘 in A[[𝑄𝑘]].

This relation can be lifted to the interacting case as an equivalence between the
Bogoliubov maps 𝑅𝑉𝑘 and 𝑅𝑘,𝑉 ; in fact, the following lemma holds.

Lemma 2.2. Consider the algebras A,A𝑘, the respective products ★, ★𝑘 and the Bo-
goliubov map 𝑅 (resp. 𝑅𝑘) representing the interacting algebra A𝐼𝑘 in A (resp. in A𝑘.
Then the following holds.

𝑅𝑉𝑘 = 𝑟𝑄𝑘
◦ 𝑅𝑘,𝜌𝑘𝑉 ◦ 𝛾𝑘 , (2.47)

and similarly
𝑆𝑉𝑘 (𝐹) = 𝑟𝑄𝑘

𝑆𝑘,𝜌𝑘𝑉 (𝜌𝑘𝐹) . (2.48)

Furthermore, 𝜌𝑘𝑉 and 𝑉 differs only by a different choice of renormalization constants.

Proof. To prove Eq. (2.47) and (2.48) we proceed by direct inspection: in fact, we
have

𝑟𝑄𝑘
𝑆𝑘,𝜌𝑘𝑉 (𝜌𝑘𝐹) = 𝑟𝑄𝑘

[
𝑆𝑘 (𝜌𝑘𝑉 )−1 ★𝑘 𝑆𝑘 (𝜌𝑘 (𝐹 + 𝑉 ))

]
=

[
𝑟𝑄𝑘

𝑆𝑘 (𝜌𝑘𝑉 )
]−1

★ 𝑟𝑄𝑘
◦ 𝛾𝑘𝑆(𝐹 + 𝑉 )

=
[
𝑟𝑄𝑘

𝑆𝑘 (𝜌𝑘𝑉 )
]−1

★ 𝑅𝑄𝑘
𝑆(𝐹 + 𝑉 )

=
[
𝑟𝑄𝑘

𝑆𝑘 (𝜌𝑘𝑉 )
]−1

★ 𝑆(𝑄𝑘)−1 ★ 𝑆(𝐹 + 𝑉𝑘) .
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Moreover, by direct computation we get

𝑟𝑄𝑘
𝑆𝑘 (𝑉 ) = 𝑟𝑄𝑘

𝜌𝑘𝑆(𝑉 ) = 𝑅𝑄𝑘
𝑆(𝑉 ) = 𝑆(𝑄𝑘)−1 ★ 𝑆(𝑉𝑘) ,

so that overall we have

𝑟𝑄𝑘
𝑆𝑘,𝜌𝑘𝑉 (𝜌𝑘𝐹) =

[
𝑟𝑄𝑘

𝑆𝑘 (𝜌𝑘𝑉 )
]−1

★ 𝑆(𝑄𝑘)−1 ★ 𝑆(𝐹 + 𝑉𝑘)

=
[
𝑆(𝑄𝑘)−1 ★ 𝑆(𝑉𝑘)

]−1
★ 𝑆(𝑄𝑘)−1 ★ 𝑆(𝐹 + 𝑉𝑘) = 𝑆𝑉𝑘 (𝐹) .

This proves Equation (2.48).
Equation (2.47) follows from equation (2.48) as

𝑅𝑉𝑘𝐹 = ℏ
d
𝑖d`

𝑆𝑉𝑘 (`𝐹)
����
`=0

= ℏ
d
𝑖d`

𝑟𝑄𝑘
𝑆𝑘,𝜌𝑘𝑉 (`𝛾𝑘𝐹)

����
`=0

= 𝑟𝑄𝑘
𝑅𝑘,𝜌𝑘𝑉 𝜌𝑘𝐹 .

2 .9 . 1 Perturbative agreement for linear terms

Finally, we briefly comment here on the case in which the action 𝐼 (𝜑) = 𝐽 (𝜑) +
𝐼0(𝜑) +𝑉 (𝜑) also contains a linear term 𝐽 (𝜑) =

∫
𝑥
𝑗(𝑥)𝜑(𝑥). As we commented at

the beginning of Section 2.8, a linear term can arise when the action is expanded
around a background that does not solve the EOMs; it also appears in cases where
the fields are coupled to an external current, such as a quantum particle interacting
with an external potential.

Just as for the quadratic terms, the linear term can be considered either in the
free or in the interacting part of the action. In the former case, it acts as a source
in the free equations of motion, modifying the propagators accordingly. When the
linear term is considered in the Bogoliubov map, as part of the interaction, it acts
as a translation on the observables, shifting the field configuration 𝜑 → 𝜑 + 𝑖Δ𝐹 𝑗.
In the case of a quasi-free state, the net result of the presence of currents then is to
shift the value of the one-point function to a non-vanishing value 𝜔(𝜑) = 𝑖Δ𝐹 𝑗.

The statement follows by evaluating the product of the time ordered exponen-
tial of local currents with a local field.

Lemma 2.3. For all 𝐹 ∈ Awe have

[𝑆( 𝐽) ·𝑇 𝐹] (𝜑) = 𝑒−Δ𝐹 ( 𝑗,𝑗)/2𝑒𝑖𝐽 (𝜑)𝐹 (𝜑 + 𝑖Δ𝐹 𝑗) . (2.49)

Moreover, it also holds that

𝑆( 𝐽)−1 ★ (𝑆( 𝐽) ·𝑇 𝐹 (𝜑)) = 𝐹 (𝜑 − Δ𝑅 𝑗) .

Proof. By direct inspection we have

𝑆( 𝐽) = 𝑒𝑖𝐽·𝑇 = 𝑇 (𝑒𝑖𝐽⊗) =
∑︁
𝑛≥0

1
𝑛!2𝑛

Δ⊗𝑛
𝐹
(𝑖 𝑗)⊗2𝑛𝑒𝑖𝐽 = 𝑒−Δ𝐹 ( 𝑗,𝑗)/2𝑒𝑖𝐽 . (2.50)

In the above relation, the time-ordered operator on the tensor products is defined
in the obvious way, as the tensor product of the time-ordered operators applied to
each factor. Moreover, for all 𝐹 ∈ Awe have

(𝑒𝑖𝐽 ·𝑇 𝐹) (𝜑) =
∑︁
𝑛≥0

1
𝑛!
𝑒𝑖𝐽 (𝜑) ⟨(𝑖 𝑗)⊗𝑛,Δ⊗𝑛

𝐹
𝐹 (𝑛) (𝜑)⟩ = 𝑒𝑖𝐽 (𝜑)𝐹 (𝜑 + 𝑖Δ𝐹 𝑗) . (2.51)
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Combining these results leads to equation (2.49).
To prove the second part of the statement, we notice that by a computation

similar to Eq. (2.50) we get

𝑆( 𝐽) = 𝑒− 𝑖
2Δ𝐴 (𝑓 ,𝑓 ) 𝑒

𝑖𝐽
★ .

From the relation 𝑆( 𝐽)−1 ★ 𝑆( 𝐽) = 1, it follows that

𝑆( 𝐽)−1 = 𝑒
−𝑖𝐽
★ 𝑒

𝑖
2Δ𝐴 (𝑓 ,𝑓 ) = 𝑒−𝑖𝐽𝑒−

1
2Δ+ (𝑓 ,𝑓 ) 𝑒

𝑖
2Δ𝐴 (𝑓 ,𝑓 ) = 𝑒−𝑖𝐽𝑒−

1
2 Δ̄𝐹 (𝑓 ,𝑓 ) .

Again with a reasoning similar to the time-ordered case, it is easy to see that

𝑒−𝑖𝐽 ★ 𝐹 (𝜑) = 𝑒−𝑖𝐽𝐹 (𝜑 − 𝑖Δ̄+ 𝑗) ,

and so in particular, using Eq. (2.49),

𝑒−𝑖𝐽 ★ (𝑒𝑖𝐽 ·𝑇 𝐹) = 𝑒−𝑖𝐽𝑒𝑖𝐽 (𝜑−𝑖Δ̄+ 𝑗𝐹 (𝜑 + 𝑖(Δ𝐹 − Δ̄+) 𝑗) .

The statement follows by recalling that Δ𝐹 − Δ̄+ = 𝑖Δ𝑅.

2 . 10 hilbert space representation

The great advantage of the algebraic approach lies in its clear separation between
the different operations that construct correlation functions of interacting observ-
ables. The construction of the algebra of free observables, in particular, proceeds
taking as input the field content of the theory and the causal structure of the space-
time only. This abstract point of view allows to prove very general propertieswhich
are model independent; for example, it is possible to prove perturbative renormal-
izability of Yang-Mills theories [156] without referencing to specific states or back-
grounds.

On the other hand, the choice of a state often involves subtle considerations
on the physical properties of the specific model of interest; more than a technique
dictated by theory, it is an art inspired by physical intuition [110].

Once a state is chosen, it is possible to recover the standard approach to QFT,
based on the construction of quantum fields as operators acting on a Hilbert space.
The construction is based on the Gel’fand, Naimark, and Segal (GNS) theorem, or
Wightman reconstruction argument [141]. Given a ∗−algebra A, a representation
of the algebra (𝜋, ,) is a Hilbert space , a dense subspace ⊂  , and a map
𝜋 : A → 𝜋 (A) from the algebra A to the space of closable operators over ,
satisfying, for any 𝐴, 𝐵 ∈ A, and any 𝑎, 𝑏 ∈ C,

i. compatibility with unity: 𝜋 (1A) = 1;
ii. compatibility with the product: 𝜋 (𝐴)𝜋 (𝐵) = 𝜋 (𝐴𝐵);
iii. linearity: 𝜋 (𝑎𝐴 + 𝑏𝐵) = 𝑎𝜋 (𝐴) + 𝑏𝜋 (𝐵);
iv. compatibility with the involution: 𝜋 (𝐴∗) = 𝜋 (𝐴)∗ |.

Theorem 2.4 (GNS theorem). Let 𝜔 : A→ C be a state on a unital ∗−algebra A.
Then, there exists a representation 𝜋 of the algebra by linear operators acting on a dense
subspace  of some Hilbert space, and a unit vector |Ω⟩ ∈  such that

𝜔(𝐴) = ⟨Ω| 𝐴 |Ω⟩ ∀𝐴 ∈ A ,

and = {𝜋 (𝐴)Ω, 𝐴 ∈ A}. Moreover, the representation associated to each given state
𝜔 is unique up to unitary transformations.
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The proof can be found e.g. in Ref. [211].
Thus, any state𝜔 onAidentifies a uniqueGNS representation (𝜋𝜔,𝜔,𝜔, |Ω⟩)

up to unitary transformations. The bracket on the vector |Ω⟩ of the operator rep-
resenting 𝐴 on represents the expectation value 𝜔(𝐴)

𝜔(𝐴) = ⟨Ω| 𝜋𝜔 (𝐴) |Ω⟩ . (2.52)

Since vectors of the form |𝐴⟩ = 𝜋𝜔 (𝐴) |Ω⟩ are dense in𝜔, the vector |Ω⟩ itself is
cyclic.

The GNS representation shows that, in fact, the algebraic approach encom-
passes the Hilbert space representation of QFT, with the important generalisation
that it does not refer to a particular state from the outline.

2 . 1 1 connection with the path integral

The pAQFT formalism in the functional approach closely resembles the usual pQFT
formalism preferred in the physics literature.

In fact, the time-ordered expectation value of some interacting observable in
the vacuum state in the algebraic setting can be regarded as the generalization of
the (often ill-defined) path integral approach in usual QFT.

To make the connection apparent, let’s focus for the moment to the subset of
regular functionals, where the Feynman propagator is sufficient to construct the
time-ordering operator. A state-evaluated time-ordered functional in a quasi-free
state is

𝑇𝐹 (0) = 𝜔 (𝑇𝐹 (𝜑)) = 𝜔
(
M𝑒

1
2ℏ

∫
𝛿
𝛿𝜑
Δ𝐹

𝛿
𝛿𝜑 𝐹

)
= 𝑒

1
2ℏ

∫
Δ𝐹

𝛿2
𝛿𝜑𝛿𝜑 𝐹 (𝜑)

����
𝜑=0

.

It is possible to associate to the above formula a path-integral, heuristic rep-
resentation of the state. In fact, the time-ordering operator 𝑇 acts as an integral
measure, with covariance Δ, in the space of the Fourier transform of the field 𝜑; for-
mally rewriting 𝑗 = −𝑖 𝛿

𝛿𝜑
, the time-ordering operator can be written by a formal

anti-Fourier transform as

𝑇𝐹 (𝜑) =
∫

𝑗𝑒−
1

2ℏ
∫
𝑗Δ𝐹 𝑗𝑒𝑖

∫
𝑗𝜑 �̂� ( 𝑗) , (2.53)

where we denote the convolution as the distribution multiplication, and we intro-
duced the formal Fourier integral measure𝑗 and the formal Fourier transform

�̂� ( 𝑗) =
∫

𝜑𝑒−𝑖
∫
𝑗𝜑𝐹 (𝜑) .

Substituting the definition of the Fourier transform �̂� ( 𝑗) into formula (2.53),
the time-ordering operator is formally equivalent to

𝑇𝐹 (𝜑) =
∫

𝑗𝑒−
ℏ
2 Δ𝐹 ( 𝑗,𝑗)+𝑖

∫
𝑗𝜑

∫
�̃�𝑒−𝑖

∫
𝑗�̃�𝐹 (�̃�) .

The functional integral in𝑗 can be computed as a Gaussian integral with covari-
ance Δ𝐹 ; since the Feynman propagator is a fundamental solution of the free equa-
tions of motion, 𝑃0Δ𝐹 = 𝑖𝛿 , we can write

𝑇𝐹 (0) =
∫

𝜑𝑒
𝑖
ℏ 𝐼0 (𝜑)𝐹 (𝜑) ,
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where 𝐼0(𝜑) = 1
2𝜑𝑃0𝜑.

Of course, all these steps are only formal, and in particular the functional inte-
gralmeasures𝑗, 𝜑 are ill-defined, since there is no notion of functional calculus
in general infinite-dimensional configuration spaces.

The evaluation on a quasi-free state, that is, on the vanishing configuration,
becomes a path-integral centred in 𝜙 = 0 and with covariance the inverse of the
free action

𝑇𝐹 (0) =
∫

d`𝑖ℏΔ𝐹 (𝜑)𝐹 (𝜑) =
∫

𝜑𝑒
𝑖
ℏ 𝐼0𝐹 (𝜑) . (2.54)

More generally, choosing as state the evaluating functional𝜔(𝑇𝐹 (𝜑)) = 𝑇𝐹 (𝜑)
��
𝜑=𝜙

,
where 𝜙 is the state 1-point function, the state evaluation of a time-ordered func-
tional reads

𝑇𝐹 (𝜙) =
∫

d`𝑖ℏΔ𝐹 (𝜑)𝐹 (𝜙 − 𝜑) =
∫

𝜑𝑒
𝑖
ℏ 𝐼0𝐹 (𝜙 − 𝜑) .

It is possible to find similar connections for interacting observables. In fact, the
interacting field 𝑅𝑉 (𝜑) defined by the Bogoliubov formula is nothing but the field
in the interaction picture,

𝑅𝑉 (𝜑) = 𝑆(𝑉 )−1 ★ [𝑆(𝑉 ) ·𝑇 𝜑] = 𝑇 (𝑒𝑖𝑉 )−1𝑇 (𝑒𝑖𝑉𝜑) ,

where in the last equality we dropped the★-product as it is common in the physics
literature. By the same reasoning on the time-ordering operator as before, it fol-
lows that expectation values of interacting observables are analogous to

𝑅𝑉 (𝐹) (0) =
∫

𝜑𝑒
𝑖
ℏ 𝐼𝑐 (𝜑)𝐹 (𝜑) ,

where 𝐼𝑐 (𝜑) is the action functional integrated along a closed contour around the
real line in time, known as Keldysh contour, corresponding to the representation
of interacting observables in the in-in formalism. In fact, the two directions of
integration along the closed contour corresponds to the two operators 𝑆(𝑉 ) and
𝑆(𝑉 )−1 in the Bogoliubov formula.

The algebraic formalism thus provides a generalisation of the path integral ap-
proach, applicable to curved spacetimes and when the state is not quasifree, nor it
admits a path integral representation. In fact, the main difference from the usual
construction is that this formalism does not make use of the vacuum representa-
tions of fields. At the same time, local observables like the interaction Lagrangian
are normal-ordered in a covariant way.

However, the generalisation to the Bogoliubov map has relevant physical con-
sequences in curved spacetimes or in generic states, due to the extra factor 𝑆(𝑉 )−1.

When dealing with e.g. the scattering theory in QFT on flat spacetime, one usu-
ally takes expectation values in the vacuum state on Minkowski; in this case, the
Gell-Mann-Low formula allows to factorise the ★-product present in the Bogoli-
ubov map,

𝜔(𝑆(𝑉 )−1★𝑆(𝑉 )·𝑇 𝜑) = 𝜔(𝑆(𝑉 )−1)𝜔(𝑆(𝑉 )·𝑇 𝜑) = 𝜔(𝑆(𝑉 ))−1𝜔(𝑆(𝑉 )·𝑇 𝜑) , (2.55)

at least when the support of 𝑉 tends to the entire Minkowski spacetime, namely in
the adiabatic limit. A discussion about the validity of (2.55) for the case of massive
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field can be found in Section 6.2 of [97], which makes use of estimates given in the
appendix of [99]. In this case, we have that

𝜔(𝑅𝑉 (𝜑)) =
𝜔(𝑇 (𝑒𝑖𝑉𝜑))
𝜔(𝑇𝑒𝑖𝑉 )

,

with analogous formulas for the 𝑛-point functions; in the perturbative expansion
of the right-hand side, only time-ordered products appear.

However, it is known that, for example for thermal states, the path integral
must be computed along the Keldysh contour, taking into account both the up-
per and the lower path of integration. The Keldysh contour can be seen as a con-
sequence of the fact that the Gell-Mann-Low formula fails for thermal states. In
fact, the Gell-Mann-Low formula has been proven only for the Minkowski vac-
uumwith a mass gap in the adiabatic limit [97, 99]. For general states, or on curved
backgrounds, the Gell-Mann-Low formula does not hold, and the factor 𝑆(𝑉 )−1

needs to be taken into account.When a Keldysh contour representation is not avail-
able, the Bogoliubov formula and the algebraic approach provides themost general
and explicit way of writing interacting observables.

The Bogoliubov formula can be expanded as usual in perturbation theory, in
terms of Feynmandiagrams.However, in the perturbative expansion the★-product
plays the important role of a new, oriented (as the product is non-commutative)
internal line in Feynman diagrams. Physically, this corresponds to the fact that
vacuum bubbles, which are captured by 𝑆(𝑉 ), are now connected with diagrams
entering scattering amplitudes, due to curvature effects or state effects that mix
positive and negative frequencies.

The discussion in this Section serves to provide a map between the heuristic
formulas that are more familiar in the physics literature, with the rigorous formu-
las of pAQFT. In fact, the functional approach to AQFT provides a way to rigor-
ously define the heuristic formulas of the path-integral formalism. We stress here
once again that the correspondence is only formal, since there is no rigorous for-
mulation of functional calculus in the infinite-dimensional configuration spaces of
interest in QFT.

However, far from being a simple “formalization” of the path-integral formu-
lation, pAQFT also represents an important generalisation of QFT on flat space in
the vacuum representation to curved spacetimes and generic states. In particular,
while quasi-free, vacuum states, or thermal states for the free theory, can admit a
heuristic path-integral representation, this is not true any more for more compli-
cated states, such as thermal states at equilibrium for the interacting theory. More-
over, while the Gell-Mann-Low formula allows for a path-integral representation
of interacting correlation functions, when it does not hold the Bogoliubov formula
cannot be easily represented in a path-integral formulation.

The algebraic approach thus provides a unified framework that vastly gener-
alises QFT on flat spacetimes, at the same time clarifying conceptual issues and
distinguishing between states and algebras, in a mathematically sound language.
It takes directly into account all the effects due to curved backgrounds and non-
trivial states, providing a tool to investigate physical consequences of these more
general situations.



3 BV formalism

3 . 1 the problem of quantum gauge theory

Deformation quantization relies on the assumption that the action provides nor-
mally hyperbolic equations of motion, a property that, as we have seen in Section
2.3, is not fulfilled by an action possessing local (gauge) symmetries. In the case
of gauge theories, therefore, extra work is needed in order to quantise the theory.
The general strategy is based on the procedure of gauge fixing, consisting in intro-
ducing additional terms in the action that explicitly breaks gauge symmetry, and
the equations of motion are again normally hyperbolic. However, the fundamen-
tal requirement is that the gauge-fixing procedure does not change the physical
predictions of the theory. In other words, while gauge-fixing is necessary, quan-
tum observables should not depend on the specific choices made to fix the gauge,
a requirement known as gauge independence.

The heavy-lifting to guarantee the equivalence between the two theories is
done by the BV formalism. The fundamental idea is to add a gauge-fixing term
so that, even if the gauge symmetry is broken, the gauge-fixed action preserves a
global (super-)symmetry, known as BRST symmetry. The BRST symmetry is de-
scribed by the action of a differential, the BRST differential, on the fields. Since
the symmetry is described by a differential, it is possible to construct a differential
complex, whose cohomology describes various physical properties of the theory.
The key property of local BRST cohomology is that the zeroth cohomology of the
BRST differential describes gauge invariant observables: in thisway, it is possible to
recover the physical space of gauge-invariant observables from gauge-fixed quan-
tities. From a mathematical perspective, the BRST differential coincides with the
Chevalley-Eilenberg differential 𝛾𝑐𝑒 introduced in Lie algebra cohomology.

On-shell functionals can be characterised in a similar way, using homological
algebra. In fact, modulo some technical assumptions, on-shell observables can be
described as the zeroth homology of another differential, the Koszul differential 𝛿
[153]. These technical assumptions can be roughly summarised with the require-
ment that, after gauge fixing, the equations of motion are normally hyperbolic. It
follows that the homological language allows for a description of the on-shell ob-
servables that do not require normal hyperbolicity of the original equations of mo-
tion.

From theKoszul differential it is possible to construct a homology complex, the
Koszul complex, so that its zeroth homology describes on-shell observables. The
sum of the Koszul and Chevalley-Eilenberg differentials defines the BV differential,
𝑠 := 𝛿 + 𝛾 . The main theorem of local BRST cohomology is that on-shell, gauge
invariant observables, which can be characterised by 𝐻0(𝐻0(𝛿), 𝛾), coincides with

48
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the zeroth cohomology of the BV differential [22]

𝐻0(𝑠) = 𝐻0(𝐻0(𝛿), 𝛾) .

This allows for a complete cohomological characterisation of the on-shell, gauge
invariant observables, in terms of the cohomology of the BV differential 𝑠.

While most of the physical literature on the BV formalism uses formal argu-
ments based on the path integral, as the original papers [26–28], and the mathemat-
ical literature usually assumes a finite dimensional setting, as in a recent review by
Cattaneo,Mnev, and Schiavina [74], the BV formalism can be adapted to the infinite-
dimensional framework of QFT [116, 119], generalising the geometric intuition to
infinite-dimensional manifolds. In this setting, symmetries are described as direc-
tional derivatives leaving the space of functionals invariant. At the infinitesimal
level, this requires the introduction of vector fields on the space of functionals, using
infinite-dimensional calculus. The tangent space to the field configuration space is
generated by what in the physics literature are known as antifields. The homologi-
cal description of gauge theories requires the introduction of a new bracket in the
classical field theory, the antibracket, which coincides with the Schouten bracket
among multilocal vector fields.

Having symmetries and equations of motion under control, it is now possible
to proceed with deformation quantization of the gauge-fixed action, in order to
construct the formal power series of quantum, interacting observables. The time-
ordering operator𝑇 maps the classical BV differential 𝑠 in its quantum, interacting
counterpart 𝑠.

As the algebra of classical observables, quantum observables must be gauge-
independent. The gauge independence of the quantum theory follows requiring that
the functionals describing the quantum observables are in the zeroth cohomology
of the quantum BV differential 𝑠. Moreover, gauge-independence of the 𝑆−matrix
is guaranteed if the action satisfies the Quantum Master Equation (3.35).

In the following, we review the BV formalism for the classical and quantum the-
ories possessing gauge symmetries, based on the introduction of infinite-dimensional
calculus in the framework of pAQFT [116, 119, 211, 213].

3 .2 classical theory

The BV formalism provides a description of the classical algebra of observables in
terms of the cohomology of the Koszul map and the Chevalley-Eilenberg differen-
tial. The equations of motion are derived as the Euler-Lagrange equations for an
action 𝐼𝑖𝑛𝑣 invariant under some group of symmetries. The classical description
will provide a basis to gauge-fix the theory, producing well-defined propagators
for quantization.

From now on, when talking about gauge fields we denote the elements of the
field configuration space E() with ∈ E(). This change is to accommodate
the gauge fields, ghosts 𝑐, antighosts 𝑐, and Nakanishi-Lautrup fields 𝑏 in a field
multiplet 𝜑 := {, 𝑏, 𝑐, 𝑐}, an element of the extended configuration space E. In
fact, in gauge theories, deformation quantization is performed on the odd cotan-
gent bundle of the extended configuration space; with this change in notation, the
field configuration subject to quantization is 𝜑 both in the scalar and in the gauge
field case. Since in the quantum theory the propagators, the states, and, later, the
generating functionals are defined with respect to the field multiplet 𝜑, this choice
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makes most equations formally identical between the scalar field and the gauge
field case. Of course, in the case of scalar fields, the field multiplet reduces to the
single scalar 𝜑 = {𝜑}.

Let’s now start with the description of the additional classical structures re-
quired by the BV formalism. The first objects we need are vector fields 𝑋 ∈ V(),
defined as smooth sections on the tangent bundle of the configuration space. The
tangent space to a locally convex topological vector space can be simply identified
with the space itself, 𝑇E := E× E, and so vector fields are smooth functions from
the configuration space to itself, 𝑋 ∈ Γ(𝑇E) ≃ 𝐶∞(E, E). Vector fields act as
derivations of the space of functionals on the configuration space, and can thus be
interpreted as directional derivatives on the space of observables.

Definition 3.1 (Vector fields). Let 𝐹 ∈ F̀ 𝑐 () be a microcausal functional on the
configuration space E() ∋ . We define a vector field 𝑋 ∈ V() as a smooth
map 𝑋 : E() → E𝑐 (), acting as a derivation on microcausal functionals: if
𝐹 ∈ F̀ 𝑐 , we have

𝜕𝑋𝐹 () := ⟨𝐹 (1) (), 𝑋 ()⟩ .

The support of a vector field 𝑋 is defined as

supp 𝑋 := {𝑥 ∈ |∀ neighbourhood of 𝑥 ∃𝐹 ∈ `𝑐 (), supp 𝐹 ⊂ 
| 𝜕𝑋𝐹 ≠ 0 or ∃𝜑, 𝜓 ∈  () , supp𝜓 ⊂  | 𝑋 (𝜑 + 𝜓) ≠ 𝑋 (𝜑)} .

The action of vector fields as derivations, and the Lie bracket between two vec-
tor fields can be generalized to the Schouten bracket between alternating multivector
fields, defined as smooth, compactly supported multilocal maps from C() to
ΛC∗()′ =

⊕
Λ𝑛C∗()′, where

Λ𝑛C∗()′ ⊂ Γ((𝑉 ∗)⊠𝑛 → 𝑀𝑛)′ ,

by a slight abuse of notation, denotes the space of compactly supported distribu-
tional sections which are totally antisymmetric under permutations of their argu-
ments. Here⊠ is the exterior tensor products of vector bundles and 𝑉 ∗ is the bun-
dle dual to 𝑉 . We set Λ0𝐶∞

0 () = R (for more details, see Section 3.4 of Ref. [211]).
The space of alternating multivector fields forms a graded commutative algebra
ΛV() with respect to the product 𝑋 ∧ 𝑌 () = 𝑋 () ∧ 𝑌 ().

The Schouten bracket is an odd Poisson bracket on this algebra,

{·, ·} : Λ𝑛V() × Λ𝑚V() → Λ𝑚+𝑛−1 V() .

It satisfies the following properties:
i. Graded antisymmetry: {𝑌, 𝑋} = −(−1) (𝑛−1) (𝑚−1) {𝑋, 𝑌 } ;
ii. Graded Leibniz rule: {𝑋, 𝑌 ∧ 𝑍} = {𝑋, 𝑌 } ∧ 𝑍 + (−1)𝑛𝑚{𝑋, 𝑍} ∧ 𝑌 ;
iii. Graded Jacobi rule:

{𝑋, {𝑌, 𝑍}} − (−1) (𝑛−1) (𝑚−1) {𝑌, {𝑋, 𝑍}} = {{𝑋, 𝑌 }, 𝑍} .

In the standard approach to the BV formalism, vector fields are identified with
antifields. The action of vector fields on classical observables can be formally writ-
ten as

𝜕𝑋𝐹 () =
∫
𝑥

𝑋 () 𝛿𝐹 ()
𝛿(𝑥) . (3.1)
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In the following, whenever a field-dependent expression is integrated over the
same spacetime point 𝑥, we will always implicitly assume a summation on the field
species, Lorentz, and internal indices as well. For example, in non-abelian Yang-
Mills theories, the gauge field𝑎

` carries both a color index 𝑎 and a Lorentz index
`. Moreover, the field configuration spacemust contain also ghosts, antighosts, and
Nakanishi-Lautrup fields, so that the field configurationmultiplet 𝜑 = {𝑎

`, 𝑏
𝑎, 𝑐𝑎, 𝑐𝑎}

replaces the single field 𝜑 of scalar theories. More abstractly, the field configuration
is a field multiplet 𝜑 = {𝜑𝑎}𝑎, for some multi-index 𝑎 that includes internal (color)
and Lorentz indices, as well as the species index indicating if the field is the gauge,
ghost, antighost, or Nakanishi-Lautrup field. By our convention, it follows that, for
example, the last equation can be spelled out as∫

𝑥

𝑋 (𝜑) 𝛿𝐹 (𝜑)
𝛿𝜑(𝑥) :=

∑︁
𝑎

∫
𝑥

𝑋 (𝜑𝑎)
𝛿𝐹 (𝜑)
𝛿𝜑𝑎(𝑥)

,

with the property
𝛿𝜑𝑏( 𝑦)
𝛿𝜑𝑎(𝑥)

= 𝛿𝑎𝑏𝛿 (𝑥− 𝑦), andwhere 𝛿𝑎𝑏 is the Kronecker delta. This
very compact notation prevents from a flourishing of indices in the formulas, and
it also makes many equations for gauge fields formally identical to the scalar field
case. This will help in recognising that equations for the gauge fields are immediate
generalisations of those for the scalar field, such as the ones displayed in Section
4.4.

Identifying the functional derivatives 𝛿
𝛿 with the antifields‡, the algebra of

alternating multivector fields is generated by fields and antifields, so that a generic
element of Λ𝑘V() can be written as

𝑋 () =
∫
𝑥1 ,...,𝑥𝑛

𝑋 () (𝑥1, . . . , 𝑥𝑛)‡(𝑥1) . . .†(𝑥𝑛) ∈ Λ𝑘V() .

The Schouten bracket between two multivector fields 𝑋, 𝑌 , with degree respec-
tively 𝑛, 𝑚, is interpreted in the physics literature as the antibracket:

{𝑋, 𝑌 } = −
∫
𝑥

(
𝛿𝑋

𝛿(𝑥)
𝛿𝑌

𝛿‡(𝑥)
+ (−1)𝑛 𝛿𝑋

𝛿‡(𝑥)
𝛿𝑌

𝛿(𝑥)

)
. (3.2)

TheBV formalism aims at a homological description of on-shell, gauge-invariant
functionals. Thanks to the introduction of the antifields, we can take the first step in
the BV construction, giving a geometrical description of the EOMs and of on-shell
functionals. In fact, these are characterised by the zeroth homology of a certain
differential, called the Koszul map.

Definition 3.2 (Koszulmap). Let 𝐼𝑖𝑛𝑣 be an action functional invariant under some
local symmetry. The Koszul map is defined as the operator acting on alternating
multivector fields 𝑋 ∈ ΛV() as

𝛿𝐾 (𝑋) := {𝑋, 𝐼𝑖𝑛𝑣} , 𝑋 ∈ ΛV() .

The image of 𝛿𝐾 is contained in the space of functionals that vanish on-shell,
F0. Under technical assumptions, it is possible to prove that Im𝛿𝐾 = F0 [153], and
the space of on-shell functionals Fos is characterised by the 0th-homology of the
Koszul operator 𝐻0(𝛿𝐾 ) [213].
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The Koszul map 𝛿𝐾 defines a complex in ΛV(),

. . .→ Λ2 V()
2

→ ΛV()
1

→ F()
0

→ 0 . (3.3)

Local symmetries of the action are described by the directions in which the
action does not change, i.e., the space of symmetries is the Lie subalgebra s() of
V() such that

𝑋 ∈ s() ⇔ 𝜕𝑋 𝐼𝑖𝑛𝑣 () = 𝛿𝐾𝑋 () = 0 ∀ ∈ E() , (3.4)

that is, s() = Ker𝛿𝐾 . A symmetry is called trivial if it vanishes on-shell, namely
if 𝑋 () = 0 ∀ ∈ Eos(). It is possible to show that trivial symmetries are con-
tained in the image of 𝛿𝐾 , so the first homology of theKoszul complex𝐻1(ΛV(), 𝛿𝐾 )
contains the non-trivial local symmetries of the theory.

As a consequence, for a theorywithout non-trivial local symmetries the graded
algebra (ΛV, 𝛿𝐾 ) is a resolution of os(), called the Koszul resolution. It can be
proven that it is sufficient for 𝐼 (2)

𝑖𝑛𝑣
to be a normally hyperbolic operator in order

to have no non-trivial local symmetries. In the presence of local symmetries, one
needs to assume regularity conditions on the action, implying that 𝐼 (2)

𝑖𝑛𝑣
is a nor-

mally hyperbolic operator after gauge fixing. Then, the Koszul complex must be
modified to theKoszul-Tate complex, an iterative procedure (which needs not to ter-
minate at some finite order) constructs the Koszul-Tate resolution of F(). For
the details of the construction, we refer to [213].

3 .2 . 1 Symmetries

The Chevalley-Eilenberg cochain complex provides a geometrical interpretation of
the space of gauge-invariant functionals [48, 185, 227]. To start, we notice that the
invariant action 𝐼𝑖𝑛𝑣 reflects an invariance of the field configuration space under
the action of some group transformation. The field configuration space thus is a
section E() = Γ(, 𝑉 ) of some principal 𝐺−bundle 𝜋 : 𝑃 →  with fibre
𝑉 and with structure group 𝐺. The gauge group G is the infinite-dimensional Lie
group of gauge transformations on 𝑃,

G := {Z : 𝑃 → 𝐺 | Z (𝑝 · 𝑀) = 𝑀−1Z (𝑝)𝑀, 𝑝 ∈ 𝑃, 𝑀 ∈ 𝐺} ,

and its Lie algebra g is the infinite-dimensional algebra of infinitesimal transfor-
mations on 𝑃,

g := {b : 𝑃 → 𝔤 | b (𝑝 · 𝑀) = Ad𝑀−1b (𝑝), 𝑝 ∈ 𝑃, 𝑀 ∈ 𝐺} .

𝔤 is the Lie algebra of the Lie group 𝐺. For a trivial bundle 𝑃, the gauge group is
simply G≃ 𝐶∞

𝑐 (, 𝐺), the space of smooth sections with values in the Lie group,
and g = 𝐶∞(,𝔤). The gauge fields  ∈ Λ1(𝑃,𝔤) = Ω1(,𝔤) are thus the
space of 1-form connections. We denote 𝜔 ∈ Λ(𝑃,𝔤) :=

∑
𝑛≥0 Λ

𝑛(𝑃,𝔤) the space of
ad-equivariant 𝑘−forms 𝜔.

The gauge group Ghas a natural representation 𝜌 on  ∈ Ω1(𝑃,𝔤) by pull-
back, that is

𝜌(Z ) := (Z −1)∗ , Z ∈ G,  ∈ Ω1(𝑃,𝔤) .
The derived representation 𝜌′ of g on Λ0(𝑃,𝔤) ≃ g is the adjoint representation
of g,

𝜌′(b)[ = [b, [] , b, [ ∈ g .
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The induced action 𝜌′ of the Lie algebra g on  ∈ Λ1(𝑃,𝔤) is defined by the
infinitesimal action of the exponential map on, so that

𝜌′(b) :=
d
d𝑡 𝑡=0

𝜌′(exp{𝑡b}) =
d
d𝑡 𝑡=0

exp∗ (−𝑡b) = 𝑍b = db + [, b] := 𝐷b .

In the last expression,𝑍b denotes the Lie derivative along the fundamental vector
𝑍b on 𝑃 associated with b . 𝜌′ thus associates the vector field 𝜌′(b) to the gauge
parameter b; in other words, it defines a map from the Lie algebra g to the space
of vector fields on E().

The action of symmetries on the field configuration space E is thus a subalge-
bra of directional derivatives on E: we see that the space of antifields‡ ∈ V()
plays a fundamental role both in the homological description of the EOMs, and in
the cohomological description of symmetries.

Symmetries form a Lie-subalgebra of V and we assume that each symmetry
can bewritten as 𝑋 = 𝜌′(b)+𝑋0, where 𝑋0 is a symmetry vanishing on-shell, b ∈ g,
whereg is a Lie-algebra that can be expressed as a space of smooth sections of some
vector bundle

𝜋−→  and 𝜌 : g→ V is a Lie-algebra morphism.
The action 𝐼𝑖𝑛𝑣 is thus invariant under some Lie group G, such that the initial

value problem is well-posed in the space of gauge orbits E/G. Examples of invari-
ant actions are the Einstein-Hilbert or the Yang-Mills actions.

The space of invariant functionals F𝑖𝑛𝑣 = F(E/G) has a cohomological de-
scription in terms of theChevalley-Eilenberg cochain complex. This is theChevalley-
Eilenberg cohomology of the Lie algebra 𝔤 with respect to the derived representa-
tion 𝜌′. The underlying algebra to the Chevalley-Eilenberg complex is the algebra
of microcausal functionals on E⊕ g[1] ,

CE() := F̀ 𝑐 (E⊕ g[1])) , (3.5)

with the external differential with respect to the action of the group 𝛾𝑐𝑒, called the
Chevalley-Eilenberg differential. The grading is called the pure ghost number #pg.
The Chevalley-Eilenberg complex can be equivalently defined as the microcausal
sections from the field configuration space to the exterior product of the dual gauge
algebra, 𝐶∞

`𝑐 (E, Λg′), where Λg′ denotes the dual of Γ(k⊠𝑛 → 𝑛).
The Chevalley-Eilenberg differential is defined by its action on the forms 𝜔 ∈

Λ(𝑃,𝔤) as

𝛾𝑐𝑒𝜔(b1, . . . , b𝑛) =
𝑛∑︁
𝑗=0

(−1) 𝑗𝜌′(b𝑖)𝜔(b1, . . . , b𝑖−1, b𝑖+1, . . . , b𝑛)

+
∑︁
𝑖<𝑗

(−1) 𝑖+𝑗𝜔( [b𝑖, b 𝑗] , b1, . . . , b𝑖−1, b𝑖+1, . . . , b 𝑗−1, b 𝑗+1, . . . , b𝑛) . (3.6)

Notice that 𝛾2
𝑐𝑒 = 0. It is extended to a differential on the Chevalley-Eilenberg

cochain complex by defining its action on linear functionals as 𝛾𝑐𝑒𝐹 (𝜔) := ⟨𝐹 (1) , 𝛾𝑐𝑒𝜔⟩,
and on generic microcausal functionals by the graded Leibniz rule and linearity.

TheChevalley-Eilenberg differential generates theChevalley-Eilenberg cochain
complex,

0 → F(E)
𝛾𝑐𝑒−−→ 𝐶∞(E, Λg[1])

𝛾𝑐𝑒−−→ C∞(E, Λ2g[1]) . . . .

Now, the Maurer-Cartan form is the particular one-form 𝑐 ∈ g′ such that
𝑐(b) = b for every element b ∈ g. It follows from its definition that the action of
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the Chevalley-Eilenberg differential on the gauge fields is 𝛾𝑐𝑒 = 𝐷𝑐, and on
the Maurer-Cartan form is 𝛾𝑐𝑒𝑐 = 1

2 [𝑐, 𝑐].
Notice in particular that for 𝐹 ∈ F(E) it holds

𝛾𝑐𝑒𝐹 () = ⟨𝐹 (1) , 𝐷𝑐⟩ . (3.7)

The forms 𝑐 ∈ Λg′ are known in the physics literature as ghosts.
An element of CEcan be written in two equivalent ways. First, as a functional

on E⊕g, it can formally be expressed as the integral over its distributional kernel,
as

𝐹 (, b) =
∑︁
𝑎1 ,...,𝑎𝑛

∫
𝑥1 ,...,𝑥𝑛

𝑓 () (𝑥1, . . . , 𝑥𝑛)𝑎1 ,...,𝑎𝑛b
𝑎1 (𝑥1) ∧ . . . ∧ b𝑎𝑛 (𝑥𝑛) .

Secondly, we can use the Maurer-Cartan form and re-write it as a section 𝐹 ∈
𝐶∞(E, Λg′), as a sum of local functionals of the gauge fields, and the exterior prod-
uct of the ghosts in the form

𝐹 (, 𝑐) =
∑︁
𝑎1 ,...,𝑎𝑛

∫
𝑥1 ,...,𝑥𝑛

𝑓 () (𝑥1, . . . , 𝑥𝑛)𝑎1 ,...,𝑎𝑛 𝑐
𝑎1 (𝑥1) ∧ . . . ∧ 𝑐𝑎𝑛 (𝑥𝑛) .

𝑐𝑎 are the coefficients of the Maurer-Cartan form on G. They are elements of the
Chevalley-Eilenberg complex, and they can be seen as formal generators of the
algebra CE().

Finally, from the action of the Chevalley-Eilenberg differential on a functional
of the field configuration space, Eq. (3.7), we see that the kernel of 𝛾𝑐𝑒 in degree
0 characterises the gauge-invariant functionals. On the other hand, the image of
𝛾𝑐𝑒 in degree 0 is simply the 0 term, since 𝛾𝑐𝑒0 = 0. It follows that the cohomol-
ogy in degree 0 of the Chevalley-Eilenberg complex describes the gauge-invariant
functionals, 𝐻0(𝛾𝑐𝑒) = F𝑖𝑛𝑣.

3 .2 .2 Batalin-Vilkovisky algebra

The Batalin-Vilkovisky algebra BV is the graded symmetric tensor algebra of
graded compactly-supported microcausal derivations of CE, i.e., it is the algebra
of microcausal functionals acting on

E[0] ⊕ g[1] ⊕ E′
𝑐 [−1] ⊕ g′

𝑐 [−2] .

This is the odd cotangent bundle of the extended configuration space E := E[0] ⊕
g[1] , where the number in brackets denotes the pure ghost number. Elements of
the extended configuration space will be collectively denoted by 𝜑 in the follow-
ing, indicating both the original field configurations  ∈ E[0] and the ghosts
𝑐 ∈ g[1]. The elements of the tangent space are the antifields for the fields and
the ghosts, and we identify the functional derivatives 𝜑‡ := 𝛿

𝛿𝜑
as the “basis” for

the fibre E′
𝑐 [−1] ⊕ g′

𝑐 [−2] , where the prime indicates to take sections of the cor-
responding dual bundles.

The BV algebra has two gradings, the ghost number #𝑔ℎ and the antifield
number #𝑎𝑓 , related to the pure ghost number via #𝑔ℎ = #𝑝𝑔 − #𝑎𝑓 . Functionals
of the physical fields have both numbers equal to zero; functionals of ghosts have
#𝑔ℎ = #𝑝𝑔, and vector fields have non-zero antifield number #𝑔ℎ = −#𝑎𝑓 . Seen as
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the space of graded multivector fields, BV is equipped with a generalised graded
Schouten bracket, which can be shown to be an odd Poisson bracket.

In analogy with the Koszul map, Definition 3.2, it is possible to find a natural
transformation 𝐼𝑎𝑓 so that

𝛾𝑐𝑒(𝑋) := {𝑋, 𝐼𝑎𝑓 } . (3.8)

The BV differential is defined as the sum of the Koszul map and the Chevalley-
Eilenberg differential,

𝑠𝐵𝑉 := {·, 𝐼𝑐𝑙} = 𝛿𝐾 + 𝛾𝑐𝑒 + . . . , (3.9)

where 𝐼𝑐𝑙 := 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 . The dots represent the fact that, in the most general case,
𝛿𝐾 + 𝛾𝑐𝑒 fails to be a nilpotent operator. The formula can then be understood as
an expansion of 𝑠 in antifield number, and higher order terms are needed in order
to ensure the crucial property 𝑠2

𝐵𝑉
= 0 [134]. In the case of Yang-Mills theories and

gravity, the sum contains the first two terms only, and the action 𝐼𝑐𝑙 is atmost linear
in the antifields. Theories that are linear in the antifields are collectively known as
Yang-Mills-type theories.

The nilpotency of 𝑠𝐵𝑉 is ensured by theClassical Master Equation (CME), which
in this formalism must be understood at the level of natural transformations. For
scalar field theories, generalised Lagrangians are natural transformations to the
space ofmicrocausal functionals, that are, to observables of the field configurations
. In the BV formalism, generalised Lagrangians are now natural transformations
from the space of test functions to the BV algebra, in order to include also ghosts
and antifields. The classical Lagrangian 𝐿𝑐𝑙 := 𝐿𝑖𝑛𝑣 + 𝐿𝑎𝑓 is such an example. In the
space of generalised Lagrangians, it is possible to introduce an equivalence relation
in analogy with (2.5), and define the action as the equivalence class of generalised
lagrangians. The CME is then the condition

{𝐼𝑐𝑙 , 𝐼𝑐𝑙} = 0 . (3.10)

The cohomology of 𝛾𝑐𝑒 characterises invariant functionals, and the homology
of 𝛿𝐾 the on-shell functionals. The main theorem of homological perturbation the-
ory guarantees that the gauge-invariant, on-shell observables of the theory can be
characterised by the zeroth cohomology of theBVdifferential,Finv

os = 𝐻0(BV, 𝑠𝐵𝑉 )
[22, 116, 119, 213]. In fact, it can be proven that

𝐻0(BV, 𝑠𝐵𝑉 ) = 𝐻0(𝐻0(BV, 𝛿𝐾 ), 𝛾𝑐𝑒) . (3.11)

3 .2 .3 Gauge fixing and non-minimal sector

In order to obtain an action 𝐼 that provides normally hyperbolic EOMs, the gauge
invariant action 𝐼𝑐𝑙 must be deformed via the procedure known as gauge-fixing,
so that its EOMs are normally hyperbolic. The main goal of the BV formalism is
to provide a deformation of the classical action, in such a way that the quantum
observables do not depend on the gauge-fixing term.

In the BV formalism, the gauge fixing is performed in two steps. First, we need
to enlarge the BV complex to include the antighosts 𝑐 ∈ g′ [−1] and theNakanishi-
Lautrup fields 𝑏 ∈ g′ [0]. For notational simplicity, we again denote the space of
field configurations E := E⊕g[1]⊕g′ [0]⊕g′ [−1] , so that now the fieldmultiplet
𝜑 includes the antighosts and the Nakanishi-Lautrup fields too,

𝜑 = {, 𝑏, 𝑐, 𝑐} ,
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and the extended BV complex as BV.
On the extended BV complex, we need to defined the action of the BV differen-

tial on Nakanishi-Lautrup fields and antighosts. This is defined so that they form
a contractible pair,

𝑠𝐵𝑉 𝑐 = 𝑖𝑏 , and 𝑠𝐵𝑉 𝑏 = 0 .

It follows that they do not contribute to the BRST cohomology [22].
The gauge-fixing is performed as an automorphism of the BV complex, leaving

the antibracket invariant, and such that the transformed part of the action that
does not contain antifields has a well posed Cauchy problem. First, we introduce
the gauge-fixing Fermion 𝜓 as a fixed element of the algebra with #𝑔ℎ = −1 and
#𝑎𝑓 = 0. The automorphism then is

𝛼𝜓 (𝐹) :=
∞∑︁
𝑛=0

1
𝑛!
{ 𝜓, . . .︸︷︷︸
𝑛−1 𝑡𝑖𝑚𝑒𝑠

, {𝜓, 𝐹} . . .} . (3.12)

Notice that the sum is actually finite, since the antibracket with 𝜓 preserves the
ghost number and lowers the antifield number by 1. Moreover, it preserves the
product, as well as the Schouten bracket.

The automorphism 𝛼𝜓 (𝐹) performs the usual gauge-fixing, seen as a canonical
transformation to the “gauge-fixed basis” [134]

𝛼𝜓 (𝐹) = 𝐹
(
𝜑, 𝜑‡ + 𝛿𝜓

𝛿𝜑

)
. (3.13)

The gauge-fixed action is now 𝐼 := 𝛼𝜓 (𝐼𝑐𝑙). For theories that are linear in the anti-
fields, as Yang-Mills and gravity, the gauge-fixed action 𝐼 takes the usual form

𝐼 := 𝛼𝜓 (𝐼𝑐𝑙) = 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 + 𝑠Ψ = 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 + 𝐼𝑔ℎ + 𝐼𝑔𝑓 , (3.14)

where 𝐼𝑖𝑛𝑣 is the original, gauge-invariant action, Ψ =
∫
𝑥
𝑓𝜓, for some test function

𝑓 , is the gauge-fixing term, and the antifield, ghost, and gauge-fixing sectors are
respectively 𝐼𝑎𝑓 , 𝐼𝑔ℎ, and 𝐼𝑔𝑓 .

The gauge-fixing automorphism acts on the BV differential 𝑠𝐵𝑉 as well. To-
gether with 𝑐 and 𝑏, we introduce their corresponding antifields, so that the trans-
formed BV differential 𝑠 := 𝛼𝜓 ◦ 𝑠𝐵𝑉 ◦ 𝛼−1

𝜓 now is

𝑠 = {·, 𝐼} = 𝛿 + 𝛾 . (3.15)

𝛿 is the Koszul operator for the EOMs derived from 𝐼 , and 𝛾 is the BRST operator.
The space of gauge-invariant, on-shell functionals is isomorphic to𝐻0(BV, 𝑠),

where the isomorphism is given by 𝛼𝜓 . Finally, physical observables are obtained
by setting 𝜑‡ = 0; in particular, the corresponding gauge-fixed BV differential sim-
plifies into the BRST operator 𝑠(𝜑‡ = 0) = 𝛾 . In our formalism, we set the anti-
fields to zero when we evaluate the observables on some state functional, to obtain
gauge-invariant, on-shell correlation functions.

3 .2 .4 Example: Yang-Mills theory

Let’s discuss the BV construction in the concrete example of Yang-Mills (YM) theo-
ries [156]. These are defined by a globally hyperbolic spacetime (, 𝑔), and a prin-
cipal bundle 𝑃 → , where 𝐺 = 𝑆𝑈 (𝑁) is a compact Lie group. In a local trivi-
alisation of the bundle, a connection is a g−valued 1-form, and the Yang-Mills
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configuration space E = Ω1(,𝔤) are sections of 1-forms with values in the Lie
algebra 𝔤 = su(𝑁), for some 𝑁 . The fundamental invariant associated with the
connection  is the curvature 𝐹 := d + _𝑌𝑀 1

2 [,] , where _𝑌𝑀 is the Y-M
coupling constant, and the invariant action for Yang-Mills theories is

𝐼𝑖𝑛𝑣 (𝑓) = −1
2

∫
𝑥

Tr{𝐹 (𝑓) ∧ ★𝐹 (𝑓)} ,

where ★ is the Hodge operator and Tr is the trace in the adjoint representation
of su(𝑁) defined by the Killing-Cartan metric. For notational simplicity, in the
following we omit the IR cut-off function 𝑓. This action is the most general action
containing up to two derivatives compatible with the experimental observation of
force-carrying bosons, massless bosons of spin 1 associated with the electroweak
and strong forces [244]. The action 𝐼𝑖𝑛𝑣 is invariant under the action of a 𝐺-valued
function 𝑔 of the form

 → 𝑔 = − 𝑖

_𝑌𝑀
𝑔 d

(
𝑔−1) + 𝑔𝑔−1 ,

which infinitesimally takes the form of standard gauge transformations

𝛿b = 𝐷b = db + 𝑖_𝑌𝑀 [, b] ,

where b is a gauge parameter. 𝐷 is the covariant extension of the exterior deriva-
tive, which acts as 𝐷 = d + 𝑖_𝑌𝑀 on the fundamental representation and as in
the formula above in the adjoint representation of the group 𝑆𝑈 (𝑁). The EOM
derived from the invariant YM action are

𝐷 ★ 𝐹 = 0 . (3.16)

The Chevalley-Eilenberg complex is the algebra CE = F(E⊕ g[1]) of mi-
crocausal functionals of the gauge fields and ghosts 𝑐, which are functions with
values on the Lie algebra su(𝑁). The Chevalley-Eilenberg differential is defined
by its action on the fields as

𝛾𝑐𝑒 = 𝐷𝑐 , 𝛾𝑐𝑒𝑐 = − 𝑖_𝑌𝑀
2

[𝑐, 𝑐] .

The BV algebra is the algebra of microcausal functionals on the odd cotangent bun-
dle of the extended configuration space𝑇∗(E). Identifying the elements of the tan-
gent space with antifields, their basis is given by the derivatives ‡ = 𝛿

𝛿 and
𝑐‡ = 𝛿

𝛿 𝑐
. The Koszul map now by definition acts on a generic functional 𝑋 as

𝛿𝐾 (𝑋) = {𝑋, 𝐼𝑖𝑛𝑣} =
∫
𝑥

𝛿𝑋

𝛿
𝐷 ★ 𝐹 .

On the other hand, it is immediate to find the antifield contribution to the
action 𝐼𝑎𝑓 ; from the action of the Chevalley-Eilenberg differential it follows that

𝐼𝑎𝑓 =

∫
𝑥

(
‡𝐷(𝑓𝑐𝑐) −

𝑖_𝑌𝑀

2
𝑐‡ [𝑓𝑐𝑐, 𝑓𝑐𝑐]

)
.

Again, in the following we omit the IR cut-off function 𝑓𝑐.
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The action 𝐼𝑐𝑙 and theBVdifferential 𝑠𝐵𝑉 are determined by theCME, {𝐼𝑐𝑙 , 𝐼𝑐𝑙} =
0. We can now check by direct computation that the combination 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 actually
satisfies the CME,

{𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 , 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 } = 2{𝐼𝑖𝑛𝑣, 𝐼𝑎𝑓 } + {𝐼𝑎𝑓 , 𝐼𝑎𝑓 } .

For the quadratic termwe have {𝐼𝑖𝑛𝑣, 𝐼𝑖𝑛𝑣} = 0 since 𝐼𝑖𝑛𝑣 does not contain antifields;
the contribution {𝐼𝑖𝑛𝑣, 𝐼𝑎𝑓 } vanishes thanks to gauge invariance of the Y-M action.
It remains to check that the last term vanishes as well. This is given by

{𝐼𝑎𝑓 , 𝐼𝑎𝑓 } = 2
∫
𝑥

(
𝛿𝐷𝑐

𝛿
𝐷𝑐 −

𝑖_𝑌𝑀

2
𝛿

𝛿 𝑐
(𝐷𝑐 + [𝑐, 𝑐]) [𝑐, 𝑐]

)
.

Now, we have

𝛿𝐷𝑐

𝛿
𝐷𝑐 = 𝑖_𝑌𝑀 [𝐷𝑐, 𝑐] , and

𝑖_𝑌𝑀

2
𝛿

𝛿 𝑐
(𝐷𝑐 +

1
2
[𝑐, 𝑐]) [𝑐, 𝑐] = 𝑖_𝑌𝑀

2
𝐷 [𝑐, 𝑐] + [𝑐, [𝑐, 𝑐]] .

Since [𝑐, [𝑐, 𝑐]] = 0 by Jacobi identity, the two remaining terms cancel; therefore
the classical action 𝐼𝑐𝑙 = 𝐼𝑖𝑛𝑣 + 𝐼𝑎𝑓 satisfies the CME. The BV differential thus con-
tains only two terms, 𝑠𝐵𝑉 = 𝛿𝐾 + 𝛾𝑐𝑒, and it is nilpotent.

TheEOM(3.16) are not normally hyperbolic, since the action satisfies theNoether
identities associated with gauge invariance,∫

𝑥

𝛿 𝐼𝑖𝑛𝑣

𝛿(𝑥)𝐷𝑐(𝑥) = 0 .

Therefore, we need to perform gauge fixing. This is an automorphism of the BV
algebra that leaves the antibracket invariant, and such that its action on 𝐼𝑐𝑙 produces
a gauge-fixed action that satisfies theCMEandhave normally hyperbolic EOM. For
a generic gauge-fixing function () and a gauge parameter b , the gauge-fixing
Fermion takes the form

Ψ =

∫
𝑥

𝜓 = 𝑖

∫
𝑥

𝑐

(
b
𝑏

2
+ ()

)
.

The gauge-fixed action 𝐼 = 𝛼𝜓 (𝐼𝑐𝑙) is the sum of two terms only, since the classical
action is linear in the antifields:

𝐼 = 𝐼𝑐𝑙

(
𝜑, 𝜑‡ + 𝛿𝜓

𝛿𝜑

)
= 𝐼𝑐𝑙 + 𝑠Ψ .

It follows by direct computation that the gauge-fixed action for Yang-Mills the-
ories takes the familiar expression

𝐼 (𝜑, 𝜑‡ = 0) = −1
2

∫
𝑥

Tr(𝐹 (𝑓 ) ∧ ∗𝐹 (𝑓 )) − 𝑖
∫
𝑥

Tr[𝑑𝑐, 𝐷𝐴𝑐] −
∫
𝑥

b

2
𝑏2 +𝑏() .

(3.17)
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3 .3 quantum bv differential and bv laplacian

From the gauge-fixed action 𝐼 , the quantization of gauge theories proceeds straight-
forwardly as for the scalar field case, presented in Section 2.4. We split the action
in 𝐼 = 𝐼0 + 𝑉 , where 𝐼0 is a term quadratic in the fields, with #𝑎𝑓 = 0, and 𝑉 is
the remaining, interacting term. There is a corresponding decomposition of the
Koszul operator, which decomposes into 𝛿 = 𝛿0 + 𝛿𝑉 , where 𝛿0 characterises the
solutions of the free equations of motion. The main difference from the scalar case
is that the space of field configurations must be extended to contain the multiplet
𝜑 of gauge, ghosts, antighosts, and Nakanishi-Lautrup fields.

The Euler-Lagrange derivative of the quadratic action 𝐼0(𝜑) gives the free equa-
tions of motion 𝐼 (1)0 (𝜑) = 0. By definition, thanks to gauge-fixing these equations
are normally hyperbolic they admit advanced and retarded propagators, and thus it
is possible to define the Pauli-Jordan commutator function. The addition of a sym-
metric distribution Δ𝑆 defines the 2-point function Δ+ = 𝐻 +𝑤, so that Δ+ satisfies
the Hadamard condition, just as in the scalar case. The difference is that the equa-
tions of motion depends also on ghosts, antighosts, and the Nakanishi-Lautrup
field, and so Δ+ is a matrix-valued distribution in field space, carry internal (color)
and Lorentz indices as well, which can be explicitly computed in specific models;
for example, in the case of the free electromagnetic field [212]. It follows that both
Δ+ and, accordingly, the FeynmanpropagatorΔ𝐹 = Δ++𝑖Δ𝐴 includes contributions
for the gauge field propagators as well as the ghost propagators, corresponding to
internal lines in the graphical expansion in Feynman diagrams.

Since the Nakanishi-Lautrup field is non-dynamical (there are no derivative
terms in the action), its equations of motion are algebraic, rather than differential.
In the on-shell BV formalism, the Nakanishi-Lautrup field is then substituted with
the solution of its EOM, that is, the gauge-fixing condition 𝑏 = (). However, in
this case, the BV operator is nilpotent only on-shell, since 𝑠𝑏 = (𝑠).

To keep the off-shell nilpotency of the BV differential 𝑠, the Nakanishi-Lautrup
field 𝑏must be taken into account in the quantum theory as well.

Example 3.1 (Yang-Mills theories). We recall that the gauge-fixed Yang-Mills ac-
tion takes the form

𝐼 = 𝐼𝑐𝑙 + 𝐼𝑎𝑓 + 𝐼𝑔𝑓 + 𝐼𝑔ℎ .

In this Section we choose the gauge-fixing functional

() = ★d ★ = ∇`` ,

known as Lorenz gauge. The linearisation of the action into 𝐼0 + 𝑉 around the
trivial field configuration 𝜑 = 0 produces the free wave operator 𝑃0; in the case
b = 1 it can be written in terms of the Hodge laplacian □𝐻 := −(𝛿d + d𝛿), where
𝛿 is the co-differential, as [211]

𝑃0 =

©«
□𝐻 + d𝛿 − d 0 0 0

𝛿 −1 0 0
0 0 0 𝑖□𝐻

0 0 −𝑖□𝐻

ª®®®®®¬
.

■
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In addition to the extension of the equations of motion and propagators to the
full field configuration space, the classical theory of gauge fields also contains the
antibracket and the BV differential 𝑠. These structures must be deformed in a way
compatible with the quantum and time-ordered products.

The quantum and time-ordered products on the extended configuration space
take the same expressions as in the scalar case, Eqs. (2.12) and (2.16) [119]. The only
difference is that we need to include appropriate signs so that the fermionic vari-
ables (the ghosts) anti-commute.Wenowextend the definitions of the quantumand
time-ordered products from the extended configuration space to the antifields, so
that the products can be defined on the whole BV algebra. As for the functionals
of the physical field configurations, we first restrict our attention to the regular an-
tifields V𝑟𝑒𝑔 , that are, the vector fields whose nth-derivatives are test functions in
Γ𝑐 (𝑀𝑛+1, 𝑉⊗(𝑛+1) ). If we think of 𝑋 ∈ V𝑟𝑒𝑔 as a section, i.e., as maps from E()
to E𝑐 (), since 𝑇 acts as a differential operator it is natural to set

𝑇 (𝑋) :=
∫
𝑥

𝑇 (𝑋 (𝑥)) 𝛿

𝛿𝜑(𝑥) . (3.18)

The non-commutative product is extended to vector fields as

𝑋 ★ 𝑌 := 𝑒ℏΓΔ+ (𝑋 ∧ 𝑌 ) . (3.19)

The BV structures of the classical algebra gets translated in structures of the
quantum algebra by means of the time-ordered product. The graded algebra of
antifields is transformed into 𝑇 (V𝑟𝑒𝑔), with the time-ordered antibracket

{𝑋, 𝑌 }𝑇 := 𝑇{𝑇−1𝑋,𝑇−1𝑌 } . (3.20)

The free equations of motion are mapped, under time-ordering, in the image of
the time-ordered Koszul operator

𝛿𝑇0 := 𝑇−1𝛿0𝑇
−1 = {·, 𝐼0}𝑇 . (3.21)

Since 𝐼0 is quadratic in the fields, and since Δ is a solution of the equations of
motion, we have a relation between the time-ordered and the classical free equa-
tions of motion

{𝐹, 𝐼0} = {𝐹, 𝐼0}𝑇 − 𝑖ℏ △ 𝐹 , (3.22)

where the BV laplacian △ is a nilpotent operator that acts on regular multi-vector
fields as a divergence:

△𝑋 := (−1)1+|𝑋 |
∫
𝑥

𝛿2𝑋

𝛿𝜑(𝑥)𝛿𝜑‡(𝑥)
. (3.23)

Equation (3.22) is a Dyson-Schwinger-type equation for gauge theories (see Eq.
(4.29)), where the classical EOMs are corrected by (ℏ)−contributions into the
quantum ones.

The BV laplacian combines well with the antibracket; in particular, the two
following formulas hold:

{𝑋, 𝑌 } = △(𝑃𝑄) − △(𝑋)𝑌 − (−1) |𝑋 | △ (𝑋)𝑌 , and (3.24)

{𝑋, 𝑌 }𝑇 = △(𝑋 ·𝑇 𝑌 ) − △(𝑋) ·𝑇 𝑌 − (−1) |𝑋 | △ (𝑋) ·𝑇 𝑌 . (3.25)
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The above two formulas suggest the introduction of a★−antibracket, defined anal-
ogously:

{𝑋, 𝑌 }★ := △(𝑋 ★ 𝑌 ) − △(𝑋) ★ 𝑌 − (−1) |𝑋 | △ (𝑋) ★ 𝑌 . (3.26)

It can also be written more explicitly as

{𝑋, 𝑌 }★ = −
∫
𝑥

𝛿𝑋

𝛿𝜑(𝑥) ★
𝛿𝑌

𝛿𝜑‡(𝑥)
+ (−1) |𝑋 | 𝛿𝑌

𝛿𝜑‡(𝑥)
★

𝛿𝑌

𝛿𝜑(𝑥) . (3.27)

Since {·, 𝐼0} = {·, 𝐼0}★, we can now write the relation between the classical (time-
ordered) and quantum equations of motion, Eq. (3.22) as a relation between the
time-ordered and the quantum antibracket

{𝐹, 𝐼0}★ = {𝐹, 𝐼0}𝑇 − 𝑖ℏ △ 𝐹 . (3.28)

Note that {·, 𝐼0}★ is not a derivation with respect to the time-ordered product;
instead, it holds that

{𝑋 ·𝑇 𝑌, 𝐼0}★ − {𝑋, 𝐼0}★ ·𝑇 𝑌 − (−1) |𝑋 |𝑋 ·𝑇 {𝑌, 𝐼0}★ = −𝑖ℏ{𝑋, 𝑌 }𝑇 . (3.29)

Finally, we introduce the quantum BV operator as the deformation of the oper-
ator {·, 𝐼0}★ under the Bogoliubov map

𝑠 := 𝑅−1
𝑉 ◦ { , 𝐼0}★ ◦ 𝑅𝑉 , (3.30)

which can be rewritten in a more standard form [116] as

𝑠𝐹 = {𝐹, 𝐼}𝑇 − 𝑖ℏ △ 𝐹 . (3.31)

3 .4 quantum master equation

The gauge independence of on-shell interacting functionals is encoded in theQuan-
tum Master Equation (QME). Such a condition suffices to establish the on-shell
gauge independence of the 𝑆−matrix and of the physical observables, which are in
the cohomology of the interacting BRST operator 𝑠[119].

TheQME follows from the requirement that the 𝑆−matrix does not depend on
the gauge condition. First, one defines an automorphism of the algebra𝑇 (BV𝑟𝑒𝑔)
by

𝛼𝜓 (𝐹) = 𝑇 (𝛼𝑇−1𝜓 (𝑇−1𝐹)) . (3.32)

Denoting 𝐹 = 𝛼b𝜓 (𝐹), the condition for the on-shell gauge independence of the
𝑆−matrix and of interacting fields can be stated as

d
db
𝑆(�̃� ) o.s.≈ 0 , and (3.33)

d
db
𝑅�̃� (𝐹)

o.s.≈ 0 . (3.34)

It is possible to show that a sufficient condition for the on-shell gauge indepen-
dence of the 𝑆−matrix is the Quantum Master Equation (QME) [119],

{𝑆(𝑉 ), 𝐼0}★ = 0 . (3.35)
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Moving to the time-ordered antibracket, we get

𝑆(𝑉 ) ·𝑇
[
{𝑉, 𝐼0}𝑇 + 1

2
{𝑉, 𝑉 }𝑇 − 𝑖ℏΔ𝑉

]
= 0 . (3.36)

Recalling that 𝐼0 does not contain antifields, the above can be rewritten in themore
standard form

{𝐼, 𝐼}𝑇 − 2𝑖ℏ △ 𝐼 = 0 . (3.37)

Following a similar derivation, from the second requirement (3.34) one obtains
the condition

𝑅�̃�
(
𝜓 ·𝑇 𝛼_𝜓 (𝑠𝐹)

)
= 0 . (3.38)

Therefore, if an observable 𝐹 is in the cohomology of the quantum BRST operator
𝑠, the corresponding interacting observable 𝑅𝑉 (𝐹) is gauge independent.

3 .4 . 1 IR regularisation and the adiabatic limit

The motivation for the construction of generalised Lagrangians is the basic obser-
vation that, since a globally hyperbolic spacetime cannot be compact, an action
integral 𝐼 =

∫
𝑥
𝐿(𝜑) is necessary divergent. A straightforward procedure to build a

generalized Lagrangian from the Lagrangian density of some theory is to consider

𝐼 =

∫
𝑥

𝑓 𝐿 ,

for some IR cut-off function function 𝑓 . The cut-off function is assumed to be equal
to 1 in some finite region of spacetime, so that the action functional is well-defined.
However, this choice introduces technical difficulties in the proof of the Quan-
tum Master Equation (3.35), the necessary condition to ensure that the 𝑆−matrix
is gauge independent.

Here, we choose a different regularisation for the generalized Lagrangian. We
introduce a pair 𝑓 = (𝑓, 𝑓𝑔ℎ) of test functions, and, given a particular Lagrangian
density, we define a generalised Lagrangian as

𝐼 (𝑓, 𝑓𝑔ℎ) =
∫
𝑥

𝐿(𝑓, 𝑓𝑔ℎ𝑐) . (3.39)

In other words, we introduce a set of regularised, compactly supported variables
(𝑓, 𝑓𝑔ℎ𝑐), substituting the original gauge fields  and ghosts 𝑐. Now, when we
consider the antibracket between the generalized Lagrangian and a compactly sup-
port functional 𝐹, wewill always implicitly assume that 𝑓 = 𝑓𝑔ℎ = 1 on the support
of 𝐹, so that the test functions do not influence the gauge transformation properties
of 𝐹.

With this choice of IR regularisation, the QME equation holds exactly. In fact,
the support of the field configuration does not play a role in its derivation; since
the QME holds for generic field configuration, it also holds in particular for the
compactly supported, regularised configurations 𝜑 = (𝑓, 𝑓𝑔ℎ𝑐).

If we had chosen a generalised Lagrangian 𝐼 =
∫
𝑥
𝑓 𝐿, the samewould not imme-

diately hold. In fact, one can explicitly check that, e.g. for Yang-Mills-type theories,
the QME would hold only up to a functional supported on the support of d𝑓 , i.e.,
we would have, for some local density 𝜙,

{𝐼, 𝐼}𝑇 − 𝑖ℏ △ 𝐼 =

∫
𝑥

𝜌(𝜑, 𝜑‡)d𝑓 .
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The QME would only hold in the adiabatic limit 𝑓 → 1 over the whole.
In the following, for notational convenience, we are always implicitly assuming

a regularisation 𝐹 (𝑓 𝜑).

3 .4 .2 Algebraic renormalization and the Master Ward Identity

Just as in the scalar case, having defined the time-ordered products for regular
quantities, the procedure of algebraic renormalization provides an extension to
local functionals.

In particular, given that the renormalized time-ordered products on local func-
tionals of the fields are constructed as in Section 2.8.2, the renormalized time-ordered
products between vectors can be defined as in equation (3.18),

𝑇𝑟 (𝑋) :=
∫
𝑥

𝑇𝑟 (𝑋 (𝑥))
𝛿

𝛿𝜑(𝑥) .

From the renormalized time-ordered products one can define the renormalized

𝑆−matrix 𝑆𝑟 (𝑉 ) := 𝑒
𝑖
ℏ𝑉

𝑇𝑟
and the renormalized Bogoliubov map.

The classical BV structure is then translated at the quantum level by the use
of the renormalized time-ordered product𝑇𝑟 , and we can define the renormalized
time-ordered antibracket and the renormalized time-ordered Koszul map in anal-
ogy with their non-renormalized counterparts.

The main problem in the extension of the BV formalism to local functionals is
the BV laplacian △, which give raise to a divergence proportional to 𝛿 (0) when it
acts on local functionals. Thus, it must be replaced by a more regular operator on
local functionals. The relation between the ★−product and the 𝑇𝑟−antibrackets is
thus substituted by theMaster Ward Identity (MWI) [54, 96, 156]

{𝑆𝑟 (𝑉 )·𝑇𝑟 , 𝐼0}★ =
𝑖

ℏ
𝑆𝑟 (𝑉 ) ·𝑇𝑟

[
{𝑉, 𝐼0}𝑇𝑟 +

1
2
{𝑉, 𝑉 }𝑇𝑟 + 𝑖ℏ △ (𝑉 )

]
, (3.40)

where 𝑆𝑟 is the renormalized S-matrix. Here △ is understood as the anomaly and is
related to the renormalized BV Laplacian △𝑉 by means of:

△𝑉 (𝑋) �
𝑑

𝑑_
△ (𝑉 + _𝑋)

��
_=0 .

The MWI implicitly defines the renormalized BV laplacian △𝑉 as a linear map
△𝑉 : 𝑇𝑟 (BV𝑙𝑜𝑐 [[_]]) → BV𝑙𝑜𝑐 [[_]] with supp△𝑉 (𝑋) ⊂ supp 𝑋 ∩ supp𝑉 .

In the following, to avoid heavy notationwewill denote the renormalized time-
ordered product and the renormalized BV laplacian as the non-renormalized ones,
·𝑇 and △; whenever we are dealing with local functionals, it will always implicitly
assumed that we am using the renormalized definitions.

The derivation of theQME (3.35) holds also for local functionals, since it follows
from properties of the★−products alone. However, Eq. (3.37) needs to be modified,
due to the appearance of the singular BV laplacian. From theMWI (3.40), it follows
that

{𝑆(𝑉 ), 𝐼0}★ = {𝑆(𝑉 ), 𝐼0}𝑇𝑟 − 𝑖ℏ △𝑉 (𝑉 ) .
By manipulations similar to the non-renormalized case, we find that a sufficient
condition to satisfy the QME is given by the renormalized QME (rQME), taking the
simple form

1
2
{𝐼, 𝐼}𝑇𝑟 = 𝑖ℏ △𝑉 (𝑉 ) . (3.41)
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Notice that the rQME can be re-expressed in an equivalent formulation as [212]

𝑆(−𝑉 ) ·𝑇 {𝑆(𝑉 ), 𝐼0}★ = 0 . (3.42)

3 . 5 perturbative agreement for yang-mills -type theories

In Yang-Mills theories and gravity, the BV differential can be canonically split in
two terms

𝑠 = 𝛿 + 𝛾 .

When dealing with perturbative quantization one needs to split the action in
a quadratic and an interacting part; however, just as for the scalar case, this split is
non-canonical, and so it is the corresponding split of the BV differential. Here, we
followed the convention [116, 119]

𝑠 = 𝛿0 + 𝑠𝑉 ,

that is, the linearised BVdifferential is defined by 𝛿0 = {·, 𝐼0}, and 𝐼0 is the quadratic
part of the action that does not contain antifields; it follows that the linearised BV
differential simply corresponds to the linearised Koszul map, the Koszul map for
the free EOMs. The split corresponds to the split in the action 𝐼 = 𝐼0 +𝑉 , where 𝐼0
is quadratic and does not contain antifields. On the other hand, the most common
choice is the split [212]

𝑠 = 𝛿0 + 𝛾0 + 𝑠𝑉 ,

that is, the linearised BV differential 𝑠0 := 𝛿0 + 𝛾0 actually contains two terms:
the first is the linearised Koszul map 𝛿0 = {·, 𝐼0} as before, while the second term
corresponds to the linearised BRST differential and it equals the contribution to
the action that is linear in the antifields and linear in the fields. It thus corresponds
to a split of the action into

𝐼 = 𝐼0 + \0 + �̃� ,

where \0 =
∫
𝑥
𝜑‡𝐾𝜑 is a quadratic term linear in the antifields.

The ambiguity in the choice of the BV split is analogous to the non-canonical
choice of quadratic action that appears already for scalar theories. In that case, the
perturbative agreement [95, 161, 254] guarantees that the quantum theory does not
depend on the split. In the case of gauge theories, even if the same argument can be
applied for terms that are quadratic in the fields, the situation is more complicated
by the compatibility of the split with gauge symmetries at the quantum level. The
possible source of issues in this case is a term that is linear in the fields and linear
in the antifields, as \0.

In the following, we prove that the gauge symmetries at the quantum level are
independent on the choice of the split of the action, either into 𝐼 = 𝐼0 + 𝑉 or
𝐼 = 𝐼0 + \0 + 𝑉 . In fact, the renormalized Quantum Master Equation (rQME) for
one split implies the validity of the rQME for the other. Notice that the proof is
based on the rQME, so it holds for local functionals as well as regular functionals.
The result represents an extension of the perturbative agreement to Yang-Mills-
type theories, including Yang-Mills and gravity, since it proves that the quantum
algebra of observables is independent on the non-canonical choice of keeping a
term linear in the antifields in the free or in the interaction term in the action.

The proof is based on the property of the time-ordered product of the𝑆−matrix
of a linear observable with a generic functional 𝐹, Eq. (2.51). We re-express it in this
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case as follows: consider a functional linear in the fields \0 =
∫
𝜑‡𝐾𝜑, for some 𝐾 ;

then from equation (2.51) we have

𝑆(\0) ·𝑇 𝐹 = 𝑒−
1
2Δ𝐹 (𝜑

‡𝐾,𝜑‡𝐾 ) 𝑒
𝑖
ℏ \0𝐹 (𝜑 + 𝑖Δ𝐹 (𝐾𝜑‡)) . (3.43)

Proposition 3.1. The rQME (3.42) for the action 𝐼 = 𝐼0 + 𝑉 = 𝐼0 + \0 + �̃� can be
written in two, equivalent ways, depending on the choice of the split between quadratic
and interaction terms:

𝑆(−(�̃� + \0)) ·𝑇 {𝑆(�̃� + \0), 𝐼0} = 𝑆(−�̃� ) ·𝑇 {𝑆(�̃� ), 𝐼0 + \0} . (3.44)

The l.h.s is the rQME in which the quadratic action is 𝐼0, while the r.h.s is the rQME
for the quadratic action 𝐼0 + \0.

Proof. The proof works by direct inspection. We first rewrite

{𝑆(�̃� + \0), 𝐼0} =
∫
𝑥

𝛿𝑆(�̃� + \0)
𝛿𝜑‡

𝛿 𝐼0

𝛿𝜑
=
𝑖

ℏ

∫
𝑥

𝑆(�̃� + \0) ·𝑇
𝛿 (�̃� + \0)
𝛿𝜑‡

𝛿 𝐼0

𝛿𝜑
.

Now, we can use Eq. (3.43) identifying 𝐹 (𝑥) = 𝑆(�̃� ) ·𝑇 𝛿

𝛿𝜑‡ (𝑥) (�̃� + \0), obtaining

{𝑆(�̃� + \0), 𝐼0} =
𝑖

ℏ
𝑒
𝑖
ℏ \0− 1

2Δ𝐹 (𝜑
‡𝐾,𝜑‡𝐾 )

∫
𝑥

𝐹 (𝑥) 𝛿 𝐼0

𝛿𝜑‡(𝑥)
.

Then we have

− 𝑖ℏ𝑆(−(�̃� + \0)) ·𝑇 {𝑆(�̃� + \0), 𝐼0} =

𝑆(−�̃� ) ·𝑇 𝑆(−\0) ·𝑇
[
𝑒
𝑖
ℏ \0− 1

2Δ𝐹 (𝜑
‡𝐾,𝜑‡𝐾 )

∫
𝑥

𝐹 (𝑥) 𝛿 𝐼0

𝛿𝜑‡(𝑥)

]
.

We can now apply again Eq. 3.43, identifying the functional 𝐹 with the expression
in square brackets, to get

𝑆(−(�̃� + \0)) ·𝑇 {𝑆(�̃� + \0), 𝐼0}

=
𝑖

ℏ
𝑆(−�̃� )·𝑇

[
𝑒
𝑖
ℏ (\0 (𝜑)−\0 (𝜑−𝑖Δ𝐹𝜑‡𝐾 ))

∫
𝑥

𝑆(�̃� ) ·𝑇
𝛿 (�̃� + \0)
𝛿𝜑‡

𝛿

𝛿𝜑

(
𝐼0 − 𝑖𝑃0Δ𝐹𝜑

‡𝐾
)]
,

wherewe used the fact that 𝛿 𝐼0
𝛿𝜑

= 𝑃0𝜑. To analyse the last expression, we first notice
that

\0(𝜑 − 𝑖Δ𝐹𝜑‡𝐾) =
∫
𝑥

𝜑‡𝐾 (𝜑 − 𝑖Δ𝐹𝜑‡𝐾) = \0 − 𝑖Δ𝐹𝜑‡𝐾𝐾2 = \0 ,

because 𝐾 does not act on the antifields and 𝐾2 = 0 because it is the linearised
BRST operator, which is nilpotent by construction. Since 𝑃0Δ𝐹 = −𝑖𝛿 we then
have

𝑆(−(�̃� + \0)) ·𝑇 {𝑆(�̃� + \0), 𝐼0}

=
𝑖

ℏ
𝑆(−�̃� ) ·𝑇

∫
𝑥

𝑆(�̃� ) ·𝑇
𝛿 (�̃� + \0)
𝛿𝜑‡

𝛿

𝛿𝜑
(𝐼0 + \0) . (3.45)
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We finally have to check the term∫
𝑥

𝑆(�̃� ) ·𝑇
𝛿 \0

𝛿𝜑‡
𝛿

𝛿𝜑
(𝐼0 + \0)

= 𝑆(�̃� ) ·𝑇
∫
𝑥

𝛿 \0

𝛿𝜑‡
𝛿

𝛿𝜑
(𝐼0 + \0) + 𝑖𝑆(�̃� ) ·𝑇

∫
𝑥

𝛿�̃�

𝛿𝜑
Δ𝐹

𝛿2\0

𝛿𝜑𝛿𝜑‡
𝛿

𝛿𝜑
(𝐼0 + \0) .

In the above expression, we expanded the time-ordered product, recalling that \0
is linear in the fields 𝜑.

The first term in the above expression vanishes, since∫
𝑥

𝛿 \0

𝛿𝜑‡
𝛿

𝛿𝜑
(𝐼0 + \0) =

1
2
{𝐼0 + \0, 𝐼0 + \0} = 0 ,

where the last expression is vanishing for the linearised CME. Using Δ𝐹 𝛿 𝐼0𝛿𝜑 = −𝑖𝜑
and 𝐾2 = 0 we then have

𝑖

∫
𝑥

𝑆(�̃� ) ·𝑇
𝛿 \0

𝛿𝜑‡
𝛿

𝛿𝜑
(𝐼0 + \0) = 𝑆(�̃� ) ·𝑇

∫
𝑥

𝛿�̃�

𝛿𝜑

𝛿 \0

𝛿𝜑‡
.

Substituting the above equality in (3.45) we finally arrive at the result:

𝑆(−(�̃� + \0)) ·𝑇 {𝑆(�̃� + \0), 𝐼0} = 𝑆(−�̃� ) ·𝑇 {𝑆(�̃� ), 𝐼0 + \0} . (3.46)



4 Generating functionals in pAQFT

4 . 1 generating functionals for scalar theories

In the last two chapters, we reviewed the construction of interacting observables
as formal power series in the free algebra, both for scalar and gauge theories. Now,
we start discussing the new results of this thesis. In this Chapter, we introduce the
generating functionals for (connected) Green’s functions and the effective action
on globally hyperbolic spacetimes and generic Hadamard states. We show that they
share many of the important properties of their flat space counterparts. After that,
we introduce a local regulator term, we define the regularised generating function-
als, and we prove some properties of the effective average action. Again, we find
generalisations of the known properties in flat space.

For simplicity, we start with scalar field theories, to focus on the main points
in the discussion. The generalisation to gauge theories is straightforward, and dis-
cussed at the end of the Chapter, in Section 4.4.

In the last two chapters, we have seen that interacting correlation functions are
given by the action of the Bogoliubov map,

⟨𝑇 : 𝜑(𝑥1) . . . 𝜑(𝑥𝑛) :⟩𝜔 := 𝜔 (𝑅𝑉 (𝜑(𝑥1) ·𝑇 . . . ·𝑇 𝜑(𝑥𝑛))) ,

where the angle bracket denotes the interacting expectation value in some state, in
physicists’ notation.

The computation of Green’s functions in the pAQFT formalism now proceeds
similarly to standard QFT computations: first choose a state, that in turn defines
the propagators of the theory when the algebra is realised with the corresponding
★−product; then expand the Bogoliubov map in Feynman diagrams, where now
the internal lines include also an oriented line corresponding to ★−product con-
tractions, up to the desired order; and finally evaluate the Feynman diagrams on
the chosen state.

In the case of quasi-free states for the free theory, the computation is com-
pletely analogous to the Minkowski case: the choice of the state reduces to the
choice of propagators; computing the products is equivalent to the Wick’s theo-
rem for normal-ordering; and the evaluation on the state means evaluating on the
vanishing field configuration 𝜑 = 0, so that only completely contracted quantities
contribute. The end result is a sum of Feynman diagrams.

In flat space QFT, mainly developed in the vacuum state representation, the
generating functionals are objects that compactly store the information on corre-
lation functions. An exact knowledge of the generating functional of all correlation
functions would allow for a reconstruction of the state evaluation of any observ-
able (cf. Remark 2.1). Naturally, the computation of generating functionals is almost

67
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never possible; their evaluation proceeds via some approximation scheme, e.g. a
perturbative expansion in the coupling constant _ or a loop expansion in the Planck
constant ℏ. In this regard, the objective of the functional Renormalization Group
is precisely the non-perturbative evaluation of one of these generating functionals,
the effective action, as a solution of a functional differential equation, usually the
Wetterich equation. However, the fRG simply transfers the difficulties of the gen-
erating functionals in the difficulties of the Wetterich equation, which can almost
never be exactly solved; the advantage of the fRG lies in the crucial fact the Wet-
terich equation allows for approximation schemes which are non-perturbative in
the coupling constant _, and thus can access non-perturbative effects that are out
of reach in perturbation theory.

Let’s start with a review of the standard definitions [244]. On flat Minkowski
spacetime, consider a theory described by an action 𝐼 , coupled with arbitrary, clas-
sical sources 𝑗 via the linear term 𝐽 =

∫
𝑥
𝑗(𝑥)𝜑(𝑥). In our notation, the classical

sources corresponds to the smeared linear field 𝜑( 𝑗) with some compactly sup-
ported smooth function 𝑗 ∈ 𝐶∞

𝑐 (). The complete vacuum-to-vacuum amplitude
in the heuristic path-integral formulation is

⟨Ω|Ω⟩𝑗“ := ”
∫

𝜑𝑒
𝑖
ℏ (𝐼 (𝜑)+𝐽 (𝜑) ) ,

where the l.h.s. denotes the inner product between the GNS vector for the vac-
uum state in some Hilbert space representation of the ∗−algebra. The generating
functional for correlation functions is usually defined as the normalised vacuum-
to-vacuum amplitude,

( 𝑗) :=
1

⟨Ω|Ω⟩𝑗=0
⟨Ω|Ω⟩𝑗 .

The functional derivatives of( 𝑗), for vanishing sources, give the correlation func-
tions in the theory described by the action 𝐼 ,

ℏ𝑛
𝛿 𝑛

𝑖𝑛𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
( 𝑗)

��
𝑗=0“ = ”

1∫
𝜑𝑒 𝑖ℏ 𝐼

∫
𝜑𝑒

𝑖
ℏ 𝐼 (𝜑)𝜑(𝑥1) . . . 𝜑(𝑥𝑛) = ⟨𝑇 (𝜑(𝑥1) . . . 𝜑(𝑥𝑛))⟩ .

It is easy to translate the above formulas to the algebraic setting, based on our
discussion in Section 2.11. Notice that the path integral automatically provides the
time ordered correlation functions, orGreen’s functions. In the algebraic formalism,
this will require the use of the 𝑆−matrix. Moreover, the path integral formulation
almost always assumes a vacuum state in Minkowski background; therefore, to
make the connection clearer, we first consider this special case, and then we gen-
eralise to Hadamard states on curved spacetimes.

Denoting by 𝜔0 the vacuum state on Minkowski spacetime, by direct analogy
with the path-integral formulas, the generating functional for the interacting time-
ordered products in Minkowski vacuum can be written as

( 𝑗) :=
𝜔0(𝑆(𝑉 + 𝐽))
𝜔0(𝑆(𝑉 ))

. (4.1)
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The above formula satisfies the defining condition for the generating functional: its
functional derivatives at vanishing sources are the time-ordered interacting corre-
lation functions. To see this, by direct computation we get

ℏ𝑛
𝛿 𝑛

𝑖𝑛𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
( 𝑗)

��
𝑗=0 =

1
𝜔0(𝑆(𝑉 ))

𝜔0 (𝑆(𝑉 ) ·𝑇 𝜑(𝑥1) ·𝑇 · · ·𝑇 𝜒(𝑥𝑛)) .

Using theGell-Mann-Low formula (2.55), the generating functional, inMinkowski
vacuum and in the adiabatic limit, fulfils the defining property that its functional
derivatives give time-ordered, interacting correlation functions,

ℏ𝑛
𝛿 𝑛

𝑖𝑛𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
( 𝑗)

��
𝑗=0 = 𝜔0 ◦ 𝑅𝑉 (𝜑(𝑥1) ·𝑇 · · ·𝑇 𝜒(𝑥𝑛)) . (4.2)

However, as already discussed, the Gell-Mann-Low formula holds only in the
very particular case of the adiabatic limit of themassive vacuum state inMinkowski.
It greatly reduces the complexity in the evaluation of 𝜔0(𝑅𝑉 (𝜑)), as it requires to
compute only time-ordered products, but it fails in generic states and on general
backgrounds. It follows that  cannot be a suitable definition for the generating
functional in the general case.

The two key properties of a generating functional 𝑍( 𝑗) are that i) it should fulfil
the defining property (4.2), on any Hadamard state and in curved spacetimes, and
ii) it should reduce to formula (4.1) for the case of the vacuum state on Minkowski
spacetime.

Definition 4.1 (Generating functional of Green’s functions). Consider an action
functional 𝐼 (𝜑) = 𝐼0(𝜑) + 𝑉 (𝜑), and a ∗−algebra Aon some globally hyperbolic
spacetime (, 𝑔), with★−product arising from the propagators for the linearised
action 𝐼0. Let 𝜔 : A→ C be an arbitrary Hadamard state on the free algebra, and
let 𝑆(𝑉 ) be the renormalized 𝑆−matrix associated with the interacting Lagrangian
𝑉 . The generating functional for interacting time-ordered correlation functions (inter-
acting Green’s functions) 𝑍( 𝑗) is defined by

𝑍( 𝑗) := 𝜔(𝑆𝑉 ( 𝐽)) = 𝜔[𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽)] = 𝜔[𝑅𝑉𝑆( 𝐽)] .

Due to its analogy with the partition function of statistical mechanics, the gen-
erating functional is denoted by 𝑍 from the German word Zustandssumme.

Eq. (4.2) is verified by direct inspection. For 𝜔 = 𝜔0 (Minkowski vacuum) and
in the adiabatic limit, the definitions given in Eq. (4.1) and in Definition 4.1 coincide
thanks to the Gell-Mann-Low formula.

To justify our definition of 𝑍, recall that on regular functionals, one can intro-
duce the interacting star product as [117]

𝐹 ★𝑉 𝐺 := 𝑅−1
𝑉 (𝑅𝑉 (𝐹) ★ 𝑅𝑉 (𝐺)) .

On the other hand, for a given state 𝜔 of the free theory, the interacting state is
defined by 𝜔𝑉 := 𝜔 ◦ 𝑅𝑉 , so that the 𝑛−point correlation functions for interacting
fields in the interacting state 𝜔𝑉 are given by:

𝜔𝑉 (𝜑(𝑥1) ★𝑉 . . . ★𝑉 𝜑(𝑥𝑛)) = 𝜔(𝑅𝑉 (𝜑(𝑥1)) ★ . . . ★ 𝑅𝑉 (𝜑(𝑥𝑛)) .

However, the time-ordered version of ★𝑉 coincides with ·𝑇 (see e.g. [95]), and so
the time-ordered 𝑛−point functions in the interacting theory are

𝜔𝑉 (𝜑(𝑥1) ·𝑇 . . . ·𝑇 𝜑(𝑥𝑛)) = 𝜔 ◦ 𝑅𝑉 (𝜑(𝑥1) ·𝑇 . . . ·𝑇 𝜑(𝑥𝑛)) ,
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which is proportional to the nth-functional derivative with respect to 𝑗 of 𝑍,

ℏ𝑛
𝛿 𝑛𝑍

𝑖𝑛𝛿 𝑗(𝑥1) . . . 𝛿 𝑗(𝑥𝑛)

����
𝑗=0

= 𝜔 ◦ 𝑅𝑉 (𝜑(𝑥1) ·𝑇 . . . ·𝑇 𝜑(𝑥𝑛)) . (4.3)

It follows that the functional derivatives of Definition 4.1 exactly give the inter-
acting expectation value of the Green’s functions. In this sense, the defining prop-
erty of 𝑍 as the generating functional for the Green’s functions is satisfied also by
our definition, which generalises the usual approach to generic states and possibly
curved spacetimes.

4 . 1 . 1 Generating functional for connected Green’s functions

The generating functional of time-ordered correlation functions contains redun-
dant information, in that it counts as different those Feynman diagrams that differ
only by a permutation of vertices. A more efficient way of storing the information
on correlation functions, counting only connected diagrams, is through the gener-
ating functional of connected Green’s functions, defined as the natural logarithm of
𝑍.

Definition 4.2 (Generating functional of connected Green’s functions). From the
generating functional 𝑍( 𝑗) of Definition 4.1, the generating functional of connected
Green’s functions𝑊 ( 𝑗) is defined by the formula

𝑒
𝑖
ℏ𝑊 ( 𝑗) := 𝑍( 𝑗) .

The definition gives connected correlation functions also in the algebraic ap-
proach, since the connected part of 𝜔 is defined by

𝜔𝑐 (𝜑(𝑥1) ★ · · · ★ 𝜒(𝑥𝑛)) :=
ℏ𝑛

𝑖𝑛
𝛿 𝑛

𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
log 𝜔[exp★(𝑖 𝜒( 𝑗))]

���
𝑗=0

. (4.4)

Similarly, the connected time-ordered functions of 𝜔 are defined by

𝜔𝑐 (𝜑(𝑥1) ·𝑇 · · ·𝑇 𝜒(𝑥𝑛)) :=
ℏ𝑛

𝑖𝑛
𝛿 𝑛

𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
log 𝜔[𝑆(𝜑( 𝑗))]

���
𝑗=0

. (4.5)

It follows that𝑊 is actually the generator of interacting, connected Green’s func-
tions, since its functional derivatives at vanishing sources give

ℏ𝑛
𝛿 𝑛

𝑖𝑛𝛿 𝑗(𝑥1) . . . 𝛿 𝑗(𝑥𝑛)
𝑊 ( 𝑗)

����
𝑗=0

= (𝜔𝑐 ◦ 𝑅𝑉 ) (𝜑(𝑥1) ·𝑇 . . . ·𝑇 𝜒(𝑥𝑛)) . (4.6)

A remarkable property of the generating functional in Minkowski vacuum,,
defined in Eq. (4.1) is that Eq. (4.6) still makes sense for 𝑗 ≠ 0; in fact, thanks to the
Gell-Mann-Low formula (2.55),

ℏ𝑛

𝑖𝑛
𝛿 𝑛

𝛿 𝑗(𝑥1) · · · 𝛿 𝑗(𝑥𝑛)
log( 𝑗) = (𝜔𝑐0 ◦ 𝑅𝑉+𝐽) (𝜑(𝑥1) ·𝑇 · · · ·𝑇 𝜒(𝑥𝑛)) . (4.7)

Unfortunately, 𝑍( 𝑗) defined in Definition 4.1 (or, equivalently,𝑊 ) does not sat-
isfy the property (4.7), as it is possible to see already for the first derivative:

ℏ
𝛿

𝑖𝛿 𝑗(𝑥) log 𝑍( 𝑗) = 𝜔(𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝐽) ·𝑇 𝜒(𝑥)])
𝜔(𝑆𝑉 ( 𝐽))

=
𝜔

(
𝑆𝑉 ( 𝐽) ★ 𝑅𝑉+𝐽 (𝜑(𝑥))

)
𝜔(𝑆𝑉 ( 𝐽))

=: 𝜔𝐽
(
𝑅𝑉+𝐽 (𝜑(𝑥))

)
, (4.8)
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where 𝜔𝐽 : A[[𝑉 ]] → C[[𝑉 ]] is a well-defined linear functional which, however,
fails to be positive. In fact, in the next Lemma we show that property (4.7) cannot
be fulfilled in states that does not fulfil the Gell-Mann-Low formula, and therefore
it is not a sensible condition to require for general states.

Lemma 4.1. If 𝜔 does not fulfil the Gell-Mann-Low formula given in Eq. (2.55), there
is no functional Z ( 𝑗) satisfying Eq. (4.7).

Proof. Let Z ( 𝑗) be any generating functional fulfilling (4.7) for all 𝑛 ∈ N. For 𝑛 = 1
we have

−𝑖ℏ log Z ( 𝑗) (1) (𝑥) = 𝜔𝑐 ◦ 𝑅𝑉+𝐽 (𝜑(𝑥)) . (4.9)

By direct inspection we have

𝐴(𝑥1, 𝑥2) := ℏ2 𝛿2

𝑖2𝛿 𝑗(𝑥1)𝛿 𝑗(𝑥2)
log Z ( 𝑗)

=
1
2

𝛿

𝛿 𝑗(𝑥1)
𝜔(𝑅𝑉+𝐽𝜑(𝑥2)) + 𝑥1 ↔ 𝑥2

=
1
2
[𝜔(𝑅𝑉+𝐽 [𝜑(𝑥1) ·𝑇 𝜒(𝑥2)])

− 𝜔(𝑅𝑉+𝐽𝜑(𝑥1) ★ 𝑅𝑉+𝐽𝜑(𝑥2))] + 𝑥1 ↔ 𝑥2

=
1
2
sign(𝑡(𝑥1) − 𝑡(𝑥2))𝜔( [𝑅𝑉+𝐽𝜑(𝑥1), 𝑅𝑉+𝐽𝜑(𝑥2)]★) ,

where we used the symmetry of the left-hand side in 𝑥1, 𝑥2. By Eq. (4.7) for 𝑛 = 2
the right-hand side should be equal to

𝐵(𝑥1, 𝑥2) := 𝜔(𝑅𝑉+𝐽 [𝜑(𝑥1) ·𝑇 𝜒(𝑥2)]) − 𝜔(𝑅𝑉+𝐽𝜑(𝑥1))𝜔(𝑅𝑉+𝐽𝜑(𝑥2)) ,

which in general is not the case: actually, at zeroth order in the perturbation pa-
rameter, for quasifree states and for 𝑡(𝑥1) > 𝑡(𝑥2)

𝐴(𝑥1, 𝑥2) =
𝑖

2
sign(𝑡(𝑥1) − 𝑡(𝑥2))Δ(𝑥1, 𝑥2)), 𝐵(𝑥1, 𝑥2) = Δ𝐹 (𝑥1, 𝑥2),

and Δ𝑆 , the symmetric part of the two-point function, is present in 𝐵 but not in
𝐴.

Even though Eq. (4.7) does not hold for 𝑍, the non-positive functionals 𝜔𝐽 de-
fined in Eq. (4.8) behave as 𝑗−dependent states on an algebraA⊛ [[𝑉 ]] isomorphic
to A[[𝑉 ]]. In other words, in the presence of non-vanishing sources, the gener-
ating functional 𝑍 produces the Green’s functions on a deformed algebra, in a
𝑗−dependent state, as can be seen by the following proposition.

Proposition 4.2. Let 𝑈 := 𝑆𝑉 ( 𝐽)/𝜔(𝑆𝑉 ( 𝐽)) ∈ F̀ 𝑐 [[𝑉 ]]. Let A⊛ be the ∗-algebra
obtained equipping F̀ 𝑐 [[𝑉 ]] with the product ⊛ and the ∗-involution ∗⊛

𝐴⊛ 𝐵 := 𝐴 ★𝑈 ★ 𝐵 , 𝐴∗⊛ := 𝑈∗ ★ 𝐴∗ ★𝑈∗ . (4.10)

Then, A⊛ is a unital ∗-algebra and 𝜔𝐽 , defined by equation (4.8), is a state on A⊛.
Moreover, the map 𝜍 : A→ A⊛ defined by 𝜍(𝐴) := 𝑈∗ ★ 𝐴 is a ∗-isomorphism, and
𝜍∗𝜔𝐽 = 𝜔.
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Proof. By direct inspection,⊛ is associative with unit given by 1⊛ := 𝑈∗ —notice
that𝑈 is unitary as 𝑉, 𝐽 ∈ Floc. Moreover⊛ and ∗⊛ are compatible, meaning that
(𝐴 ⊛ 𝐵)∗⊛ = 𝐵∗⊛ ⊛ 𝐴∗⊛ . Since ∗⊛ is an involution, we have that A⊛ is a unital
∗-algebra.

Now, let 𝜍 : A → A⊛ be defined by 𝜍(𝐴) := 𝑈∗ ★ 𝐴. Then 𝜍 is linear and
invertible, and it holds that

𝜍(𝐴) ⊛ 𝜍(𝐵) = 𝑈∗ ★ 𝐴 ★𝑈 ★𝑈∗ ★ 𝐵 = 𝜍(𝐴 ★ 𝐵) .

It follows that 𝜍 is a ∗-isomorphism. Finally

𝜍∗𝜔𝐽 (𝐴) := 𝜔𝐽 (𝜍(𝐴)) = 𝜔(𝐴) .

Proposition 4.2 shows that the 𝑗-functional derivatives of the generating func-
tional 𝑍( 𝑗), are physically meaningful for 𝑗 ≠ 0: they coincide with the Green’s
functions for the state 𝜔𝐽 on A⊛. Notice that, as A⊛ [[𝑉 ]] ≃ A[[𝑉 ]] , the latter
state can be interpreted as a state on A[[𝑉 ]] too.

4 . 1 .2 Effective action

It is usually convenient to take a step further in the construction of the generating
functionals, defining the Legendre transform of𝑊 , the effective action.

Starting from the generating functional𝑊 ( 𝑗), from (4.2), we have

𝛿𝑊

𝛿 𝑗(𝑥)

����
𝑗=0

=
1

𝑍(0) 𝜔(𝑅𝑉 (𝜑(𝑥)) .

We can now define the mean field as a function of the classical sources 𝑗, as

𝜙( 𝑗) :=
𝛿𝑊

𝛿 𝑗(𝑥) .

Proposition 4.3 shows that the relation between 𝑗 and 𝜙 can be inverted, to get the
current 𝑗 = 𝑗𝜙 as a function of 𝜙, at least in perturbation theory. Therefore, it is
possible to implicitly define the 𝜙−dependent current 𝑗𝜙 as the solution of the last
equation, and define the mean fields as independent variables:

𝜙 :=
𝛿𝑊

𝛿 𝑗

����
𝑗=𝑗𝜙

. (4.11)

Since the relation between 𝜙 and 𝑗 is invertible, it is possible to compute the
Legendre transform of𝑊 with respect to 𝑗, defining the effective action.

Definition 4.3 (Effective action). The effective action is defined as the Legendre
transform of𝑊 with respect to the sources 𝑗, taking the mean fields 𝜙 as indepen-
dent variables:

Γ̃(𝜙) = 𝑊 ( 𝑗𝜙) − 𝐽𝜙 (𝜙) ,

where 𝐽𝜙 (𝜙) =
∫
𝑥
𝑗𝜙 (𝑥)𝜑(𝑥).
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The main object of investigation in the fRG is a deformation of the effective
action, the effective average action, by an infra-red regulator term that cuts off fields
with momenta lower than some scale 𝑘.

The effective action satisfies many important properties, that makes it a fun-
damental object to investigate the quantum properties of a given theory. However,
since most of these properties are inherited from the effective average action, and
the proofs in both cases follow the same steps, we will directly discuss these prop-
erties for the effective average action.

4 .2 regularised generating functionals

4 .2 . 1 Regulator

A direct computation of the generating functional 𝑍( 𝑗) or of the effective action
is usually not possible. The main idea of the Wilsonian renormalization group is
to introduce a cut-off in the generating functional, so that it generates only short-
distance (or high-energy) correlation functions. This is usually done introducing
an artificial scale 𝑘, so that themodeswith energy 𝐸 < 𝑘 are suppressed. The cut-off
is then lowered, so that the generating functional progressively takes into account
correlation functions at longer and longer distances. In this way, the original bare
action 𝐼 generates an entire family of effective theories, each at a different scale
𝑘, described by a corresponding effective average action Γ𝑘. Although the physical
interpretation of theories at finite 𝑘 is not entirely clear, especially in curved space-
times, it is possible to prove (see Section 4.3.2) that in the limit of infinite scale
𝑘 → ∞, all quantum correlations are suppressed, and the effective average action
reduces to the bare action, modulo an irrelevant (and finite) constant Γ∞ = 𝐼 + 𝑐.
Removing the regulator gives the quantum effective action in which all quantum
fluctuations are taken into account, Γ0 = Γ. The effective average action thus inter-
polates between the classical and quantum actions. The derivative of the effective
average action with respect to the scale 𝑘 then defines the RG flow.

In order for the RG flow equation to be useful, the regulator 𝑄𝑘 needs to have
certain properties [178, 179]:

⋄ it should vanish in the limit 𝑘 → 0, so that the original theory is recovered
in that limit;

⋄ it should suppress all the quantum fluctuations in the limit 𝑘 → ∞, so that
in that limit one obtains a theory governed by a classical action;

⋄ at finite 𝑘, it should behave as an effective mass term to control potential
infrared divergences;

⋄ at finite 𝑘, it should vanish at high momentum to not alter drastically the
short distance behaviour of the correlation functions.

In the original approach and for Euclidean field theories, 𝑄𝑘 is chosen as a
momentum cut-off [246]. One of the most used sharp cut-offs assumes a simple ex-
pression in the Fourier transform of its second functional derivative, as �̂� (2)

𝑘
(𝑝) =

−(𝑘2− 𝑝2)\(𝑘2− |𝑝|2), where \ is the Heaviside step function. This regulator meets
all the requirements listed above, and furthermore it permits to keep the technical
difficulties in practical computations under control [177].

When such a regulator is used, the Wetterich equation fir the effective average
action Γ𝑘 has a peak in a vicinity of |𝑝|2 ∼ 𝑘2, while both high and low momentum
modes are suppressed. This gives rise to a flow in Wilsonian sense, for which at
scale 𝑘 only the spectrum of the various propagators at momentum squared equal
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to 𝑘2 matters, thus providing an interpretation of the regularisation at scale 𝑘 as a
coarse-graining procedure.

Unfortunately, a regulator local in momentum space is non-local in position
space. For this reason, it is difficult to extend similar techniques to field theories
on generic curved backgrounds. Similarly, if the state in which the theory is con-
structed is not a vacuum, it is not clear if this choice of regulator completely reg-
ularises the theory. This happens, for example, with the Wetterich equation in the
case of thermal fields [178, 236].

Moreover, a non-local regulator in spacetimes with Lorentzian signature can
alter the principal symbol of the equation ofmotion governing the evolution. If this
is the case, and the regularised equations of motion are not normally hyperbolic,
the propagators of the regularised theory do not even exist in general, even in the
non-interacting case.

In Lorentzian spacetimes, even in the case when the Fourier transform is possi-
ble, the energy-momentum covector 𝑝 has a norm that is not positive definite, but
it can be time-like, space-like, or null. Therefore, the addition of a positive regula-
tor, local in momentum space, would not be sufficient to shift the energy spectrum
away from zero, as the combination 𝑝2+𝑘2 still has zeroes. A local regulator in mo-
mentum thus does not completely remove the IR divergences in Lorentzian space-
times. It is still possible to regulate only the time-like or only the space-like [16]
components of the momentum, or even more complicated, mixed schemes [109],
but the physical interpretation of the regulator in this cases becomes less clear.

Instead of a non-local regulator, it is possible to use a local, mass term regulator
𝑄

(2)
𝑘

∼ 𝑘𝑎 at the price of introducing a different regularisation procedure of the
UV divergences [179]. However, this last requirement is not an issue in the algebraic
approach to interacting field theories: thanks to normal-ordering and the Epstein-
Glaser renormalization, the time-ordered products are automatically ultraviolet
finite [57].

If 𝑄𝑘 is local, the 𝑆-matrix (used to build interacting fields needed to describe
the generating functional 𝑍( 𝑗)) is formally unitary. This implies in particular that,
in the Lorentzian case, the effective action obtained from that𝑊 ( 𝑗) is real-valued.
On the contrary, the 𝑆-matrix constructed with non local regulators is in general
non-unitary (for states which are not the Minkowski vacuum, see for example
[240]) and thus the corresponding effective action could be complex-valued, with
an imaginary contribution due to the form of the non-local regulator, and not to
intrinsic properties of the investigated physical system.

Finally, a mass term regulator appears to be useful whenever one is interested
in preserving the analytical structure of the propagator.

A regulator local in position space is non-local in momentum. It follows that
the source term of the flow equation for the effective action is not peaked around
momenta of scale 𝑘 any more, and the picture of progressive coarse-graining of
Wilsonian renormalization is less clear. In the simplest case of a regulator that,
modulo an IR cut-off, is just a mass term, all quantum fluctuations are suppressed
by the same artificial mass term. The net effect of the regulator is to lift the mass-
shell away fromzero, regularising IR divergences or improving convergences prop-
erties if the theory were already massive.

In the important limit of 𝑘 → ∞, all quantum fluctuations are suppressed,
also with the use of a local regulator. Intuitively, the reason is that changes in the
scale 𝑘 effectively behave as changes in themass parameter in correlation functions:
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the flow of the effective average action can then be interpreted as a flow in the
mass parameter space. Since the propagators are proportional to the inverse of
the mass, so that, in the limit of infinite mass, propagators collapse to a point and
the quantum theory reduces to the classical one. We will prove this result more
rigorously in Section 4.3.2.

Therefore, in the limit 𝑘 → ∞, correlation functions at large distances are
effectively suppressed; as 𝑘 is lowered, the effective correlation length of correla-
tion functions becomes larger, as it is inversely proportional to the effective mass.
Thus, the flow in the mass parameter space can still be interpreted as an RG flow,
in which correlations at larger distances are progressively taken into account.

The renormalization scale 𝑘 drives the theory from the microscopic, or bare,
action, at 𝑘 → ∞, to the macroscopic one, where all quantum fluctuations are
taken into account, at 𝑘 = 0. While the interpretation of the theory at intermediate
𝑘 is unclear (just as in the Euclidean case), the two important limits of vanishing
and infinite scale 𝑘 are unambiguous. For these reasons, even if the regulator is
local in position, the scale derivative of the effective average action still represents
an RG flow.

We can now discuss the precise implementation of the regulator term in our
formalism. The key property of the regulator is that it is quadratic in the fields,
so that the RG flow will be proportional to the interacting propagator. Instead of
introducing it directly into the action, the regulator is inserted in the definition of
generating functionals, acting as an effective mass on the correlation functions.

Definition 4.4 (Regulator term). The regulator term in the generating functional
𝑍 is defined as a functional𝑄𝑘 ∈ F̀ 𝑐 quadratic in the fields, smeared by a function
𝑞𝑘 ∈ 𝐶∞

𝑐 ():
𝑄𝑘 = −1

2

∫
𝑥

𝑞𝑘 (𝑥)𝑇 𝜒(𝑥)2 .

The simplest choice for the regulator function is 𝑞𝑘 (𝑥) = 𝑘𝑛𝑓 (𝑥), where 𝑓 is
a compactly supported smooth function equal to 1 on a large region of the space-
time, and which plays the role of adiabatic cut-off. The regulator is then simply an
artificial mass term with mass 𝑘 adiabatically turned on in the region of spacetime
of interest. The power 𝑛 of the mass depends on the field species: usually, 𝑛 = 2 for
bosons and 𝑛 = 1 for fermions.

In the adiabatic limit the cut-off function tends to 1 over the whole spacetime,
and 𝑄𝑘 tends to a mass contribution to the field.

Now, the regularised generating functional 𝑍𝑘 ( 𝑗) is defined as

𝑍𝑘 ( 𝑗) := 𝜔(𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘)) . (4.12)

It reduces to 𝑍( 𝑗) (4.1) in the limit 𝑘 → 0, since 𝑄𝑘 vanishes.

Remark 4.1. Even if we are changing the effective mass of Green’s functions com-
puted from 𝑍𝑘, we are not changing the propagators of the free theory. In other
words, A still denotes the ∗-algebra associated with the action 𝐼0, so that 𝑄𝑘 acts
as a mass deformation on quantum observables computed through the generating
functionals, but the ★ and 𝑇 products are 𝑘−independent. ■

This regularisation scheme is consistent with the usual IR regularisation one
can find in the fRG literature [41]. Actually, if the Gell-Mann-Low formula holds,
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we can factor the definition of the generating functional into

𝑍𝑘 ( 𝑗) =
1

𝜔(𝑆(𝑉 )) 𝜔(𝑆(𝑉 + 𝐽 + 𝑄𝑘))=:
𝑘 ( 𝑗)
𝜔(𝑆(𝑉 )) , (4.13)

which, apart from a normalization constant 𝜔(𝑆(𝑉 )), coincides with the usual for-
mulation.

From the definition of𝑍𝑘, it is possible to define the effective action in complete
analogy with the 𝑘 = 0 case. First, the regularised generating functional for connected
Green’s functions is

𝑊𝑘 ( 𝑗) = − 𝑖
ℏ

log 𝑍𝑘 ( 𝑗) . (4.14)

The first derivative of𝑊𝑘 defines the mean field 𝜙 𝑗 (𝑥) as a spacetime function
functionally depending on 𝑗, which we can write in several equivalent ways as

𝜙 𝑗 (𝑥) :=
𝛿𝑊𝑘 ( 𝑗)
𝛿 𝑗(𝑥) (4.15)

= 𝑒−
𝑖
ℏ𝑊𝑘𝜔

(
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 𝜑(𝑥)

)
(4.16)

= ⟨𝜑⟩ . (4.17)

In the last relation, the angle brackets (chevrons) denote the weighted expecta-
tion value of an interacting operator 𝐹, for non-vanishing sources and regulator,
which we call mean value operator ⟨·⟩:

⟨𝐹⟩ = 𝑒− 𝑖
ℏ𝑊𝑘𝜔

(
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 𝐹]

)
. (4.18)

The mean value operator takes a single input ⟨·⟩, while the angle brackets be-
tween two objects ⟨·, ·⟩ denotes the standard pairing on ⊗2, so no confusion
should arise from the notation. The mean value is a state evaluation only in the
limit 𝑘 → 0 and for 𝑗 = 0.

Themean value of an observable ⟨𝐹⟩ depends on 𝑗 and 𝑘. However, the relation
between 𝑗 and 𝜙 can be inverted, at all orders in perturbation theory, giving 𝑗 as
a functional of 𝜙. The following proposition proves this result. In the Euclidean
setting, the same result holds non-perturbatively [255].

Proposition 4.3. Let 𝜔 be a state on Aand let 𝜙 ∈ 𝐶∞(𝑀) be such that 𝜙 = 𝑖Δ𝐹 �̃�0,
for some �̃�0 ∈ 𝐶∞

𝑐 (𝑀), while Δ𝐹 is the Feynman propagator of the theory we are
considering. Then there exists a unique 𝑗𝜙 ∈ 𝐶∞

𝑐 (𝑀) [[𝑉 ]] which solves equation (4.11),
and it is given by the solution of

−𝑗𝜙 = 𝑃0𝜙 + 𝑄 (1)
𝑘

(𝜙) + ⟨𝑇𝑉 (1)⟩ , (4.19)

obtained by induction on the perturbative order.

Proof. First of all, recall that, by definition,

𝜙(𝑥) = ⟨𝜑(𝑥)⟩ .

The action of 𝑃0 in the above relation gives

𝑃0𝜙 =
1

𝑍𝑘 ( 𝑗)
𝜔
(
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑃0𝜑]

)
, (4.20)
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since 𝑃0 acts on spacetime-dependent quantities only. Now, the proof proceeds
similarly to the case of the Lemma on the interacting field weakly satisfying the
interacting EOMs, Lemma 2.1. In fact, the relation between𝑇− and★−products of
linear observables in Eq. (2.41), for 𝐴 = 𝑃0𝜑 and 𝐵 = 𝑆(𝑉 + 𝐽 + 𝑄𝑘), gives

𝑃0𝜙(𝑥) =
1

𝑍𝑘 ( 𝑗)

(
𝜔
(
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘) ★ 𝑃0𝜑(𝑥)

)
+ 𝑖𝜔

(
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘) (1) (𝑥)

) )
.

The first term in parenthesis vanishes, because 𝜔 is on-shell and so 𝜔(𝐴★ 𝑃0𝜑) = 0
(see Eq. (2.18)). On the other hand, the derivative of 𝑆 in the second term can be
computed explicitly, leading to

𝑃0𝜙 = −⟨𝑇𝑉 (1) + 𝑄 (1)
𝑘

+ 𝐽 (1)⟩ .

Since 𝐽 is linear in the field 𝜑, its first derivative gives the classical current 𝑗(𝑥),
while ⟨𝑄 (1)

𝑘
(𝜑) (𝑥)⟩ = 𝑄

(1)
𝑘

(𝜙(𝑥)) = −𝑞𝑘𝜙 because 𝑄 (1)
𝑘

(𝜑) (𝑥) = −𝑞𝑘 (𝑥)𝜑(𝑥);
it follows that the definition of the mean field, Definition (4.11) is equivalent to Eq.
(4.19),

−𝑗𝜙 = (𝑃0 − 𝑞𝑘)𝜙 + ⟨𝑇𝑉 (1)⟩ .

This equation can now be used to obtain 𝑗𝜙 from 𝜙 as a formal power series in 𝑉 .
Notice that the obtained solution is unique and lies in𝐶∞

𝑐 (𝑀) [[𝑉 ]]. In fact, at
zeroth order in perturbation series, the equation simply gives

𝑗𝜙,0(𝑥) = −𝑃0𝜙(𝑥) − 𝑄 (1)
𝑘

(𝜙) (𝑥) = −(𝑃0 − 𝑞𝑘)𝜙(𝑥) , (4.21)

which is nothing but the free, regularised equation of motion with sources. More-
over, 𝑗𝜙,0 ∈ 𝐶∞

c (𝑀) because 𝑃0𝜙 = − �̃�0 ∈ 𝐶∞
𝑐 (𝑀) by hypothesis, and 𝑞𝑘 is smooth

and with compact support.
If 𝑗𝜙 is compactly supported up to order 𝑉 𝑛−1, it must be smooth at order 𝑉 𝑛:

in fact, denoting by 𝑗𝜙,𝑛 the solution up to order 𝑉 𝑛,

𝑗𝜙,𝑛 = 𝑗𝜙,0 −
1

𝑍𝑘 ( 𝑗𝜙,𝑛−1)
𝜔
(
𝑆(𝑉 )−1 ★ (𝑆(𝑉 + 𝑄𝑘 + 𝐽𝜙,𝑛−1) ·𝑇 𝑇𝑉 (1) )

)
and 𝑇𝑉 (1) has compact support thanks to the cut-off functions. It follows that Eq.
(4.19) can be solved by induction on the perturbative order.

Remark 4.2. In the limit 𝑘 → 0 the previous proposition implies that the relation
between 𝑗 and 𝜙 is invertible also in the unregularised case. ■

Since the relation between 𝑗 and 𝜙 can be inverted to get the current 𝑗 = 𝑗𝜙 as
a function of 𝜙, we can think the mean value operator as equivalently depending
on 𝜙 and 𝑘, where the dependence on 𝜙 comes through 𝑗(𝜙).

The second derivative of 𝑊 (2)
𝑘

is proportional to the connected, interacting
Feynman propagator

−𝑖ℏ𝑊 (2)
𝑘

( 𝑗) = ⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩ − 𝜙(𝑥)𝜙( 𝑦) , (4.22)

where we can read either 𝑗 as a function of 𝜙 in the l.h.s, or 𝜙 as a function of 𝑗 in
the r.h.s.
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The above relation follows by a direct computation: in fact,

− 𝑖ℏ 𝛿2𝑊𝑘 ( 𝑗)
𝛿 𝑗(𝑥) 𝑗( 𝑦) =

1
𝑍𝑘 ( 𝑗)

𝜔

(
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝜑(𝑥) ·𝑇 𝜑( 𝑦)]

)
− 1
𝑍𝑘 ( 𝑗)2 𝜔

(
𝑆(𝑉 )−1★ [𝑆(𝑉 + 𝐽+𝑄𝑘) ·𝑇 𝜑(𝑥)]

)
𝜔

(
𝑆(𝑉 )−1★ [𝑆(𝑉 + 𝐽+𝑄𝑘) ·𝑇 𝜑( 𝑦)]

)
=

1
𝑍𝑘 ( 𝑗)

𝜔

(
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝜑(𝑥) ·𝑇 𝜑( 𝑦)]

)
−𝑊 (1)

𝑘
(𝑥)𝑊 (1)

𝑘
( 𝑦) .

(4.23)

Inverting the relation between 𝑗 and 𝜙, and finding 𝑗𝜙 as a function of the mean
fields, the Legendre transform of𝑊𝑘 gives a 𝑘−dependent effective action,

Γ̃𝑘 (𝜙) := 𝑊𝑘 ( 𝑗𝜙) − 𝐽𝜙 (𝜙) , (4.24)

where 𝐽𝜙 (𝜑) = Φ( 𝑗𝜙) =
∫

d𝑥𝑗𝜙 (𝑥)𝜑(𝑥). By definition of the Legendre transform,
the derivative of Γ̃𝑘 gives the quantum equations of motion,

𝛿 Γ̃𝑘
𝛿𝜙

=
𝛿 (Γ𝑘 + 𝑄𝑘)

𝛿𝜙
= −𝑗𝜙 . (4.25)

Finally, we can translate Γ̃𝑘 subtracting the classical contribution 𝑄𝑘 (𝜙), to get
the effective average action.

Definition 4.5 (Effective average action). The effective average action is defined
as a modified Legendre transform of 𝑊𝑘 with respect to 𝜙; in fact, inverting the
relation between 𝑗 and 𝜙, considering 𝜙 as an independent variable, the effective
average action is

Γ𝑘 (𝜙) := 𝑊𝑘 ( 𝑗𝜙) − 𝐽𝜙 (𝜙) − 𝑄𝑘 (𝜙) = Γ̃𝑘 (𝜙) − 𝑄𝑘 (𝜙) .

It is a consequence of the relation between 𝑊𝑘 and Γ𝑘 that their second func-
tional derivatives are inverse one of the other.

Lemma 4.4. Consider Γ𝑘 (𝜙) as defined in Definition 4.5; it holds that

(Γ(2)
𝑘

− 𝑞𝑘)𝑊 (2)
𝑘

= −𝛿 .

Proof. From (4.25) and (4.11), it follows that

𝛿 (𝑥, 𝑦) =
𝛿 𝑗𝜙 (𝑥)
𝛿 𝑗𝜙 ( 𝑦)

= − 𝛿

𝛿 𝑗𝜙 ( 𝑦)
𝛿

𝛿𝜙(𝑥) (Γ𝑘 + 𝑄𝑘)

= −
∫

d𝑧
𝛿𝜙(𝑧)
𝛿 𝑗𝜙 ( 𝑦)

𝛿

𝛿𝜙(𝑧)
𝛿

𝛿𝜙(𝑥) (Γ𝑘 + 𝑄𝑘) (4.26)

= −
∫

d𝑧(Γ(2)
𝑘

+ 𝑄 (2)
𝑘

) (𝑥, 𝑧) 𝛿2𝑊𝑘

𝛿 𝑗(𝑧)𝛿 𝑗( 𝑦) . (4.27)

We call Γ(2)
𝑘

− 𝑞𝑘 the quantum wave operator, in analogy with the free wave
operator 𝑃0.

The above relation shows that𝑊 (2)
𝑘

is a fundamental solution of the quantum
wave operator, and therefore we call it the interacting propagator. In Lemma 5.3,
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using the principle of perturbative agreement discussed in Section 2.9, we will see
that the second derivative of𝑊𝑘 is, in certain limits, the Feynman propagator for
the regularised theory.

Amajor consequence of working in Lorentzian spacetimes is that the quantum
wave operator is, in general, of hyperbolic type, just as the free wave operator 𝑃0.
It follows that𝑊 (2)

𝑘
is non-unique as a propagator of the quantum wave operator.

Its non-uniqueness is directly related to the choice of a state for the free theory,
as can be seen in perturbation theory. We will show the connection between the
two objects, writing 𝑊 (2)

𝑘
in terms of the free Feynman propagator Δ𝐹 and the

advanced and retarded propagator, in Section 5.2.3.
Notice that, since𝑊 (2)

𝑘
is a propagator for the wave operator Γ(2)

𝑘
− 𝑞𝑘, we can

subtract its divergences and define its normal-ordered counterpart : 𝑊 (2)
𝑘

:�̃�𝐹 that
satisfies the wave equation up to smooth terms,

(Γ(2)
𝑘

− 𝑞𝑘) : 𝑊 (2)
𝑘

:�̃�𝐹= 𝜎 . (4.28)

For now, we leave the counterterm �̃�𝐹 implicit; we will discuss its explicit expres-
sion in the next sections.

We finally notice that, as in the 𝑘-independent case, for finite 𝑗 as well as finite
𝑘, the functional derivatives of𝑊𝑘 ( 𝑗) are not the connected correlation functions;
only taking the limits 𝑗 → 0 and 𝑘 → 0 one recovers the meaning of 𝑊𝑘 as a
generating functional of the truncated time-ordered correlation functions.

Remark 4.3. A well-defined 𝑆-matrix arising from the algebraic approach and
Epstein-Glaser renormalization is unitary. It follows that 𝑍𝑘 ( 𝑗) is pure phase be-
cause it is the expectation value of a product of unitary operators; thus,𝑊𝑘 ( 𝑗) :=
−𝑖 log 𝑍𝑘 ( 𝑗) must be real. This in turn ensures that the effective average action is
real, implying that quantum contributions to the action cannot give rise to complex
couplings. ■

4 .3 properties of the effective average action

4 .3 . 1 Schwinger-Dyson equations

In order to have the correct physical interpretation, the effective action needs to sat-
isfy a set of important properties: in particular, it is known that the effective action
reduces to the classical action in the classical ℏ → 0 limit, it satisfies the same lin-
ear, global symmetries as the classical action, and it satisfies the Schwinger-Dyson
equation in functional form, relating the quantum equations of motion (the equa-
tions of motion satisfied by the Green’s functions, and in particular the equations
for which the interacting propagator is a fundamental solution) with the classical
ones.

Moreover, it is known that the effective average action, defined for the vacuum
state in Euclidean space, in the limit of infinite regulator scale 𝑘 → ∞ reduces to
the classical action. This is an important requirement, since it means that the regu-
lator actually cuts off quantumfluctuations below its scale 𝑘; when the scale goes to
infinity, all quantum fluctuations are suppressed and the effective action, describ-
ing the dynamics of quantum degrees of freedom, must coincide with the classical
one. Intuitively, the same should hold also for a local regulator: in fact, correlation
functions are suppressed, in momentum space, roughly by a factor 1/𝑀2

𝑘
, where
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𝑀𝑘 is the mass of the theory taking into account the regulator. In the limit 𝑘 → ∞,
the artificial mass diverges. The Feynman propagator and the Pauli-Jordan func-
tion (associated with the time-ordered and ★−product, respectively) should go to
zero; the perturbative expansion of interacting correlation functions thus reduces
to the classical contributions only.

Even if, on general grounds, we could expect that the effective average action
still reduces to the classical action in the limit 𝑘 → ∞, the proof of this property
requires some detailed knowledge on the structure of the propagator. For this rea-
son, we prove the classical limit of the effective average action when 𝑘 → ∞ only
in the ground state of a scalar field propagating over ultra-static spacetimes with
bounded curvature. The proof relies on a bound on the Feynman propagator and
the Pauli-Jordan function, which is known to hold in more general scenarios; for
example, for the Bunch-Davies vacuum in de Sitter space.

In this Section we prove that our definition of the effective average action in
the general case satisfies its known properties in Euclidean vacuum.

First of all, Eq. (4.19) of Proposition 4.3 can be cast in the form of a functional
Dyson-Schwinger equation. In fact, using the quantum equation of motion, Eq.
(4.25), and recalling that 𝑃0(𝜙) = ⟨𝐼 (1)0 (𝜑)⟩ thanks to linearity, it is immediate to
get

− 𝛿

𝛿𝜙
(Γ𝑘 + 𝑄𝑘) = ⟨ 𝛿

𝛿𝜑
(𝐼0 + 𝑇𝑉 + 𝑄𝑘)⟩ ,

and simplifying the regulator terms gives the Dyson-Schwinger equation (DSE),

− 𝛿

𝛿𝜙
Γ𝑘 (𝜙) = ⟨ 𝛿

𝛿𝜑
(𝐼0 + 𝑇𝑉 )⟩ . (4.29)

Remarkably, the effective average action at finite 𝑘 satisfies a DSE identical to the
DSE for the effective action at 𝑘 = 0, thanks to the subtraction of the classical term
𝑄𝑘 (𝜙) in its definition (4.5).

The DSE can be used to obtain the form of the effective average action Γ𝑘 in
perturbation theory. For example, at linear order in𝑉 and in the limit 𝑘 → 0, using
Lemma 2.1, Equation (4.19) reduces to

𝛿Γ𝑘
𝛿𝜙

= −𝑃0𝜙 −
1

𝜔(𝑆( 𝐽𝜙))
𝜔

(
𝑆( 𝐽𝜙) ·𝑇 𝑇𝑉 (1)

)
mod 𝑂(𝑉 2)

= −𝑃0𝜙 − 𝑇𝑉 (1) (𝑖Δ𝐹 𝑗𝜙) mod 𝑂(𝑉 2)
= −𝑃0𝜙 − 𝑇𝑉 (1) (𝜙) mod 𝑂(𝑉 2) .

Thus, up to normal ordering (that is, up to field-independent constants), at leading
order the effective action coincides with the classical action 𝐼 .

The expression for the Dyson-Schwinger equation in equation (4.29) is anal-
ogous to the usual expressions in terms of the effective action that can be found
in the physics literature, e.g. in [6, 201]. In the pAQFT literature [57, 211] the DSE
is usually stated as a relation between the classical and time-ordered equations of
motion as Eq. (2.41)

𝐴 ·𝑇 𝜑(𝑃0𝑓 ) = 𝐴 ★ 𝜑(𝑃0𝑓 ) + 𝑖ℏ⟨𝐴(1) , 𝑓 ⟩ ,

where 𝐴 is any functional in F̀ 𝑐 and 𝑓 is a test function.
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The relation with the DSE in terms of the effective (average) action, Eq. (4.29),
becomes apparent choosing as functional 𝐴 = 𝑆(𝑉 + 𝐽+𝑄𝑘) ·𝑇𝑂 for some operator
𝑂 in the equation above, so that we have

𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂 ·𝑇 𝑃0𝜑 = 𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂 ★ 𝑃0𝜑

+ 𝑖ℏ (𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂) (1)

= 𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂 ★ 𝑃0𝜑

+ 𝑖ℏ
[
𝑆(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇

(
𝛿𝑂

𝛿𝜑
+ 𝑖

ℏ
𝛿

𝛿𝜑
(𝑉 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂

)]
.

Multiplying both sides by 𝑆(𝑉 )−1 from the left and rearranging terms give

𝑆(𝑉 )−1 ★

[
𝑆(𝑉 + 𝐽) ·𝑇

𝛿

𝛿𝜑
(𝐼 + 𝐽) ·𝑇 𝑂

]
= 𝑖ℏ𝑆(𝑉 )−1 ★

[
𝑆(𝑉 + 𝐽) ·𝑇

𝛿𝑂

𝛿𝜑

]
+ 𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝐽) ·𝑇 𝑂 ★ 𝑃0𝜑] .

Evaluating on an on-shell state 𝜔 annihilates the last term, so we arrive at

⟨ 𝛿
𝛿𝜑

(𝐼 + 𝐽 + 𝑄𝑘) ·𝑇 𝑂⟩ = 𝑖ℏ⟨
𝛿𝑂

𝛿𝜑
⟩ .

Since 𝐽 is linear in the fields 𝜑,
𝛿 𝐽

𝛿𝜑
= 𝑗, so that it can be pulled out of the mean

value. Recalling that 𝑗𝜙 = − 𝛿 (Γ𝑘 + 𝑄𝑘)
𝛿𝜙

, we have

⟨ 𝛿
𝛿𝜑

(𝐼 + 𝑄𝑘) ·𝑇 𝑂⟩ − ⟨ 𝛿𝑂
𝛿𝜑

⟩ 𝛿
𝛿𝜙

(Γ𝑘 + 𝑄𝑘) = 𝑖ℏ⟨
𝛿𝑂

𝛿𝜑
⟩ .

which is the functional DSE for any functional𝑂. Setting𝑂 = 1 gives the DSE
(4.29).

Remark 4.4 (Classical limit). In the classical limit ℏ → 0, the non-commutative
and time-ordered products reduce to the point-wise product. The Bogoliubovmap
in turn reduces to the classical Møller operator, which acts on functionals of the
field by pull-back, so that ⟨𝐹 (𝜑)⟩ = 𝐹 (𝜙) + (ℏ). From the DSE (4.29) it follows
that

Γ𝑘 (𝜙) = 𝐼 (𝜙) + (ℏ) . (4.30)

■

4 .3 .2 Infinite mass limit

The DSE (4.29) can be used to compute the effective average action in certain ap-
proximations; we already commented on its perturbative expansion, showing that
the effective (average) action equals the classical action at tree level, and on the
classical limit ℏ → 0. Now, we would like to compute the limit 𝑘 → ∞. In the
Euclidean case, in this limit the effective average action and the bare action differ
by the infinite mass limit of a one-loop determinant [218].
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To study the limit in our formalism, it is convenient to apply the principle of
perturbative agreement [95, 161, 254], which we recalled in Section 2.9, and in par-
ticular Eq. (2.47) and Eq. (2.48). In fact, it is particularly useful to convert the non-
commutative products★ to 𝑘-dependent products★𝑘, so that, instead of taking the
𝑘 → ∞ limit in the Bogoliubov map, we can consider the limit in the propagators.

As discussed in the introduction to this Section, although the 𝑘 → ∞ limit can
be considered in greater generality, we make some simplifying assumptions that
allow to be very precise in the statement of the limit. In particular, the following
theorem on the infinite scale limit of Γ𝑘 holds in the case of quasi-free states on
ultrastatic spacetimes. Before proving the theorem, we rewrite the effective aver-
age action in terms of 𝑘−dependent products with the principle of perturbative
agreement.

Lemma 4.5. Let 𝜔 be a quasifree state on A (associated to 𝐼0), and consider ★ and
·𝑇 constructed out of the two-point function Δ+ of 𝜔. Let ★𝑘 and ·𝑇𝑘 the star and time
ordered products of A𝑘, which descends from the action 𝐼0 + 𝑄𝑘, and constructed out
of Δ+,𝑘 = 𝑟𝑄𝑘

Δ+𝑟∗𝑄𝑘
: The classical Møller map 𝑟𝑄𝑘

is given in equation (2.19) of Section
2.9, and 𝑟∗

𝑄𝑘
𝑓 := 𝑓 − 𝑞𝑘Δ𝐴,𝑘𝑓 . Then, it holds that for every 𝐴 ∈ Floc

𝜔
(
𝑅𝑉 (𝑆(𝑄𝑘 + 𝐽) ·𝑇 𝐴)

)
= 𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 𝐴]

����
𝜑=0

= 𝑆𝑘 (𝜌𝑘𝑉 − 𝜌𝑘𝑄𝑘)−1 ★𝑘 [𝑆𝑘 (𝜌𝑘𝑉 + 𝐽) ·𝑇𝑘 𝜌𝑘𝐴]
����
𝜑=0

.

(4.31)

where 𝑆𝑘 is the 𝑆-matrix constructed with ·𝑇𝑘 , while the map 𝜌𝑘 is given in (2.44).

Proof. It is useful to first consider the functional 𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽 + `𝐴),
since its derivative with respect to `, at vanishing `, and evaluated on the state 𝜔,
equals the l.h.s of (4.31). Inserting the identity 1 = 𝑆(𝑉 + 𝑄𝑘) ★ 𝑆(𝑉 + 𝑄𝑘)−1, the
functional 𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽 + `𝐴) is equivalent to

𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽 + `𝐴)
= 𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘) ★ 𝑆(𝑉 + 𝑄𝑘)−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽 + `𝐴)

= 𝑅𝑉 (𝑄𝑘) ★ 𝑆𝑉+𝑄𝑘
( 𝐽 + `𝐴) .

The first factor can be rewritten using Eq. (2.47) of Section 2.9 as

𝑅𝑉 (𝑄𝑘) = 𝑟𝑄𝑘
𝑅𝑘,𝜌𝑘 (𝑉−𝑄𝑘 ) (𝜌𝑘𝑄𝑘).

On the other hand, using Eq. (2.48) of Section 2.9, the second factor is

𝑆𝑉+𝑄𝑘
( 𝐽 + `𝐴) = 𝑟𝑄𝑘

[
𝑆𝑘 (𝜌𝑘𝑉 )−1 ★𝑘 𝑆𝑘 (𝜌𝑘𝑉 + 𝐽 + 𝜌𝑘`𝐴)

]
,

where we also used the identity 𝜌𝑘 𝐽 = 𝐽 because 𝐽 is 𝜑-linear. Since 𝑟𝑄𝑘
intertwines

★ to ★𝑘 and since 𝑟𝑄𝑘
𝐵
��
𝜑=0 = 𝐵 ◦ 𝑟𝑄𝑘

��
𝜑=0 = 𝐵

��
0 because 𝑟𝑄𝑘

(𝜑)
��
0 = 0, Eq. (4.31)

follows.

The last Lemma allows to rewrite the effective average action (or, more gener-
ally, the Bogoliubov map) in terms of 𝑘−dependent products. The following Theo-
rem gives the 𝑘 → ∞ limit of the effective average action.
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Theorem 4.6. Let (, 𝑔) be an ultrastatic spacetime with bounded curvature, let 𝜔
be the ground state on A, and consider the limit where the support of 𝑞𝑘 tends to ,
namely where 𝑞𝑘 = 𝑘2. Then the effective average action Γ𝑘 coincides with the classical
action up to a constant, in the limit where 𝑞𝑘 = 𝑘2 and 𝑘 → ∞; in other words, it holds
that

Γ(1)
𝑘

(𝜙) −→
𝑘→∞

𝐼 (1) (𝜙)

in the sense of pointwise converges of functions, at any order in the coupling constant.

Proof. We start writing the DSE (4.29) more explicitly as

Γ(1)
𝑘

(𝜙) = 𝑃0𝜙 +
1

𝑍𝑘 ( 𝑗)
𝜔
(
𝑅𝑉 (𝑆(𝑄𝑘 + 𝐽) ·𝑇 𝑇𝑉 (1) )

)
.

Using Lemma 4.5, we may rewrite the Bogoliubov map as

Γ(1)
𝑘

(𝜙) = 𝑃0𝜙 +
1

𝑍𝑘 ( 𝑗)
𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉 − 𝜌𝑘𝑄𝑘)−1 ★𝑘 [𝑆𝑘 (𝜌𝑘𝑉 + 𝐽) ·𝑇𝑘 𝜌𝑘𝑇𝑉 (1) ]

)
where 𝜔𝑘 = 𝜔 ◦ 𝑟𝑄𝑘

.
When 𝑞𝑘 tends to 𝑘2, 𝜔𝑘 tends to the ground state related to the equation 𝑃0𝜙−

𝑘2𝜙 = 0. The proof, for the case ofMinkowski background, can be found in Lemma
D.1 of Ref. [95]; it can be generalized to generic ultrastatic spacetime with bounded
scalar curvature, and to the case of thermal states [93].

Since the spacetime is ultrastatic, it admits a natural notion of time, and it
can decomposed into a product = R× Σ. Thanks to the split between time and
spatial coordinates, the free wave operator admits a decomposition

𝑃0 = −𝜕2
𝑡 − 𝐵 − 𝑘2 ,

where 𝐵 is a self-adjoint operator on 𝐿2(Σ), whose spectrum is bounded from be-
low by 𝑚2 − b∥𝑅∥∞. Hence, if 𝑘 is sufficiently large, −𝑘 is in the resolvent set of 𝐵:
it follows that, for large 𝑘, (𝐵+ 𝑘2)−1 is a bounded positive operator. Furthermore,
notice that, for any N ∋ 𝑙 > 0 and 𝑘2 > 𝑟, the inverse (𝐵 + 𝑘2)−𝑙 is well-defined,
and

∥(𝐵 + 𝑘2)−𝑙𝜓∥2 ≤ 1
(𝑘2 − 𝑟) 𝑙

∥𝜓∥2, 𝜓 ∈ 𝐿2(Σ),

where 𝑟 is a positive constant such that (𝑚2 − b𝑅) ≥ −𝑟 uniformly on.
For sufficiently large 𝑘, the spectrum of 𝐵 + 𝑘2 is contained in R+. Hence, by

standard functional calculus we can construct the operators Δ̃+,𝑘 (𝑡) and Δ̃𝑘,𝐹 (𝑡),
used as integral kernels of Δ𝐹,𝑘 and of Δ+,𝑘. For every 𝑡 it holds that

Δ̃+,𝑘 (𝑡) =
𝑒𝑖𝑡

√
𝐵+𝑘2

2
√
𝐵 + 𝑘2

,

and
Δ̃𝐹,𝑘 (𝑡) := \(𝑡)Δ+,𝑘 (𝑡) + \(−𝑡)Δ̃+,𝑘 (−𝑡) ,

and both are elements of 𝐵(𝐿2(Σ, d𝑥)). Their operator norms are such that

∥Δ̃+,𝑘 (𝑡)∥ ≤ 1

2
√
𝑘2 − 𝑟

, ∥Δ̃𝐹,𝑘 (𝑡)∥ ≤ 1

2
√
𝑘2 − 𝑟

. (4.32)
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For every 𝑓 ∈ 𝐶∞
𝑐 () we can write the action of the 2-point function distribution

Δ+ on 𝑓

(Δ+,𝑘𝑓 ) (𝑡𝑥 ,x) =
∫
R

d𝑡′
(
Δ̃+,𝑓 (𝑡𝑥 − 𝑡′)𝑓 (𝑡′, ·)

)
(x) ,

and similarly for Δ𝐹,𝑘𝑓 . Given the estimates of Δ̃+,𝑘 and Δ̃𝐹,𝑘, valid uniformly in
time, and the last observation, we can now estimate the distributions Δ⊗𝑛

+,𝑘 and Δ
⊗𝑛
𝐹,𝑘

on2𝑛.
For every ℎ, 𝑔 ∈ 𝐶∞

𝑐 () and with 𝑓 ∈ 𝐶∞
𝑐 () which is 1 on , and for every

𝑙 ∈ N, with 𝐶 a suitable constant, it holds that

|⟨ℎ,Δ+,𝑘𝑔⟩| ≤ |⟨ℎ,
𝑃 𝑙0

𝑘2𝑙Δ+,𝑘𝑔⟩| ≤
1
𝑘2𝑙 ∥𝑃

𝑙
0ℎ∥2∥𝑓Δ+,𝑘𝑔∥2 ≤ 𝐶

𝑘2𝑙 ∥𝑃
𝑙
0𝑔∥2∥𝑓 ∥2∥𝑔∥2

(4.33)
where now the ∥ · ∥2 norms act on 𝐿2(, d𝑥). We used the fact that Δ+,𝑘 is a weak
solution of 𝑃0−𝑘2 in the first inequality, Cauchy-Schwartz inequality in the second
step, and the uniform estimates in Eq. (4.32) in the third one.

We can now generalise this observation to estimate

| (𝐹 (𝑛)Δ⊗𝑛
+,𝑘𝐺

(𝑛) ) | ≤ 𝐶𝑙

𝑘2𝑙 (4.34)

for 𝐹,𝐺 obtained as tensor product of local functionals and valid for large 𝑘 and
for every 𝑙 ∈ N. In fact, observe that as an operator on 𝐿2(Σ) ⊗ 𝐿2(Σ), the 2-point
function satisfies

−𝑖√︁
𝐵1 + 𝑘2 +

√︁
𝐵2 + 𝑘2

𝜕𝑡𝑘Δ+,𝑘 (𝑡𝑥 − 𝑡𝑦)Δ+,𝑘 (𝑡𝑥 − 𝑡𝑧) = Δ+,𝑘 (𝑡𝑥 − 𝑡𝑦)Δ+,𝑘 (𝑡𝑥 − 𝑡𝑧).

With estimates analogous to Eq. (4.33), we get Eq. (4.34). With this at disposal, the
★𝑘-product reduces to the point-wise product in the limit 𝑘 → ∞ even if in one
of the factors 𝑄𝑘 appears.

Using also Lemma 2.3 we actually get

lim
𝑘→∞

𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉 − 𝜌𝑘𝑄𝑘)−1 ★𝑘 [𝑆𝑘 (𝜌𝑘𝑉 + 𝐽) ·𝑇𝑘 𝜌𝑘𝑇𝑉 (1) ]

)
𝑍𝑘 ( 𝑗)

=

lim
𝑘→∞

𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉𝜙0) ·𝑇𝑘 𝜌𝑘𝑇𝑉

(1)
𝜙0

)
𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉𝜙0)

)
where 𝐹𝜙0 (𝜑) = 𝐹 (𝜑 + 𝜙0) and where 𝜙0 = 𝑖Δ𝐹,𝑘 𝑗𝜙. In the limit 𝑘 → ∞, thanks
to the estimate in Eq. (4.32) the 𝑇𝑘-product among local functionals reduces to a
pointwise product.

Furthermore, 𝜌𝑘𝑇𝑉 (1) = 𝑇𝑘𝑉 (1) (cf. Remark 2.3 in Section 2.9), and under the

same limit 𝑇𝑘𝑉 (1) 𝑘→∞−−−−→ 𝑉 (1) . Finally, using Eq. (4.19) we get that in the limit
𝑘 → ∞, 𝜙0 converges to 𝜙; hence, since 𝑉 as a function of 𝜙 is smooth, we obtain

lim
𝑘→∞

𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉𝜙0) ·𝑇𝑘 𝜌𝑘𝑇𝑉

(1)
𝜙0

)
𝜔𝑘

(
𝑆𝑘 (𝜌𝑘𝑉𝜙0)

) = 𝑉 (1) (𝜙) ,
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and from the DSE the 𝑘 → ∞ limit of the effective average action reads

Γ(1)
𝑘

(𝜙) −−−−→
𝑘→∞

𝑃0𝜙 + 𝑉 (1) (𝜙) = 𝐼 (1) (𝜙) ,

where 𝐼 (𝜙) is the classical action and the limit holds in the sense of pointwise con-
vergence of functions.

Although Theorem 4.6 is proved for the case of ultrastatic spacetimes with
bounded curvature and for ground states, its thesis holds in a more general setup.
Indeed, the generalisation to the case of states satisfying a similar bound as those
given in Eq. (4.32) is straightforward. Notice that equilibrium states on flat space-
times or Bunch Davies states in the case of de Sitter backgrounds satisfy a similar
estimate.

This shows that the effective average action and the classical action coincide,
up to a constant, in the limit 𝑘 → ∞; more precisely, the expansion at 𝑘 → ∞
coincides with the semiclassical approximation described in Remark 4.2.

4 .3 .3 Parity of the effective average action

Since is usually impossible to compute the effective average action exactly, it is
crucial to derive some of its general properties without explicit computations. For
example, standard methods of solving the RG flow equations consist in guessing
an Ansatz on the functional dependence of Γ𝑘 on the mean fields 𝜙, usually in the
form of a finite sum of polynomials in the fields with 𝑘−dependent coefficients. It
is clear that projecting Γ𝑘 on a complete basis of field functionals is not possible;
therefore, any constraint on the functional dependence of Γ𝑘 on the fields greatly
improves any approximation scheme, while also helping in the identification of
scheme-independent properties of the RG flow.

We thus study how global symmetries of the classical action 𝐼 affect Γ𝑘. For
simplicity, we only consider the 𝑂(1) scalar model with an interaction term 𝑉

even in the field 𝜑. The classical action of this scalar field theory is invariant under
a global Z2 symmetry, that is, the symmetry transformation 𝜑 → −𝜑.

Naturally, since the effective average action depends on the state as well as the
algebra, there can be state effects that break the symmetry. Therefore, to prove the
invariance of the effective average action we need to choose a state that does not
spontaneously break the classical global symmetry. In this simple case this amounts
to the requirement that the one-point function 𝜔(𝜑) is even under the symmetry
𝜑 → −𝜑, which is true whenever the state is quasifree for the free theory, 𝜔(𝜑) = 0.

If the state 𝜔 is quasifree, the next proposition proves that Γ𝑘 is invariant under
the same global symmetry 𝜙 → −𝜙.

Proposition 4.7. Let 𝑉 be even with respect to 𝜑 → −𝜑, so that it contains an even
number of fields only. If 𝜔 is quasifree, the effective average action Γ𝑘 is even.

Proof. Since 𝑄𝑘 is 𝜙-even, it suffices to study the parity of Γ̃𝑘. We analyse the 𝜙-
parity of Γ̃𝑘 through its Definition (4.3):

Γ̃𝑘 (𝜙) = 𝑊𝑘 ( 𝑗𝜙) − 𝐽𝜙 (𝜙) = −𝑖 log 𝑍𝑘 ( 𝑗𝜙) − 𝐽𝜙 (𝜙) , 𝑍𝑘 ( 𝑗𝜙) = 𝜔
[
𝑅𝑉 (𝑆(𝑄𝑘 + 𝐽𝜙)

]
.

First of all, we analyse the 𝜑-parity of 𝑍𝑘 and𝑊𝑘.
Since 𝑉 is 𝜑-even and ★, ·𝑇 preserve 𝜑-parity (because they acts as functional

derivatives twice on the factors), it follows that 𝑅𝑉 𝐹 has the same 𝜑-parity of 𝐹.



generating functionals in paqft 86

Since 𝑄𝑘 is 𝜑-even and 𝜔 corresponds to evaluation at 𝜑 = 0, it follows that the
contribution

𝜔
[
𝑅𝑉 (𝑆(𝑄𝑘 + 𝐽𝜙))

]
= 𝜔

[
𝑅𝑉 (𝑆(𝑄𝑘) ·𝑇 𝑆( 𝐽𝜙))

]
,

contains only even powers of 𝐽𝜙, so this contribution is 𝑗𝜙-even. It then follows that
𝑊𝑘 ( 𝑗𝜙) = −𝑖 log 𝑍𝑘 ( 𝑗𝜙) is 𝑗𝜙-even.

We now prove that 𝑗𝜙 is 𝜙-odd. With the observations already made, this will
imply that 𝐽𝜙 (𝜙) is 𝜙-even and so is Γ̃𝑘, because of Eq. (4.3). Recall Eq. (4.19),

𝑗𝜙 = −𝑃0𝜙 − 𝑄 (1)
𝑘

(𝜙) − 1
𝑍𝑘 ( 𝑗𝜙)

𝜔

[
𝑅𝑉

(
𝑆(𝑄𝑘 + 𝐽𝜙) ·𝑇 𝑇𝑉 (1)

)]
.

It follows that 𝑗𝜙,0 (the 0-th order in 𝑉 of 𝑗𝜙) is 𝜙-odd. By induction, assume that
the expansion 𝑗𝜙,𝑛 up to order 𝑉 𝑛 is 𝜙-odd. For the expansion 𝑗𝜙,𝑛+1 up to 𝑉 𝑛+1 we
have

𝑗𝜙,𝑛+1 = − 1
𝑍𝑘 ( 𝑗𝜙,𝑛)

𝜔

[
𝑅𝑉

(
𝑆(𝑄𝑘 + 𝐽𝜙,𝑛) ·𝑇 𝑇𝑉 (1) ) ] .

𝑇𝑉 (1) is 𝜑-odd, because 𝑉 (1) is odd and the map 𝑇 preserves the 𝜑-parity. It
follows that

𝜔

[
𝑅𝑉

(
𝑆(𝑄𝑘 + 𝐽𝜙,𝑛) ·𝑇 𝑇𝑉 (1) ) ]

contains only odd powers of 𝑗𝜙,𝑛, because only 𝜑-even terms in 𝑆(𝑄𝑘 + 𝐽𝜙,𝑛+1) ·𝑇
𝑇𝑉 (1) provide a non-vanishing contribution to the expectation value. Finally,𝑍𝑘 ( 𝑗𝜙,𝑛)
is 𝑗𝜙,𝑛-even and thus 𝜙-even. By the inductive assumption, we find that 𝑗𝜙,𝑛+1 is 𝜙-
odd.

Hence, quantum contributions cannot violate the parity of symmetry of the
starting classical action, at least in this simple example. This observationwill justify
the ansatz in Eq. (8.11) in actual computations of the flow for the scalar theory.

4 .3 .4 Towards a non-perturbative formulation of the effective action

Before discussing the extension to gauge theories, we discuss here an alternative
formulation of the effective average action, which could form the basis for a non-
perturbative formulation in the 𝐶∗−algebraic approach to interacting field theo-
ries, first formulated for scalar fields by Buchholz and Fredenhagen [68]. The idea
is to start from a definition of the effective (average) action directly from an expres-
sion in terms of the Bogoliubov map, and then to derive its relevant properties,
without referring to the 𝑍 or𝑊 [53]. Since we work in the off-shell formalism, Γ𝑘
will be implicitly defined by a solution of some integro-differential equation. The
advantage is that the Bogoliubov map and interacting observables admit a treat-
ment as elements of an abstract 𝐶∗−algebra, instead as formal power series [68];
formulating the effective average action in the same𝐶∗−algebraic context will pro-
vide the non-perturbative generalisation of the effective average action.

We discuss this equivalent formulation for the scalar field only. From Defini-
tion 4.5 as the modified Legendre transform and from the definition of 𝑊𝑘 in Eq.
(4.14), it follows that

𝑒
𝑖
ℏ (Γ𝑘+𝑄𝑘 (𝜙)+𝐽𝜙 (𝜙) ) = 𝜔 ◦ 𝑅𝑉 (𝑆( 𝐽𝜙 (𝜑) + 𝑄𝑘 (𝜑)) ⇒

𝑒
𝑖
ℏΓ𝑘 = 𝜔 ◦ 𝑅𝑉 (𝑆( 𝐽𝜙 (𝜑) − 𝐽𝜙 (𝜙) + 𝑄𝑘 (𝜑) − 𝑄𝑘 (𝜙)) .
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Now, we have

𝐽𝜙 (𝜑) − 𝐽𝜙 (𝜙) = 𝐽𝜙 (𝜑 − 𝜙) = −
∫
𝑥

𝛿Γ𝑘
𝛿𝜙

(𝜑 − 𝜙) + 𝛿𝑄𝑘

𝛿𝜙
(𝜑 − 𝜙) .

On the other hand,

𝑄𝑘 (𝜑)−𝑄𝑘 (𝜙)−
∫
𝑥

𝛿𝑄𝑘

𝛿𝜙
(𝜑−𝜙) = −1

2

∫
𝑥

𝑞𝑘 (𝑥)
[
𝜑2 − 𝜙2 − 2𝜙(𝜑 − 𝜙)

]
= 𝑄𝑘 (𝜑−𝜙) ,

so we arrive at

𝑒
𝑖
ℏΓ𝑘 = 𝜔 ◦ 𝑅𝑉

[
𝑆

(
−

∫
𝑥

𝛿Γ𝑘
𝛿𝜙

(𝜑 − 𝜙) + 𝑄𝑘 (𝜑 − 𝜙)
)]

.

Thus, we can define the effective average action as the solution of the above equa-
tion,

Definition 4.6 (Non-perturbative definition of the effective average action). The
effective average action Γ𝑘 : R+ × 𝐶∞() → C is defined as the solution of the
following equation:

𝑒
𝑖
ℏΓ𝑘 (𝜙) = 𝜔 ◦ 𝑅𝑉

[
𝑆

(
−

∫
𝑥

𝛿Γ𝑘
𝛿𝜙

(𝜑 − 𝜙) + 𝑄𝑘 (𝜑 − 𝜙)
)]

.

We call this definition non-perturbative because, giving a representation of the
Bogoliubov map and the 𝑆−matrix as abstract generators of a𝐶∗−algebra [68], the
above formula translates to a non-perturbative, 𝐶∗−definition of the effective av-
erage action.

We can now show that from Definition (4.6) Γ𝑘 satisfies the same properties as
the modified Legendre transform.

First of all, the derivative with respect to 𝜙 of (4.6) gives

𝑒
𝑖
ℏΓ𝑘

𝛿Γ𝑘
𝛿𝜙(𝑥) =

= 𝜔 ◦ 𝑅𝑉
[
𝑆

(
−

∫
𝑥

𝛿Γ𝑘
𝛿𝜙

(𝜑 − 𝜙) + 𝑄𝑘 (𝜑 − 𝜙)
)
·𝑇(

𝛿Γ𝑘
𝛿𝜙(𝑥) −

𝛿𝑄𝑘 (𝜑 − 𝜙)
𝛿𝜙(𝑥) −

∫
𝑦

𝛿2Γ𝑘
𝛿𝜙(𝑥)𝛿𝜙( 𝑦) (𝜑 − 𝜙) ( 𝑦)

)]
.

Now, it holds that 𝑄𝑘

𝛿𝜙(𝑥) (𝜑 − 𝜙) =
∫
𝑦

𝛿2𝑄𝑘

𝛿𝜙(𝑥)𝛿𝜙( 𝑦) (𝜑 − 𝜙) ( 𝑦). We now denote

⟨𝐹⟩ := 𝑒−
𝑖
ℏΓ𝑘𝜔 ◦ 𝑅𝑉

[
𝑆

(
−

∫
𝑥

𝛿Γ𝑘
𝛿𝜙

(𝜑 − 𝜙) + 𝑄𝑘 (𝜑 − 𝜙)
)
·𝑇 𝐹

]
.

Recognising that Γ𝑘 (𝜙) and 𝑄 (2)
𝑘

do not depend on 𝜑 we get∫
𝑦

𝛿2

𝛿𝜙(𝑥)𝛿𝜙( 𝑦) (Γ𝑘 + 𝑄𝑘) (⟨𝜑( 𝑦)⟩ − 𝜙( 𝑦)) = 0 .

Since this equation must hold for any fluctuation field ⟨𝜑⟩ − 𝜙, and in particular
when it is not a solution of the QEOM with vanishing sources, we recover the
standard definition of 𝜙:

𝜙 = ⟨𝜑⟩ .
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We nowprove the relation between the quantumwave operator and the interacting
propagator. Deriving the last expression with respect to 𝜙 gives

𝛿 ⟨𝜑(𝑥)⟩
𝛿𝜙( 𝑦) = 𝛿 (𝑥, 𝑦) .

Writing explicitly the derivative of the mean value, we get

𝛿 (𝑥, 𝑦) = 𝛿

𝛿𝜙( 𝑦)

{
𝑒−

𝑖
ℏΓ𝑘𝜔 ◦ 𝑅𝑉

[
𝑆

(
−

∫
𝑧

𝛿Γ𝑘
𝛿𝜙(𝑧) (𝜑 − 𝜙) (𝑧) + 𝑄𝑘 (𝜑 − 𝜙)

)
·𝑇 𝜑(𝑥)

]}
.

The derivative produces three terms by Leibniz rule, that are

𝛿 (𝑥, 𝑦) = − 𝑖
ℏ

∫
𝑧

(
Γ(2)
𝑘

(𝜙) + 𝑄 (2)
𝑘

(𝑧, 𝑦)
)
⟨(𝜑 − 𝜙) (𝑧) ·𝑇 𝜑(𝑥)⟩

+ 𝑖

ℏ
𝛿Γ𝑘
𝛿𝜙( 𝑦) 𝜙(𝑥)

− 𝑖

ℏ
𝛿Γ𝑘
𝛿𝜙( 𝑦) 𝜙(𝑥) .

Rearranging terms, we get∫
𝑧

(Γ𝑘 (𝜙) + 𝑄𝑘 (𝜙) (2) (𝑥, 𝑧)⟨𝜑(𝑧) ·𝑇 𝜑( 𝑦)⟩𝑐 = 𝑖ℏ𝛿 (𝑥, 𝑦) ,

so that the quantumwave operator is the inverse of the connected interacting two-
point function, with the 𝑖ℏ factor converting it to the interacting propagator.

Finally, we can compute the flow equations. The computation is much more
direct than in themodified Legendre transform perspective, that we assume for the
rest of the thesis; here we show only the main steps, while we present a detailed
derivation in Section 5.1. We start computing the derivative with respect to 𝑘 of
Definition (4.6). The derivative produces a term proportional to 𝜕𝑘Γ

(1)
𝑘

(⟨𝜑⟩ − 𝜙),
which vanishes since it is proportional to the difference ⟨𝜑⟩ − 𝜙 = 0. We are left
with

𝜕𝑘Γ𝑘 (𝜙) = ⟨𝑄𝑘 (𝜑 − 𝜙)⟩ .
After a short computation, the above gives the RG flow equations (5.6), written as

𝜕𝑘Γ𝑘 (𝜙) = −1
2

∫
𝑥

𝜕𝑘𝑞𝑘 (𝑥)⟨𝑇 (𝜑 − 𝜙)2⟩ .

Towrite the flow equations as closed differential equations for the effective average
action, we denote : 𝐺𝑘 : (𝑥, 𝑥) := −𝑖ℏ⟨𝑇 (𝜑−𝜙)2⟩ andwe get the RGflow equations
(5.6), with the additional condition that 𝐺𝑘 is an inverse for the quantum wave
operator.

Definition 4.6 thus reproduces all the key properties of the Legendre effective
average action. The only relation which cannot be proven without assuming the
perturbative expression of the quantum and time-ordered products given in Def-
initions 2.12 and 2.16, and thus of the Bogoliubov maps and of the effective aver-
age action itself, is the Schwinger-Dyson equation, Eq. (4.29). The generalisation of
this formalism to the non-perturbative 𝐶∗−algebraic thus requires some Dyson-
Schwinger-type relation relating the effective average action with the bare action.
It should be possible to start from the one proposed by Buchholz and Fredenhagen
[68] and derive from it the relation between Γ𝑘 and the bare action. We leave this
important issue for future investigations.
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4 .4 extension to gauge theories

Before moving on with the derivation of RG flow equations for the effective aver-
age action, we extend the definitions of generating functionals to the case of gauge
theories. The extension requires two modifications to the generating functionals:
the first is straightforward, since it consists in the inclusion of the field multiplet 𝜑
in the source and regulator terms 𝐽 and 𝑄𝑘.

The second modification consists in the introduction of classical sources 𝜎 for
the BV variations of the fields 𝜑, through the insertion of a term Σ in 𝑍𝑘, and for
the BV variations of 𝑄𝑘, through an additional term 𝐻 . These terms do not play a
role in the flow equations, since they are 𝑘−independent, but theywill be necessary
to control the local symmetries of the effective average action. The sources 𝜎 are
known in the literature as classical BRST sources, and were first introduced by
Zinn-Justin [256]. In our formalism, they correspond to a classical evaluation of
the antifields 𝜑‡ on some antifield configuration 𝜎 , and so they are analogous to a
gauge-fixing term.

Wewill discuss the inclusion of the 𝐻 and Σ terms in Section 7.1. Here, we focus
on the extension needed to derive the RG flow equation for gauge theories.

So, first of all, the source term 𝐽 (𝜑) is now an element of the BV algebraBV, i.e.
it is a linear functional of the field multiplet 𝜑 = {, 𝑏, 𝑐, 𝑐}. In turn, this implies
that the generating functional 𝑍( 𝑗) in Definition 4.1 depends on a collection of
sources 𝑗 = { 𝑗, 𝑗𝑏 𝑗𝑐 , 𝑗𝑐} via the linear coupling 𝐽 (𝜑) =

∫
𝑥
𝑗𝜑 , where, as always

in our notation, the integration of a field-dependent term also implicitly includes
a summation over the field species and internal and Lorentz indices. Just as the
field configuration, different sources can actually be different geometrical objects:
for example, for Yang-Mills theories, the gauge field is a Lorentz vector, while the
other fields are Lorentz scalars; it follows that 𝑗 must be a Lorentz covector, while
the other sources are Lorentz scalars.

The generating functional𝑍( 𝑗) defines the generating functional for connected
Green’s functions 𝑒

𝑖
ℏ𝑊 ( 𝑗) = 𝑍( 𝑗), just as in the scalar case.

The Legendre transform of 𝑊 with respect to all sources gives the effective
action, Γ(𝜙), that now depends on the field multiplet 𝜙 = {𝜙, 𝜙𝑏, 𝜙𝑐 , 𝜙𝑐}; they
are defined as in the scalar case by

𝛿𝑊

𝛿 𝑗
= 𝜙. The perturbative inversion of this

relation gives the quantum equation of motion, and its derivative with respect to
𝑗𝜙 shows that the interacting propagator is a fundamental solution of the quantum
wave operator:

∫
𝑥,𝑦

Γ(2) (𝜙)𝑊 (2) ( 𝑗𝜙) = −𝛿 . The difference from the scalar case is
that, together with integration over spacetime points, we now need to sum over
the field indices of 𝑗𝜙 and 𝜙.

The regularised generating functionals now depend on a quadratic termwhich
is formally identical to the scalar case,

𝑄𝑘 (𝜑) = −1
2
𝑇

∫
𝑥

𝜑(𝑥)𝑞𝑘 (𝑥)𝜑(𝑥) . (4.35)

However, the above relation must be read in matrix notation as a quadratic form,
where 𝑞𝑘 is a block diagonal matrix. Since it must act as an effective mass for the
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non-trivial propagators, it is explicitly given by

𝑞𝑘 (𝑥) = 𝑓 (𝑥)
©«
𝑞𝑘 𝑞𝑏

𝑘
0 0

𝑞𝑏
𝑘

0 0 0
0 0 0 𝑞𝑘

0 0 −𝑞𝑘 0

ª®®®®®¬
,

where 𝑞𝑎
𝑘
is some function of the scale 𝑘; in the simplest case, 𝑞𝑎

𝑘
= 𝑘2 for bosons

and 𝑞𝑎
𝑘
= 𝑘 for fermions. The matrix rows and columns are ordered alphabetically,

as (, 𝑏, 𝑐, 𝑐). The regulator is thus the sum of three contributions,

𝑄𝑘 (𝜑) = −1
2

∫
𝑥

𝑓 (𝑥)
[
𝑞𝑘𝑇2 + 2𝑞𝑏𝑘𝑇𝑏 − 𝑞𝑘𝑇 (𝑐𝑐 − 𝑐𝑐)

]
. (4.36)

Clearly, in the scalar field case the above definition reduces to what we already
discussed in Section 4.2. The regulator acts as an effectivemass term both for gauge
and ghost fields. Since the regulator term does not contain antifields, it is possible
to use the formulas of perturbative agreement, Eqs. (2.47) and (2.48) to prove that
the regulator acts as an effective mass in the propagators, thus suppressing long-
range correlations. It follows that 𝑄𝑘 behaves as an IR regulator in gauge theories
as well.

The connected, interacting propagators now can be organised in a matrix,

− 𝑖ℏ𝑊 (2)
𝑘

=

©«
⟨(𝑥) ·𝑇 ( 𝑦)⟩𝑐 ⟨(𝑥) ·𝑇 𝑏( 𝑦)⟩𝑐 0 0
⟨(𝑥) ·𝑇 𝑏( 𝑦)⟩𝑐 0 0 0

0 0 0 ⟨𝑐(𝑥) ·𝑇 𝑐( 𝑦)⟩𝑐
0 0 ⟨𝑐(𝑥) ·𝑇 𝑐( 𝑦)⟩𝑐 .

ª®®®®®¬
(4.37)

With the extensions of the source and regulator terms to gauge theories, we
can now discuss the derivation of the RG flow equations.
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5 . 1 rg flow equations

We are finally in the position of deriving one of the main results of this thesis. The
RG flow equations govern the flow of the effective average action under infinites-
imal re-scaling of the parameter 𝑘. They take the form of the Wetterich equation
with a local regulator (also known as functional Callan-Symanzik equation), gen-
eralising the flow to curved spacetimes and generic Hadamard states.

The derivationworks by a straightforward computation of the generating func-
tionals’ scale dependence, and it is analogous to the Euclidean case [217, 246].

The first step is computing the 𝑘−derivative of 𝑍𝑘: from its definition we have

𝜕𝑘𝑍𝑘 ( 𝑗) =
𝑖

ℏ
𝜔

(
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 𝜕𝑘𝑄𝑘

)
. (5.1)

The 𝑘-derivative of𝑊𝑘 follows immediately,

𝜕𝑘𝑊𝑘 ( 𝑗) = ⟨𝜕𝑘𝑄𝑘⟩ . (5.2)

This last equation computes the scale derivative of 𝑊𝑘 in terms of the mean
value of the regulator term, which is proportional to the Wick-square.

To obtain a closed expression, the derivation of the RG equations for𝑊𝑘 pro-
ceeds expressing the mean value of the regulator 𝑄𝑘 in terms of the interacting
propagators𝑊 (2)

𝑘
. First of all, notice that ⟨𝜕𝑘𝑄𝑘⟩ is the sum of two contributions,

⟨𝜕𝑘𝑄𝑘⟩ = −1
2

∫
𝑥

𝜕𝑘𝑞𝑘 (𝑥)⟨𝑇2(𝑥)⟩ + 𝜕𝑘𝑞𝑘 (𝑥) (⟨𝑇𝑐(𝑥)𝑐(𝑥)⟩ − ⟨𝑇𝑐(𝑥)𝑐(𝑥)⟩) .

Both in the gauge and ghost sector, the expectation value of𝑇𝜑2 can be written
as

𝑇𝜑2 = lim
𝑦→𝑥

𝜑(𝑥) ·𝑇 𝜑( 𝑦) − 𝐻𝐹 = lim
𝑦→𝑥

𝜑(𝑥) ★ 𝜑( 𝑦) − 𝐻 . (5.3)

Recall that 𝐻𝐹 = 𝐻 + 𝑖Δ𝐴. Despite the compact notation, the parametrix 𝐻𝐹 is
actually a block-diagonal matrix of functions, written in terms of the collection of
parametrices {𝐻 𝑔

𝐹
, 𝐻𝑏

𝐹
, 𝐻

𝑔ℎ

𝐹
, 𝐻

𝑔ℎ

𝐹
}.

The scale derivative of𝑊𝑘 then becomes

𝜕𝑘𝑊𝑘 =

− 1
2

∫
𝑥

𝜕𝑘𝑞𝑘⟨ lim
𝑦→𝑥

(𝑥) ·𝑇 ( 𝑦) − 𝐻 𝑔

𝐹
(𝑥, 𝑦)⟩ + 2𝜕𝑘𝑞𝑏𝑘 (𝑥)⟨ lim

𝑦→𝑥
(𝑥) ·𝑇 𝑏( 𝑦) − 𝐻𝑏

𝐹⟩

+ 2𝜕𝑘𝑞𝑘⟨ lim
𝑦→𝑥

𝑐(𝑥) ·𝑇 𝑐( 𝑦) − 𝐻
𝑔ℎ

𝐹
(𝑥, 𝑦)⟩ . (5.4)
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The Wick square is normal-ordered by subtraction of the Hadamard parametrix,
which in the language of renormalization is the counterterm associated with the
free propagator in the coincidence limit (a 1-loop divergence). The connection be-
tween the interacting propagator𝑊 (2)

𝑘
(𝑥, 𝑦) and the interactingWick square𝑊 (2) (𝑥, 𝑥)

requires the implicit definition of a new, interacting parametrix �̃�𝐹 , arising from
the commutation of the Bogoliubov map with the coincidence limit.

Definition 5.1 (Counterterms �̃�𝐹 ). The interacting Hadamard counterterms �̃�𝐹 are
implicitly defined by the commutation of the limit operation with the expectation
value in the following formula:

⟨ lim
𝑦→𝑥

𝜑(𝑥) ·𝑇 𝜑( 𝑦) − 𝐻𝐹 (𝑥, 𝑦)⟩ := lim
𝑦→𝑥

⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩ − 𝑖ℏ�̃�𝐹 (𝑥, 𝑦) .

Thanks to �̃�𝐹 , we can write the coincidence limit of the time-ordered expec-
tation value 𝑇 𝜒2 as

⟨ lim
𝑦→𝑥

𝜑(𝑥) ·𝑇 𝜑( 𝑦) − 𝐻𝐹 (𝑥, 𝑦)⟩

= lim
𝑦→𝑥

(
−𝑖ℏ𝑊 (2)

𝑘
(𝑥, 𝑦) − 𝑖ℏ�̃�𝐹 (𝑥, 𝑦)

)
+𝑊 (1)

𝑘
(𝑥)𝑊 (1)

𝑘
( 𝑦) .

By implicitly defining the counterterms �̃�𝐹 (𝑥, 𝑦) as a block diagonal matrix, the
scale derivative of 𝑊𝑘 gives the RG flow equation for 𝑊𝑘, known as the Polchin-
ski equation [208]. To write the Polchinski equation in compact form, the matrix
𝑊

(2)
𝑘

(𝑥, 𝑦) in Eq. (4.37) can be written as

𝑊
(2)
𝑘

(𝑥, 𝑦) =

©«

𝛿2𝑊 ( 𝑗)
𝛿 𝑗 (𝑥)𝛿 𝑗 ( 𝑦)

𝛿2𝑊 ( 𝑗)
𝛿 𝑗 (𝑥)𝛿 𝑗𝑏 ( 𝑦) 0 0

𝛿2𝑊 ( 𝑗)
𝛿 𝑗𝑏 (𝑥)𝛿 𝑗 ( 𝑦) 0 0 0

0 0 0 𝛿2𝑊 ( 𝑗)
𝛿 𝑗𝑐 (𝑥)𝛿 𝑗𝑐 ( 𝑦)

0 0 𝛿2𝑊 ( 𝑗)
𝛿 𝑗𝑐 (𝑥)𝛿 𝑗𝑐 ( 𝑦) 0

ª®®®®®®¬
.

Using the normal-ordering notation : 𝐴 :𝐻= 𝐴 − 𝐻 , the Polchinski equation in
matrix notation then is

𝜕𝑘𝑊𝑘 =
𝑖ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr
{
𝜕𝑘𝑞𝑘 (𝑥)

[
: 𝑊 (2)

𝑘
:�̃�𝐹 (𝑥, 𝑦) +𝑊 (1)

𝑘
(𝑥)𝑊 (1)

𝑘
( 𝑦)

]}
. (5.5)

The last equation is a generalisation of Polchinski’s equation to curved spacetimes
and generic Hadamard states 𝜔. The trace is performed over internal and Lorentz
indices, as well.

The RG flow for Γ𝑘 follows from the RG flow for 𝑊𝑘. Since it is one of the
central results of this thesis, we summarise the equations in the following theorem.

Theorem 5.1 (RG flow equations). The RG flow equations are given by the flow equa-
tion for Γ𝑘 with a consistency relation:

𝜕𝑘Γ𝑘 =
𝑖ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr
{
𝜕𝑘𝑞𝑘 (𝑥) : 𝐺𝑘 :�̃�𝐹 (𝑥, 𝑦)

}
(Γ(2)
𝑘

− 𝑞𝑘)𝐺𝑘 = −1 .
(5.6)
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Proof. From the Definition 4.5 of the effective average action as the modified Leg-
endre transform of𝑊𝑘, we have

𝜕𝑘Γ𝑘 = 𝜕𝑘𝑊𝑘 ( 𝑗𝜙) +𝑊 (1) ( 𝑗𝜙)𝜕𝑘 𝑗𝜙 − 𝜙𝜕𝑘 𝑗𝜙 − 𝜕𝑘𝑄𝑘 (𝜙)
= 𝜕𝑘𝑊𝑘 ( 𝑗𝜙) − 𝜕𝑘𝑄𝑘 (𝜙) .

The cancellation of the scale derivative of 𝑗𝜙 follows as usual by the identification
𝑊 (1) ( 𝑗𝜙) = 𝜙. By the same identification, the RG flow for𝑊𝑘, when written with
𝜙 as independent variable, is

𝜕𝑘𝑊𝑘 =
𝑖ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr
{
𝜕𝑘𝑞𝑘 (𝑥)

[
: 𝑊 (2)

𝑘
( 𝑗𝜙) :�̃�𝐹 (𝑥, 𝑦)

]}
+ 𝜕𝑘𝑄𝑘 (𝜙) .

The classical term 𝜕𝑘𝑄𝑘 (𝜙) arises because

−1
2

∫
𝑥

𝜕𝑘𝑞𝑘 (𝑥)𝑊 (1)
𝑘

(𝑥) | 𝑗𝜙𝑊
(1)
𝑘

(𝑥) | 𝑗𝜙 = 𝜕𝑘𝑄𝑘 (𝜙) .

From the last two relations the scale derivative of the effective average action
is

𝜕𝑘Γ𝑘 =
𝑖ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr

{
𝜕𝑘𝑞𝑘 (𝑥) : 𝑊 (2)

𝑘

����
𝑗𝜙

:�̃�𝐹 (𝑥, 𝑦)
}
.

The last step is the evaluation of𝑊 (2)
𝑘

(𝑥, 𝑦) | 𝑗𝜙 in terms of the effective average
action. In fact, Lemma (4.4) shows that𝑊 (2)

𝑘
| 𝑗𝜙 is the interacting propagator for the

quantumwave operator (Γ(2)
𝑘

−𝑞𝑘), so that it can formally be written as the inverse
𝑊

(2)
𝑘

| 𝑗𝜙 = (Γ(2)
𝑘

− 𝑞𝑘)−1. However, since the inverse is not unique this last relation
does not uniquely fixes the interacting propagator, and thus cannot provide a well-
defined RG flow for the effective average action. Instead, denoting

𝑊
(2)
𝑘

(𝑥, 𝑦)
����
𝑗𝜙

:= 𝐺𝑘 (𝑥, 𝑦) ,

to highlight that𝐺𝑘 is a function of 𝜙 and a fundamental solution of theQEOM, the
RG flows equations for the average effective follow, and are given in the statement
of the theorem.

In the case of the scalar field, every matrix in field space reduces to a scalar, and
there are no ghost terms; otherwise, the derivation follows the same steps [83].

In the r.h.s of Eq. (5.6), the derivative of the regulator term includes an infra-red
cut-off function 𝑓 with compact support, that limits the integral to a finite region
of spacetime so that it is finite. The cut-off function 𝑓 thus regularises the IR diver-
gences. The counterterms �̃�𝐹 instead regularises the UV divergences associated
with the coincidence limit of the interacting propagator, so that the flow is finite
in the UV as well.

The coincidence limit of the interacting propagator 𝐺𝑘 (𝑥, 𝑥) arises from the
application of the Bogoliubov map to the Wick square 𝑇 𝜒2. This corresponds in
perturbation theory to a summation of all Feynman diagrams, traced over each
spacetime point. Graphically, it amounts to the sumof loops, with 𝑛 internal points,
that are closed by the Wick square 𝑇 𝜒2(𝑥).

However, thanks to normal-ordering, the Wick square 𝑇 𝜒2 is smooth by defi-
nition. It follows that in the loops, each propagator is connected to another at each
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point, but the coincidence limit is taken on a smooth function; there is no propa-
gator multiplied at the same spacetime point, and so the loops are actually finite.

In the following Section we will gain more insight in the r.h.s of the RG flow
equation.

There are two main differences from the Euclidean case in the RG flow equa-
tion. The first difference is the dependence of the RG flow on the interacting prop-
agator: since the quantum wave equations are hyperbolic, the interacting propaga-
tor is simply an inverse of the second derivative of the effective average action, or,
more precisely, a fundamental solution for the quantumwave operator. Therefore,
the RG flow equations are actually a system of equations: the scale derivative of the
effective average action is given in terms of the interacting propagator, and in turn
the interacting propagator must be a fundamental solution of the quantum wave
equations.

The second difference is the UV regularisation. Since we choose to work with
a mass-like regulator, the flow equations depend on the coincidence limit of the
interacting propagator. Nevertheless, the RG flow equations are finite, because the
regulator term is normal-ordered. In fact, the r.h.s. of the RG flow equations is the
Bogoliubovmap applied to the coincidence limit of a time-ordered quantity, which
provides a finite result.

Therefore, the RG flow equations (5.6) are finite, and they compute the renor-
malization flow of the effective average action. However, they are not closed, since
the interacting propagator is not uniquely fixed by the effective average action, but
it is a propagator among the infinite family of inverses of the QEOM.

We solve this issue in Section 5.2.
The RG flow equations are not closed for two reasons: the first is the ambiguity

in the choice of the inverse 𝐺𝑘; the second is the definition of the counterterms
�̃�𝐹 only in perturbation theory. In the next Section we solve both issues, applying
perturbation theory not on the construction of the Bogoliubov map, and therefore
to the solution of the classical equations of motion, but rather to the construction
of the interacting propagator as a fundamental solution of the QEOM.

We first rewrite Γ𝑘 as the sum of the quadratic, classical action and quantum
corrections, whichwe encode in the effective potential. The effective potential arises
from the re-summation of all Feynman diagrams in perturbation theory, and there-
fore can contain any number of derivatives and non-local terms. Moreover, it is
defined non-perturbatively in the coupling constant. The decomposition allows
to rewrite the interacting propagator from the free propagator and the effective
potential. The freedom in the choice of the interacting propagator is fixed by the
requirement that, in the limit of vanishing interactions, it reduces to the propagator
for the free theory.

We thus re-write 𝐺𝑘 as a Neumann series in the quantum corrections to the
effective average action. Since these corrections come from summing over all Feyn-
man diagrams, the interacting propagator retains its non-perturbative nature in
the coupling constant. The ambiguity in the choice of 𝐺𝑘 is fixed by the require-
ment that, in the free and unregularised limits 𝑉 → 0 and 𝑘 → 0, the interacting
propagator must coincide with the free Feynman propagator. The choice of a ref-
erence state for the free theory thus uniquely fixes the interacting propagator as a
function of the effective average action.

In a similar way, regarding the QEOM as perturbative wave equations, the
counterterms �̃�𝐹 admit a perturbative construction in terms of the free Hadamard
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parametrix. In particular, we will find a closed expression for the counterterm �̃�𝐹

as a power series defined from the effective average action itself.
Thus, the only information coming from the bare theory is the smooth part

of Δ+, the two-point function for a state that must be chosen a priori. Such state
dependence seems unavoidable, since a Green hyperbolic operator has an infinite
family of inverses.

5 .2 rg flow for the effective potential

In this Section we write the inverse 𝐺𝑘 explicitly in terms of the effective average
action and the free Feynman propagator Δ𝐹 .

We start with some general considerations on the connection between the free
and the quantum wave operators in terms of the Møller operators, introduced in
Section 2.9. First of all, the DSE (4.29) suggests to decompose the effective average
action into

Γ𝑘 (𝜙) := 𝐼0(𝜙) +𝑈𝑘 (𝜙) , (5.7)

where 𝑃0 is the Green hyperbolic operator defined by the free action, while the
effective potential𝑈𝑘 (𝜙) is defined by relation

𝑈
(1)
𝑘

(𝑥) := ⟨𝑉 (1) (𝑥)⟩ . (5.8)

The effective potential includes all quantum corrections to the interaction 𝑉 , and
it can be seen as a non-perturbative definition for the sum of perturbative Feyn-
man diagrams. In its perturbative expansion, the effective potential contains non-
localities and possibly higher-derivative terms.

In terms of the effective potential, in operator notation the interacting propa-
gator is defined by equation

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)𝐺𝑘 = −1 . (5.9)

In the following, we will assume that, despite quantum corrections, the quan-
tum wave operator 𝑃0 − 𝑞𝑘 + 𝑈 (2)

𝑘
remains Green hyperbolic; that is, it admits

advanced and retarded propagators such that

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)Δ𝑈𝐴,𝑅 (𝑓 ) = 𝑓 , and suppΔ𝑈𝐴,𝑅 (𝑓 ) ⊂ 𝐽±(supp 𝑓 ) , (5.10)

where the future light-cone corresponds to the retarded propagator Δ𝑅.
Thanks to this assumption, the advanced and retarded propagators Δ𝑈

𝐴,𝑅
have

an expression in terms of the propagators Δ𝐴,𝑅 of the free theory, through the clas-
sical Møller operators.

5 .2 . 1 Møller operators

There is a standard procedure to intertwine the free and the quantum wave opera-
tors (𝑃0 − 𝑞𝑘) and 𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘
. Consider the operator (1 − Δ𝑈

𝐴
𝑈

(2)
𝑘

) applied to
any function 𝑓 ; we have

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

) (1 − Δ𝑈𝐴𝑈
(2)
𝑘

)𝑓 = (𝑃0 − 𝑞𝑘)𝑓 , (5.11)

with a similar relation for the operator 𝑟𝑅
𝑈

:= 1 − 𝑈 (2)
𝑘

Δ𝑈
𝑅
. It follows that the op-

erators (1 − Δ𝑈
𝐴,𝑅
𝑈

(2)
𝑘

) intertwine between the free and quantum wave operators.
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The operators (1 − Δ𝑈
𝐴,𝑅
𝑈

(2)
𝑘

) are the Møller operators 𝑟𝑈 that we introduced in
Section 2.9, for the potential𝑈𝑘.

We can now rewrite the Møller operators in terms of the propagators for the
free theory and the effective potential. We start from the defining property of Δ𝑈

𝐴,𝑅
,

that they are fundamental solutions of the QEOM:

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)Δ𝑈𝐴,𝑅 = 1 .

It follows that
(𝑃0 − 𝑞𝑘) (1 + Δ𝑅,𝑘𝑈

(2)
𝑘

)Δ𝑈𝐴,𝑅 = 1 , (5.12)

and so the following recursive formula for Δ𝑈
𝐴,𝑅

holds

Δ𝑈𝐴,𝑅 = Δ𝐴,𝑅,𝑘 (1 −𝑈 (2)
𝑘

Δ𝑈𝐴,𝑅) . (5.13)

Δ𝑅,𝑘 is the retarded propagator associated with 𝑃0 − 𝑞𝑘, which is normally hyper-
bolic because 𝑞𝑘 does not change the principal symbol of 𝑃0.

Acting with (1 + Δ𝑅,𝑘𝑈
(2)
𝑘

)−1Δ𝑅,𝑘 from the left in Eq. (5.12) gives

Δ𝑈𝐴,𝑅 = (1 + Δ𝑅,𝑘𝑈
(2)
𝑘

)−1Δ𝑅,𝑘 . (5.14)

From this expression, we can rewrite theMøller operators using the Neumann
series for the operator inverse, so that

1 − Δ𝑈𝐴𝑈
(2)
𝑘

= 1 −
∑︁
𝑛=0

(−Δ𝑅,𝑘𝑈 (2)
𝑘

)𝑛Δ𝑅,𝑘𝑈 (2)
𝑘

= 1 −
∑︁
𝑛=1

(−Δ𝑅,𝑘𝑈 (2)
𝑘

)𝑛

=
∑︁
𝑛=0

(−Δ𝑅,𝑘𝑈 (2)
𝑘

)𝑛 = (1 + Δ𝑅,𝑘𝑈
(2)
𝑘

)−1 . (5.15)

It is possible to derive a similar expression for the Feynman propagator. Recall
that, by definition,Δ𝐹,𝑘 = Δ+,𝑘+𝑖Δ𝐴,𝑘, whereΔ+,𝑘 is aHadamard bisolution of 𝑃0−𝑞𝑘
and Δ𝐴,𝑘 is the advanced propagator, so that (𝑃0 − 𝑞𝑘)Δ𝐹,𝑘 = 𝑖. Now, starting from
the observation

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)Δ𝑈𝐹 = 𝑖 ,

it follows
(𝑃0 − 𝑞𝑘) (1 − 𝑖Δ𝐹,𝑘𝑈 (2)

𝑘
)Δ𝑈𝐹 = 𝑖 ,

and so
Δ𝑈𝐹 = (1 − 𝑖Δ𝐹,𝑘𝑈 (2)

𝑘
)−1Δ𝐹,𝑘 . (5.16)

Clearly, the above formulas hold only if the operators (1 +Δ𝐴,𝑅𝑈 (2)
𝑘

) and (1 −
𝑖Δ𝐹,𝑘𝑈

(2)
𝑘

) admit an inverse. In the important examples of the No-Derivative and
Local Potential Approximations, that we discuss later in Chapter 6 and in Chapter
8, this holds true and the inverse admits an exact expression thanks to the princi-
ple of perturbative agreement [95]. In general, the interacting propagator Δ𝑈

𝑅
and

the inverse (1 + Δ𝑅,𝑘𝑈
(2)
𝑘

)−1 have a definition only as a formal power series in the
space of operators, with a formal parameter implicitly defined in 𝑈 (2)

𝑘
. This pa-

rameter can be the coupling constant or ℏ, but also a formal coupling, counting,
for example, the number of derivatives; in this case, the perturbative construction
of (1 + Δ𝐴,𝑅𝑈

(2)
𝑘

)−1 corresponds to a Derivative Expansion (DE), one of the most
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used approximations in the fRG. This is how perturbation theory in𝑈𝑘 retains the
non-perturbative structure of the RG flow.

The definition of Δ𝑈
𝐹
in Eq. (5.16) is a perturbative construction of the Feynman

propagator for the wave operator 𝑃0 − 𝑞𝑘 + 𝑈 (2)
𝑘

, in terms of the Feynman prop-
agator of 𝑃0 − 𝑞𝑘. However, the usual definition of the Feynman propagator is in
terms of the 2-point function and of the advanced propagator, and should read

Δ̃𝐹,𝑈 = Δ+,𝑈 + 𝑖Δ𝐴,𝑈 .
In the following Lemma, we prove that the two definitions coincide in the case of
mass perturbations.

Lemma 5.2. Consider the two wave operators 𝑃0 and 𝑃0 − 𝑀 (2) , where 𝑀 (2) is a
mass perturbation that does not contain derivatives. Then we have

(1 + 𝑖Δ𝐹𝑀)−1Δ𝐹 = Δ+,𝑀 + 𝑖Δ𝐴,𝑀 .

Proof. According to Lemma 3.1 and Proposition 3.11 in Ref. [95], and Definition 2.19
of the Møller operators, we have

Δ+,𝑀 = 𝑟𝑀 ◦ Δ+ ◦ 𝑟∗𝑀 , (5.17)

where 𝑟𝑀 is the Møller operator,

𝑟𝑀 = (1 − Δ𝑅,𝑀𝑀) ,
and Δ𝑅,𝑀 is the unique retarded propagator of 𝑃0 − 𝑀 (2) .

Now, recalling that Δ𝐹 = Δ+ + 𝑖Δ𝐴, it holds that

Δ𝐹,𝑀 =
∑︁
𝑛≥0

(Δ+ + 𝑖Δ𝐴) [−𝑖𝑀 (Δ+ + 𝑖Δ𝐴)]𝑛 . (5.18)

According to Lemma 3.10 in Ref. [95], we have that

Δ𝐴,𝑀 = Δ𝐴
∑︁
𝑛≥0

(𝑀Δ𝐴)𝑛 = Δ𝐴(1 + 𝑀Δ𝐴,𝑀) = Δ𝐴𝑟
∗
𝑀 .

Rearranging the sum, Eq. (5.18) becomes

Δ𝐹,𝑀 = 𝑖Δ𝐴,𝑀 + [1 + Δ𝐴,𝑀𝑀]Δ+,𝑀𝑟
∗
𝑄𝑘

+
∑︁
𝑛≥1

p(Δ+,𝑀𝑟
∗
𝑀) (−𝑀Δ+𝑟

∗
𝑀)

𝑛

= 𝑖Δ𝐴,𝑀 + 𝑟𝑀Δ+𝑟
∗
𝑀 − Δ𝑀𝑀Δ+𝑟

∗
𝑀 +

∑︁
𝑛≥1

p(Δ+𝑟
∗
𝑀) (−𝑀Δ+𝑟

∗
𝑀)

𝑛 ,

where p = (1 + Δ𝐴,𝑀𝑀) = (1 + Δ𝑅,𝑀𝑀 − Δ𝑀𝑀) = 𝑟𝑀 − Δ𝑀𝑀. Notice that

−Δ𝑀𝑀Δ+ = Δ𝑀 ((𝑃0 − 𝑀 (2) ) − 𝑃0)Δ+ = 0 ,

where in the last stepweused the fact thatΔ𝑀 is aweak solution of 𝑃0−𝑀 (2) in both
entries, andΔ+ is aweak solution of 𝑃0. Similarly, for every 𝑛 ≥ 2, (Δ+𝑟∗𝑀) (𝑀Δ+𝑟∗𝑀)

𝑛−1 =

0 because Δ+𝑟∗𝑀 (𝑃0 − 𝑀 (2) ) = 0. Finally, we have that

Δ𝐹,𝑀 = 𝑖Δ𝐴𝑟
∗
𝑀 + 𝑟𝑀Δ+𝑟

∗
𝑀 . (5.19)

Thanks to theMøller operators, we can write solutions and propagators of the
quantum wave operator 𝑃0 − 𝑞𝑘 + 𝑈 (2)

𝑘
in terms of the solutions and propagators

of the free theory and of the effective potential𝑈 (2)
𝑘

.
In what follows, we want to compute the regularised, interacting propagator

: 𝐺𝑘 :�̃�𝐹 in terms of the propagators of the free theory and the effective potential
𝑈𝑘, in order to write the RG flow equations as a closed differential equation for𝑈𝑘.
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5 .2 .2 Regularised propagator and RG flow of the effective potential

Recall that the regularised propagator : 𝐺𝑘 :�̃�𝐹 is a solution for the quantum wave
operator (Γ(2)

𝑘
− 𝑞𝑘) : 𝐺𝑘 :�̃�𝐹= 0 up to known smooth terms. Furthermore, denot-

ing by  ⊂  the support of 𝑉 and of 𝑞𝑘, which is a compact set because of the
cut-off functions used in their construction, it holds by causality that

−𝑖 : 𝐺𝑘 (𝑥, 𝑦) := Δ𝐹 (𝑥, 𝑦) − 𝐻𝐹 (𝑥, 𝑦) = 𝑤(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈  \ 𝐽+().

To prove this result, we use the next Lemma.

Lemma 5.3. The interacting propagator in the limit of vanishing interactions, 𝑉 =

0, and vanishing regulator, 𝑘 = 0, 𝐺 (0)
0 := lim𝑘→0 lim𝑉→0 𝐺𝑘 corresponds to the

Feynman propagator for the free theory, with free wave operator 𝑃0:

−𝑖𝐺 (0)
0 = Δ𝐹 .

Proof. The proof works by computing the free, unregularised propagator 𝐺 (0)
0

from its definition in terms of the Bogoliubov map applied to 𝜑(𝑥) ·𝑇 𝜑( 𝑦):

−𝑖ℏ𝐺𝑘 (𝑥, 𝑦) = −𝑖ℏ 𝑊 (2)
𝑘

(𝑥, 𝑦)
����
𝑗𝜙

= ⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩ − 𝜙(𝑥)𝜙( 𝑦) .

It follows that, in the limit 𝑘 → 0 and with vanishing interactions, the normal-
ordered interacting propagator is given by the expression

−𝑖ℏ : 𝐺 (0)
0 : (𝑥, 𝑦) = ⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩𝑘=0

𝑉=0
− 𝜙(𝑥) 𝑘=0

𝑉=0
𝜙( 𝑦) 𝑘=0

𝑉=0
− 𝐻𝐹 (𝑥, 𝑦) . (5.20)

We can now explicitly compute themean value in the last expression. By definition,
the mean value is

⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩𝑘=0
𝑉=0

=
1

𝑍𝑉=0
𝜔(𝑆( 𝐽𝜙) ·𝑇 𝜑(𝑥) ·𝑇 𝜑( 𝑦)) ,

where 𝑍𝑉=0 = 𝜔(𝑆( 𝐽𝜙)), and we recall that 𝑍 := 𝑍𝑘=0. Using Eq. (2.51), the time-
ordered product with 𝑆( 𝐽) at the numerator produces a shift in the fields times a
phase, which cancels out with the denominator. It follows that

⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩𝑘=0
𝑉=0

= 𝜔((𝜑 + 𝑖Δ𝐹 𝑗) ·𝑇 (𝜑 + 𝑖Δ𝐹 𝑗)) .

Moreover, the DSE (4.29) in the 𝑘 = 0 and 𝑉 = 0 limits reduces to

𝛿Γ

𝛿𝜙

����
𝑉=0

=
𝛿 𝐼0

𝛿𝜙
= 𝑃0𝜙 ,

where again Γ = Γ𝑘=0, while the QEOM (4.25) gives −𝑗𝜙 = 𝛿Γ
𝛿𝜙

���
𝑉=0

. The source term
𝑗𝜙 thus depends on 𝜙 through the free equations of motion, 𝑗𝜙 = −𝑃0𝜙, and so the
mean value simplifies into

⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩𝑘=0
𝑉=0

= 𝜔 ((𝜑 − 𝜙) (𝑥) ·𝑇 (𝜑 − 𝜙) ( 𝑦)) (5.21)

= 𝜔(𝜑(𝑥)𝜑( 𝑦)) + ℏΔ𝐹
+ 𝜙(𝑥)𝜙( 𝑦) − 𝜔(𝜑(𝑥))𝜙( 𝑦) − 𝜔(𝜑( 𝑦))𝜙(𝑥) .
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However, we have, again by definition,

𝜙𝑘=0
𝑉=0

=
1
𝑍𝑘
𝜔

(
𝑆( 𝐽𝜙) ·𝑇 𝜑(𝑥)

)
.

Reasoning as before results in

𝜙𝑘=0
𝑉=0

=
1
𝑍𝑘
𝜔

(
𝑆( 𝐽𝜙) ·𝑇 𝜑(𝑥)

)
= 𝜔(𝜑) − 𝜙𝑘=0

𝑉=0
.

Therefore, in the presence of sources, the mean field 𝜙 and the one-point function
are proportional to each other:

𝜙𝑘=0
𝑉=0

=
1
2
𝜔(𝜑) . (5.22)

Equations (5.20), (5.21), and (5.22) imply that the propagator 𝐺 (0)
0 is proportional to

the free Feynman propagator

−𝑖 : 𝐺 (0)
0 := Δ𝐹 (𝑥, 𝑦) − 𝐻𝐹,𝑘 .

Notice that the ℏ factor cancels out with the one coming from the 𝑇−product in
Eq. (5.21).

The normal-ordered free propagator : 𝐺 (0)
𝑘

:= lim𝑉→0 : 𝐺𝑘 : can now be
computed from 𝐺

(0)
0 using the Møller operators. Since we know that 𝐺 (0)

𝑘
is a

fundamental solution of Eq. (5.9) for vanishing𝑈𝑘, it follows that −𝑖�̃�𝐹 reduces to
𝐻𝐹 in the free, unregularised limit. Therefore, using theMøller operators 1−Δ𝑅,𝑘𝑞𝑘
and 1 − 𝑞𝑘Δ𝐴,𝑘 intertwining between 𝑃0 and 𝑃0 − 𝑞𝑘, we get

−𝑖 : 𝐺 (0)
𝑘

:= (1 − Δ𝑅,𝑘𝑞𝑘) (Δ𝐹 − 𝐻𝐹) (1 − 𝑞𝑘Δ𝐴,𝑘) = Δ𝐹,𝑘 − 𝐻𝐹,𝑘 .

Reasoning in the same way for the normal-ordered interacting propagator : 𝐺𝑘 :,
intertwining between 𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘
and 𝑃0 − 𝑞𝑘, we get

− 𝑖 : 𝐺𝑘 :�̃�𝐹= (1 − Δ𝑈𝑅𝑈
(2)
𝑘

) (Δ𝐹,𝑘 − 𝐻𝐹,𝑘) (1 −𝑈 (2)
𝑘

Δ𝑈𝐴)

=
∑︁

𝑛=0,𝑚=0
(−Δ𝑅,𝑘𝑈 (2)

𝑘
)𝑛(Δ𝐹,𝑘 − 𝐻𝐹,𝑘) (−𝑈 (2)

𝑘
Δ𝐴,𝑘)𝑚 , (5.23)

where with the subscript 𝑘 we denote the propagators for the operator 𝑃0 − 𝑞𝑘.
Therefore, thanks to the last equation, we conclude that the RG flow equation

can be rewritten as a differential equation for the effective potential𝑈𝑘

𝜕𝑘𝑈𝑘 =

= −ℏ
2

∫
𝑥,𝑦,𝑧

Tr
{
𝜕𝑘𝑞𝑘 (1 − Δ𝑅,𝑘𝑈

(2)
𝑘

)−1(Δ𝐹,𝑘 − 𝐻𝐹,𝑘) (1 −𝑈 (2)
𝑘

Δ𝐴,𝑘)−1
}
, (5.24)

The last equation can bewritten in twomore, equivalentways. First, expanding
the Møller operators in their perturbative series gives

𝜕𝑘𝑈𝑘 = −ℏ
2

∫
𝑥

Tr

{
𝜕𝑘𝑞𝑘

∑︁
𝑛=0,𝑚=0

(−Δ𝑅,𝑘𝑈 (2)
𝑘

)𝑛(Δ𝐹,𝑘 − 𝐻𝐹,𝑘) (−𝑈 (2)
𝑘

Δ𝐴,𝑘)𝑚
}
. (5.25)
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The last equation can also be written with the representation of the Møller
operators with the Feynman propagator only, as

𝜕𝑘𝑈𝑘 = −ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr 𝜕𝑘𝑞𝑘

[∑︁
𝑛≥0

(𝑖Δ𝐹,𝑘𝑈 (2)
𝑘

)𝑛(Δ𝐹,𝑘 − 𝐻𝐹,𝑘)
]
. (5.26)

As anticipated, the RG flow equation is a closed partial differential equation for
the effective potential 𝑈𝑘. To solve the RG flow equations, we need a set of initial
data: the regulator term, an initial value𝑈𝑘=Λ, and a choice of a reference state for
the free theory, with respect to the operator 𝑃0.

Notice, however, that at least in some applications there is no need to specify a
bare free action from the outset. In fact, most applications of the fRG start with an
ansatz for the effective average action Γ𝑘 as some expression in terms of the fields
𝜙 and their derivatives. Starting from the ansatz, the quadratic part of the limit
𝑘 → ∞ provides the operator 𝑃0. In other words, choosing an ansatz for Γ𝑘 or a
free wave operator 𝑃0 are both ways to fix the starting point of the flow at 𝑘 → ∞.

Although the r.h.s. of Eq. (5.24) can be regarded as a series in 𝑈 (2)
𝑘

, it retains
the non-perturbative nature of the RG flow equation for two reasons: first, such
Dyson-type series can in some cases be summed to their exact result, e.g. in the
case of a local potential.

Moreover,𝑈𝑘 is itself defined non-perturbatively from the interaction, via the
relation (5.8). As it is possible to expand ⟨𝑉 (1)⟩ perturbatively, writing the Møller
operators in terms of Feynmandiagrams, it is aswell possible to choose non-perturbative
expansions for 𝑈𝑘, such as the derivative or the vertex expansion, keeping non-
perturbative information on the interaction.

Remark 5.1. It is possible to rewrite the RG flow for the effective potential (5.24)
in an equivalent way, constructing the interacting propagator 𝐺𝑘 from the Møller
operators intertwining 𝑃0 and 𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘
= 𝑃0 + �̃� (2)

𝑘
, where �̃�𝑘 is defined by

�̃�
(1)
𝑘

(𝑥) = ⟨𝑉 (1) (𝑥) + 𝑄 (1)
𝑘

(𝑥)⟩ = 𝑈 (1)
𝑘

(𝑥) + ⟨𝑄 (1)
𝑘

(𝑥)⟩ , (5.27)

as

𝜕𝑘�̃�𝑘 =

= −ℏ
2

∫
𝑥,𝑦,𝑧

Tr
{
𝜕𝑘𝑞𝑘 (1 + Δ𝑅�̃�

(2)
𝑘

)−1(Δ+ − 𝐻) (1 − �̃� (2)
𝑘

Δ𝐴)−1
}
. (5.28)

This expression will be the starting point for the proof of existence of solutions in
Chapter 6. ■

5 .2 .3 Hadamard regularisation

In the last Section, we derived the RG flow equations for the effective potential as
closed equations in terms of the free reference state. Equation (5.24) is on of the
main results of this thesis and it will provide the starting point for applications to
concrete physical models. We will also prove that, in the important No Derivative
Approximation, Eq. (5.24) always admits local solutions.

We nowwant to clarify some points in the derivation of Eq. (5.24). The equation
heavily relies on the use of Møller operators intertwining between partial differ-
ential operators, to derive the interacting propagator 𝐺𝑘 and its normal-ordering
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: 𝐺𝑘 :. However, the counterterms �̃�𝐹 were never explicitly defined from the quan-
tumwave operator; instead, we gave explicit expressions only for the combination
: 𝐺𝑘 :�̃�𝐹= 𝐺𝑘 − �̃�𝐹 . The main reason is that, while the combination : 𝐺𝑘 :�̃�𝐹 is un-
ambiguous, it can be defined by different subtractions schemes, as we will discuss
later. We then provide two different normal-ordering prescriptions to define �̃�𝐹 .

Moreover, the objects : 𝐺𝑘 :�̃�𝐹 and �̃�𝐹 were first defined via the Bogoliubov
map from interacting observables in the quantum algebra. In this Section, we pro-
vide the connection between their definitions using theMøller operators and their
perturbative expansion in Feynman diagrams.

We solve the issue on the definition of �̃�𝐹 by providing a Hadamard-type sub-
traction for the quantum wave operator 𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘
and its inverse.

In the derivation of the RG flow equation, we implicitly defined the countert-
erms �̃�𝐹 (𝑥, 𝑦) by the relation

⟨ lim
𝑦→𝑥

𝜑(𝑥) ·𝑇 𝜑( 𝑦) − 𝐻𝐹 (𝑥, 𝑦)⟩ = lim
𝑦→𝑥

⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩ − 𝑖ℏ�̃�𝐹 (𝑥, 𝑦) . (5.29)

In fact, in the coincidence limit ⟨𝜑(𝑥) ·𝑇 𝜑( 𝑦)⟩ diverges more badly than 𝜑(𝑥) ·𝑇
𝜑( 𝑦), due to the loop diagrams coming from the Bogoliubov map in the mean
value. On formal terms, the two limits have different singular parts because one is
exchanging the limit with the convolutions in the expectation value, and the two
operations in general do not commute.

In this Section, we provide a practical tool to compute �̃�𝐹 . From the double
series in Eq. (5.23) we have

−𝑖 : 𝐺𝑘 :�̃�𝐹= (1 − Δ𝑈𝑅𝑈
(2)
𝑘

) (Δ𝐹 − 𝐻𝐹) (1 −𝑈 (2)
𝑘

Δ𝑈𝐴) . (5.30)

Since : 𝐺𝑘 :�̃�𝐹= 𝐺𝑘 − �̃�𝐹 , it is natural to identify

−𝑖𝐺𝑘 = (1 − Δ𝑈𝑅𝑈
(2)
𝑘

)Δ𝐹,𝑘 (1 −𝑈 (2)
𝑘

Δ𝑈𝐴) , and (5.31)

−𝑖�̃�𝐹 = (1 − Δ𝑈𝑅𝑈
(2)
𝑘

)𝐻𝐹,𝑘 (1 −𝑈 (2)
𝑘

Δ𝑈𝐴) . (5.32)

We already showed that𝐺𝑘 is the Feynman propagator for the quantumwave oper-
ator. In the sameway, �̃�𝐹 is a Feynman-Hadamard parametrix, that is, a propagator
of the QEOM up to smooth terms,

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

) �̃�𝐹 = 𝑖𝛿 + _ .

Remark 5.2. Using the fact that theMøller operators applied to the Feynmanprop-
agator can be written in terms of the Feynman propagator only, we have a more
compact expression for 𝐺𝑘, equivalent to the above:

−𝑖𝐺𝑘 = (1 + 𝑖Δ𝑈𝐹𝑈
(2)
𝑘

)Δ𝐹,𝑘 =
∑︁
𝑛

(Δ𝐹,𝑘𝑈 (2)
𝑘

)𝑛Δ𝐹,𝑘 = (1 − 𝑖Δ𝐹,𝑘𝑈 (2)
𝑘

)−1Δ𝐹,𝑘 . (5.33)

However, the expression of 𝐺𝑘 as a double series (5.31) has better convergence
properties, especially in curved spacetimes, than the expression with the Feynman
propagator. For this reason, in the following we prefer this formula, in particular
when we need to prove important results on the convergence of the series. ■

There is an equivalent way to write the regularised : 𝐺𝑘 :. Since we have the
equivalence Δ+ − 𝐻 = Δ𝐹 − 𝐻𝐹 , from the first of these two expressions, we get

−𝑖 : 𝐺𝑘 :�̃�𝐹 (1 − Δ𝑈𝑅𝑈
(2)
𝑘

) (Δ+,𝑘 − 𝐻𝑘) (1 −𝑈 (2)
𝑘

Δ𝐴) , (5.34)
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where Δ+,𝑘 is a two-point function for 𝑃0 − 𝑞𝑘. This leads to

−𝑖𝐺+
𝑘 = (1 − Δ𝑈𝑅𝑈

(2)
𝑘

)Δ+,𝑘 (1 − Δ𝑈𝐴𝑈
(2)
𝑘

) , and (5.35)

−𝑖�̃�𝑘 = (1 − Δ𝑈𝑅𝑈
(2)
𝑘

)𝐻𝑘 (1 −𝑈 (2)
𝑘

Δ𝑈𝐴) . (5.36)

Since (𝑃0 − 𝑞𝑘)Δ+,𝑘 = 0, by the properties of the Møller operators we have

(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)𝐺+
𝑘 = (𝑃0 − 𝑞𝑘)Δ+,𝑘 = 0 ,

that is, 𝐺+
𝑘
is a solution of the QEOM, rather than a propagator, while �̃�𝑘 is a solu-

tion of the QEOM with smooth source, (𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

) �̃�𝑘 = _.
We therefore have two equivalent expressions for : 𝐺𝑘 :, Eq.(5.33) and Eq. (5.34),

analogous to the two equivalent expressions for𝑤 = Δ+−𝐻 = Δ𝐹−𝐻𝐹 . Notice that
the normal ordered : 𝐺𝑘 : appearing in the flow equations is unambiguous; only the
split in an unregularised term and counterterms introduces fictitious ambiguities
in the definition. For this reason, and in order to highlight that the normal-ordered
object is unique, we will write : 𝐺𝑘 : without specifying the normal-ordering pre-
scription, unless necessary.

The connection between : 𝐺𝑘 : and its expansion in Feynman diagrams is

: 𝐺𝑘 (𝑥, 𝑥) := ⟨𝑇𝜑2(𝑥)⟩ , (5.37)

as it comes from the expectation value of the mass term 𝑄𝑘. From the expres-
sion above, it seems slightly preferable to consider the unregularised propagator
𝐺𝑘 (𝑥, 𝑦) as the Feynman propagator for the interacting theory, rather than a solu-
tion𝐺+

𝑘
of the equations. However, when dealing with the regularised object enter-

ing physical quantities, both choices are valid.
As a sanity check, we can explicitly see that 𝐺𝐹

𝑘
is actually proportional to the

inverse of the quantum wave operator. In fact, the Møller operators appearing in
the RG flow are equivalent to [95]

− 𝑖𝐺𝐹
𝑘 = (1 + Δ𝑅,𝑘𝑈

(2)
𝑘

)−1Δ𝐹,𝑘 (1 +𝑈 (2)
𝑘

Δ𝐴,𝑘)−1

= (1 − 𝑖Δ𝐹,𝑘𝑈 (2)
𝑘

)−1Δ𝐹,𝑘 . (5.38)

Now, we can formally write

(1 − 𝑖Δ𝐹,𝑘𝑈 (2)
𝑘

)−1 =

= −[𝑖Δ𝐹,𝑘 (𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)]−1

= −(𝑃0 − 𝑞𝑘 +𝑈 (2)
𝑘

)−1(𝑃0 − 𝑞𝑘) .

From the above expressions, the double series for 𝐺𝑘 in Eq. (5.31) can be written as

−𝑖𝐺𝐹
𝑘 = (1 − 𝑖Δ𝐹,𝑘𝑈 (2)

𝑘
)−1Δ𝐹,𝑘 = −𝑖(𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘
)−1 . (5.39)

Since Γ(2)
𝑘

− 𝑞𝑘 = 𝑃0 − 𝑞𝑘 + 𝑈 (2)
𝑘

by definition, we see explicitly that −𝑖𝐺𝐹
𝑘
is the

Feynman propagator for the quantum wave operator.
Finally, notice that the RG flow can be written in a way more suggestive of

its Euclidean counterpart. First of all, since Γ𝑘 = 𝐼0(𝜙) + 𝑈𝑘, we can substitute in
the l.h.s the scale derivative of the effective average action, 𝜕𝑘Γ𝑘 = 𝜕𝑘𝑈𝑘. Now, the
inverse (𝑃0 + 𝑈 (2)

𝑘
)−1 is nothing but the inverse of the quantum wave operator,
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(𝑃0 +𝑈 (2)
𝑘

)−1 = (Γ(2)
𝑘

− 𝑞𝑘)−1; it follows that the RG flow equations can formally
be written as

𝜕𝑘Γ𝑘 = −ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr
[
𝜕𝑘𝑞𝑘 (Γ(2)𝑘

− 𝑞𝑘)−1(𝑃0 − 𝑞𝑘) (Δ+,𝑘 − 𝐻𝑘)
]
. (5.40)

This equation closely mimics the Wetterich equation in Euclidean spaces [217, 246],
with the important difference that the Feynman propagator for the free theory ap-
pears, providing an explicit state dependence. However, the equation above hides
the choice in the inverse (Γ(2)

𝑘
−𝑞𝑘)−1; from the discussion above, Eq. (5.40) must be

supplemented with the prescription that (Γ(2)
𝑘

− 𝑞𝑘)−1 is the Feynman propagator
for the interacting theory, which reduces to the Feynman propagator of the free
theory in the limit of vanishing mass and interactions.

Even if the regulator term 𝑞𝑘 is only a local IR cut-off, the flow is finite thanks
to the smoothing term (𝑃0 − 𝑞𝑘)Δ+,𝑘 − 𝐻𝑘. Recall that the smooth term Δ+,𝑘 − 𝐻𝑘

is a solution of 𝑃0 − 𝑞𝑘 only up to smooth terms, so the equations always provide
a non-trivial flow. The flow is non-trivial also for ground states, that usually have
𝑤 = 0, since the difference Δ+,𝑘 −𝐻𝑘 differs from the smooth part of the two-point
function 𝑤 by smooth terms. For example, in the case ofMinkowski vacuum, while
𝑤 = 0, Δ+,𝑘 − 𝐻𝑘 is proportional to a logarithm of the mass term.



6 RG flow and the Nash-Moser theorem

This Chapter discusses a proof of the existence of local solutions of the RG flow,
in a particular approximation and for scalar field theories, on globally hyperbolic
spacetimes and without assuming analyticity of the effective potential.

In order to provide the estimates required to prove the theorem, it is best to
formulate th RG flow in terms of �̃�𝑘, given in Equation (5.28). The definition of �̃�𝑘
is recalled here,

�̃�
(1)
𝑘

(𝑥) = ⟨𝑉 (1) (𝑥) + 𝑄 (1)
𝑘

(𝑥)⟩ = 𝑈 (1)
𝑘

(𝑥) + ⟨𝑄 (1)
𝑘

(𝑥)⟩ .
In this Chapter, we will call �̃�𝑘 the effective potential. Since we never refer to𝑈𝑘 in
this Chapter, no confusion should arise.

Having derived the RGflow equations, Eq. (5.6), we are now interested in study-
ing its solutions, provided by the effective average action Γ𝑘.

However, according to the RG philosophy, every possible interaction term is
admitted in principle in the effective average action. The fRG flow reflects this
behaviour in its mathematical structure; due to the appearance of the inverse of the
second derivative of Γ𝑘 on the r.h.s of Eq. (5.6), independently from the initial data
for Γ𝑘, the flow will always produce additional interaction terms in the effective
average action. A way of seeing it is to expand the inverse as a Neumann power
series. A similar problem appears in the study of semi-classical gravity [186–188],
where the back-reaction generates higher derivative terms. Only the truncation of
Γ𝑘 in a polynomial expression allows for the generation of finite terms.

Mathematically, the problem of the generation of every possible term along the
flow is connected with the problem of loss of derivatives: intuitively, since the r.h.s
of the RG flow (5.6) depends on the inverse of the second derivative of the effective
average action, a Green operator (a fundamental solution) for the RG equation will
also depend on the second derivative Γ(2)

𝑘
. It follows that, if the RG equation is an

operator acting on some space of 𝐶𝑛 functions of the fields, its solutions will gen-
erally be only 𝐶𝑛−2−regular, losing two derivatives. Due to the loss of derivatives,
standard iterative procedures to produce solutions in suitable Banach spaces fail
to converge.

As we will see in Chapter 8 on concrete applications of the fRG, a very simple
approximation to solve the RG equations (5.24) consists in a truncation of the ef-
fective potential in a finite sum of polynomials of the fields, 𝑈 𝑡

𝑘
=

∑𝑛
𝑗 _ 𝑗,𝑘𝜙

𝑗, that
reduces the functional RG equations (5.24) in a system of coupled differential equa-
tions for the dimensionless couplings, the beta-functions. Despite its simplicity,
even in this setting the flow is non-trivial, and contains non-perturbative effects,
as can be seen e.g. from the non-polynomial dependence of the beta-functions on
the couplings in the last sections, equations (8.19), (8.22), and (8.32).

104



rg flow and the nash-moser theorem 105

However, the 𝛽−functions describe only approximate solutions, that neglect
higher-order polynomial terms, due to the truncation. Furthermore, little control
on the quality of the approximation scheme, compared to the full theory space, is
possible.

A step forward in this approximation would be an expansion of the effective
potential in a series of field polynomials, 𝑈 𝑡

𝑘
=

∑∞
𝑗 _ 𝑗,𝑘𝜙

𝑗, which would produce
an infinite system of coupled differential equations. Systems of this kind have been
recently studied in the context of semi-classical gravity [138], and it would be inter-
esting to investigate a similar approach for the RG flow.

A more sophisticated approximation consists in considering the effective po-
tential an unknown function of some variable, and solving the RG flow as a partial
differential equation for this function. An example is the 𝑓 (𝑅) approximation in
quantum gravity, where the effective average action is assumed to be a function of
the Ricci scalar 𝑅 [193].

Almost the entirety of the fRG literature presents scheme-dependent results
on a case-by-case basis. While the literature on the fRG is by now comprehensive
of a large number of applications (see e.g. Ref. [102] for a recent review), the mathe-
matical results on the fRG flows based on the Wetterich equation are more sparse.
Themain prejudice on the quality of fRG results comes from the lack of control on
the truncation scheme. Precisely because the fRG is a non-perturbative approach,
its approximation schemes do not allow to quantitatively estimate the error in the
truncation on general grounds. The quality of the results obtained from the fRG
have been verified only on a case-by-case basis.

In this Chapter, we take a step further in clarifying the mathematical structure
of the RG flow equations, and we prove that, assuming that there are no deriva-
tives of the fields in �̃�𝑘, with a possibly non-polynomial effective potential �̃�𝑘, the
equations admit local solutions. This is a first step in establishing mathematically
rigorous results on the RG flow derived from the fRG, without reference to par-
ticular applications. From the analysis of the local solutions, it will be possible to
deduce if such solutions can be extended to global ones, if they have non-trivial
fixed points, and their stability.

In order to prove the existence of local solutions for the RG flow (5.24), we need
to choose an appropriate approximation. Inspired by Euclidean fRG approaches,
as a first step towards more general results we choose to approximate �̃�𝑘 with
the No Derivative Approximation (NDA), as a local function of the field 𝜙 with no
derivatives, given in Eq. (6.3),

�̃�𝑘 (𝜙) =
∫

𝑢(𝜙(𝑥), 𝑘)𝑓 (𝑥)d`𝑥 , �̃�

(2)
𝑘

(𝜙) (𝑥, 𝑦) = 𝜕2
𝜙
𝑢(𝜙, 𝑘)𝑓 (𝑥)𝛿 (𝑥, 𝑦) ,

where 𝑓 is a compactly supported smooth function which is equal to 1 on large
regions of the studied spacetime. We further assume that the field 𝜙 is constant
over the whole space, so that 𝜕2

𝜙
𝑢 is function of 𝑘 and 𝜙 only. However, notice that

�̃�𝑘 can be any smooth non-polynomial function of the field 𝜙.
Within this approximation, the r.h.s. of the RG flow equation can be written in

terms of the map given in Eq. (6.5), which we recall here

𝐺𝑘 (𝜕2
𝜙
𝑢) := − 1

2 |||𝑓 |||1

∫

𝜕𝑘𝑞𝑘 (𝑥)

{
(1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) ⊗ (1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) (𝑤) (𝑥, 𝑥)

}
d`𝑥 .

The RG flow equation reduces to an equation for 𝑢(𝜙, 𝑘). We are thus interested in
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studying the existence of solutions for the following problem,
𝜕𝑘𝑢 = 𝐺𝑘 (𝜕2

𝜙
𝑢) ,

𝑢(𝜙, 𝑎) = 𝜓 ,

𝑢|𝜕𝑋×[𝑎,𝑏] = 𝛽

(6.1)

where𝜓 and 𝛽 are known functionswhich characterise, respectively, the initial and
boundary conditions of the problem.

The NDA greatly simplifies the RG flow equation, which now is an equation
for 𝑢, as a function of 𝑘 and 𝜙. However, the NDA does not simplify the problem
of the loss of derivatives.

The main result of this Chapter is the proof of local existence of solutions of
this problem, which is given below in Theorem 6.14. The proof is an application of
the renown Nash-Moser Theorem.

Nash provided a beautiful theorem to prove local existence of solutions of non-
linear partial differential equations in spaces of smooth functions, which are par-
ticularly suited to deal with the problem of loss of derivatives [197]. The theory was
first developed in the context of isometric embeddings of Riemannian manifolds
by Nash, and then further generalised by Moser [195, 196]. Hamilton [144] provided
a particularly natural setting for the theorem in the space of tame Fréchet spaces.
We review Hamilton’s formulation of Nash-Moser theorem in Section 6.1.

6 . 1 hamilton’s formulation of the nash-moser theorem

In the formulation of Hamilton, the Nash-Moser theorem is given for elements in
a suitable tame Fréchet space. Mainly to fix notation, we recall here some basic
definitions and the statement Nash-Moser theorem.

Definition 6.1. A seminorm on a vector space 𝐹 is a function ∥·∥ : 𝐹 → R such
that,∀ 𝑓 , 𝑔 ∈ 𝐹 and∀𝑐 ∈ R, the following hold: (i) ∥𝑓 ∥ ≥ 0; (ii) ∥𝑓 + 𝑔∥ ≤ ∥𝑓 ∥+∥𝑔∥;
(iii) ∥𝑐𝑓 ∥ = |𝑐|∥𝑓 ∥. A collection of seminorms {∥·∥𝑛}𝑛∈N defines a unique topology
such that a sequence 𝑓𝑖 → 𝑓 ⇔ ∥𝑓𝑖 − 𝑓 ∥𝑛 → 0 ∀𝑛 ∈ N. A locally convex topological
vector space is a vector spacewith a topology arising froma collection of seminorms.
The topology is calledHausdorff if 𝑓 = 0 when ∥𝑓 ∥𝑛 = 0 ∀𝑛. The topology is called
metrizable if the family {∥·∥𝑛}𝑛 is countable, and the space 𝐹 is complete if every
Cauchy sequence converges. A Fréchet space is a complete Hausdorff metrizable
locally convex topological vector space, and a graded Fréchet space has a collection
of seminorms that are increasing in strength, so that ∥𝑓 ∥𝑛 ≤ ∥𝑓 ∥𝑛+1 ∀𝑛.
Definition 6.2. A graded space 𝐹 is tame if, given the space Σ(𝐵) of exponentially
decreasing sequences in some Banach space 𝐵, it is possible to find two linear maps
𝐿 : 𝐹 → Σ(𝐵), 𝑀 : Σ(𝐵) → 𝐹, such that 𝑀𝐿 : 𝐹 → 𝐹 is the identity

𝐹 →𝐿 Σ(𝐵) →𝑀 𝐹 . (6.2)

Consider two graded spaces 𝐹 and 𝐺, and a map 𝑃 :  ⊂ 𝐹 → 𝐺 from an
open subset of 𝐹 to𝐺. Themap 𝑃 is tame of degree 𝑟 and base 𝑏 if it is continuous
and satisfies

∥𝑃 (𝑓 )∥𝑛 ≤ 𝐶(1 + ∥𝑓 ∥𝑛+𝑟)
for all 𝑓 in the neighbourhood of each 𝑓0 ∈  , for all 𝑛 ≥ 𝑏, and with a constant 𝐶
that may depend on 𝑛.
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In this setting, Hamilton’s formulation of the classic Nash-Moser theorem on
the inverse function problem can be stated as follows.

Theorem6.1 (Nash-Moser theorem inHamilton’s formulation). Consider a smooth
tame map 𝑃 :  ⊂ 𝐹 → 𝐺 between two tame Fréchet spaces 𝐹 and 𝐺. Suppose that

i. the linear map 𝐷𝑃 (𝑢)𝑣 = 𝑓 obtained as the first functional derivative of 𝑃 has
unique inverse 𝐸(𝑢)𝑓 = 𝑣 ∀ 𝑢 ∈  and all 𝑓 ∈ 𝐺, and

ii. the inverse map 𝐸 :  × 𝐺 → 𝐹 is smooth tame.
Then 𝑃 is locally invertible and 𝑃−1 is a smooth tame map.

6 .2 no derivative expansion

We restrict our attention to theNoDerivative Expansion: in this approximation, the
effective potential is a local functional which does not contain derivatives of the
fields. Furthermore, we consider the case in which the classical field 𝜙 is constant
throughout spacetime.

More precisely, the No Derivative Expansion (NDA) assumes that the effective
potential and its second functional derivative are

�̃�𝑘 (𝜙) =
∫

𝑢(𝜙(𝑥), 𝑘)𝑓 (𝑥)d`𝑥 , �̃�

(2)
𝑘

(𝜙) (𝑥, 𝑦) = 𝜕2
𝜙
𝑢(𝜙(𝑥), 𝑘)𝑓 (𝑥)𝛿 (𝑥, 𝑦) ,

(6.3)
where 𝑓 ∈ 𝐶∞

0 () is an adiabatic cut-off (𝑓 ≥ 1 and 𝑓 = 1 on the relevant part of
the spacetime we are working with), which is inserted to keep the theory infrared
finite, and ∈  is a compact region in the space-time containing the support of
𝑓 .

The arbitrary function 𝑢(𝜙, 𝑘) and its second field derivative 𝜕2
𝜙
𝑢 thus deter-

mine the effective potential, and so the effective average action.
Notice that what we call here NDA slightly differs from the usual approxima-

tion found in the physics literature under the name ofLocal Potential Approximation.
In fact, it is standard practice to expand the effective potential around an arbitrary
background 𝜙 = �̄�+ �̂�, and then retaining in the effective potential only terms that
are quadratic in the fluctuation field �̂�. This greatly simplifies the structure of the
quantum wave operator, which in this way is approximated by an operator that
is linear in the fluctuation field. On the contrary, even though we assume that the
effective potential does not contain derivatives of the field, we are retaining its full
non-linear dependence on the field 𝜙, without expanding on a fixed background.

We further assume that the background spacetime  is ultra-static. This as-
sumption simplifies the explicit form of the retarded and advanced propagators for
the free theory Δ𝐴,𝑅 , and it allows for simple estimates of their norms. However,
these estimates can be easily generalised to static spacetimes, and are known to
holds in some special cases, such as de Sitter space.

Finally, in the simplest approximation, we choose the field 𝜙 to be a constant
throughout the spacetime, so that also 𝑢(𝜙, 𝑘) and 𝜕2

𝜙
𝑢(𝜙, 𝑘) are constants in space-

time.
In the limit where 𝑉 → 0, the effective potential reduces to 𝑄𝑘 and 𝑢 reduces

to −𝑞𝑘𝜙2/2. We shall take this into account in fixing the initial conditions for 𝑢.
Thanks to this approximation, the second derivative of the effective potential

�̃�
(2)
𝑘

appearing in the QEOM reduces to a perturbation of the free wave operator
𝑃0 with a smooth external potential that has compact support, and in the limit
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where 𝑓 → 1 on the potential reduces to a mass perturbation, that is, to a term
without derivatives. It follows that many techniques of the generalised principle of
perturbative agreement [95] become readily available.

In particular, it is known that the interacting advanced and retarded propa-
gators Δ𝑈

𝐴,𝑅
are given by the free propagators Δ𝐴,𝑅 associated to 𝑃0, with a mass

modified by the external potential. The recursive relations given in Eq. (5.13) per-
mit to analyse analytically how 𝐺𝑘 depends on 𝑢.

By the NDA, the RG flow equation (5.24) becomes a partial differential equa-
tion for 𝑢(𝜙, 𝑘). Thus, we are interested in studying the existence and uniqueness
of solutions of the problem associated with the RG flow equation (5.24), supple-
mentedwith suitable boundary conditions and a set of initial values explicitly given
in terms of the functions 𝜓 and 𝛽 as:

𝜕𝑘𝑢 = 𝐺𝑘 (𝜕2
𝜙
𝑢) ,

𝑢(𝜙, 𝑎) = 𝜓 ,

𝑢|𝜕𝑋×[𝑎,𝑏] = 𝛽 .

(6.4)

where the function 𝐺𝑘 is defined as

𝐺𝑘 (𝜕2
𝜙
𝑢) := − 1

2 |||𝑓 |||1

∫


d`𝑥𝜕𝑘𝑞𝑘 (𝑥)
{
(1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) ⊗ (1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) (𝑤) (𝑥, 𝑥)

}
.

(6.5)
𝑤 ∈ 𝐶∞(2) is a given symmetric smooth function (the smooth part of the chosen
background state); 𝑓 ∈ 𝐶∞

0 () is the positive cut-off function used in𝑈 and |||𝑓 |||1
is the 𝐿1 norm of 𝑓 computed with respect to the standard measure on; 𝑞𝑘 is the
integral kernel of the adiabatic regulator 𝑄𝑘, which is assumed to be smooth and
with compact support in 𝑥.

Δ𝑢
𝑅

: 𝐶∞
0 () → 𝐶∞() is the retarded fundamental solution of (𝑃0 +

𝑓𝜕2
𝜙
𝑢)𝑔 = 0; it coincides with Δ𝑈

𝑅
, and it exists and it is unique because 𝑃0 + 𝑓𝜕2

𝜙
𝑢

is a Green-hyperbolic operator [18]. Furthermore, in the integrand in Eq. (6.5), 𝑓 is
a multiplicative operator, which maps 𝐶∞() → 𝐶∞

0 (), and 1 is the identity
map in 𝐶∞(). Notice that 𝜕2

𝜙
𝑢 is constant with respect to 𝑃0.

Furthermore, thanks to the support properties of 𝑓 , we have that 𝑂 := (1 −
𝜕2
𝜙
𝑢Δ𝑢

𝑅
𝑓 ) ⊗ (1 − 𝜕2

𝜙
𝑢Δ𝑢

𝑅
𝑓 ) is a linear operator on 𝐶∞( ×) to itself. Since 𝑤 is

smooth on, the evaluation of 𝑂𝑤 on (𝑥, 𝑥) can be easily taken and the integral
over is finite because 𝑞𝑘 is of compact support.

To keep the analysis of this part as simple as possible, we shall assume

𝑞𝑘 (𝑥) := (𝑘0 + 𝜖𝑘)𝑓 (𝑥) (6.6)

where 𝑓 is the same spacetime cut-off function used in 𝑈 and where 𝑘 is assumed
to have the dimension of a mass squared. With this choice, 𝜕𝑘𝑞𝑘 = 𝑓 (𝑥) and it is
independent on 𝑘. We furthermore observe that the contribution proportional to
𝑘0 is constant in 𝑘 and it can always be reabsorbed in a redefinition of the mass
of the free theory. Many other choices, like the more usual 𝑞𝑘 (𝑥) = 𝑘2𝑓 (𝑥) can be
brought to the same case using 𝑘2 in the equation in place of 𝑘.

The function 𝑢 in Eq. (6.5) is a smooth function on compact spaces, and there-
fore the tame Fréchet space we are working with is 𝐹 = 𝐶∞(𝑋 × [𝑎, 𝑏]), where 𝑋
is a compact space in R containing all possible values of 𝜙 and 𝑘 is in the positive
interval [𝑎, 𝑏] ⊂ R+, because the sign of 𝑘 is always assumed to be positive.
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This space is Fréchet with seminorms

∥𝑢∥𝑛 =
𝑛∑︁
𝑗

∑︁
|𝛼 |=𝑗

sup
𝜙,𝑘

|𝐷𝛼𝑢(𝜙, 𝑘) | , (6.7)

where 𝛼 ∈ N × N is a multi-index: the derivatives 𝐷𝛼 are both in 𝜙 and 𝑘.
The space 𝐹 is tame because it is the space of smooth functions over a compact

space [144].
To have uniqueness of the solution of Eq. (6.4) we need to provide suitable

boundary conditions and to prescribe initial values. We thus assume that

𝑢(𝜙, 𝑎) = 𝜓, 𝑢|𝜕𝑋×[𝑎,𝑏] = 𝛽 , (6.8)

where 𝜓 is a given smooth function on 𝑋 and 𝛽 is a given smooth function on 𝜕𝑋 ×
[𝑎, 𝑏] compatible with 𝜓. To impose the initial values and the boundary conditions
we introduce the tame Fréchet subspace of 𝐹

𝐹0 := {𝑢 ∈ 𝐹 | 𝑢(𝜙, 𝑎) = 0, 𝑢|𝜕𝑋×[𝑎,𝑏] = 0}.

The solution �̃� of Eq. (6.4) we are looking for is then of the form

�̃� = 𝑢𝑏 + 𝑢, 𝑢 ∈ 𝐹0 (6.9)

where 𝑢𝑏 is a given element of 𝐹 selected in such a way that it satisfies the boundary
conditions and respects the initial values given in Eq. (6.8).

We also further assume that 𝜕2
𝜙
𝑢 and its second derivatives lie in a suitably small

neighbourhood of 0, that is, ∥𝑢∥4 ≤ 𝐴 for some positive constant 𝐴.

6 .3 strategy of the proof

In order to prove the main theorem of this Chapter, using Hamilton’s formulation
of Nash-Moser theorem, the RG flow equation needs to satisfy a number of as-
sumptions. First of all, it must be cast in the form of a suitable map acting on a
tame Fréchet space. Requiring that 𝜙 and 𝑘 are limited in some compact interval,
and that �̃�𝑘 is a smooth function, is sufficient for �̃�𝑘 to be an element of a tame
Fréchet space.

We already remarked that 𝑢 lives in a suitable tame Fréchet space 𝐹0.
Secondly, the RG flow equations, acting on 𝑢, determine a RG operator  :

 ⊂ 𝐹0 → 𝐹, given below in Definition 6.11. The operator  : 𝑢 ∈ 𝐹0 → 𝐹

defining the RG flow equation must be a smooth tame map between tame Fréchet
spaces. In order to be tame, the RG operator must satisfy some estimates on its
seminorms. Assuming that 𝑢 lies in some neighbourhood of 0 (by requiring that
a suitable seminorm of 𝑢, given below in Eq. (6.7), is ∥𝑢∥4 < 𝐴 for sufficiently
small 𝐴), it is possible to prove these estimates using the Grönwall lemma, since
the normal-ordered interacting propagator 𝐺𝑘 (𝜕2

𝜙
𝑢) satisfies a recursive integral

inequality.
Then, the linearisation of the RG operator must be an invertible smooth tame

operator, and its inverse must be tame smooth. In the NDA, the linearisation 𝐿 =

𝐷 takes the form of a parabolic equation, analogous to a heat equation with a
𝑘, 𝜙−dependent heat conductivity 𝜎 . The inverse of linear parabolic equations is
known [120] (see also Refs. [87, 133]), and the inverse of the linearised RG operator
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can be constructed from the heat kernel. Once the inverse of the linearised RG
operator is known, it is possible to prove that it is tame smooth.

All these results are presented and proved in Propositions 6.3, 6.8, 6.9, and 6.10.
These are used to prove our main result, Theorem 6.14, on the existence of local
solutions of the RG flow.

Since we can prove the assumptions of Nash-Moser theorem, it follows that
the RG operator admits a local inverse. The solution of the RG flow equations is
then determined as the unique solution of the equation [144]

𝑑

𝑑𝑡
𝑢𝑡 = −𝑐𝐷−1(𝑆𝑡𝑢𝑡)𝑆𝑡 ((𝑢𝑡)) (6.10)

with a given 𝑢0 = 0. In this equation 𝑐 is a positive fixed arbitrary constant and 𝑆𝑡
is a smoothing operator [144].

If  is a smooth tame map, if 𝐷(𝑢) admits a unique inverse for every 𝑢
in a suitable subset of 𝐹0, and if the inverse 𝐷−1 is also tame, a unique solution
of Eq. (6.10) exists for all 𝑡 such that the limit of the sequence of approximated
solutions converges to a solution of the RG flow equations: lim𝑡→∞ 𝑢𝑡 = 𝑢∞ is such
that(𝑢∞) = 0 [144].

6 .4 proof of the existence of solutions

6 .4 . 1 The RG operator is tame smooth

Following the strategy presented in the last Section, we start with a formal defini-
tion.

Definition 6.3 (RG operator). Let 𝑢𝑏 ∈ 𝐹 be such that it satisfies the initial values
and the boundary conditions given in Eq. (6.8). TheRG operator :  ⊂ 𝐹0 → 𝐹

is defined as

 : 𝑢 ↦→ (𝑢) := 𝜕𝑘 (𝑢 + 𝑢𝑏) − 𝐺𝑘 (𝜕2
𝜙
(𝑢 + 𝑢𝑏)) (6.11)

where 𝐺𝑘 is given in Eq. (6.5).

As a first step in the proof of existence of local solutions, we want to prove that
the RG operator is of the right class to apply the Nash-Moser theorem, i.e., it is
tame smooth. In order to prove it, we start considering 𝐺𝑘 in Eq. (6.5).

𝐺𝑘 depends on (𝜙, 𝑘) only through 𝜕2
𝜙
�̃�, where we recall that �̃� = 𝑢 + 𝑢𝑏, since

with our choice of 𝑞𝑘, given in Eq. (6.6), 𝜕𝑘𝑞𝑘 is constant in (𝜙, 𝑘).
Consider now 𝐺𝑘, written as

𝐺𝑘 (𝜕2
𝜙
�̃�) = − 1

2 |||𝑓 |||1

∫


d`𝑥𝜕𝑘𝑞𝑘 (𝑥) : 𝐺𝑘 : (𝑥, 𝑥) ,

for �̃� ∈ 𝐹. We analyse how : 𝐺𝑘 : (𝑥, 𝑥) depends on 𝜕2
𝜙
�̃�. Notice that : 𝐺𝑘 : (𝑥, 𝑦)

can be given explicitly as

: 𝐺𝑘 : (𝑥, 𝑦) :=
∫

d`𝑧1 d`𝑧2 (𝛿 − Δ𝑈𝑅�̃�
(2)
𝑘

) (𝑥, 𝑧1)𝑤(𝑧1, 𝑧2) (𝛿 − �̃� (2)
𝑘

Δ𝑈𝐴) (𝑧2, 𝑦) ,

where 𝛿 is the Dirac delta function (the integral kernel of the identity). Recalling
that (1 − Δ𝑈

𝑅
�̃�

(2)
𝑘

) ◦ (1 + Δ𝑅�̃�
(2)
𝑘

) = 1, using the recursive relations given in Eq.
(5.13), we obtain a recursive formula for : 𝐺𝑘 : (𝑥, 𝑦):

: 𝐺𝑘 : (𝑥, 𝑦) = �̃�(𝑥, 𝑦) −
∫

d`𝑧Δ𝑅�̃�
(2)
𝑘

(𝑥, 𝑧) : 𝐺𝑘 : (𝑧, 𝑦) , (6.12)
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where
�̃�(𝑥, 𝑦) :=

∫
d`𝑧𝑤(𝑥, 𝑧) (𝛿 − �̃� (2)

𝑘
Δ𝑈𝐴) (𝑧, 𝑦) .

This recursive relation can be used to get estimates of : 𝐺𝑘 (𝑥, 𝑦) :, for 𝑥, 𝑦 con-
tained in some compact region of the spacetime. First of all, we can prove the
following Lemma, providing estimates of the retarded propagator Δ𝑈

𝑅
𝑔 acting on

some compactly supported smooth function 𝑔.

Lemma 6.2. Let be a ultra-static spacetime and let 𝑡 be a time function. Let �̃� ∈ 𝐹,
and consider

ℎ = Δ𝑈𝑅 𝜒 ,

where 𝑔 is a compactly supported smooth function on. It then holds that ℎ is a past-
compact smooth function with compact support on every Cauchy surface Σ. Moreover,
recalling Eq. (5.13), writing ℎ as

ℎ = (1 − Δ𝑈𝑅𝑈
(2) ) 𝜒 ,

where 𝜒 = Δ𝑅𝑔, the following estimates hold:

|||ℎ|||𝑡∞ ≤ 𝑐 |||ℎ|||𝑡2,2 ≤ 𝑐 ||| 𝜒 |||𝑡2,2𝑒
𝐶 |𝜕2

𝜙
�̃� | ≤ 𝑐𝑒𝐶∥�̃�∥2 ||| 𝜒 |||𝑡2,2 (6.13)

and

|||ℎ|||𝑡∞ ≤ 𝑐 |||ℎ|||𝑡2,2 ≤ 𝑐𝑒𝐶∥�̃�∥2

∫ 𝑡

−∞
d𝜏 (𝑡 − 𝜏) |||𝑔 |||𝜏2,2 ≤ �̃�𝑒𝐶∥�̃�∥2 sup

𝜏≤𝑡
|||𝑔 |||𝜏2,2 . (6.14)

In the above inequalities, 𝐶 > 0 is a positive constant, which depends on the support
of 𝑓 in 𝑈 but not on �̃�; similarly, �̃� > 0 depends only on the support of 𝑔 and 𝑐 is
positive and does not depend on 𝑈 . Furthermore, |||·|||𝑡2,2 is the norm on the Sobolev
space𝑊2,2(Σ𝑡) and |||·|||𝑡𝛼 is the norm on 𝐿𝛼 (Σ𝑡) where Σ𝑡 = {𝑥 ∈ |𝑡(𝑥) = 𝑡} is the
Cauchy surface at fixed time 𝑡.

Proof. We recall that both Δ𝑅 and Δ𝑈𝑅 map past-compact smooth functions to past-
compact smooth functions, hence both 𝜒 = Δ𝑅𝑔 and ℎ = Δ𝑈

𝑅
are smooth and

past-compact. We also recall that

Δ𝑈𝑅 = Δ𝑅 (1 − �̃� (2)
𝑘

Δ𝑈𝑅 ) = (1 − Δ𝑈𝑅�̃�
(2)
𝑘

)Δ𝑅 .

Since �̃� (2)
𝑘

= 𝑓𝜕2
𝜙
�̃�, where 𝑓 is a smooth compactly supported function and 𝜕2

𝜙
�̃� is

constant on, the following recursive relation holds

ℎ = Δ𝑅 𝜒 − Δ𝑅�̃�
(2)
𝑘
ℎ = 𝜒 − Δ𝑅�̃�

(2)
𝑘
ℎ.

Now, let 𝐷 be the (positive) Laplace operator on Σ𝑡 constructed with the induced
metric on Σ𝑡 , and define 𝜔 =

√
𝐷 + 𝑚2 as the square root of the positive operator

𝐷 + 𝑚2. Hence

ℎ(𝑡,x) = 𝜒(𝑡,x) − 𝜕2
𝜙
�̃�

∫ 𝑡

−∞
d𝜏

sin (𝜔(𝑡 − 𝜏))
𝜔

(𝑓 ℎ) (𝜏, x) .

We thus have

|||ℎ|||𝑡2 ≤ ||| 𝜒 |||𝑡2 + |𝜕2
𝜙
�̃�|

∫ 𝑡

−∞
d𝜏 (𝑡 − 𝜏)∥𝑓 ∥𝜏∞ |||ℎ|||𝜏2 ,
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or, passing to the Sobolev norm |||ℎ|||𝑡2,2 = |||ℎ|||𝑡2 + |||𝐷ℎ|||𝑡2, we have

|||ℎ|||𝑡2,2 ≤ ||| 𝜒 |||𝑡2,2 + |𝜕2
𝜙
�̃�|

∫ 𝑡

−∞
d𝜏 (𝑡 − 𝜏) |||𝑓 ℎ|||𝜏2,2

≤ ||| 𝜒 |||𝑡2,2 + |𝜕2
𝜙
�̃�|

∫ 𝑡

−∞
d𝜏 (𝑡 − 𝜏) (∥𝑓 ∥𝜏∞ + sup

𝑖

2∥𝜕𝑖𝑓 ∥𝜏∞ + ∥𝐷𝑓 ∥𝜏∞) |||ℎ|||𝜏2,2

≤ ||| 𝜒 |||𝑡2,2 + 𝐶 |𝜕2
𝜙
�̃�|

∫ 𝑡

𝑎

d𝜏 |||ℎ|||𝜏2,2

where 𝑎 = inf𝑥∈supp 𝑓 {𝑡(𝑥)} and for a suitable positive constant 𝐶 independent on
𝜕2
𝜙
�̃�. 𝐶 is in fact finite because 𝑓 is smooth and with compact support on.
Applying the Grönwall Lemma in integrated form to the previous inequality

we obtain

|||ℎ|||𝑡2,2 ≤ ||| 𝜒 |||𝑡2,2 𝑒
𝐶 |𝜕2

𝜙
�̃� |
.

To conclude the proof of the first inequality (6.13), we observe that Σ𝑡 is a three
dimensional space, and so by standard arguments we have

|||ℎ|||𝑡∞ ≤
������ℎ̂������𝑡1 ≤ ||| (1 + 𝐷)ℎ|||2

������(1 + 𝐷)−1������
2 ≤ 𝑐 |||ℎ|||2,2 .

where the
������(1 + 𝐷)−1

������
2 is the 𝐿-2 norm of (1 + 𝐷)−1. To prove Eq. (6.14) we use

Eq. (6.13) for 𝜒 = Δ𝑅𝑔. Recalling that

𝜒(𝑡, x) = 𝜕2
𝜙
�̃�

∫ 𝑡

−∞
d𝜏

sin (𝜔(𝑡 − 𝜏))
𝜔

𝑔(𝜏,x).

and taking the Sobolev norms we have

|||Δ𝑅𝑔 |||𝑡2,2 ≤
∫ 𝑡

−∞
d𝜏 (𝑡 − 𝜏) |||𝑔 |||𝜏2,2 .

Starting from the above analysis and the previous Lemma, we can prove that
the RG operator is tame smooth.

Proposition 6.3. Assume that  ⊂ 𝐹0 is a small neighbourhood of 0, so that for
𝑢 ∈  , ∥𝑢∥2 < 𝐴 for some constant 𝐴. Then the RG operator is a smooth tame map.

Proof. We start considering �̃� = 𝑢𝑏 + 𝑢 for 𝑢 ∈ 𝐹0 and for a given 𝑢𝑏 satisfying
Eq. (6.8), so that �̃� ∈ 𝐹 and it satisfies the prescribed initial values and boundary
conditions. We recall that, from Eq. (6.11),

(𝑢) = 𝜕𝑘 (𝑢 + 𝑢𝑏) − 𝐺𝑘 (𝜕2
𝜙
(𝑢 + 𝑢𝑏)) ,

where 𝐺𝑘 is given in Eq. (6.5). To prove that  is tame smooth we just need to
prove that 𝐺𝑘 is tame smooth for �̃� ∈ 𝑢𝑏 +  . We start proving the following
Lemma.

Lemma 6.4. The functional 𝐺𝑘 is a smooth function of 𝜕2
𝜙
�̃�. Furthermore, it is tame

smooth for �̃� ∈ 𝑢𝑏 + .
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Proof. We observe that 𝜕𝑘𝑞𝑘 is constant on 𝑋×[𝑎, 𝑏]; hence, recalling the definition
of𝐺𝑘 given in Eq. (6.5), we have that𝐺𝑘 (𝜕2

𝜙
�̃�), as a function on 𝑋×[𝑎, 𝑏] , depends on

(𝜙, 𝑘) only through 𝜕2
𝜙
�̃�; that is, 𝐺𝑘 (𝜕2

𝜙
�̃�) (𝜙, 𝑘) = 𝐺𝑘 (𝜕2

𝜙
�̃�(𝜙, 𝑘)). We also observe

that 𝐺𝑘 (𝜕2
𝜙
�̃�) depends smoothly on �̃� ∈ 𝐹. Actually, the 𝑛−th order functional

derivative of �̃�𝑘 (�̃�) = 𝐺𝑘 (𝜕2
𝜙
�̃�) with respect to �̃� can be explicitly computed, and

it is well-defined for every 𝑛; in fact, it is given by

�̃�
(𝑛)
𝑘

(𝑣1, . . . , 𝑣𝑛) =
(−1)𝑛+1

|||𝑓 |||1
𝑛!

𝑛∑︁
𝑙=0

∫


d`𝑥𝜕𝑘𝑞𝑘 (𝑥)·{
(Δ𝑈𝑅 𝑓 )

𝑙 ⊗ (Δ𝑈𝑅 𝑓 )
𝑛−𝑙 ◦ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) ⊗ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) (𝑤) (𝑥, 𝑥)

} 𝑛∏
𝑗=1

𝜕2
𝜙
𝑣𝑗

=: 𝐴𝑛(�̃�)
𝑛∏
𝑗=1

𝜕2
𝜙
𝑣𝑗 .

(6.15)

In the last formula, 𝑓 in Δ𝑈
𝑅
𝑓 is a multiplicative operator, and 𝐴𝑛(�̃�) are suitable

functionals of �̃�. Notice that both cut-off functions 𝑓 and 𝑞𝑘 have compact support,
and 𝑤 is a smooth function on 2. Hence, for every �̃� ∈ 𝐹, the integral defining
𝐴𝑛 always gives a finite bounded result. We thus have that𝐺𝑘 is a smooth function
of 𝜕2

𝜙
�̃�.
We now prove that 𝐺𝑘 (𝜕2

𝜙
�̃�) is also tame.

Recall that ∥𝑢∥2 < ∥𝑢∥4 < 𝐴, and that 𝐺𝑘 depends on 𝜙 and 𝑘 only through
𝜕2
𝜙
�̃�, because 𝜕𝑘𝑞𝑘 = 𝑓 . By direct inspection, we have that

∥𝐺𝑘∥𝑛 < ∥𝐴0(�̃�)∥0 +
𝑛∑︁
𝑝=1

𝑝∑︁
𝑙=1

∥𝐴𝑙 (�̃�)∥0∥(𝜕2
𝜙
�̃�) 𝑙∥𝑝−𝑙 . (6.16)

To estimate ∥(𝜕2
𝜙
�̃�) 𝑙∥𝑝−𝑙 , we use Leibniz rule together with an interpolating argu-

ment (See Corollary 2.2.2 in Ref. [144]), stating that, for every 𝑓 , 𝑔 ∈ 𝐹,

∥𝑓 ∥𝑛∥𝑔∥𝑚 ≤ 𝐶(∥𝑓 ∥𝑛+𝑚∥𝑔∥0 + ∥𝑓 ∥0∥𝑔∥𝑛+𝑚) .

Hence, by Leibniz rule, we have that

∥𝜕2
𝜙
�̃�𝑙∥𝑟 ≤ 𝐶

∑︁
𝑅=(𝑟1 ,...,𝑟𝑙 ) , |𝑅 |=𝑟

𝑙∏
𝑖=1

∥𝜕2
𝜙
�̃�∥𝑟𝑖 ≤ 𝐶′∥𝜕2

𝜙
�̃�∥𝑟 ∥𝜕2

𝜙
�̃�∥ 𝑙−1

0 .

Using this in Eq. (6.16) we get

∥𝐺𝑘∥𝑛 < 𝐶

(
∥𝐴0(�̃�)∥0 +

𝑛∑︁
𝑝=1

𝑝∑︁
𝑙=1

∥𝐴𝑙 (�̃�)∥0∥(𝜕2
𝜙
�̃�)∥ 𝑙−1

0 ∥�̃�∥𝑝+2

)
< 𝐶

(
∥𝐴0(�̃�)∥0 +

𝑛∑︁
𝑝=1

𝑝∑︁
𝑙=1

∥𝐴𝑙 (�̃�)∥0∥�̃�∥ 𝑙−1
2 ∥�̃�∥𝑝+2

)
< 𝐶 (1 + ∥�̃�∥𝑛+2) ,

where in the last step we used the fact that ∥𝐴𝑙 (�̃�)∥0 ≤ 𝐶(1 + ∥�̃�∥2). This last
inequality is proved in the following Lemma 6.5.
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Lemma 6.5. Consider the functionals 𝐴𝑙 (�̃�) for �̃� ∈ 𝐹 given in Eq. (6.15). If ∥�̃�∥2 < 𝐴,
it holds that

∥𝐴𝑙 (�̃�)∥0 ≤ 𝐶(1 + ∥�̃�∥2).

Proof. To prove this result we observe that both 𝜕𝑘𝑞𝑘 and 𝑓 are smooth compactly
supported functions on . The integral present in Eq. (6.15) is thus taken on a
compact region, even if 𝑤 is a smooth function supported in general everywhere
on2. Now, we need to estimate the action of each Δ𝑈

𝑅
𝑓 and of (1 − 𝜕2

𝜙
�̃�Δ𝑈

𝑅
𝑓 ) by

means of Lemma 6.2.
Actually, Lemma 6.2 implies that if 𝑔 is a smooth past-compact function, the

following estimates hold:������(Δ𝑈𝑅 𝑓 )𝑛𝑔������𝑡2,2 ≤ sup
𝜏<𝑡

������(Δ𝑈𝑅 𝑓 )𝑛−1𝑔
������𝜏

2,2 �̃�𝑒
𝐶∥�̃�∥2 ≤ sup

𝜏<𝑡

|||𝑔 |||𝜏2,2 �̃�𝑛𝑒𝑛𝐶∥�̃�∥2 ,

where the constant �̃� depends on 𝑓 . Similarly,���������(1 − 𝜕2
𝜙
�̃�Δ𝑈𝑅 𝑓 )𝑔

���������𝑡
2,2

≤ 𝑐𝑒𝐶∥�̃�∥2 .

We now use these estimates in

𝑎𝑙1 ,𝑙2 (𝑥, 𝑦) :=
{
(Δ𝑈𝑅 𝑓 )

𝑙1 ⊗ (Δ𝑈𝑅 𝑓 )
𝑙2 ◦ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) ⊗ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) ( 𝜒𝑤𝜒) (𝑥, 𝑦)

}
,

for 𝑙1 + 𝑙2 = 𝑛, and where \ is a smooth compactly supported function, equal to 1
in a region containing the support of 𝑞𝑘 and 𝑓 . Recall also that 𝜒 = Δ𝑅𝑔. Thanks to
this choice, we can replace 𝑤 in 𝐺𝑘 with \𝑤\, getting

sup
𝑥∈supp 𝑓

|𝑎𝑙1 ,𝑙2 (𝑥, 𝑥) | ≤ sup
𝑥,𝑦∈supp 𝑓

|𝑎𝑙1 ,𝑙2 (𝑥, 𝑦) | ≤ sup
𝑡𝑥 ,𝑡𝑦∈supp 𝑓

|||\𝑤\ ||| (𝑡𝑥 ,𝑡𝑦 )4,2 𝑐2�̃�𝑛𝑒(𝑛+2)𝐶∥�̃�∥2

where |||·||| (𝑡𝑥 ,𝑡𝑦 )4,2 is the Sobolev norm for functions defined on Σ𝑡𝑥 × Σ𝑡𝑦 . Using this
estimate sufficiently many times in 𝐴𝑙 , and recalling that 𝑒𝐶∥�̃�∥2 ≤ 𝐶1(1+ ∥�̃�∥2) for
a sufficiently large 𝐶1 because ∥�̃�∥2 < 𝐴, we have the thesis.

With this results, we can conclude our proof, recalling that the linear combina-
tions of smooth tame functionals is tame smooth.

6 .4 .2 The linearisation of the RG operator is tame smooth

The first derivative of the RG operator defines the linearised RG operator 𝐿(𝑢)𝑣 =
𝐷(𝑢)𝑣, which by direct inspection is given by the linear operator

𝐷(𝑢)𝑣 = 𝜕𝑘𝑣 − 𝜎𝜕2
𝜙
𝑣 ,

where

𝜎 (𝑢) :=
1

|||𝑓 |||1

∫
2

d`𝑥d`𝑦 𝜕𝑘𝑞𝑘 (𝑥)Δ𝑈𝑅 (𝑥, 𝑦)𝑓 ( 𝑦){
(1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) ⊗ (1 − 𝜕2

𝜙
𝑢Δ𝑢𝑅𝑓 ) (𝑤) ( 𝑦, 𝑥)

}
.

(6.17)

The function 𝜎 as a function on 𝑋 × [𝑎, 𝑏] depends on 𝜙 through 𝜕2
𝜙
𝑢 and on 𝑘

through 𝜕𝑘𝑞𝑘 and 𝜕2
𝜙
𝑢. Moreover, 𝜎 depends on (𝜙, 𝑘) only through 𝑢, since, the

choice of 𝑞𝑘 given in Eq. (6.6) implies that 𝜕𝑘𝑞𝑘 is constant in 𝑘.
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Definition 6.4. Let 𝑢𝑏 ∈ 𝐹 be a function satisfying the initial values and bound-
ary conditions given in Eq. (6.8), and let  be a neighbourhood of 0 in 𝐹0. The
linearised RG operator is defined as the map

𝐿 : (𝑢𝑏 + ) × 𝐹0 → 𝐹

𝐿(𝑢)𝑓 := 𝜕𝑘𝑔 − 𝜎 (𝑢)𝜕2
𝜙
𝑔.

where 𝜎 is the map defined in Eq. (6.17).

The following Proposition specifies some of the properties of 𝜎 that will be
useful in the analysis of 𝐿(𝑢).
Proposition 6.6. The function 𝜎 (𝑢) is tame smooth.
Proof. The function 𝜎 is linear in 𝑞𝑘, and 𝑞𝑘 is a smooth function of 𝑘: moreover,
𝜕𝑘𝑞𝑘 is constant in (𝜙, 𝑘). Hence, 𝜎 depends on 𝑘 and on 𝜙 only through 𝑢. Further-
more, the 𝑛−th order functional derivative 𝜎 with respect to 𝜕2

𝜙
𝑢 is always well-

defined because it equals the 𝑛 + 1 order functional derivative of 𝐺𝑘 with respect
to 𝜕2

𝜙
𝑢, and we already proved in Lemma 6.4 that 𝐺𝑘 is a smooth function of 𝜕2

𝜙
𝑢.

Furthermore, 𝜎 is a smooth function and it is tamewith respect to 𝑢, because it is re-
lated to the functional derivative of𝐺𝑘, which is tame smooth for Lemma 6.4.

The next proposition shows that, by a suitable choice of smooth functions𝑤 (or,
equivalently, by suitable choices of states), the assumptions that: i) 𝜎 is larger than
some positive constant 𝑐, and ii) that ∥𝑢∥2 ≤ 𝐴 is in some small neighbourhood of
0, hold.

Proposition 6.7. If the boundary conditions given in Eq. (6.8) are such that ∥𝛽∥2 +
∥𝜓∥2 < 𝜖 for a sufficiently small 𝜖 and if 𝑢𝑏 in Eq. (6.9) is chosen to be such that ∥𝑢𝑏∥2 ≤
𝜖, then, for certain choices of the function 𝑤 ∈ 𝐶∞(2), it exists a neighbourhood
 ⊂ 𝐹0 such that, for every 𝑢 ∈  , 𝜎 (𝑢𝑏 + 𝑢) ≥ 𝑐 > 0 and ∥𝑢∥2 < 𝐴 = 𝜖.

Proof. We recall that

𝜎 (0) = 1
|||𝑓 |||1

∫
2

d`𝑥d`𝑦 𝜕𝑘𝑞𝑘 (𝑥)𝑓 ( 𝑦)Δ𝑅 (𝑥, 𝑦) (𝑤) ( 𝑦, 𝑥) .

𝜎 (0) is linear in 𝑤 and it cannot be identically 0 for every 𝑤, and so it is possible to
choose a𝑤 such that 𝜎 (0) ≥ (2𝜖𝐶+𝑐) > 0, where𝐶 > sup_∈[0,1] ∥𝜎 (1) (_(𝑢+𝑢𝑏))∥0.
Moreover, 𝜎 depends smoothly on 𝑢. We can choose 𝑢𝑏 so that ∥𝑢𝑏∥2 ≤ (∥𝛽∥2 +
∥𝜓∥2) < 𝜖, and we can choose a sufficiently small ⊂ 𝐹0 such that every 𝑢 ∈ 
satisfies ∥𝑢∥2 < 𝜖. Therefore, the smoothness of 𝜎 (𝑢) implies that

𝜎 (𝑢) = 𝜎 (0) +
∫ 1

0
d_

𝑑

𝑑_
𝜎 (_(𝑢 + 𝑢𝑏))

≥ 𝜎 (0) − sup
_

∥𝜎 (1) (_(𝑢 + 𝑢𝑏)) (𝑢 + 𝑢𝑏)∥0 .
(6.18)

The functional derivative 𝜎 (1) is related to 𝐺 (2)
𝑘

, and it can be given explicitly in
terms of the functions 𝐴𝑛 with 𝑛 = 2 defined in Eq. (6.15), as

𝜎 (1) (�̃�) (𝑣) = (−1)3

|||𝑓 |||1
2

2∑︁
𝑙=0

∫


d`𝑥𝜕𝑘𝑞𝑘 (𝑥)·{
(Δ𝑈𝑅 𝑓 )

𝑙 ⊗ (Δ𝑈𝑅 𝑓 )
2−𝑙 ◦ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) ⊗ (1 − 𝜕2

𝜙
�̃�Δ𝑈𝑅 𝑓 ) (𝑤) (𝑥, 𝑥)

}
𝜕2
𝜙
𝑣

= 𝐴2(�̃�)𝜕2
𝜙
𝑣.

(6.19)
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Thanks to the estimate given in Lemma 6.5, we have that

∥𝜎 (1) (_(𝑢𝑏 + 𝑢)) (𝑢𝑏 + 𝑢)∥0 ≤ ∥𝐴2∥0∥(𝑢𝑏 + 𝑢)∥0

≤ 𝐶′(1 + ∥𝑢𝑏 + 𝑢∥2)∥(𝑢𝑏 + 𝑢)∥0

≤ 𝐶′′∥𝑢𝑏 + 𝑢∥2

for suitable constants 𝐶′ and 𝐶′′, depending on 𝐴. Using this estimate in Eq. (6.18),
and recalling the choices we made for 𝑤 in 𝜎 (0), we obtain that for a suitable 𝑐′

𝜎 (𝑢) ≥ 𝜎 (0) − sup
_

∥𝜎 (1) (_(𝑢 + 𝑢𝑏)) (𝑢 + 𝑢𝑏)∥0 ≥ 𝑐′ > 0 .

Remark 6.1. Thanks to Proposition 6.7, 𝜎 can be chosen to be positive. In applica-
tions to physics, when 𝑤 is obtained as the smooth part of the 2-point function of
a quantum state, it is not obvious a priori that the choices necessary to have 𝜎 pos-
itive can be made. However, this is the case in many physically sensible states [83],
also thanks to the freedom in the split of the smooth and singular parts present in
any Hadamard 2-point function. The freedom in the split is related to the ordinary
renormalization freedom in the coincidence limit of 2-point functions in Eq. (2.24),
and can be exploited to make 𝜎 positive. ■

Now we can prove the following Proposition.

Proposition 6.8. The linearisation of the RG operator

𝐿(𝑢)𝑣 = 𝜕𝑘𝑣 − 𝜎𝜕2
𝜙
𝑣

is tame smooth.

Proof. Since 𝐿 acts as a second order linear differential operator, its 𝑛−th order
seminorm is controlled by the 𝑛 + 2−th order seminorm of 𝑣. Using the Lebiniz
rule and an interpolating argument (see e.g. in Corollary 2.2.2 in Ref. [144])

∥𝐿(𝑢)𝑣∥𝑛 ≤ ∥𝑣∥𝑛+1 + 𝐶 (∥𝜎 ∥0∥𝑣∥𝑛+2 + ∥𝜎 ∥𝑛+2∥𝑣∥0)

where𝐶 is a constant. 𝜎 is tame smooth and the composition of tame smoothmaps
is tame smooth, and thus 𝐿 : ( ) × 𝐹0 → 𝐹 is tame smooth.

6 .4 .3 The linearisation of the RG operator is invertible, and the inverse is tame smooth

If 𝜎 ≥ 𝑐 > 0 on 𝑋 × [𝑎, 𝑏] , the linearised RG operator 𝐿(𝑢) on 𝑋 × [𝑎, 𝑏] has the
formof a parabolic equation. The existence and uniqueness of an inverse, satisfying
the chosen boundary conditions

𝐸(𝑔) (𝜙, 𝑎) = 0, 𝐸(𝑔) |𝜕𝑋×[𝑎,𝑏] = 0 , 𝑔 ∈ 𝐶∞
0 (𝑋 × [𝑎, 𝑏]) ,

is known [120]. Furthermore, by an application of the maximum principle, it is
possible to prove that 𝐸 is continuous with respect to the uniform norm; see e.g.
Section 3 of Chapter 2 in Ref. [120]. We collect these results in the following Propo-
sition.
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Proposition 6.9. Consider the linearised RG operator 𝐿. Assume that 𝜎 (𝑢) is positive
for every 𝑢 ∈  ⊂ 𝐹. Then, it exists an unique inverse 𝐸 : 𝐹 → 𝐹0 which is compatible
with the initial and boundary conditions, thus satisfying

𝐸(𝐿(𝑔)) = 𝐿(𝐸(𝑔)) = 𝑔 , 𝑔 ∈ 𝐹0 .

Moreover, the inverse is continuous with respect to the uniform norm. More precisely,
it exists a positive constant 𝐶 > 0 such that

∥𝐸(𝑔)∥0 < 𝐶∥𝑔∥0 .

We now pass to analyse the regularity of 𝐸, which is a necessary condition to
apply the Nash-Moser Theorem.

Proposition 6.10. Consider the case where 𝜎 ≥ 𝑐 > 0, let 𝑢 ∈  ⊂ 𝐹0 such that
∥𝑢∥4 ≤ 𝐴, and assume that sup𝑖∈{𝜙,𝑘} |𝐷𝑖 log 𝜎 (𝑢) | < 𝜖 with a sufficiently small 𝜖.
The inverse 𝐸 of the linearised RG operator 𝐿 is tame smooth.

Proof. We first observe that 𝐿(𝑢) depends on 𝑢 only through 𝜎 . Furthermore, 𝜎
is a tame map of 𝑢. The composition of tame maps is tame, and so, to prove the
statement, it suffices to study how 𝐿 depends on 𝜎 . To this end, with a little abuse
of notation in this proof we shall denote 𝐿(𝑢) by 𝐿(𝜎 (𝑢)) and we estimate how 𝐿

depends on 𝜎 . Consider 𝐿(𝜎 ) (𝑣) = 𝑔. We look for an estimate which permits to
control the higher derivative of 𝑣 with those of 𝑔. We start with two Lemmas.

Lemma 6.11. Under the hypothesis of Proposition 6.10, the following estimate holds:

∥𝑣∥1 < 𝐶 (∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0) .

Proof. The uniform continuity of 𝐸 stated in Proposition 6.9 implies that if 𝐿(𝜎 )𝑣 =
𝑔,

∥𝑣∥0 < 𝐶∥𝑔∥0 .

The same continuity result applies to 𝐷𝑣, where 𝐷 ∈ {𝜕𝜙, 𝜕𝑘}:

∥𝐷𝑣∥0 < 𝐶∥𝐿(𝜎 )𝐷𝑣∥0 .

Now, it holds that

𝐿(𝜎 )𝐷𝑣 = 𝐷𝐿(𝜎 )𝑣 − 𝐷(𝜎 )𝜕2
𝜙
𝑣

= 𝐷𝐿(𝜎 )𝑣 + 𝐷(𝜎 )
𝜎

(𝐿(𝜎 )𝑣 − 𝜕𝑘𝑣) .
(6.20)

Therefore, the uniform continuity of 𝐸 and the fact that 𝜎 ≥ 𝑐 > 0 imply that

∥𝐷𝑣∥0 < 𝐶 (∥𝐷𝐿(𝜎 )𝑣∥0 + ∥𝐷 log(𝜎 )∥0(∥𝐿(𝜎 )𝑣∥0 + ∥𝑣∥1))
< 𝐶 (∥𝐷𝑔∥0 + ∥𝐷 log(𝜎 )∥0(∥𝑔∥0 + ∥𝑣∥1)) .

Considering all possible 𝐷, using the uniform continuity of 𝐸 and the fact that
1/𝜎 > 1/𝑐′, we obtain

∥𝑣∥1 ≤ ©«∥𝑣∥0 +
∑︁

𝐷∈{𝜕𝜙 ,𝜕𝑘 }
∥𝐷𝑣∥0

ª®¬
< 𝐶

(
∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0 + sup

𝐷

∥𝐷 log(𝜎 )∥0∥𝑣∥1

)
,
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and so

(1 − 𝐶 sup
𝐷

∥𝐷 log(𝜎 )∥0)∥𝑣∥1 < 𝐶 (∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0) .

Notice that, by hypothesis, sup𝐷 ∥𝐷 log(𝜎 )∥0 ≤ 𝜖; therefore, if 𝜖 is chosen suffi-
ciently small, it holds that

(1 − 𝐶 sup
𝐷

∥𝐷 log(𝜎 )∥0) ≥ 𝑐′ > 0 , (6.21)

and

∥𝑣∥1 <
1

(1 − 𝐶 sup𝐷 ∥𝐷𝜎 ∥0)
𝐶 (∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0) ,

from which the thesis follows.

Lemma 6.12. Under the hypothesis of Proposition 6.10, it holds that for every 𝑛

∥𝑣∥𝑛 < 𝐶 (∥𝑔∥𝑛 + ∥𝑔∥0∥𝜎 ∥𝑛+1) . (6.22)

Proof. We prove it by induction. The case 𝑛 = 1 follows from Lemma 6.11 and the
standard property ∥𝜎 ∥1 ≤ ∥𝜎 ∥2. We assume now that inequality Eq. (6.22) holds
up 𝑛. To prove that it holds also for the case 𝑛+1, consider the estimate for 𝐷𝑣. We
have

∥𝐷𝑣∥𝑛 < 𝐶 (∥𝐿(𝜎 )𝐷𝑣∥𝑛 + ∥𝐿(𝜎 )𝐷𝑣∥0∥𝜎 ∥𝑛+1) . (6.23)

Recalling Eq. (6.20), and using the Leibniz rule, the interpolating argument (Corol-
lary 2.2.2 in Ref. [144]) and the fact that 𝜎 ≥ 𝑐′ > 0, we have

∥𝐿(𝜎 )𝐷𝑣∥𝑛 < ∥𝑔∥𝑛+1 + ∥𝐷(log 𝜎 )𝑔∥𝑛 + ∥𝐷(log 𝜎 )𝜕𝑘𝑣∥𝑛

< ∥𝑔∥𝑛+1 + 𝐶
(
∥ log 𝜎 ∥0∥𝑔∥𝑛+1 + ∥ log 𝜎 ∥𝑛+1∥𝑔∥0 + ∥𝐷(𝜎 )

𝜎
∥0∥𝜕𝑘𝑣∥𝑛

+ ∥𝐷(𝜎 )
𝜎

∥𝑛∥𝜕𝑘𝑣∥0

)
< 𝐶

((
1 + ∥ log 𝜎 ∥0

)
∥𝑔∥𝑛+1 + ∥ log 𝜎 ∥𝑛+1∥𝑔∥0 + ∥𝐷(log 𝜎 )∥0∥𝑣∥𝑛+1

+ ∥𝐷(𝜎 )
𝜎

∥𝑛∥𝜕𝑘𝑣∥0

)
.

From the last inequality, using the results of Lemma 6.11, it thus follows that

∥𝐿(𝜎 )𝐷𝑣∥𝑛 < (1 + ∥ log 𝜎 ∥0) ∥𝑔∥𝑛+1 + ∥ log 𝜎 ∥𝑛+1∥𝑔∥0

+ ∥𝐷(log 𝜎 )∥0∥𝑣∥𝑛+1 + ∥𝐷(𝜎 )
𝜎

∥𝑛(∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0) .
(6.24)

Furthermore, from Eq. (6.20) and Lemma 6.11, we can prove that

∥𝐿(𝜎 )𝐷𝑣∥0 < ∥𝐷𝐿(𝜎 )𝑣∥0 + ∥𝐷𝜎 ∥0(∥𝐿(𝜎 )𝑣∥0 + ∥𝑣∥1)
< ∥𝐷𝑔∥0 + ∥𝐷𝜎 ∥0(∥𝑔∥0 + ∥𝑣∥1)
< ∥𝑔∥1 + ∥𝜎 ∥1((1 + ∥𝜎 ∥1)∥𝑔∥0 + ∥𝑔∥1) .

(6.25)
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Therefore, combining the two inequalities Eq. (6.24) and Eq. (6.25) in Eq. (6.23), it
holds that

(1 − 𝐶∥𝐷(log(𝜎 ))∥0)∥𝑣∥𝑛+1 < 𝐶 [(1 + ∥ log 𝜎 ∥0) ∥𝑔∥𝑛+1 + ∥ log 𝜎 ∥𝑛+1∥𝑔∥0+
+∥𝐷(log 𝜎 )∥𝑛(∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0)+

+ (∥𝑔∥1 + ∥𝜎 ∥1(∥𝑔∥0 + ∥𝜎 ∥1∥𝑔∥0 + ∥𝑔∥1)) ∥𝜎 ∥𝑛+1] .

Notice that, as stated in Eq. (6.21), (1 − 𝐶∥𝐷(log(𝜎 ))∥0) > 0, and so

∥𝑣∥𝑛+1 < 𝐶 [((1 + ∥ log 𝜎 ∥0) ∥𝑔∥𝑛+1 + ∥ log 𝜎 ∥𝑛+1∥𝑔∥0+
+∥𝐷(log 𝜎 )∥𝑛(∥𝑔∥1 + ∥𝜎 ∥1∥𝑔∥0)) +

+ (∥𝑔∥1 + ∥𝜎 ∥1((1 + ∥𝜎 ∥1)∥𝑔∥0 + ∥𝑔∥1)) ∥𝜎 ∥𝑛+1] .

By the interpolating argument, it holds that ∥𝑔∥1∥ℎ∥𝑛 ≤ 𝐶(∥𝑔∥0∥ℎ∥𝑛+1+∥𝑔∥𝑛+1∥ℎ∥0).
Moreover, we have ∥𝜎 ∥1 < 𝐴, from which ∥𝐷 log 𝜎 ∥𝑛 ≤ 𝐶∥𝜎 ∥𝑛+1 follows. Thus,
we obtain

∥𝑣∥𝑛+1 < 𝐶 (∥𝑔∥𝑛+1 + ∥𝑔∥0∥𝜎 ∥𝑛+2) .

The estimates of Lemma 6.12 imply that 𝐸𝑓 is a tame map of 𝜎 and 𝑓 . The map
𝜎 (𝑢) is a smooth tame function of 𝑢. The composition of tame maps is tame, and
so we have the result.

To prove that 𝐸 is tame smoothwemade two assumptions for 𝜎 : first, that 𝜎 > 𝑐,
and second, that 𝜕𝑖 log(𝜎 ) < 𝜖′ for small 𝜖′. We have already seen in Proposition
6.7 that 𝑢𝑏 and can be chosen in such a way that, for every 𝑢 ∈  , 𝜎 (𝑢𝑏 + 𝑢) > 𝑐.
We now want to prove that the second requirement also holds.

Proposition 6.13. Let 𝜖′ > 0, 𝑢𝑏 in Eq. (6.9) be such that ∥𝑢𝑏∥3 ≤ 𝐴, and consider
the initial conditions given in Eq. (6.8). If [𝑎, 𝑏] is such that 𝑏 − 𝑎 together with 𝐴 are
sufficiently small, it holds that

|𝜕𝑖 log(𝜎 ) | < 𝜖′ ,

for every 𝑢 ∈  , recalling that ∥𝑢∥4 < 𝐴.

Proof. Let 𝐷 be either 𝜕𝜙 or 𝜕𝑘, and notice that 𝐷 log 𝜎 = 𝐷𝜎/𝜎 . In Proposition 6.7
we have shown that there are choices of 𝑤 for which 1/𝜎 < 1/𝑐. We now observe
that

𝐷𝜎 (𝜙, 𝑘) = 𝐷𝜎 (𝜙, 𝑎) +
∫ 𝑘

𝑎

𝜕^𝐷𝜎 (𝜙, ^)d^ .

Therefore, since both 𝜎 and 𝐷(𝜎 ) are smooth, we have that

∥𝐷𝜎 (𝜙, 𝑘)∥0 ≤ ∥𝐷𝜎 (𝜙, 𝑎)∥0 + (𝑏 − 𝑎)∥𝜎 ∥2 < 𝐶(𝐴 + (𝑏 − 𝑎) (1 + 𝐴)) ,

where we used the fact that 𝜎 is tame, and in particular ∥𝜎 ∥2 ≤ 𝐶(1 + ∥𝑢∥4) ≤
𝐶(1 + 𝐴). Furthermore, 𝜎 (𝜙, 𝑎) depends on 𝜙 and 𝑎 through 𝑢𝑏 + 𝑢; hence, in view
of the continuity of 𝜎 ,

|𝐷𝜎 (𝜙, 𝑎) | ≤ 𝐶 |𝐷𝜕2
𝜙
𝑢𝑏(𝜙, 𝑎) | ≤ ∥𝑢𝑏∥3 ≤ 𝐴 ,
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since 𝑢 = 0 at 𝑘 = 𝑎, and we can choose 𝑢𝑏 so that ∥𝑢𝑏∥3 < 𝐴. Therefore,

|𝐷 log 𝜎 | = |𝐷𝜎 (𝜙, 𝑘) |
𝜎

≤ 𝐶

𝑐
(𝐴 + (𝑏 − 𝑎) (1 + 𝐴)) ≤ 𝜖′ ,

where we have chosen both 𝐴 and 𝑏−𝑎 sufficiently small tomake the last inequality
valid.

Remark 6.2. Recall that in 𝑢𝑏 there is a contribution −𝑞𝑘𝜙2. For 𝑞𝑘 given in Eq.
(6.6) it is in general not possible to make the choice ∥𝑞𝑘𝜙2∥3 ≤ 𝐴 for small 𝐴,
because of the constant contribution 𝑘0𝑓 in Eq. (6.6), while the other corrections
can be made small with judicious choices of the chosen parameters. However, such
a contribution can always be reabsorbed in the mass of the free theory present in
𝑃0. ■

Theorem 6.14. Under the hypothesis of Proposition 6.10, the RG operator admits a
unique family of tame smooth local inverses, and unique local solutions of the RG flow
equations exist.

Proof. The proof is a direct application of the Nash-Moser theorem [144], which
can be applied thanks to the results of Propositions 6.3, 6.8, 6.9, and 6.10. Actually, it
follows from theNash-Moser theorem that the RGoperator admits a unique family
of tame smooth local inverses. This guarantees the existence of local solutions of
the RG flow equations.



7 Renormalization of local symmetries

In Chapter 3, we discussed the BV formalism on general grounds, as a tool to quan-
tise any theorywith local symmetries, both fundamental or effective. The keystones
of the BV formalism are the QuantumMaster Equation (3.35), imposing a sufficient
condition on the bare action so that 𝑆−matrix elements are gauge-independent,
and the requirement that interacting observables are in the zeroth cohomology of
the interacting BV differential, Eq. (3.38).

The QME in particular controls the gauge dependence of the action and its
renormalization [119]. It is a fundamental requirement for the bare action of any
gauge theory, in order to have a well-defined quantum theory. Now, the QME will
impose some structural constraints on the effective average action aswell. In fact, in
the classical limit the effective average action reduces to the bare action; it follows
that the effective average action must satisfy some symmetry identity, that reduces
to the CME in the ℏ → 0 limit.

In this Chapter, we find the symmetry constraints to be imposed on the effec-
tive average action, to be consistent with BV invariance. The identity satisfied by
the effective average action is usually called in the fRG context modified Slavnov-
Taylor identity. In the pQFT approach based on a path integral formulation, the
Slavnov-Taylor identity is derived from the gauge invariance and parametrization
invariance of the generating functional 𝑍. In the absence of a regulator term (or
more precisely, assuming an implicit BV invariant regularisation), the Slavnov-Taylor
identity assumes the form of the Zinn-Justin equation [256, 257]∫

𝑥

𝛿Γ0

𝛿𝜙(𝑥)
𝛿Γ0

𝛿𝜎 (𝑥) = 0 . (7.1)

The Zinn-Justin equation is usually interpreted as a symmetry constraint for
Γ0 and it plays a crucial role in the perturbative renormalization of gauge theories.
For this reason, it is fundamental to have control on the possible terms that break
the Zinn-Justin equation, known as anomalies. Thanks to its linearity in the first
derivatives of the effective action, this anomalies can be captured by the cohomol-
ogy of the BV differential. In fact, the Zinn-Justin equation can interpreted in a way
formally identical to the CME,

(Γ0,Γ0) = 0 ,

where the brackets (·, ·) are defined declaring the classical BRST sources 𝜎 as con-
jugate variables to the fields 𝜙. At lowest order in ℏ, the Zinn-Justin equation gives
a consistency condition on candidate anomalies 𝐴 in the form

S𝐴 = 0 ,

121
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where S is the linearised Slavnov operator. Terms in the form 𝐴 = SΘ can be re-
absorbed through field redefinitions in the couplings, and so anomalies are con-
strained by the cohomology of the Slavnov operator [12, 22]. In the same way, ex-
panding the effective action in loop order, the Zinn-Justin equation provides an
infinite tower of equations that the effective action must satisfy, which can be writ-
ten as cohomological constraints based on the Slavnov operator. Since it is pos-
sible to prove that the Slavnov operator and the BV differential have isomorphic
cohomologies, cohomological problems reduce to the study of 𝐻 (𝑠|d) and 𝐻 (𝑠) at
various form degrees and ghost numbers. Notice that cohomological methods are
particularly relevant for perturbatively non-renormalizable theories, since they do
not rely on power counting renormalizability.

In the presence of a non-invariant regulator term𝑄𝑘, the Zinn-Justin equation
is modified by a symmetry breaking term that, in the context of fRG, is written as
[105] ∫

𝑥

𝛿Γ𝑘
𝛿𝜙(𝑥)

𝛿Γ𝑘
𝛿𝜎 (𝑥) = 𝑖ℏ

∫
𝑥,𝑦

𝑞𝑘 (𝑥)𝐺𝑘 (𝑥, 𝑦)
𝛿2Γ𝑘

𝛿𝜎 (𝑥)𝛿𝜙( 𝑦) . (7.2)

A detailed discussion of the mSTI can be found e.g. in Ref. [201].
This equation is called modified Slavnov-Taylor identity, and it is interpreted as

the breaking of the symmetries of the effective action by the regulator-dependent
term. In the 𝑘 → 0 limit, the mSTI reduces to the Zinn-Justin equation.

Since the mSTI are derived by the same functional as the flow equations, an
exact solution of the Wetterich equation also satisfies the mSTI, governing how
the symmetry are broken and restored along the flow.

Although conceptually satisfying, practical computations are based on approx-
imation schemes for the RG flow equations, usually in the form of a truncation
in parameter space. In this case the mSTI becomes a non-trivial constraint on the
truncation, and solving the flow equation with an approximated effective average
action that also satisfies the mSTI can become a difficult task. In fact, a standard
strategy [214] is to find a suitable truncation scheme for the flow equation, which
in general does not satisfy the mSTI, andmeasure the quality of the approximation
by the order of magnitude of the mSTI breaking term.

Since the regulator dependent term is proportional to a second-order deriva-
tive of the effective average action, one cannot use cohomological methods [22] to
discuss the renormalization of the effective action. For these reasons, many alter-
natives have been pursued in the literature, in particular in constructingmanifestly
gauge invariant flows (see e.g. theworks byMorris, initiated in 1999 [192]). However,
these attempts usually come at the price of rather involved computations.

In the following Section, we will modify the generating functional 𝑍𝑘 in order
to obtain extended Slavnov-Taylor identities. These share the same linear structure as
in the non-regularised case, and therefore are amenable to cohomological methods.

In order to obtain the extended Slavnov-Taylor identities, we first need to en-
large the space of fields and sources by two additional terms. The first one is a
source term for the BRST variations of the fields, Σ. The classical BRST sources
𝜎 are conjugate variables to the mean fields 𝜙; together, they control the symme-
tries of the effective average action just as antifields and field configurations (𝜑‡, 𝜑)
control the symmetries of the bare action via the QME. The term Σ appears in the
regularised generating functional 𝑍𝑘, and can be understood as a further deforma-
tion of the interaction by an automorphism.
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The second addition is of a source term 𝐻 for the BRST variation of the reg-
ulator term. By including this term, we can extend the BV differential to a new,
scale-dependent differential 𝑠𝑘, so that the combination 𝐻 + 𝑄𝑘 is 𝑠𝑘−exact. Thus,
also the extended classical action 𝐼 + 𝑄𝑘 + 𝐻 is 𝑠𝑘−exact, extending the BV invari-
ance of the bare action 𝐼 . The use of a local regulator is crucial to have an extended
BV invariance, since in this case the regulator kernel 𝑞𝑘 is a local field, and thus it
is possible to introduce an auxiliary field [ so that 𝑠𝑘[ = 𝑞𝑘.

The extended BV invariance translates into an extended Slavnov-Taylor iden-
tity for the effective average action, sharing the same structure as in the unregu-
larised case. Since this identity controls the symmetries of the effective average
action, just as the QME controls the symmetries of the bare action, we call this
extended Slavnov-Taylor identity effective master equation (EME), Eq. (7.21). The
EME can be solved by cohomological methods, as the Zinn-Justin equation. Since
the cohomology of 𝑠𝑘 (or rather of its effective counterpartS𝑘) is isomorphic to the
cohomology of the BV differential 𝑠, the cohomology 𝐻 (𝑠) controls the functional
dependence of the effective average action on the mean fields and classical BRST
sources.

Before entering the details of the discussion, we briefly comment on a differ-
ence in treatment with respect to the first formulation of the EME [85].

Here, we consider only the state-evaluated generating functionals. It follows
that the EME that we prove in the next sections is slightly different from the one
that holds for the “algebraic” effective average action [85]. In fact, the two equations
differ by a term that vanish on-shell, i.e. the action of the Koszul operator on the ef-
fective average action. This does not modify the interpretation and the subsequent
discussion of the results. The algebraic relations (the RG flow and the EME) may
be seen as more fundamental, since evaluating them on a state gives the equations
that we report here. However, state-evaluated generating functionals have a clearer
physical interpretation as generating functionals of Green’s functions. In any case,
the derivation in both cases follow the same steps.

7 . 1 modified slavnov-taylor identities

Before deriving the EME, we briefly show how to derive the mSTI in our context.
This allows us tomake contactwith existing literature, and to explain the role of the
classical BRST sources Σ. We derive the modified Slavnov-Taylor identities only in
the case of Yang-Mills-type theories, such as Yang-Mills and gravity, that are linear
in the antifields. However, the sources 𝜎 can be defined more generally. These are
classical sources, coupled to the fields by

Σ(𝜑; 𝜎 ) := 𝐼𝑎𝑓 (𝜑, 𝜑‡ = 𝜎 ) = 𝛼𝜎𝜑 (𝐼𝑎𝑓 )
����
𝜑‡=0

. (7.3)

The automorphism 𝛼𝜎𝜑 substitutes to the antifields the classical sources 𝜎 . More-
over, notice that

𝑉 + Σ = 𝛼𝜎𝜑 (𝑉 ) = 𝑉 (𝜑, 𝜑‡ + 𝜎 ) ,

so that Σ can be understood as a gauge-fixed interaction. In the case of theories that
are linear in the antifields, as Yang-Mills and gravity, Σ is simply

Σ =

∫
𝑥

𝜎 (𝑥){𝜑, 𝐼} =
∫
𝑥

𝜎 (𝑥) 𝛿𝑉

𝛿𝜑‡(𝑥)
.
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The classical sources 𝜎 couple on-shell to theBRSTvariation only,𝜔(Σ) =
∫
𝑥
𝜎𝜔(𝛾𝜑),

since 𝜔(𝛿𝜑) = 0; for this reason, they have been historically called BRST sources.

Remark 7.1. The sources 𝜎 are called classical BRST sources because they are com-
mutative (the★− and𝑇−products do not act on them) and, on-shell, they only cou-
plewith theBRSTvariation of the fields:𝜔(𝑅𝑉 (𝑠𝜑)) = 𝜔(𝑅𝑉 (𝛾𝜑)), since𝜔(𝑅𝑉 (𝛿𝜑)) =
𝜔(𝛿0𝜑) = 0 by Lemma 2.1.

Historically, the cohomology of the BV operator is known as local BRST coho-
mology [22]. Here we follow the historical convention, although the main object of
interest is the BV operator 𝑠. ■

Lemma 7.1. If 𝑉 is linear in the antifields, Σ is invariant under { · , 𝑉 }.

Proof. We prove this by direct computation.

{𝑉, Σ}𝑇 =

∫
𝑥

𝜎

{
𝑉,

𝛿𝑉

𝛿𝜑‡

}
𝑇

=

∫
𝑥

𝜎
1
2
𝛿

𝛿𝜑‡
{𝑉, 𝑉 }𝑇

=

∫
𝑥

𝜎
𝛿

𝛿𝜑‡
(𝑖ℏΔ𝑉 − {𝑉, 𝐼0}𝑇 ) = 0 .

We used the QME between the first and second line, and the linearity of 𝑉 in the
antifields in the final step.

The regularised generating functional now is defined as

𝑍𝑘 ( 𝑗, 𝜎 ) := 𝜔
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + Σ + 𝑄𝑘)

]
. (7.4)

The definitions of𝑊𝑘, Γ𝑘, and of the mean value operator, in terms of 𝑍𝑘, are the
same as before, (4.14), (4.5), and (4.18).

Usually, the Slavnov-Taylor identities are derived in the path integral approach
starting from the invariance of the integral under re-parametrisations in the field
space, and assuming invariance of the field measure, so that for an infinitesimal
BRST transformation

0 = 𝑠𝑍( 𝑗) =
∫

𝜑𝜑‡𝑠𝑒
𝑖
ℏ (𝐼 (𝜑,𝜑

‡ )+𝐽 (𝜑)+Σ) .

Following the same approach in the algebraic formalism, we start by computing
the free BV variation of the “integrand” of 𝑍𝑘, i.e., the Bogoliubov map before state
evaluation. The free BV variation is given by the action of the free Koszul-Tate
differential, because we decomposed the action so that there are no antifields in the
quadratic term 𝐼0; thanks to the QME (3.35), the free BV variation can be written as

𝛿0
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + Σ + 𝑄𝑘)

]
= 𝑆(𝑉 )−1 ★ [𝛿0𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ)] . (7.5)

Now, we can use relation (3.29) with 𝑋 = 𝑆(𝑉 ) and 𝑌 = 𝑆( 𝐽 + 𝑄𝑘 + Σ). We
observe that {𝑆(𝑄𝑘 + Σ), 𝐼0} = 0 since neither terms contain antifields, while
{𝑆(𝑉 ), 𝐼0}★ vanishes thanks to the QME (3.35). So we can write

𝛿0
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + Σ + 𝑄𝑘)

]
= −𝑖ℏ𝑆(𝑉 )−1 ★ {𝑆(𝑄𝑘 + 𝐽 + Σ), 𝑆(𝑉 )}𝑇 (7.6)

Since the antibracket acts as a derivation, we arrive at

𝛿0
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + Σ + 𝑄𝑘)

]
=
𝑖

ℏ
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 {𝑄𝑘 + 𝐽, 𝑉 }𝑇 ]

(7.7)
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Σ does not contribute to the antibracket thanks to Lemma 7.1.
Finally, since 𝐽 is linear in the fields, we have

𝑖

ℏ
𝑆(𝑉 )−1 ★ [𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇 {𝐽, 𝑉 }𝑇 ]

=
𝑖

ℏ

∫
𝑥

𝑗(𝑥)𝑆(𝑉 )−1 ★

[
𝑆(𝑉 + 𝑄𝑘 + 𝐽) ·𝑇

𝛿𝑉

𝛿𝜑‡

]
=

∫
𝑥

𝑗(𝑥) 𝛿

𝛿𝜎 (𝑥)
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽)

]
,

by definition of Σ. Now, we can evaluate on any Hadamard state 𝜔 Eq. (7.7). Notice
that the state evaluation does not act on classical sources ( 𝑗, 𝜎 ), so that the deriva-
tive with respect to the sources commute:

𝜔

(
𝛿

𝛿𝜎 (𝑥)
[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽)

] )
=

𝛿

𝛿𝜎
𝑍𝑘 .

On the other hand, the Koszul differential maps any functional into the space of
functionals that vanish on-shell, F0. Since F0 ⊆ Ker 𝜔, the l.h.s. of (7.7) vanishes
on-shell.

From Eq. (7.7), we write the action of 𝛿0 on 𝑍𝑘 as

0 =

∫
𝑥

𝑗(𝑥) 𝛿𝑍𝑘

𝛿𝜎 (𝑥) +
𝛿

𝛿𝜎 (𝑥) 𝜔
[
𝑆(𝑉 )−1 ★

(
𝑆(𝑉 + 𝑄𝑘 + 𝐽 + Σ) ·𝑇

𝛿𝑄𝑘

𝛿𝜑(𝑥)

)]
. (7.8)

The first term in the right-hand side is the standard term appearing in theWard
identity for the gauge symmetry of the generating functional𝑍( 𝑗), while the second
term is the contribution from the regulator.

From the identity for 𝑍𝑘, the symmetry identities for𝑊𝑘 and the effective av-
erage action follow by substituting the definitions (4.14) and (4.5), and recalling the
identities

𝛿𝑍𝑘

𝛿𝜎
=
𝑖

ℏ
𝑒
𝑖
ℏ𝑊𝑘

𝛿𝑊𝑘

𝛿𝜎

𝛿0𝑍𝑘 =
𝑖

ℏ
𝑒
𝑖
ℏ𝑊𝑘 𝛿0𝑊𝑘

𝑒
𝑖
ℏ𝑊𝑘

𝛿𝑊𝑘

𝛿 𝑗(𝑥) = 𝑆(𝑉 )−1 ★ (𝑆(𝑉 + 𝑄𝑘 + 𝐽 + Σ) ·𝑇 𝜑(𝑥))

𝛿𝑄𝑘

𝛿𝜑(𝑥) = −𝑞𝑘 (𝑥)𝜑(𝑥) .

Using these relations, the Ward identity (7.8) becomes an identity for𝑊𝑘,

0 =

∫
𝑥

𝑒
𝑖
ℏ𝑊𝑘 𝑗(𝑥) 𝛿𝑊𝑘

𝛿𝜎 (𝑥) + 𝑖ℏ𝑞𝑘 (𝑥)
𝛿

𝛿𝜎 (𝑥)

[
𝑒
𝑖
ℏ𝑊𝑘

𝛿𝑊𝑘

𝛿 𝑗(𝑥)

]
.

By direct computation the last expression gives

0 =

∫
𝑥

(
𝑗(𝑥) − 𝑞𝑘 (𝑥)

𝛿𝑊𝑘

𝛿 𝑗(𝑥)

)
𝛿𝑊𝑘

𝛿𝜎 (𝑥) + 𝑖ℏ𝑞𝑘 (𝑥)
𝛿2𝑊𝑘

𝛿𝜎 (𝑥)𝛿 𝑗(𝑥) . (7.9)
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Finally, changing variables from 𝑗 to 𝜙 =
𝛿𝑊𝑘

𝛿 𝑗𝜙
and making the substitutions

𝛿𝑊𝑘

𝛿𝜎
=
𝛿Γ𝑘
𝛿𝜎

(7.10)

𝑗 − 𝑞𝑘
𝛿𝑊𝑘

𝛿 𝑗𝜙
= − 𝛿Γ𝑘

𝛿𝜙
(7.11)

𝛿2𝑊𝑘

𝛿𝜎 ( 𝑦)𝛿 𝑗(𝑥) =

∫
𝑧

𝐺𝑘 (𝑥, 𝑧)
𝛿2Γ𝑘

𝛿𝜙(𝑧)𝛿𝜎 ( 𝑦) , (7.12)

we get the modified Slavnov-Taylor identity:∫
𝑥

𝛿Γ𝑘
𝛿𝜙(𝑥)

𝛿Γ𝑘
𝛿𝜎 (𝑥) = 𝑖ℏ

∫
𝑥,𝑦

𝑞𝑘 (𝑥)𝐺𝑘 (𝑥, 𝑦)
𝛿2Γ𝑘

𝛿𝜙(𝑥)𝛿𝜎 ( 𝑦) . (7.13)

The main difference from the off-shell treatment of the generating functionals
presented inRef. [85] is the absence, in the last equation, of theKoszulmap acting on
the algebraic effective average action, 𝛿0Γ𝑘. If we defined the generating functionals
without state evaluation, the term proportional to the Koszul map in the l.h.s of Eq.
(7.7) would actually contribute to the identity.

Remark 7.2 (Gauge dependence of the effective average action). The derivation of
the mSTI can be compared to the direct evaluation of the gauge dependence of Γ𝑘;
as we discussed in the Section 3.4, gauge dependence can be expressed evaluating
the non-vanishing terms of d

d_ 𝛼𝜓Γ𝑘. It is easy to see that

d
d_
𝛼𝜓Γ𝑘 =

d
d_
𝛼𝜓𝑊𝑘 = −𝑖ℏ𝑒 𝑖ℏ𝑊𝑘

d
d_
𝜔

(
𝑅�̃� (𝑆( 𝐽 + 𝑄𝑘))

)
,

where the last line is proportional to the term appearing in the condition for the
gauge independence of interacting observables (3.34), with 𝐹 = 𝑆( 𝐽 + 𝑄𝑘). Then,
the gauge dependence of the effective average action is given by

d
d_
𝛼𝜓Γ𝑘 = −𝑖ℏ𝑒 𝑖ℏ𝑊𝑘𝜔

[
𝑅�̃� (𝜓 ·𝑇 𝛼_𝜓 (𝑠𝑉𝑆( 𝐽 + 𝑄𝑘))

]
. (7.14)

It follows that Γ𝑘 is gauge dependent since 𝑆( 𝐽 +𝑄𝑘) is not in the cohomology of 𝑠.
■

7 .2 effective master equation

As discussed, since a second-order derivative of the effective average action appears
in the mSTI (7.13), cohomological methods to determine the structural form of Γ𝑘
are not available. We thus derive a different symmetry identity, closely related to
themSTI butwhich lets us discuss the regulator term in cohomology. The idea is an
adaptation of the treatment of symmetries broken by quadratic terms [257]. The key
insight is in recognising that the regulator term is “half of a contractible pair”: by
the inclusion of an auxiliary field [, it is possible to extend the configuration space,
so that the auxiliary field transforms into the regulator kernel 𝑞𝑘 by the action of
a scale-dependent BV differential 𝑠𝑘. Then, coupling [ to the BV variation of 𝜑2

by a term 𝐻 , the combination 𝑄𝑘 + 𝐻 becomes 𝑠𝑘−exact. The extended action
𝐼𝑒𝑥𝑡 = 𝐼0 + Σ + 𝐻 + 𝑄𝑘 is invariant under this extended BV differential, which can
be understood as an extended BV symmetry at any scale 𝑘. From the invariance of
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this extended action, a symmetry identity for the effective average action follows,
taking the form of an extended Slavnov-Taylor identity.

We first discuss the case of 𝑉 linear in the antifields, which includes the most
physically relevant cases of Yang-Mills theories and gravity; we will comment later
on how to proceed for a theory with 𝑉 at order 𝑙 in the antifields.

Definition 7.1 (Extended BV differential). We enlarge the extended configuration
space of fields Ēwith a new field [ ∈ g′ [−1] , and we define

𝐻 :=
1
2

∫
𝑥

[(𝑥){𝑉, 𝜑2(𝑥)} , (7.15)

together with an extended BV differential

𝑠𝑘 := 𝑠 +
∫
𝑥

𝑞𝑘 (𝑥)
𝛿

𝛿[
.

The variation of [ under 𝑠𝑘 given by

𝑠𝑘[(𝑥) = 𝑞𝑘 (𝑥) . (7.16)

Since 𝑠𝑘𝑞𝑘 = 0, the pair ([, 𝑞𝑘) form a contractible pair in the cohomology of
the extended BV differential 𝑠𝑘.

The pair ([, 𝑞𝑘) can be understood as an extension of the non-minimal sector.
In fact, defining

Ψ := −1
2

∫
𝑥

[(𝑥)𝜑2(𝑥) ,

a short computation shows that

𝑠𝑘Ψ = 𝐻 + 𝑄𝑘 . (7.17)

From its action on the fields, one can check that 𝑠𝑘 is a differential, since 𝑠2𝑘 = 0.
Moreover, the BV symmetry of the original action 𝐼 can nowbe extended to a larger
symmetry, encoded in the operator 𝑠𝑘, for the extended action 𝐼𝑒𝑥𝑡 (𝜑, 𝜑‡, 𝑗, 𝜎 , [) :=
𝐼0 + 𝑉 (𝜑, 𝜑‡ + 𝜎 ) + 𝑄𝑘 + 𝐻 = 𝐼 + Σ + 𝑄𝑘 + 𝐻:

𝑠𝑘𝐼𝑒𝑥𝑡 = 0 . (7.18)

Proof. From its action on the fields, one can check that 𝑠2
𝑘
= 0, so 𝑠𝑘 is a differ-

ential. In fact, first notice that 𝑠𝑘 is defined as a sum of two, commuting terms,
[𝑠,

∫
𝑥
𝑞𝑘 (𝑥) 𝛿𝛿[ ] = 0; this follows immediately from the fact that the original BV dif-

ferential and
∫
𝑥
𝑞𝑘

𝛿
𝛿[

act on different fields. Since 𝑠2 = 0, it remains to prove that∫
𝑥
𝑞𝑘

𝛿
𝛿[

is nilpotent; but this again is immediate to see, since [ and 𝑞𝑘 are a con-
tractible pair, so that the action of

∫
𝑥
𝑞𝑘

𝛿
𝛿[
on any functional of the field [ produces

a term which is proportional to 𝑞𝑘, and 𝑠𝑘𝑞𝑘 = 0 by definition.
The action of 𝑠𝑘 on 𝐼0 + 𝑉 is simply the action of the original BV differen-

tial 𝑠, and as such it vanishes for the CME; 𝑠𝑘Σ = 0 because Σ is both 𝜑‡− and
[−independent; and finally, 𝑠𝑘 (𝑄𝑘 + 𝐻) = 𝑠2𝑘Ψ = 0 because 𝑠𝑘 is a differential.

Remark 7.3 (Zinn-Justin equation for the extended action). The functional deriva-
tive in 𝐻 can be identified with the antifield of [, 𝛿

𝛿[
= [‡. Then, if we include the
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field [ in the multiplet 𝜑 = {, 𝑐, 𝑐, 𝑏, [}, and we define a new antifield contribu-
tion in the interactions 𝑉 → 𝑉 + 𝐻𝑎𝑓 = 𝑉 +

∫
𝑥
𝑞𝑘[

‡, Eq. (7.18) can be written in the
form of a CME,

(𝐼𝑒𝑥𝑡 , 𝐼𝑒𝑥𝑡) = 0 . (7.19)

Notice, however, that the addition of the term 𝐻𝑎𝑓 to the interaction term 𝑉 in the
generating functionals would introduce a new scale dependence in the effective av-
erage action. The RG flow equations would then acquire new terms, proportional
to the antifield [‡. Since state evaluation by 𝜔 sets the antifield to 0, these additional
contributions would be removed by the state evaluation in the RG equations.

For simplicity, in the followingwe do not include the antifield contribution 𝐻𝑎𝑓
in the generating functionals. In the same way, we do not introduce an effective
BRST source 𝜎[ for the BV variation of [; we will comment on its inclusion in
Remark 7.4. ■

Now, we want to discuss the consequences of the extended classical symmetry
(7.18) to the quantum correlation functions, deriving an equation for the effective
average action.

First, we define the new, [−dependent generating functional 𝑍𝑘 as

𝑍𝑘 ( 𝑗, 𝜎 , [) := 𝜔
(
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻)

)
. (7.20)

From this new, [−dependent definition of 𝑍𝑘, we define 𝑊𝑘 and Γ𝑘, as in Eq.
(4.14) and Definition (4.5). Since [ is a classical field (the quantum and time ordered
products do not act on it), we have 𝛿𝑊𝑘

𝑗[
= [ and 𝛿 Γ̃𝑘

𝛿[
= −𝑗[.

We can now derive the symmetry constraint on Γ𝑘. This symmetry identity is a
direct consequence of the QME, and as such it can be regarded as the translation of
the gauge independence of physical observables on the level of the effective average
action.

The identity is amain result of this thesis, and it is summarised in the following
theorem:

Theorem 7.2 (Effective master equation for the effective average action). If the
action 𝐼 is linear in the antifields, the Quantum Master Equation (3.35) implies a sym-
metry constraint on the effective average action Γ𝑘 (𝜙, 𝜎 , [), when the interaction terms
𝑉 are regular functionals:∫

𝑥

[
𝛿 Γ̃𝑘
𝛿𝜙(𝑥)

𝛿 Γ̃𝑘
𝛿𝜎 (𝑥) + 𝑞𝑘 (𝑥)

𝛿 Γ̃𝑘
𝛿[(𝑥)

]
= 0 , (7.21)

where we remember that Γ̃𝑘 = Γ𝑘 + 𝑄𝑘 (𝜙).

Proof. The proof works by showing that

−𝑖ℏ⟨⟩ =
∫
𝑥

[
𝛿 Γ̃𝑘
𝛿𝜙(𝑥)

𝛿 Γ̃𝑘
𝛿𝜎 (𝑥) + 𝑞𝑘 (𝑥)

𝛿 Γ̃𝑘
𝛿[(𝑥)

]
, (7.22)

where  := {𝑉, 𝐼0}𝑇 + 1
2 {𝑉, 𝑉 }𝑇 − 𝑖ℏΔ𝑉 .

By definition, we have

0 = ⟨⟩ = 𝑒− 𝑖
ℏ𝑊𝑘𝜔

[
𝑆(𝑉 )−1 ★ 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 𝑆(𝑉 ) ·𝑇 

]
, (7.23)
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where we recognise the alternative form of the QME (3.35):

0 = 𝜔
[
𝑆(𝑉 )−1 ★ 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 ), 𝐼0}★

]
. (7.24)

Now, we can use Eq. (3.29): setting 𝑋 = 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) and 𝑌 = 𝑆(𝑉 ), since
both 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) and 𝐼0 do not contain antifields, Eq. (3.29) becomes

𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 ), 𝐼0}★
= {𝑆(𝑉 ) ·𝑇 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★ + 𝑖ℏ{𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝑆(𝑉 )}𝑇 . (7.25)

Substituting the last expression in Eq. (7.24), we get

𝜔
[
𝑆(𝑉 )−1 ★ {𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★ + 𝑖ℏ{𝑆(𝑉 ), 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻)}𝑇

]
= 0 .

(7.26)
The first term vanishes, since it is a combination of ★−products with a term pro-
portional to the EOMs 𝛿 𝐼0

𝛿𝜑
= 𝑃0𝜑; more explicitly, it can be written using the QME

as

𝜔
[
𝑆(𝑉 )−1 ★ {𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★

]
= 𝜔

[{
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★

}]
= 0 .

The second term can be computed recalling that the time-ordered antibracket acts
as a derivation on 𝑆, so that Eq. (7.26) becomes

0 = 𝛿0𝑍𝑘 −
𝑖

ℏ
𝜔

[
𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝐽 + Σ + 𝑄𝑘 + 𝐻,𝑉 }𝑇

]
.

(7.27)
Σdo not contribute in the antibracket, as we proved in Lemma 7.1. Since𝑄𝑘+𝐻

is independent on the antifields, we have

{𝑄𝑘 + 𝐻,𝑉 }𝑇 = {𝑠𝑘Ψ , 𝐼}★ = {{Ψ , 𝐼}, 𝐼}★ +
∫
𝑥

𝑞𝑘{
𝛿Ψ

𝛿[
, 𝐼}★ .

The first term in the last step vanishes because 𝑠2 = 0; the second term gives

{𝑄𝑘 + 𝐻,𝑉 }𝑇 = −
∫
𝑥

𝑞𝑘 (𝑥)
𝛿

𝛿[(𝑥) {Ψ , 𝐼}★ = −
∫
𝑥

𝑞𝑘 (𝑥)
𝛿𝐻

𝛿[(𝑥) .

Substituting back in (7.27), we obtain

0 =

∫
𝑥

[
𝑗(𝑥) 𝛿𝑍𝑘

𝛿𝜎 (𝑥) − 𝑞𝑘 (𝑥)
𝛿𝑍𝑘

𝛿[(𝑥)

]
.

From the above expression, the result follows by noticing that

𝑒−
𝑖
ℏ𝑊𝑘

𝛿𝑍𝑘

𝛿𝜎
=
𝑖

ℏ
𝛿𝑊𝑘

𝛿𝜎
=
𝑖

ℏ
𝛿 Γ̃𝑘
𝛿𝜎

,

and similarly 𝛿𝑊𝑘

𝛿[
=

𝛿 Γ̃𝑘
𝛿[
. Recalling that

𝛿 Γ̃𝑘
𝛿𝜙

= −𝑗𝜙 we obtain the result.
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7 .2 . 1 Renormalised effective master equation

The above derivation strictly works for regular functionals only, sincewemade use
of relation (3.29) between quantum and time-ordered antibrackets. When working
with local functionals, we need to replace the 𝑇−products with the renormalized
ones. For simplicity of notation, we denote the renormalized objects with the same
symbol as the non-renormalized ones. However, in the renormalized case, some of
the passages above are modified.

The QME is substituted by the rQME (3.41), which we can write as

{𝑆(𝑉 ), 𝐼0}★ = 𝑆(𝑉 ) ·𝑇
(

1
2
{𝑉, 𝑉 }𝑇 + {𝑉, 𝐼0} − 𝑖ℏ △ (𝑉 )

)
= 0 .

The difference from the non-renormalized case is that the singular operator △ gets
replaced by the finite, but interaction-dependent term △(𝑉 ). Denoting

 =
1
2
{𝑉, 𝑉 }𝑇 + {𝑉, 𝐼0} − 𝑖ℏ △ (𝑉 ) ,

we get the analogue of Eq. (7.24), i.e.:

⟨⟩ = 0 = 𝑒−
𝑖
ℏ𝑊𝑘𝑆(𝑉 )−1 ★ [𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 ), 𝐼0}★] . (7.28)

The relation between the ★−bracket and the 𝑇−bracket in terms of the BV
laplacian (3.28), however, does not hold any more; it is substituted by the master
Ward identity (3.40).

We replace the argument used in the proof of Theorem (7.2) with the following
Lemma.

Lemma 7.3. The following relation holds in the renormalized theory:

𝑖ℏ{𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝑆(𝑉 )}𝑇
= {𝑆(𝑉 ) ·𝑇 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★ − 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 ), 𝐼0}★ . (7.29)

Proof. We apply the anomalous master Ward identity (3.40) in the following two
cases:

{𝑆(𝑉 ), 𝐼0}★ =
𝑖

ℏ
𝑆(𝑉 ) ·𝑇

[
{𝑉, 𝐼0}𝑇 + 1

2
{𝑉, 𝑉 }𝑇 + 𝑖ℏ △ (𝑉 )

]
, (7.30)

and

{𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★

=
𝑖

ℏ
𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇

[
{𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻, 𝐼0}𝑇

+ 1
2
{𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻, 𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻}𝑇 + 𝑖ℏ △ (𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻)

]
.

(7.31)

Now, we use the fact that 𝐽+𝑄𝑘+Σ+𝐻 does not depend on antifields, so its bracket
with 𝐼0 and with itself vanishes; therefore, Eq. (7.31) simplifies to

{𝑆(𝑉 ) ·𝑇 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★

=
𝑖

ℏ
𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇

[
{𝑉, 𝐼0}𝑇

+ 1
2
{𝑉, 𝑉 }𝑇 + {𝑉, 𝐽 + 𝑄𝑘 + Σ + 𝐻}𝑇 + 𝑖ℏ △ (𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻)

]
(7.32)
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Next, to obtain the r.h.s. of the statement (7.29), we subtract 𝑆( 𝐽+𝑄𝑘+Σ+𝐻)·𝑇 (7.30)
from (7.32) and obtain

{𝑆(𝑉 ) ·𝑇 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★ − 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 )·𝑇 , 𝐼0}★

=
𝑖

ℏ
𝑆(𝑉+𝐽+𝑄𝑘+Σ+𝐻)·𝑇

[
{𝑉, 𝐽+𝑄𝑘+Σ+𝐻}𝑇+𝑖ℏ△(𝑉+𝐽+𝑄𝑘+Σ+𝐻)−𝑖ℏ△(𝑉 )

]
(7.33)

To conclude the proof, we apply the fundamental theorem of calculus to obtain

△(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻) =
∫ 1

0
△𝑉+_ ( 𝐽+𝑄𝑘+Σ+𝐻 ) ( 𝐽 + 𝑄𝑘 + Σ + 𝐻)𝑑_ + △(𝑉 ) .

Since 𝐽 +𝑄𝑘 + Σ + 𝐻 does not depend on the antifields, the integrand in the above
expression is identically zero, so △(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻) − △(𝑉 ) = 0. Finally, we
use the derivation property of the bracket to arrive at

{𝑆(𝑉 ) ·𝑇 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝐼0}★ − 𝑆( 𝐽 + 𝑄𝑘 + Σ + 𝐻) ·𝑇 {𝑆(𝑉 )·𝑇 , 𝐼0}★
= −𝑖ℏ{𝑆(𝑉 + 𝐽 + 𝑄𝑘 + Σ + 𝐻), 𝑆(𝑉 )} . (7.34)

We are now ready to prove the main theorem of this Section.

Theorem 7.4 (Effective master equation for the renormalized effective average
action). If the action 𝐼 is linear in the antifields, the Quantum Master Equation (3.35)
implies a symmetry constraint on the effective average action Γ𝑘 (𝜑, 𝜑‡; 𝜙, 𝜎 , [):∫

𝑥

[
𝛿 Γ̃𝑘
𝛿𝜙(𝑥)

𝛿 Γ̃𝑘
𝛿𝜎 (𝑥) + 𝑞𝑘 (𝑥)

𝛿 Γ̃𝑘
𝛿[(𝑥)

]
= 0 . (7.35)

Proof. We substitute (7.29) into (7.28) and obtain again (7.26). We then proceed ex-
actly as in the proof of Theorem 7.2.

Since we derive the EME from the QME, the EME is a necessary requirement
on the effective average action to have a gauge-independent 𝑆−matrix. Requiring
that the EME holds at each order in perturbation theory, the zeroth order of the
EME reduces to the QME, so that the two identities are actually equivalent.

Notice that, due to the modification of the generating functional in Eq. (7.20),
the scale dependence of𝑍𝑘 is introduced by the extendedBVdifferential 𝑠𝑘, through
the term 𝐻 + 𝑄𝑘 = 𝑠𝑘Ψ . Even though the field [ enters the generating functional
only through the trivial part of the cohomology, the same does not hold for the
scale 𝑘. This implies that, although physical observables do not depend on [, they
still depend non-trivially on 𝑘.

A way of seeing this is expressing the flow equations for Γ𝑘 as

𝜕𝑘Γ𝑘 = ⟨𝜕𝑘𝑠𝑘Ψ⟩ − 𝜕𝑘𝑄𝑘 (𝜙) . (7.36)

Apart from the trivial contribution 𝜕𝑘𝑄𝑘 (𝜙), the 𝑘−derivative of the effective av-
erage action is not a 𝑠𝑘−exact term, precisely because the scale dependence comes
through the extended BV differential. This ensures that physical vertex functions
derived from Γ𝑘 depends non-trivially on 𝑘.
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Equation (7.21) encodes the invariance of the effective average action under
infinitesimal transformations generated by the Slavnov operatorS𝑘 :=

∫
𝑥

𝛿 Γ̃𝑘
𝛿𝜙

+𝑞𝑘 𝛿
𝛿[
,

S𝑘Γ̃𝑘 = 0 .

The Slavnov operator is the natural translation of the extended BV differential to
the space ofmean fields and classical BRST sources (𝜙, 𝜎 ). In this sense, the effective
average action is invariant under the same symmetries of the extended action 𝐼𝑒𝑥𝑡 =
𝐼0 + 𝑉 (𝜑, 𝜑‡) + 𝑄𝑘 + 𝐻 ,

𝑠𝑘𝐼𝑒𝑥𝑡 = 0 .

The infinitesimal symmetry transformations associated with the Slavnov operator
are

𝛿\𝜙 =
𝛿 Γ̃𝑘
𝛿𝜎

\ , 𝛿\[ = 𝑞𝑘\ . (7.37)

In general these differ from 𝑠𝜙 =
𝛿𝑉 (𝜙)
𝛿𝜑‡

. In fact, 𝛿 Γ̃𝑘
𝛿𝜎

=
𝛿Γ𝑘
𝛿𝜎
, since Γ̃𝑘 and Γ𝑘 differ by

a term independent of 𝜎 . Next we compute

𝛿Γ𝑘
𝛿𝜎

=

〈
𝛿𝑉

𝛿𝜑‡

〉
,

and observe that in general 〈
𝛿𝑉

𝛿𝜑‡

〉
≠
𝛿𝑉 (𝜙)
𝛿𝜑‡

. (7.38)

The two terms coincide if 𝑉 is linear both in fields and antifields. This agrees with
the known result saying that if an action is invariant under linear symmetries, then
the effective (average) action is also invariant under these same symmetries. In fact,
the linear symmetry 𝑠[ = 𝑞𝑘 , 𝑠𝑞𝑘 = 0 is inherited by Γ̃𝑘.

Remark 7.4 (Zinn-Justin equation for the effective average action). The effective
master equation (7.21) is written to emphasise the contribution coming from the
regulator term.

However, it is possible to rewrite Equations (7.18) and (7.21) to highlight the fact
that both 𝐼𝑒𝑥𝑡 and Γ̃𝑘 are invariant under the same symmetry transformation, en-
coded in the Zinn-Justin equation. As we commented below Eq. (7.18), by including
an antifield contribution associated with [ in the form 𝐻𝑎𝑓 =

∫
𝑥
𝑞𝑘[

‡, the invari-
ance of the extended action can be written as a CME, Eq. (7.19). In the same way,
we can introduce a classical BRST source for the variation of [, by including a term
Σ[ =

∫
𝑥
𝜎[𝑞𝑘 in 𝑍𝑘; by definition, it holds that 𝛿 Γ̃𝑘𝛿𝜎[

= 𝑞𝑘. It follows that the EME can
be written in Zinn-Justin form,∫

𝑥

𝛿 Γ̃𝑘
𝛿𝜙(𝑥)

𝛿 Γ̃𝑘
𝛿𝜎 (𝑥) =

1
2
(Γ̃𝑘, Γ̃𝑘) = 0 , (7.39)

where the bracket is defined declaring (𝜙, 𝜎 ) conjugate variables. The Zinn-Justin
equation for the effective action is the starting point of an inductive technique to
renormalization of gauge theories, both renormalizable and non-renormalizable
ones [12, 24].

Just as for the 𝐻𝑎𝑓 term, the source for the BRST variation of [ introduces an
additional 𝑘−dependence in the generating functional. There are two ways to deal
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with this additional term in the flow equation: i) one can simply evaluate the flow
for 𝜎[ = 0; or ii) since 𝜎[𝑞𝑘 is a classical contribution, we can subtract it from the
effective average action via a redefinition Γ𝑘 → Γ𝑘−

∫
𝑥
𝜎[𝑞𝑘. This term removes the

additional 𝑘−dependence in the RG flow equation and we get the same flow, Eq.
(5.6). ■

Example 7.1 (Yang-Mills theories). In the case of Yang-Mills theories, we canwrite
explicitly the new contributions Σ and 𝐻 . Σ by definition is

Σ = 𝐼𝑎𝑓 (𝜑‡ = 𝜎 ) =
∫
𝑥

𝐷𝑐𝜎 − 𝑖_𝑌𝑀

2
[𝑐, 𝑐]𝜎𝑐 .

On the other hand, Ψ is

Ψ = −1
2

∫
𝑥

[( ||2 + 𝑐𝑐) ,

and so 𝐻 is

𝐻 =

∫
𝑥

[(𝑥)
[
𝐷𝑐 +

𝑖

2
(𝑏𝑐 + _𝑌𝑀

2
𝑐[𝑐, 𝑐])

]
.

■

7 .2 .2 Effective master equation for general gauge theories

If 𝑉 is not linear in the antifields, the derivation above needs to be slightly modi-
fied. In order to derive an effective master equation for the effective average action
also in the general case, we can further exploit the analogy between Σ + 𝐻 and a
generalized gauge-fixing Fermion. Since for 𝜑‡−linear theories we introduced Σ
and 𝐻 as BRST-exact terms, for general theories we introduce the functional

Θ :=
∫
𝑥

𝜎 (𝑥)𝜑(𝑥) + 1
2
[(𝑥)𝜑2(𝑥) .

Then we have

𝛼Θ (𝑉 ) = 𝑉
(
𝜑‡ + 𝛿Θ

𝛿𝜑

)
= 𝑉

(
𝜑‡ + 𝜎 + [𝜑

)
,

and we define 𝑍𝑘 as

𝑍𝑘 := 𝑆(𝑉 )−1 ★ 𝑆(𝛼Θ (𝑉 ) + 𝑄𝑘 + 𝐽) . (7.40)

We nowuse the gauge-independence of the 𝑆−matrix (3.33), which is equivalent
to

1
2
{𝛼Θ (𝑉 ) + 𝐼0, 𝛼Θ (𝑉 ) + 𝐼0}𝑇 − 𝑖ℏ △ 𝛼Θ (𝑉 ) = 0 . (7.41)

The above identity holds thanks to the QME. Then, just as in the linear case, we
can write

0 = 𝑆(𝑉 )−1 ★ [𝑆( 𝐽 + 𝑄𝑘) ·𝑇 {𝑆(𝛼Θ (𝑉 )), 𝐼0}★] .

Following the same steps as in the 𝜑‡−linear case, we arrive at

0 =
𝑖

ℏ
𝜔

{
𝑆(𝑉 )−1 ★ [𝑆(𝛼Θ (𝑉 ) + 𝐽 + 𝑄𝑘) ·𝑇 {𝛼Θ (𝑉 ), 𝐽 + 𝑄𝑘}𝑇 ]

}
.
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Finally, we have

{𝐽, 𝛼Θ (𝑉 )}𝑇 =

∫
𝑥

𝑗(𝑥) 𝛿

𝛿𝜑‡(𝑥)
𝛼Θ (𝑉 ) =

∫
𝑥

𝑗(𝑥) 𝛿

𝛿𝜑‡(𝑥)
𝑉

(
𝜑‡ + 𝛿Θ

𝛿𝜑

)
=

∫
𝑥

𝑗(𝑥) 𝛿

𝛿𝜎 (𝑥) 𝛼Θ (𝑉 ) ,

and

{𝛼Θ (𝑉 ), 𝑄𝑘}𝑇 = −1
2

∫
𝑥,𝑦

𝑞𝑘 ( 𝑦)
𝛿𝜑2( 𝑦)
𝛿𝜑(𝑥)

𝛿

𝛿𝜑‡( 𝑦)
𝑉

(
𝜑‡ + 𝛿Θ

𝛿𝜑

)
= −

∫
𝑥

𝑞𝑘 (𝑥)
𝛿𝛼Θ (𝑉 )
𝛿[

.

Therefore, we arrive at

0 =

∫
𝑥

𝑗(𝑥) 𝛿𝑍𝑘

𝛿𝜎 (𝑥) + 𝑞𝑘 (𝑥)
𝛿𝑍𝑘

𝛿[(𝑥) . (7.42)

From here, the derivation of the effective master equation in Zinn-Justin form is
identical to the linear case.

7 .3 effective master equation and brst cohomology

Since the EME (7.2) has the same algebraic structure of the Zinn-Justin equation,
one can make use of standard methods to prove perturbative renormalizability,
see e.g. [257]. In this Section, we are interested in how the symmetry constrains
the functional dependence on the fields and the sources of Γ̃𝑘. The general form
of the effective average action compatible with the symmetry will then be used
as the input to solve the flow equation, i.e. to find the trajectories of the coupling
constants in the parameter space under rescalings of 𝑘.

Here, we propose a non-perturbativemethod to solve the effectivemaster equa-
tion (7.2). For simplicity, we consider only theories that are linear in antifields, such
as Yang-Mills and gravity; the extension to general gauge theories is straightfor-
ward.

The starting point is the observation that, since Γ𝑘 is defined from the action
of the Bogliubov map on some functional, it is a formal power series in ℏ [98, 149].
In the classical limit ℏ → 0, from its classical limit in Eq. (4.30) it follows that Γ̃𝑘
reduces to the classical action, with additional terms coming from 𝑄𝑘 and 𝐻:

Γ̃𝑘 →ℏ→0 𝐼𝑒𝑥𝑡 (𝜙, 𝜎 ) = 𝐼0(𝜙) + 𝑉 (𝜙, 𝜎 ) + 𝐻 (𝜙, [) + 𝑄𝑘 (𝜙) . (7.43)

The dependence of 𝑉 on the BRST sources 𝜎 comes from the Σ term, which is just
a copy of the antifield dependence of 𝑉 .

The above observation suggests to consider the decomposition

Γ̃𝑘 = 𝐼𝑒𝑥𝑡 + ℏΓ̂𝑘 . (7.44)

Notice that we are not assuming an approximation at first loop order, but simply
exploiting the fact the zeroth order of Γ̃𝑘 corresponds to the classical action to
separate the ℏ−dependent contribution Γ̂𝑘.
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Substituting the decomposition (7.44) in Eq. (7.21), we get

S𝑘𝐼𝑒𝑥𝑡 + ℏS𝑘Γ̂𝑘 + ℏ2 1
2
(Γ̂𝑘, Γ̂𝑘) = 0 , (7.45)

where we introduced the effective bracket

(𝐴, 𝐵) =
∫
𝑥

𝛿 𝐴

𝛿𝜙(𝑥)
𝛿 𝐵

𝛿𝜎 (𝑥) + (−1) |𝐴| 𝛿 𝐴

𝛿𝜎 (𝑥)
𝛿 𝐵

𝛿𝜙(𝑥) , (7.46)

defined by declaring the BRST sources to be conjugate to the respective effective
fields, i.e., (𝜙𝐴(𝑥), 𝜎 𝐵 ( 𝑦)) = 𝛿 𝐴𝐵𝛿 (𝑥 − 𝑦), where the indices 𝐴, 𝐵 run on the field
type. Moreover, the linearised Slavnov operator S𝑘 is

S𝑘𝐴 :=
∫
𝑥

𝛿 𝐼𝑒𝑥𝑡

𝛿𝜙(𝑥)
𝛿 𝐴

𝛿𝜎
+ (−1) |𝐴| 𝛿 𝐼𝑒𝑥𝑡

𝛿𝜎 (𝑥)
𝛿 𝐴

𝛿𝜙(𝑥) + 𝑞𝑘 (𝑥)
𝛿 𝐴

𝛿[(𝑥) . (7.47)

Since Γ̃𝑘 is a formal power series in ℏ, to solve the effective master equation,
each term in the above decomposition must vanish independently.

The above decomposition suggests to extend the classical BV algebra of the
functionals of the original fields and antifields (𝜑, 𝜑‡) to the space of functionals
of (𝜙, 𝜎 ) in the natural way. Thus, we complete the transition from the original
field configurations (𝜑, 𝜑‡) to the space of effective fields and BRST sources (𝜙, 𝜎 ),
where a natural notion of BV algebra is inherited from the original structure.

The three conditions coming from Eq. (7.45) can now be interpreted as coho-
mological constraints.

7 .3 . 1 Effective BV invariance of 𝐼𝑒𝑥𝑡

S𝑘𝐼𝑒𝑥𝑡 = 0 . (7.48)

This Equation is identically satisfied by the extended action, as we proved in Eq.
(7.18). It encodes the effective BV invariance of 𝐼𝑒𝑥𝑡 , where the effective BV transfor-
mations are

S𝑘𝜙 =
𝛿𝑉

𝛿𝜎
, S𝑘[ = 𝑞𝑘 , S𝑘𝑞𝑘 = 0 , (7.49)

The second part of the transformation shows that ([, 𝑞𝑘) forms a contractible pair.
This shows that 𝐼𝑒𝑥𝑡 plays the role of the proper solution to the CME in the space
of functionals of (𝜙, 𝜎 ).

7 .3 .2 Cohomology condition

S𝑘Γ̂𝑘 = 0 . (7.50)

This gives a non-trivial condition on the effective average action. As usual,S𝑘-exact
solutions can be re-absorbed by redefinitions of the fields [12, 22], and so Γ̂𝑘 must
be in the cohomology of S𝑘. The operator can be decomposed into

S𝑘 = S+
∫
𝑥

𝑞𝑘 (𝑥)
𝛿

𝛿[(𝑥) . (7.51)

The second term acts only on the non-minimal sector and guarantees that 𝑞𝑘 and
[ form a contractible pair [22]. Hence the non-trivial information about the coho-
mology of the effective BV operator is already encoded in S, which acts as:

S𝜙 = S𝑘𝜙 , S[ = 0 .
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This is identical to the action of the BV operator 𝑠, but acting on (𝜙, 𝜎 ) instead
of (𝜑, 𝜑‡). Hence, in particular, the effective antighost and the Nakanishi-Lautrup
fields (𝜙𝑐 , 𝜙𝑏) form a contractible pair, since 𝑐 and 𝑏 form a contractible pair.

The quantum contribution Γ̂𝑘 is then in the cohomology of the effective BV
operator S.

The cohomology of S is then determined by its minimal, regulator indepen-
dent sector. By standard arguments, the cohomology ofSon local functionals (that
is, integrals of local functions) is characterised by the cohomology group ofSmod-
ulo the exterior differential, 𝐻 𝑔,𝑛(S|𝑑), where 𝑔 is the effective-ghost number, the
degree associated to the effective field corresponding to ghost fields, and 𝑛 is the
form degree. Here we are working on the space of local 𝑛-forms, rather than local
functionals, as is standard in the literature [22].

Since the action of S in the space (𝜙, 𝜎 ) is identical to the action of 𝑠 in the
space (𝜑, 𝜑‡), the cohomology group 𝐻 𝑔,𝑛(S|𝑑) can be characterised by the stan-
dard treatment of local BRST cohomology [22].

Since 𝐼𝑒𝑥𝑡 has effective-ghost number 0, in absence of anomalies Γ̂𝑘 is deter-
mined by the BRST cohomology in ghost number 0, 𝐻0,𝑛(S) in the space of func-
tionals of (𝜙, 𝜎 ).

In principle, the computation of the BRST cohomology provides the most gen-
eral solution to the effective master equation. The effective average action is, in
general, non-local, and therefore the cohomology of the BRST operator 𝐻 (S) pro-
vides the most general restriction on its functional dependence on the mean fields.
However, one of the most used non-perturbative truncations for the effective av-
erage action is the derivative expansion,

Γ𝑘 =

∫
𝑥

𝑓 (𝜙, 𝜕`𝜙, . . . , 𝜕(`𝑖 . . . 𝜕`𝑛 )𝜙) (7.52)

up to some finite order 𝑛 in the order of the derivative. At each order in the trun-
cation, the effective average action is local, and it is thus possible to apply the the-
orems on local BRST cohomology. The assumption behind this truncation is that
non-local effects can be parametrised by 𝑘−dependent coefficients in front of the
derivative expansion. The restriction of the effective average action to the func-
tional form (7.52) implies that we can solve the effective master equation by stan-
dard local BRST cohomology techniques.

In the space of local functionals, the local BRST cohomology 𝐻0,𝑛(𝛾 |𝑑) is com-
pletely determined by powerful theorems [20–23].

7 .3 .3 Higher order cohomological restrictions

(Γ̂𝑘, Γ̂𝑘) = 0 . (7.53)

This condition tells us that, treating the regulator term as a generalised gauge-
fixing, the correction Γ̂𝑘 itself satisfies the sameZinn-Justin equation as the effective
action without regulator.

This condition can be discussed once the cohomological constraint (7.50) is
solved, as an identity or as an additional, non-trivial constraint. For example, in
effective-ghost number 0, general theorems for Yang-Mills-type theories [22] guar-
antee that all representatives of 𝐻0,𝑑 (S|𝑑), where 𝑑 the space-time dimension, can
be chosen to be strictly gauge-invariant, except for Chern-Simons forms for 𝑑 odd,
and in particular the BRST sources 𝜎 can be removed in all counter-terms. In this
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case, the condition (7.53) reduces to a trivial identity, since 𝛿 Γ̂𝑘
𝛿𝜎

= 0. Similar consid-
erations apply also for 𝐻1,𝑑 (S|𝑑), which controls gauge anomalies and where (7.53)
can provide a non-trivial constraint on the anomaly term.

7 .4 symmetries and the rg flow

Theorem (7.2) gives us powerful cohomologicalmethods to constrain the structural
form of the effective average action. However, Eq. (7.21) and itsmost important con-
sequence, (7.50), are only useful if they are compatible with the RG flow equation
(5.6), i.e., if solving the equation at fixed scale 𝑘0 implies that the condition is satis-
fied at all scales.

To prove that the effective master equation is preserved along the RG flow, we
consider the slightly more general problem of the flow for a composite, local oper-
ator 𝑂𝑘 (𝑥; 𝜑, 𝜕𝜑, . . .), that is, an operator with arbitrary dependence on the field 𝜑
and its derivatives, which might also depend on the cut-off parameter 𝑘. A strategy
to compute its flow equation is to further extend the definition of the generating
functional 𝑍𝑘, so that it also generates correlation functions between composite
operators [200]. We thus introduce a new classical source 𝜐, and we define

𝑍𝑘 ( 𝑗, 𝜎 , [, 𝜐) := 𝜔
[
𝑆(𝑉 )−1 ★ 𝑆 (𝑉 + 𝑄𝑘 + 𝐽 + Σ + 𝐻 + Υ𝑘)

]
, (7.54)

where Υ𝑘 :=
∫
𝑥
𝑂𝑘 (𝑥)𝜐(𝑥). The definitions for the 𝜐−dependent𝑊𝑘 (𝜐, 𝑗) and effec-

tive average action are then the familiar ones from Section 4.2. Since 𝑍𝑘 ( 𝑗, 𝜎 , [) =
𝑍𝑘 ( 𝑗, 𝜎 , [, 𝜐 = 0), the derivative of 𝑍𝑘 with respect to 𝜐, at 𝜐 = 0, recovers the cor-
relation functions for𝑂𝑘 in the original theory. We now compute the RG flow for
composite operators.

Proposition 7.5. Given a composite operator 𝑂𝑘 (𝑥; 𝜑, 𝜕𝜑, . . .), its flow equation is
given by

𝜕𝑘⟨𝑂𝑘⟩ = − 𝑖ℏ
2

∫
𝑥

𝜕𝑘𝑞𝑘 (𝑥) : 𝐺𝑘 (𝑥, 𝑥) :
𝛿2⟨𝑂𝑘⟩𝑘

𝛿𝜙(𝑥)𝛿𝜙(𝑥) : 𝐺𝑘 (𝑥, 𝑥) : +⟨𝜕𝑘𝑂𝑘⟩ . (7.55)

Proof. The derivation of the RG flow equation for 𝑍𝑘 ( 𝑗, 𝜐) follows the same steps
as in Section 5.1, with the addition of a contribution coming from the 𝑘−dependent
𝑂𝑘:

𝜕𝑘𝑍𝑘 ( 𝑗, 𝜐) =
𝑖

ℏ
𝑆(𝑉 )−1 ★

[
𝑆

(
𝑉 + 𝑄𝑘 + 𝐽 + Σ + 𝐻 +

∫
𝑥

𝑂𝑘𝜐

)
·𝑇 (𝜕𝑘𝑄𝑘 + 𝜕𝑘Υ𝑘)

]
.

(7.56)
Accordingly, the flow equation for the 𝜐−dependent effective average action gets
modified into

𝜕𝑘Γ𝑘 =
𝑖ℏ
2

lim
𝑦→𝑥

∫
𝑥

Tr [𝜕𝑘𝑞𝑘 (𝑥) : 𝐺𝑘 : (𝑥, 𝑦)] + ⟨𝜕𝑘Υ𝑘⟩𝜐 . (7.57)

Now, the derivative of 𝑊𝑘 (𝜐) with respect to 𝜐 gives, as usual, the mean value of
the corresponding operator𝑂𝑘,

𝛿𝑊𝑘

𝛿𝜐
= ⟨𝑂𝑘⟩𝜐 , (7.58)

and since we do not take the Legendre transform with respect to 𝜐, we have

𝛿Γ𝑘
𝛿𝜐

= ⟨𝑂𝑘⟩𝜐 , (7.59)
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where the mean value operator is taken for 𝑗 = 𝑗𝜙.
Therefore, the derivative with respect to 𝜐 of the RG flow equation (7.57) gives

the flow for the expectation value of the composite operator𝑂𝑘:

𝜕𝑘
𝛿Γ𝑘 (𝜐)
𝛿𝜐

=

− 𝑖ℏ
2

∫
𝑥

Tr

{
𝜕𝑘𝑞𝑘 : 𝐺𝑘 :

𝛿Γ(2)
𝑘

𝛿𝜐
: 𝐺𝑘 :

}
+ 𝑖

ℏ
(⟨𝑂𝑘 ·𝑇 𝜕𝑘Υ⟩𝜐 − ⟨𝑂𝑘⟩𝜐⟨𝜕𝑘Υ⟩𝜐) + ⟨𝜕𝑘𝑂𝑘⟩𝜐 .

The evaluation for vanishing source 𝜐 = 0 annihilates all terms proportional to Υ,
and so we arrive at the proposition.

From the RG flow for composite operators, it is easy to check the compatibility
of the effective master equation with the RG flow. In fact, the EME is equivalent
to ⟨⟩ = 0, thanks to Eq. (7.22). On the other hand, since does not
explicitly depend on 𝑘, its RG flow as a composite operator is

𝜕𝑘⟨⟩ = − 𝑖ℏ
2

∫
𝑥

Tr
{
𝜕𝑘𝑞𝑘 : 𝐺𝑘 :

𝛿2⟨⟩
𝛿𝜙𝛿𝜙

: 𝐺𝑘 :
}
. (7.60)

Since the flow of the operator is proportional to the operator itself, if the EME is
satisfied at some scale 𝑘 = Λ, ⟨⟩|𝑘=Λ = 0, it is automatically satisfied at all
scales.



8 Applications

8 . 1 local potential approximation

In Chapters 5 and 7 we laid down the formalism to investigate the RG flow of scalar
and gauge theories, in Lorentzian manifolds and for generic states, generalising
the Wetterich equation [246]. The flow is non-perturbative, and can be applied to
renormalizable as well as non-renormalizable theories.

In this Chapter we compute the approximate RG flow in some applications. In
particular, we focus our attention on the existence of non-trivial fixed points in the
flow, and their critical exponents.

In fact, the existence of an RG trajectory, depending on a finite number of pa-
rameters, connecting the well-defined limits for the effective average action in the
IR (𝑘 → 0) and the UV (𝑘 → ∞) proves the renormalizability of a theory. Typically,
the IR regime is controlled by the existence of a Gaussian fixed point, where the
couplings vanish. Therefore, the existence of a non-trivial UV fixed point in the ex-
act flow, connected to the Gaussian one, identifies a global RG trajectory, known
as separatrix, where the effective average action remains finite at all 𝑘.

Naturally, the existence of global RG trajectories in the full parameter space of
a theory is impossible to prove in general.We thus restrict our attention to a param-
eter subspace of the theory, characterised by a particular Ansatz for the effective
average action known as Local Potential Approximation.

The applications we discuss have two main purposes: first, to show that the
new formalism reproduces known results in special cases, and secondly, that it pro-
duces new interesting results in its wider field of application. We thus collect here
a series of examples. We start discussing the textbook example of an interacting
scalar field theory in flat spacetime. In Minkowski vacuum, and in 4 dimensions,
we recover the known result that there is no non-trivial fixed point, the famous
triviality problem of scalar field theory [4, 71]. Moreover, in 3 dimensions, the RG
flow exhibits theWilson-Fisher fixed point [251]. Even though the value of the fixed
point is scheme-dependent, we recover standard results on the critical exponents.

To show that the RG flow equations can be applied to more general states, we
then study the RG flow of a scalar field in Minkowski, choosing a KMS state (a
thermal equilibrium state) at inverse temperature 𝛽 for the free theory as reference
state. In this case, we will see that the temperature introduces a new dimensionful
parameter in the flow, allowing for the existence of a non-trivial fixed point even
in 4 dimensions. Themechanism behind this fixed point is similar to a dimensional
reduction, already discussed in the literature [177, 216, 236]. This effect demonstrates
that different reference states dramatically change the RG flow of the same theory.
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Finally, we apply the RG flow in curved spacetimes. We consider the simple
example of a scalar field propagating over a de Sitter background. Similar to the
thermal case, the curvature plays the role of an additional dimensionful parameter
in the flow, other than 𝑘, and it is possible to identify again a non-trivial fixed point.

After the study of the scalar field, we study a theory of quantum gravity based
on the metric tensor, known asQuantum Einstein Gravity. In fact, one of the main
motivations to study the generalisation of the Wetterich equation to Lorentzian
manifolds comes from the Asymptotic Safety scenario in quantum gravity [241,
242], in which gravity becomes non-perturbatively renormalizable thanks to a non-
trivial fixed point in its RG flow, known as the Reuter fixed point.

First realised in 2 + 𝜖 dimensions [76, 129], the AS scenario in four dimen-
sions has been explored through lattice simulations [11, 180], and, in the continuum,
through functional Renormalization Group (fRG) techniques [41, 47, 198, 204, 214,
219, 226].While lattice computations are based on a regularisation of the Lorentzian
path integral, fRG approaches aremostly based on the Euclidean formulation of the
Wetterich equation [191, 246], with few exceptions, based on foliated backgrounds
in the ADM formalism [43, 184] or Minkowski space [108].

Here, we apply the Lorentzian RG flow equations (5.6) to quantum gravity. The
flow is state dependent, as we discussed; while a state for the graviton in general
spacetimes is not known, here we show that the universal terms that must con-
tribute in the FRGE for any state, and in all backgrounds, already determine the
existence of a Reuter-type fixed point for Lorentzian quantum gravity.

In order to apply the RG flow to all these cases, we need to approximate the ef-
fective average action. The standard approximations of the fRG literature work by
truncating the functional dependence of the effective average action to some finite
sum of monomials of the fields, with 𝑘−dependent coupling constants. The func-
tional derivatives of the RG flow equations then provide the flow of these constant
with 𝑘, and their dimensionless counterparts define the 𝛽−functions.

Here, we choose the simplest possible approximation, known in the literature
as Local Potential Approximation (LPA). The LPA is based on twomain assumptions.
First, we assume that the effective potential 𝑈𝑘, defining the effective average ac-
tion through equation (5.8), is a local functional of the fields that does not contain
derivatives, and that the same holds for its second functional derivative; this is the
approximation that we calledNo-Derivative Approximation in Chapter 6, and takes
the form

𝑈𝑘 (𝜙) =
∫
𝑥

𝑢(𝜙(𝑥), 𝑘)𝑓 (𝑥) , 𝑈
(2)
𝑘

(𝜙) (𝑥, 𝑦) = 𝜕2
𝜙
𝑢(𝜙(𝑥), 𝑘)𝑓 (𝑥)𝛿 (𝑥, 𝑦) . (8.1)

In this approximation, 𝑓 as usual denotes an IR cut-off function, so that the integral
is IR convergent: we then have 𝑓 = 1 on the relevant part of spacetime we are
studying, and 𝑓 ∈ 𝐶∞

𝑐 with supp 𝑓 ⊆  for some compact region  ⊂ .
Moreover, after deriving𝑈 (2)

𝑘
we choose to set the field to a constant through-

out the region , 𝜙(𝑥) = 𝜙. Thanks to this approximation, the functions 𝑢(𝜙, 𝑘)
and 𝜕2

𝜙
𝑢(𝜙, 𝑘) are constant in space.

The key feature of the NDA is the absence of derivatives of the Dirac delta in
𝑈

(2)
𝑘

; it follows that the quantum wave operator Γ(2)
𝑘

− 𝑞𝑘 = 𝑃0 − 𝑞𝑘 + 𝑈 (2)
𝑘

is a
field-dependent, non-linear potential perturbation of the free wave operator 𝑃0.

The LPA however proceeds further, approximating the effective potential to a
mass perturbation of the bare action. The idea is the following.
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We start expanding Γ𝑘 close to a solution 𝜙𝑐𝑙 of 𝛿Γ𝑘𝛿𝜙 |𝜙𝑐𝑙 = 0, so that

Γ𝑘 (𝜙) = Γ𝑘 (𝜙𝑐𝑙) +
1
2
Γ(2)
𝑘

(𝜙𝑐𝑙) (�̂� ⊗ �̂�) + (�̂�3) = Γ𝑘 (𝜙𝑐𝑙) + Γ𝑡𝑘 (�̂�) + (�̂�3) ,

where we introduced the fluctuation field �̂� := 𝜙 − 𝜙𝑐𝑙 and the truncated effective
action Γ𝑡

𝑘
, disregarding the irrelevant constant Γ𝑘 (𝜙𝑐𝑙). By a slight abuse of notation,

we denoted
Γ(2)
𝑘

(𝜙𝑐𝑙) (�̂� ⊗ �̂�) = ⟨Γ(2)
𝑘

(𝜙𝑐𝑙), �̂� ⊗ �̂�⟩ .
In terms of the decomposition of the effective average action, Eq. (5.7), the Γ𝑡

𝑘

defines the truncated effective potential𝑈 𝑡
𝑘
as

Γ𝑡𝑘 (�̂�) =
1
2
Γ(2)
𝑘

(𝜙𝑐𝑙) (�̂� ⊗ �̂�) = 𝐼0(�̂�) +
1
2
𝑈

(2)
𝑘

(𝜙𝑐𝑙) (�̂� ⊗ �̂�) =: 𝐼0(�̂�) +𝑈 𝑡
𝑘 (𝜙𝑐𝑙 , �̂�) .

The LPA approximates Γ𝑘 (𝜙𝑐𝑙 + �̂�) with Γ𝑡𝑘 (𝜙𝑐𝑙 , �̂�), where 𝜙𝑐𝑙 is a classical back-
ground and the dynamical mean field is the fluctuation field �̂�. We now want to
understand which bare action 𝐼 𝑡0 produces Γ

𝑡
𝑘
, just as Γ𝑘 is the effective average ac-

tion produced by 𝐼 = 𝐼0 + 𝑉 . By Definition 5.8 of the effective potential, we have

𝑈
(1)
𝑘

(𝜙) = ⟨𝑇𝑉 (1)⟩ = ⟨𝑇𝑀 (1)⟩ + (�̂�2) ,

where 𝑀 is the interaction term approximating 𝑉 , so that

𝛿

𝛿 �̂�
𝑈 𝑡
𝑘 (𝜙𝑐𝑙 , �̂�) = ⟨𝑇 𝛿𝑀

𝛿𝜑
⟩ .

Now, since𝑈 𝑡
𝑘
is quadratic in �̂�, it follows that

𝛿

𝛿 �̂�
𝑈 𝑡
𝑘 (𝜙𝑐𝑙 , �̂�) =

𝛿

𝛿𝜙
𝑈 𝑡
𝑘 (𝜙𝑐𝑙 , 𝜙) = ⟨ 𝛿

𝛿𝜑
𝑈 𝑡
𝑘 (𝜙𝑐𝑙 , 𝜑)⟩ = ⟨𝑇 𝛿𝑀

𝛿𝜑
⟩ ,

and so 𝑇𝑀 (1) (𝜑) = 𝛿

𝛿𝜑
𝑈 𝑡
𝑘
(𝜙𝑐𝑙 , 𝜑). Again discarding irrelevant constants it follows

that the truncated bare action 𝐼 𝑡0 producing the truncated effective average action
is

𝐼 𝑡0 = 𝐼0 + 𝑀 = 𝐼0(𝜑) +
1
2
𝑈

(2)
𝑘

(𝜙𝑐𝑙) (𝜑) ,

where 𝑈 (2)
𝑘

(𝜙𝑐𝑙) is equal to the contribution to the truncated Γ𝑡
𝑘
coming from the

potential 𝑈𝑘. The truncated action 𝐼 𝑡0 is the bare action producing the truncated
effective average action of the LPA. Decomposing the full action 𝐼 = 𝐼0+𝑉 into 𝐼 =
𝐼 𝑡0+ = 𝐼0+𝑀+ , we see that the LPA consists in discarding the interacting terms
 = 𝑉−𝑀. The term𝑀 contains the residual information about the interactions of
the full Lagrangian. The action 𝐼 𝑡0 then contains the usual kinetic term, plus a non-
trivial, classical background, acting as a 𝜙𝑐𝑙-dependentmass for the fluctuation field
�̂�.

From the discussion in Section 5.2.2, it follows that the interacting propagator
𝐺𝑘 is the Feynman propagator with a mass 𝑀𝑘 = 𝑚2 + 𝑘2 − 𝑈 (2)

𝑘
. We prove the

same result using the PPA in the following proposition.

Proposition 8.1 ([95]). The perturbative expression of 𝐺𝑘 in terms of the propagators
for 𝑃0 − 𝑞𝑘 converges, and it equals the Feynman propagator for the quantum wave
operator 𝑃0 − 𝑞𝑘 +𝑈 (2)

𝑘

𝐺𝑘 = −𝑖Δ
𝐹,𝑘,𝑈

(2)
𝑘

. (8.2)
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Proof. To prove the statement, we analyse the perturbative construction of 𝐺𝑘

through the Bogoliubov map, approximating 𝐺𝑘 = ⟨𝑇𝜑2(𝑥)⟩𝑐.
The truncated action 𝐼 𝑡0 defining the effective average action in the LPA, and the

free action 𝐼0 and 𝐼 𝑡0 differ only by the quadratic term 𝑀. We can then apply the
PPA to construct the interacting algebra of 𝐼 𝑡0 in the free algebra with propagators
coming from 𝐼0. In fact, the Bogoliubov map depends only on the interaction term
𝑀, which is a quadratic perturbation.

In fact, we want to use the Bogoliubov map 𝑅 constructed around the new
action 𝐼 𝑡0 and consider only the zeroth order contribution.

In particular, making use of Theorem 4.1 in [95], we have that (cf. Eq. (2.47))

𝑅𝑉 = 𝑅+𝑀 = 𝑟𝑀 ◦ 𝑅𝑀𝜌 ◦ 𝜌 ,

where 𝑟𝑀 is the classical Møller map 𝑟𝑀 = 1 − Δ𝑅,𝑀𝑀
(2) defined in definition

(2.19), and 𝜌 intertwines the time ordered product 𝑇 constructed with Δ𝐹 with the
time-ordered product 𝑇𝑀 for the free theory 𝐼 𝑡0; in fact, 𝜌𝑇 = 𝑇𝑀 . The Feynman
propagator Δ𝐹,𝑀 defining 𝑇𝑀 is the one associated with the state 𝜔𝑀 , whose two-
point function reads 𝑟𝑀Δ+𝑟∗𝑀 . 𝑅

𝑀
𝜌𝑉

is the Bogoliubovmap constructed over the free
theory 𝐼 𝑡0.

Using the formula for 𝑅𝑉 in terms of 𝑅+𝑀 , the Bogoliubov map in the mean
value ⟨𝑇𝜑2⟩ defining the interacting propagator becomes

𝑅+𝑀 (𝑆( 𝐽𝜙 + 𝑄𝑘) ·𝑇 𝑇𝜑2) = 𝑟𝑀
(
𝑅𝑀𝜌 (𝑆𝑀 (𝜌𝑄𝑘 + 𝜌𝐽𝜙) ·𝑇 𝜌𝑇𝜑2)

)
.

𝑆𝑀 is the 𝑆−matrix of the 𝑇𝑀 time-ordered products. Now, discarding the contri-
butions containing  , the interacting propagator can be written in terms of the
Bogoliubov map as

−𝑖𝐺𝑘 = ⟨𝑇𝜑2⟩𝑐 ≃
𝜔𝑀 (𝑆𝑀 (𝜌𝑄𝑘 + 𝐽𝜙) ·𝑇𝑀 𝑇𝑀𝜑2)

𝜔𝑀 (𝑆𝑀 (𝜌𝑄𝑘 + 𝐽𝜙))
− 𝜙2 .

where we used the fact that 𝜌𝑇𝜑2 = 𝑇𝑀𝜑
2. The last expression above corresponds

to the computation of the interacting propagator in the free limit 𝐺 (0)
𝑘

, presented
in Section 5.2.2, where the 𝑇𝑀−products substitute the 𝑇−products, and 𝜌𝑄𝑘 sub-
stitute𝑄𝑘. It follows that, by the same derivation, the regularised, interacting prop-
agator in the LPA corresponds to the Hadamard-subtracted Feynman propagator
for a theory with mass perturbed by 𝑞𝑘 − 𝑀 (2) :

− 𝑖 : 𝐺 (0)
𝑘

: (𝑥, 𝑥)

= lim
𝑦→𝑥

(
𝜔𝑀 (𝑆𝑀 (𝜌𝑄𝑘 + 𝐽𝜙) ·𝑇𝑀 𝜑(𝑥) ·𝑇𝑀 𝜑( 𝑦))

𝜔𝑀 (𝑆𝑀 (𝜌𝑄𝑘 + 𝐽𝜙))
− 𝐻𝐹,𝑀,𝑘 (𝑥, 𝑦) − 𝜙(𝑥)𝜙( 𝑦)

)
= lim

𝑦→𝑥

(
Δ𝐹,𝑀,𝑘 ( 𝑦, 𝑥) − 𝐻𝐹,𝑀,𝑘 ( 𝑦, 𝑥)

)
, (8.3)

where Δ𝐹,𝑀,𝑘 is a Feynman propagator for the theory 𝐼 𝑡0 + 𝑄𝑘 obtained from the
two-point functionΔ+ of the state 𝜔 andwhere 𝐻𝐹,𝑀,𝑘 is the Hadamard parametrix
of the theory 𝐼 𝑡0+𝑄𝑘. More precisely, arguing as in the proof of Lemma 5.3, we have
that

Δ𝐹,𝑀,𝑘 =
∑︁
𝑛≥0

(−𝑖)𝑛Δ𝐹,𝑀 (𝑞𝑘Δ𝐹,𝑀)𝑛 (8.4)

where Δ𝐹,𝑀 = Δ+,𝑀 + 𝑖Δ𝐴,𝑀 is a Feynman propagator of the theory 𝐼 𝑡0, and it is
computed from Δ𝐹 = Δ+ + 𝑖Δ𝐴 using the Møller operators.
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The interacting propagator𝐺𝑘 in the LPA is thus the Feynman propagator for a
state 𝜔𝑀,𝑘, whose two-point function is Δ+,𝑀,𝑘. The r.h.s. of the RG flow equations
(5.24) in the LPA then is nothing but the expectation value of 𝜕𝑘𝑄𝑘 in a quasifree
state 𝜔𝑀,𝑘 whose two-point function is

Δ+,𝑀,𝑘 = 𝑟𝑀+𝑄𝑘
Δ+𝑟

∗
𝑀+𝑄𝑘

, (8.5)

and the RG flow equations takes the simple form

𝜕𝑘𝑈𝑘 (𝜙) = 𝜔𝑀,𝑘 [𝜕𝑘 (𝑄𝑘)] . (8.6)

According to the discussion in Section 5.2.3, the regularised propagator : 𝐺𝑘 : can be
written in two, equivalent ways, either by Hadamard subtraction of the Feynman
propagator, or of the two-point function. Since the latter has better convergence
properties, we can write the RG flow in the LPA in terms of the two-point function
of the state 𝜔𝑀,𝑘.

Actually, for 𝑞𝑘 = 𝑘2𝑓 in the region where the cut-off function 𝑓 is 1, the RG
flow equation in the LPA is

𝜕𝑘𝑈𝑘 (𝜙) = − lim
𝑦→𝑥

∫
𝑥

𝑘𝑓 (𝑥) (Δ𝑆,𝑀,𝑘 ( 𝑦, 𝑥) − 𝐻𝑀,𝑘 ( 𝑦, 𝑥)) , (8.7)

where Δ𝑆,𝑀,𝑘 is the symmetric part of the two-point function Δ+,𝑀,𝑘 and 𝐻𝑀,𝑘 is
the Hadamard function related to the theory whose action is 𝐼 𝑡0+𝑄𝑘 = 𝐼0+𝑀+𝑄𝑘.

The regularisation provided by the point splitting procedure discussed here is
compatiblewith the principles of local covariance [158, 162].Many explicit computa-
tions of similar point-splitting regularisations are already present in the literature
on flat and curved spacetimes (e.g. in de Sitter [90]).

Remark8.1. Wecan adapt the discussion above in order to include awavefunction
renormalization. We discuss its inclusion in the case of a massless scalar field only
for definiteness, but it can be generalised to Yang-Mills-type theories as well.

In this case, we start with an Ansatz for the effective average action in the form

Γ𝑘 (𝜙) = −
∫

d𝑑𝑥
( 𝑧𝑘

2
∇𝑎𝜙∇𝑎𝜙 +𝑈𝑘 (𝜙)

)
.

This approximation scheme is known as LPA’. It follows by an argument completely
parallel to that for the LPA that the truncated effective action takes the expression

Γ𝑡𝑘 = 𝑧𝑘𝐼0(�̂�) +𝑈𝑘 (𝜙𝑐𝑙 , �̂�) ,

and, therefore, the truncated bare action 𝐼 𝑡0 producing the truncated effective action
is

𝐼 𝑡0 = 𝑧𝑘𝐼0(𝜑) +
1
2
𝑈

(2)
𝑘

(𝜙𝑐𝑙) (𝜑) .

Arguing as in Prop. 8.1, it follows that the interacting propagator in this case
becomes

−𝑖𝐺𝑘 = Δ
𝐹,𝑘,𝑧𝑘 ,𝑈

(2)
𝑘

,

where Δ
𝐹,𝑘,𝑧𝑘 ,𝑈

(2)
𝑘

is the Feynman propagator for the wave operator 𝑧𝑘 (𝑃0 − 𝑞𝑘) +

𝑈
(2)
𝑘

, and it holds that

−𝑖𝐺𝑘 = Δ
𝐹,𝑘,𝑧𝑘 ,𝑈

(2)
𝑘

= 𝑧−1
𝑘 Δ

𝐹,𝑘,𝑧−1
𝑘
𝑈

(2)
𝑘

.
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For example, in the simple case of the Minkowski vacuum as the reference state 𝜔,
with 𝑞𝑘 = 𝑘2, taking the adiabatic limit and choosing a constant classical field 𝜙𝑐𝑙 ,
the r.h.s. of the Wetterich equation in Fourier domain becomes

𝜕𝑘Γ𝑘 =
1

2(2𝜋)𝑑

∫
d𝑑𝑝

𝜕𝑘 (𝑧𝑘𝑘2)
𝑧𝑘 (𝑝2 + 𝑘2 + 𝑚2

𝑘
) +𝑈 (2)

𝑘
(𝜙𝑐𝑙)

.

In the free limit 𝑈𝑘 = 0, the wavefunction renormalization 𝑧𝑘 correctly vanishes
from the RG flow equations. ■

Remark 8.2. In the computation described above we have transformed the Wick
square 𝑇𝜑2 in 𝑇𝑀,𝑘𝜑2 with a two step procedure: (a) we moved 𝑇𝜑2 in 𝑇𝑀𝜑2 by
invoking the principle of perturbative agreement; (b) we changed𝑇𝑀𝜑2 into𝑇𝑀,𝑘𝜑2

roughly by computing 𝜔(𝑆(𝑄𝑘) ·𝑇𝑀 𝑇𝑀𝜑2)/𝜔(𝑆(𝑄𝑘)).
Although the net result in both cases is a change in the mass of the correlation

functions, the procedures (a) and (b) are slightly different. The reason is that 𝑄𝑘

appears in the Bogoliubov map of the generating functional at the numerator only,
so that 𝑍𝑘 = 𝜔(𝑆(𝑉 )−1 ★ 𝑆(𝑉 + 𝑄𝑘 + 𝐽)), but not in the inverse 𝑆−matrix. It fol-
lows that the PPA cannot be directly applied, because 𝑄𝑘 is not a perturbation of
the action but rather a regulator on the correlation functions. The LPA, instead, ap-
proximates the interaction𝑉 with a quadratic term, and as such it is a deformation
of the original action 𝐼 .

Although this difference is not immediate when dealing with the effective av-
erage action, it is particularly relevant regarding the ambiguities in the choice of
𝑇𝜑2, 𝑇𝑀𝜑

2 and 𝑇𝑀,𝑘𝜑2. Indeed, since point (a) respects the principle of local co-
variance [66], it follows that the ambiguities which define 𝑇𝜑2 and 𝑇𝑀𝜑2 have to
be the same. The ambiguities of 𝑇𝑀,𝑘𝜑2 instead can be different, and even depend
on 𝑘, since there is no reason why (b) should respect the principle of local covari-
ance, because theories with different 𝑘s are in principle not deformable one into
the other. We can thus make different choices for the ambiguities defining𝑇𝜑2 and
𝑇𝑀,𝑘𝜑

2. ■

The LPA can be further simplified by taking successive functional derivatives
with respect to 𝜙𝑐𝑙 on both sides of (8.7), and evaluating at 𝜙𝑐𝑙 = 0. The flow for the
𝑘−dependent couplings gives scale evolution of the running coupling constants,
defined as the coefficients of the Taylor series of 𝑈 𝑡

𝑘
(𝜙𝑐𝑙) at 𝜙𝑐𝑙 = 0; in the simple

case of a scalar field theory, the Taylor expansion is

𝑈 𝑡
𝑘 (𝜙𝑐𝑙) = 𝑈0,𝑘 + 𝑚2

𝑘

𝜙2
𝑐𝑙

2
+ _𝑘

𝜙4
𝑐𝑙

4!
+ (𝜙6

𝑐𝑙) . (8.8)

The 𝛽-functions are defined as the evolution equations for the dimensionless
parameters �̃�2

𝑘
and _̃𝑘 with respect to the renormalization time 𝑡 = log 𝑘/Λ, where

Λ is the scale at which the renormalization starts. In powers of 𝑘, the dimensions
of the couplings are [𝑚2

𝛽,𝑘
] = 2 and [_𝑘] = 4 − 𝑑. Then we have

𝑘𝜕𝑘�̃�
2
𝑘,𝛽

= 𝑘−1𝜕𝑘𝑚
2
𝑘,𝛽

− 2�̃�2
𝑘,𝛽

(8.9)

𝑘𝜕𝑘 _̃𝑘 = 𝑘
𝑑−3𝜕𝑘_𝑘 + (𝑑 − 4) _̃𝑘 . (8.10)
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8 .2 vacuum and high-temperature states in minkowski

Finally, we are ready to compute the 𝛽-functions in some example. We start from
the simplest case of an interacting scalar field theory propagating in Minkowski;
despite its simplicity, different states produce different 𝛽-functions, and we can see
these effects in our unified formalism.

The action for a massive _𝜑4−theory is

𝐼 (𝜑) = −
∫
𝑥

1
2
∇𝑎𝜑∇𝑎𝜑

1
2
𝑚2𝜑2 + _

4!
𝜑4 ,

where 𝜑 ∈ 𝐶∞(). We choose to apply the formalism for the vacuum and in a
KMS state, which are both quasifree states for the free theory, and we apply the
LPA.

Of course, along the RG flow any type of coupling can arise, so the effective
potential 𝑈𝑘 is constrained by the symmetries of the effective average action only.
Here we focus on the simple truncation of an effective potential with a mass and a
𝜙4 interaction term, thus retaining the first two terms in a polynomial expansion.
Notice that, since the effective average action is in a quasifree state, it preserves the
Z2 global parity of the action (cf. Section 4.3.3). Then, Taylor expanding the effective
potential, we have

𝑈𝑘 (𝜙) = 𝑈0,𝑘,𝛽 −
∫
𝑥

1
2
�̄�2
𝑘,𝛽
𝜙2 + 1

4!
_𝑘,𝛽𝜙

4 , (8.11)

The LPA now proceeds expanding 𝜙 = 𝜙𝑐𝑙 + �̂�, assuming a constant classical con-
figuration 𝜙𝑐𝑙 , and retaining the second-order fluctuations only, so that

Γ𝑡𝑘 (𝜙𝑐𝑙 , �̂�) = 𝐼0(�̂�) +
1
2
⟨𝑈 (2)

𝑘
(𝜙𝑐𝑙), �̂� ⊗ �̂�⟩

= 𝑈0,𝑘,𝛽 −
∫
𝑥

1
2
∇𝑎�̂�∇𝑎�̂� +

1
2

(
𝑚2
𝑘,𝛽

+ _𝑘,𝛽𝜌
)
�̂�2 , (8.12)

with 𝜌 = 1
2𝜙

2
𝑐𝑙
. The couplings𝑚2

𝑘,𝛽
:= 𝑚2 + �̄�2

𝑘,𝛽
and _𝛽,𝑘 can depend on the temper-

ature as well as 𝑘, since, for example, there will be contributions coming from the
one-loop renormalization of the thermal mass [95].

We now compute the interacting propagator in the LPA, the r.h.s. of the ap-
proximated RG flow equations (8.7). The reference state of the free theory is an
equilibrium statewith respect toMinkowski time evolution at inverse temperature
𝛽. This is a KMS quasifree state for the free theory _ = 0, and its 2-point function
is invariant under translations. Thus, it can be written in momentum space, and
has the expression [95]

Δ
𝛽
+(𝑥0,x; 𝑦0, y) =

∫
d𝑑−1p
(2𝜋)𝑑−1 𝑒

𝑖p· (x−y) 1
2𝑤

(
𝑒−𝑖𝑤(𝑥

0− 𝑦0 )

1 − 𝑒−𝛽𝑤
+ 𝑒𝑖𝑤(𝑥

0− 𝑦0 )

𝑒𝛽𝑤 − 1

)
, (8.13)

where 𝑤 = |p|. It follows that the two-point function appearing in the RG flow
has the same expression, with the mass modified by the regulator and the effective
potential. Taking the adiabatic limit, the 2-point function is [52, 93–95]

Δ
𝛽

+,𝑀,𝑘 (𝑥
0,x; 𝑦0, y) =

=

∫
d𝑑−1p
(2𝜋)𝑑−1 𝑒

𝑖p· (x−y) 1
2𝑤𝑀,𝑘

(
𝑒−𝑖𝑤𝑀,𝑘 (𝑥

0− 𝑦0 )

1 − 𝑒−𝛽𝑤
+ 𝑒𝑖𝑤𝑀,𝑘 (𝑥

0− 𝑦0 )

𝑒𝛽𝑤 − 1

)
, (8.14)
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where 𝑤𝑀,𝑘 =
√︃
𝑤2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌 + 𝑞𝑘. Notice that the 𝑤-factors associated with

the modes have changed, while this is not the case for the Bose factors.
The above 2-point function differs from that of Ref. [179], since in our construc-

tion the Bose factors are 𝑘-independent. The reason is that the reference state for
the free theory does not depend on the scale 𝑘, and we use this state to compute
the inverse of the quantum wave operator. It would possible to compute the 2-
point function of the thermal state in the interacting theory, since the perturbation
is quadratic. However, choosing a 𝑘−dependent state would introduce additional
contributions in the RG flow.

The RG flow in the LPA for a thermal reference state in Minkowski then is

− 𝜕𝑘𝑈𝑘 (𝜙) = lim
𝑦→𝑥

(Δ𝛽
𝑆,𝑀,𝑘

( 𝑦, 𝑥) − Δ∞
𝑆,𝑀,𝑘 ( 𝑦, 𝑥))

𝜕𝑘𝑞𝑘 (𝑥)
2

+ lim
𝑦→𝑥

(Δ∞
𝑆,𝑀,𝑘 ( 𝑦, 𝑥) − 𝐻 ( 𝑦, 𝑥)) 𝜕𝑘𝑞𝑘 (𝑥)

2
. (8.15)

The flow naturally splits in two contributions, a 𝛽−independent term plus a cor-
rection from thermal fluctuations. To get the 𝛽-functions for both _𝛽,𝑘 and 𝑚𝛽,𝑘,
we analyse these two contributions separately. The first term is the regularisation
of the thermal 2-point function with respect to the vacuum, computed taking the
𝛽 → ∞ limit; from the expression (8.14), in the adiabatic limit and in four dimen-
sions, the first contribution is

𝐴 := lim
𝑦→𝑥

(Δ𝛽
𝑆,𝑀,𝑘

( 𝑦, 𝑥) − Δ∞
𝑆,𝑀,𝑘 ( 𝑦, 𝑥) ( 𝑦, 𝑥))

𝜕𝑘𝑞𝑘 (𝑥)
2

=
1

(2𝜋)3

∫
d3p

1
𝑤𝑀,𝑘

(
1

𝑒𝛽𝑤 − 1

)
𝜕𝑘𝑞𝑘 (𝑥)

2
.

(8.16)

The second term instead is the regularisation of the vacuum 2-point function
with respect to theHadamard parametrix. For amassive theory in even-dimensional
Minkowski space, the Hadamard distribution is known to depend on an additional
arbitrary parameter `, and it is given by [57]

𝐻
`
𝑚 (𝑥, 𝑦) = Δ𝑆,𝑀,𝑘 (𝑥, 𝑦) +

(−1)𝑑/2

2(2𝜋)𝑑/2
𝑀𝑑/2−1 log

(
`2

𝑀2

)
𝜎

2−𝑑
4 𝐼𝑑/2−1(

√
𝑀2𝜎 ) ,

where Δ𝑆,𝑘 (𝑥, 𝑦) is the symmetric contribution of the vacuum 2-point function,
𝐼a (𝑥) is the modified Bessel function of the first kind and 𝜎 = 𝑔𝑎𝑏(𝑥 − 𝑦)𝑎(𝑥 − 𝑦)𝑏
is the squared geodesic distance. The mass term for the truncated theory in the
LPA is 𝑀2 = 𝑘2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌. In the coincidence limit, 𝜎 → 0 and

𝐼𝑑/2−1(𝑥, 𝑦) ≃
𝑀𝑑/2−1𝜎

𝑑−2
4

2𝑑/2−1Γ(𝑑/2)
.

Therefore, the 𝜎 dependence drops and we obtain

lim
𝜎→0

𝐻
`
𝑚 =

= Δ∞
𝑆,𝑚,𝑘 +

(−1)𝑑/2

Γ(𝑑/2) (4𝜋)𝑑/2

(
𝑘2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌

)𝑑/2−1
log

(
𝑘2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌

`2

)
. (8.17)
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While the state in the definition of Γ𝑘 is 𝑘−independent, the Hadamard parametrix
�̃�𝐹 arises from the commutation of the coincidence limit with the mean value op-
erator ⟨·⟩, which depends on 𝑘.

Using this Hadamard parametrix, the second contribution in Eq. (8.15) is

𝐵 := lim
𝑦→𝑥

(Δ∞
𝑆,𝑀,𝑘 ( 𝑦, 𝑥) − 𝐻 ( 𝑦, 𝑥)) 𝜕𝑘𝑞𝑘 (𝑥)

2

=
1

8𝜋2 (𝑘
2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌) log

(
𝑘2 + 𝑚2

𝑘,𝛽
+ _𝑘,𝛽𝜌

`2

)
𝜕𝑘𝑞𝑘 (𝑥)

2
.

(8.18)

We now choose 𝑞𝑘 = 𝑘2, and we consider the different results in the vacuum or in
the high-temperature limit.

8 .2 . 1 Vacuum case

In the limit of vanishing temperature 𝛽 → ∞, the contribution (8.16) due to 𝐴
vanishes, and in the four dimensional case the evolution equations for the running
couplings are

𝑘𝜕𝑘𝑈0,𝑘 =
1

8𝜋2 𝑘
2(𝑘2 + 𝑚2

𝑘) log

(
𝑘2 + 𝑚2

𝑘

`2

)
,

𝑘𝜕𝑘𝑚
2
𝑘 =

1
4𝜋2 𝑘

2

(
1 + log

(
𝑘2 + 𝑚2

𝑘

`2

))
_𝑘 ,

𝑘𝜕𝑘_𝑘 =
3

8𝜋2
𝑘2

𝑘2 + 𝑚2
𝑘

_2
𝑘 .

In terms of the dimensionless couplings, �̃�0,𝑘 = 𝑈0,𝑘/𝑘4 �̃�𝑘 = 𝑚𝑘/𝑘 and _̃𝑘 = _𝑘

the 𝛽-functions then are

𝑘𝜕𝑘�̃�0,𝑘 = −4�̃�0,𝑘 +
1

8𝜋2 (1 + �̃�2
𝑘)

[
log

(
1 + �̃�2

𝑘

)
+ log

(
𝑘2

`2

)]
, (8.19)

𝑘𝜕𝑘�̃�
2
𝑘 = −2�̃�2

𝑘 +
_̃𝑘

4𝜋2

[
1 + log

(
1 + �̃�2

𝑘

)
+ log

(
𝑘2

`2

)]
, (8.20)

𝑘𝜕𝑘 _̃𝑘 =
3

8𝜋2

_̃2
𝑘

1 + �̃�2
𝑘

. (8.21)

The price to pay to have a local regularisation term is an additional freedom in
the 𝛽-functions due to the ultraviolet renormalization scale `, which is a residual
freedom in the ultraviolet renormalization scheme we have adopted. However, the
additional freedommay be safely removed setting ` = 𝑘. This is equivalent to tune
the renormalization ambiguities of 𝑇𝑀,𝑘 �̂�2 which, we recall, are not forced to be
the same as the ones present in 𝑇�̂�2 (cf. Remark 8.2). This choice does not change
the form of the Wetterich equation as it is made after deriving in 𝑘.

Setting ` = 𝑘 the only fixed point is the Gaussian one, _̃𝑘 = �̃�𝑘 = 0, in agree-
ment with the existing literature on the triviality of _𝜙4 in four dimensions and in
the vacuum case.
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Figure 8.1: 𝛽−functions for the vacuum state for the free theory in 4-dimensional
Minkowski spacetime. The flow is in the direction of decreasing 𝑘 (towards the IR).

8 .2 .2 High temperature limit

The high temperature limit 𝛽 → 0 of the RG flow (8.15) is very different from the
vacuum case. The thermal contribution to the flow is

𝐴 =
𝑘3

2𝜋2

∫ ∞

0
d𝑝

𝑝2√︂
𝑝2 +

(
𝑚𝑘,𝛽

𝑘

)2
+ _𝑘,𝛽

𝑘2 𝜌 + 1

1
𝑒𝛽𝑘𝑝 − 1

.

The expansion of 𝐴 up to order 2 in powers of 𝜌 gives

𝐴 ≃ 𝑘3

4𝜋2

∫ ∞

0
d𝑝2

[(
𝑝2 +

(𝑚𝑘,𝛽

𝑘

)2
+ 1

)− 1
2

−
_𝑘,𝛽𝜌

2𝑘2

(
𝑝2 +

(𝑚𝑘,𝛽

𝑘

)2
+ 1

)− 3
2

+
3(_𝑘,𝛽𝜌)2

8𝑘4

(
𝑝2 +

(𝑚𝑘,𝛽

𝑘

)2
+ 1

)− 5
2
]

𝑝

𝑒𝛽𝑘𝑝 − 1
.

The contribution to the 𝛽-functions due to 𝐴 diverges as 1/𝛽 in the limit 𝛽 → 0,
while 𝐵 stays bounded. Therefore, 𝐵 is negligible in the high-temperature limit,
and the evolution equation for the running couplings are given by the functional
derivatives of 𝐴with respect to 𝜌, evaluated at 𝜌 = 0.

In order to derive the 𝛽-functions, we need to introduce dimensionless cou-
plings. While in the vacuum case the only dimensionful scale is 𝑘, in the thermal
case the inverse temperature 𝛽 is an additional dimensionful parameter in the
evolution equations; it is then possible to use different combinations of 𝑘 and 𝛽
to define dimensionless couplings. In order to have autonomous equations, we
choose the dimensionless, rescaled constants �̃�0,𝑘,𝛽 = 𝑈0,𝑘,𝛽𝛽

2/𝑘, �̃�𝑘,𝛽 = 𝑚𝑘,𝛽/𝑘
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Figure 8.2: 𝛽−functions for the high-temperature regime of the scalar field in a
KMS state for the free theory in 4-dimensional Minkowski spacetime. The flow is
in the direction of decreasing 𝑘 (towards the IR).

and _̃𝑘,𝛽 = _𝑘,𝛽/(𝛽𝑘). The 𝛽-functions then are

𝑘𝜕𝑘�̃�0,𝑘,𝛽 = −�̃�0,𝑘,𝛽 +
Z (3)
2𝜋2 , (8.22)

𝑘𝜕𝑘�̃�
2
𝑘,𝛽

= −2(�̃�𝑘,𝛽)2 − 1
2𝜋2

_̃𝑘,𝛽(
1 + �̃�2

𝑘,𝛽

) 1
2
, (8.23)

𝑘𝜕𝑘 _̃𝑘,𝛽 = −_̃𝑘,𝛽 +
3

8𝜋2

( _̃𝑘,𝛽)2(
1 + �̃�2

𝑘,𝛽

) 3
2
, (8.24)

where Z is the Riemann zeta function.
Themajor difference from the vacuum case comes from the 𝛽-function for _̃𝑘,𝛽 ,

which has an additional affine contribution. In 𝑑 dimensions, this contribution for
the dimensionless coupling _′

𝑘
= _𝑘𝑘

𝑑−4 is proportional to (𝑑 − 4)_′
𝑘
; the ther-

mal state introduces a dimensional reduction in the fourth interaction coupling.
Thanks to this dimensional reduction, also in 𝑑 = 4, there is a non-trivial fixed
point for �̃�∗ = Z (3)/2𝜋2, �̃�2

∗ = −2/5, _̃∗ = (8/3)𝜋2(1 + �̃�2
∗)3/2. Notice the sim-

ilarity between the phase diagram for the 4D, thermal case, Fig. 8.2 and the phase
diagram in the 3D, vacuum case for the Wilson-Fisher fixed point, Fig. 8.3. We will
see a similar mechanism in the Bunch-Davies case.

The minus sign in the mass fixed point indicates that the symmetry �̂� → −�̂�
is spontaneously broken in the chosen state. To make it clearer, we can now repeat
the above analysis, in which the effective potential takes the simple form [236]

𝑈𝑘 =
_𝑘,𝛽

2
(𝜌 − 𝜌0,𝑘,𝛽)2 𝜌 =

𝜙2

2
,

which coincides with the effective potential written in Eq. (8.11) up to a constant.
The new parameter 𝜌0,𝑘,𝛽 = 𝜙2

0,𝑘,𝛽/2 is the minimum of the potential, located at

𝑈
(1)
𝑘

(𝜙0,𝑘,𝛽) = 0. The new parameters are then linked to the old coupling constants,
in particular 𝑚2

𝑘,𝛽
= −_𝑘,𝛽𝜌0,𝑘,𝛽 , while _𝑘,𝛽 is scaled by a factor 3.
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8 .2 .3 Wilson-Fisher fixed point

We now recover another standard result, the Wilson-Fisher fixed point for the vac-
uum scalar field in 3 dimensions. Just as in the 4-dimensional case, we expand
the effective potential up to second order in 𝜌 = 𝜙2/2, setting for simplicity the
𝜌−independent constant𝑈𝑘,0 to zero:

𝑈𝑘 (𝜌) = −
∫
𝑥

𝑚2
𝑘𝜌 + _𝑘

𝜌2

6
.

The vacuum2-point function in 𝑑 ≥ 2dimensions andwith a realmass is expressed
in terms of modified Bessel functions as [57]

Δ+(𝑥) = (2𝜋)− 𝑑
2 𝑀

𝑑
2 −1
𝑘

𝜎
2−𝑑

4 𝐾 𝑑
2 −1(

√︃
𝑀2
𝑘
𝜎 ) ,

where the mass term 𝑀𝑘 in the presence of regulator and in the LPA reads

𝑀2
𝑘 = 𝑚

2
𝑘 + 𝑘

2 + _𝑘𝜌 .

𝜎 as before is the squared geodesic distance |𝑥 − 𝑦 |2.
In odd dimensions, the unique Hadamard parametrix is

𝐻 =
1

4 sin ( 𝑑2 − 1)𝜋
(2𝜋) 2−𝑑

2 𝑀
𝑑
2 −1
𝑘

𝜎
2−𝑑

4 𝐼1− 𝑑
2
(
√
𝑚2𝜎 ) .

In 3 dimensions, the 2-point function and the Hadamard parametrix reduce to

Δ+ =
1

4𝜋
𝑒−
√
𝑀2
𝑘
𝜎

√
𝜎

, 𝐻 =
1

4𝜋

cosh
√︃
𝑀2
𝑘
𝜎

√
𝜎

.

Taking the difference of the coincidence limit gives the smooth part of the 2-point
function,

lim
𝜎→0

Δ+ − 𝐻 = − 1
4𝜋

√︃
𝑚2
𝑘
+ 𝑘2 + _𝑘𝜌 .

The RG flow equations in the LPA (8.7) with regulator 𝑞𝑘 = 𝑘2 then give

𝜕𝑘𝑈𝑘 =
𝑘

4𝜋

∫
𝑥

𝑓 (𝑥)
√︃
𝑚2
𝑘
+ 𝑘2 + _𝑘𝜌 .

The first and second derivatives with respect to 𝜌, at vanishing 𝜌 provide the evo-
lution equations for the dimensionful parameters

𝑘𝜕𝑘𝑚
2
𝑘 = − 𝑘2_𝑘

8𝜋
√︃
𝑘2 + 𝑚2

𝑘

𝑘𝜕𝑘_𝑘 =
3𝑘2

16𝜋
_2
𝑘

(𝑘2 + 𝑚2
𝑘
) 3

2
.

In terms of the dimensionless parameters �̃�2
𝑘

= 𝑘−2𝑚2
𝑘
and _̃𝑘 = 𝑘−1_𝑘, the

𝛽−functions are

𝑘𝜕𝑘�̃�
2
𝑘 = −2�̃�2

𝑘 −
_̃𝑘

8𝜋
√︃

1 + �̃�2
𝑘

(8.25)

𝑘𝜕𝑘 _̃𝑘 = −_̃𝑘 +
3

16𝜋
_̃2
𝑘

(1 + �̃�2
𝑘
) 3

2
. (8.26)



applications 151

Figure 8.3: 𝛽−functions for the 3-dimensional Wilson-Fisher fixed point. The flow
is in the direction of decreasing 𝑘 (towards the IR).

Besides theGaussian fixed point, the systemadmits a non-trivial solution for �̃�2,∗
𝑘

=

− 1
4 , _̃

∗
𝑘
= 2

√
3𝜋 . The fixed point is in the spontaneously broken phase, since the

mass is negative, and qualitatively it coincides with known results. From the lin-
earisation of the 𝛽−functions around the fixed point we can also characterise the
two operators 𝜙2 and 𝜙4,

𝜕𝛽_

𝜕_̃𝑘

����
_̃∗
𝑘

= 1 ,
𝜕𝛽𝑚2

𝜕�̃�2
𝑘

�����
�̃�

2,∗
𝑘

= −5
3
.

The critical exponents coincide with standard ones (see e.g. Ref. [206]). Since the
linear coefficient in front of themass 𝛽−function is negative, the operator 𝜙2 is rele-
vant, while the operator 𝜙4 is irrelevant because the linearisation of the _ 𝛽−function
is positive.

8 .3 bunch-davies state in de sitter

In order to show that the same methods are applicable in the context of curved
spacetimes, we study the _𝜑4−theory in de Sitter space. De Sitter spacetime is the
four dimensional hyperboloid embedded in five dimensional flat space with the
constraint

𝑋 𝑎𝑋 𝑏[𝑎𝑏 = 𝐻−2 ,

where 𝐻 > 0 is the Hubble constant and [ is the five-dimensional flat space metric.
We consider the free theory to be in the BunchDavies state [70], which is the unique
quasifreemaximally symmetric state on the de Sitter spacetime; the symmetric part
of its 2-point function is [8, 44]

ΔBD,+
𝑆

(𝑥, 𝑦) = 𝐻2

16𝜋

( 1
4 − a2)

cos(𝜋a) 2𝐹1

(
3
2
+ a, 3

2
− a; 2;

1 + 𝑍(𝑥, 𝑦)
2

)
where 2𝐹1 is the hypergeometric function, 𝑍(𝑥, 𝑦) = 𝐻2𝑋 𝑎(𝑥)𝑋 𝑏( 𝑦)[𝑎𝑏 is related
to the geodesic distance 𝑑(𝑥, 𝑦) = 𝐻 cos(𝑍(𝑥, 𝑦)) between 𝑥 and 𝑦, and

a =

√︂
9
4
− 12b + 𝑚2

𝐻2 , (8.27)
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where𝑚 is the mass of the quantum field and b its coupling to the scalar curvature.
Reasoning as before in the LPA, the effective potential can be expanded in

𝑈𝑘 (𝜙) = −
∫
𝑥

𝑓 (𝑥)
[
𝑚2
𝑘

𝜙2

2
+ _𝑘

𝜙4

4!

]
, 𝜌 =

𝜙2

2
.

For simplicity, b does not depend on 𝑘. Since we are not interested in back-reaction
effects (which would cause the Hubble constant to flow as well), renormalization
corrections to b can be included in the RG flow for the mass term.

As usual, to compute the interacting propagator in the LPA we expand up to
second order the effective potential and we keep the quadratic terms, that modify
the action of the bare theory. The 2-point function in the state with the mass mod-
ified by the regulator and the effective potential is given by the Møller operators,

𝑟𝑀+𝑄𝑘
ΔBD
𝑆 𝑟∗𝑀+𝑄𝑘

.

However, instead of directly performing that computation, we observe that in the
adiabatic limit the obtained states share the same symmetry properties as those
of the original 2-point function, because the classical Møller map preserves the
spacetime symmetry. The only maximally symmetric state in de Sitter is the Bunch
Davies state, and the original state is maximally symmetric, and so the new state
needs to be a Bunch Davies state too, with mass 𝑚2 = 𝑚2

𝑘
+ _𝑘𝜌 + 𝑘2.

For massive theories, with a general, non-minimal coupling b , the renormal-
ized expectation value (via the Hadamard procedure) of the Wick square �̂�2 in this
state is given by [42]

𝜔(: �̂�2(𝑥) :) =
1

16𝜋

{
−2𝐻2

3
+
[
(𝑚2

𝑘+𝑘
2+_𝑘𝜌)+

(
b−1

6

)
12𝐻2

] [
𝜓

(
3
2
+a

)
+𝜓

(
3
2
−a

)
+log

(
12𝐻2

`2

)]}
,

(8.28)

where 𝜓 (𝑧) :=
d logΓ(𝑧)

d𝑧
is the digamma function, and ` is again an arbitrarymass

parameter.
From𝜔(𝑇�̂�2) the evolution equations can be computed taking functional deriva-

tives of the RG flow equation (8.7) and evaluating at vanishing fields, leading to

𝑘𝜕𝑘𝑚
2
𝑘 = 𝑘

2 𝛿𝜔(: �̂�2 :)𝑈𝑘 ,𝑘
𝛿 𝜌

����
𝜌=0

(8.29)

=
𝑘2_𝑘

16𝜋

{ [
𝜓

(
3
2
+ a

)
+ 𝜓

(
3
2
− a

)
+ log

(
12𝐻2

`2

)]
− 1

2𝐻2a

(
2𝐻2(6b − 1) + 𝑘2 + 𝑚2

𝑘

) [
𝜓 (1)

(
3
2
− a

)
− 𝜓 (1)

(
3
2
+ a

)] }
,

and
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𝑘𝜕𝑘_𝑘 = 3𝑘2 𝛿
2𝜔(: �̂�2 :)𝑈𝑘 ,𝑘

𝛿 𝜌𝛿 𝜌

����
𝜌=0

(8.30)

=
3𝑘2_2

16𝜋𝐻2a

{ [
𝜓 (1)

(
3
2
+ a

)
− 𝜓 (1)

(
3
2
− a

)]
+ 1

4𝐻2a

(
2𝐻2(6b − 1) + 𝑘2 + 𝑚2

𝑘

) [
𝜓 (1)

(
3
2
− a

)
− 𝜓 (1)

(
3
2
+ a

)
(8.31)

+ a
(
𝜓 (2)

(
3
2
+ a

)
+ 𝜓 (2)

(
3
2
− a

)) ]}
.

The IR cut-off function 𝑓 has been taken equal to 1 on the support of 𝜌, and 𝜌 is con-
stant throughout space, so that the spacetime dependence of the functional deriva-
tives vanishes.

Now, we would like to rewrite the evolution equations in terms of dimension-
less couplings. However, due to the explicit appearance of an additional dimen-
sional constant 𝐻 , the naive substitution �̃�2

𝑘
:= 𝑘−2𝑚2

𝑘
, _̃𝑘 = _𝑘 would produce

non-autonomous equations.We thus proceed as follows.We introduce new dimen-
sionless couplings

�̃�2
𝑘 :=

𝑚2
𝑘

𝐻2 , _̃𝑘 =
𝑘2

𝐻2 _𝑘 .

Notice that, as in the thermal case, the appearance of a dimensionful parameter (𝐻
in this case) allows for a different scaling behaviour of the coupling constants. In
terms of these couplings, the effective potential becomes

𝑈𝑘 (𝜌) = −
∫
𝑥

𝐻2
(
�̃�2
𝑘𝜌 + 𝑘

−2 _̃𝑘
𝜌2

6

)
.

We proceed rescaling the field to 𝜌 = 𝑘2𝜌, so that the effective potential becomes

𝑈𝑘 (𝜌) = −
∫
𝑥

𝑘2𝐻2
(
�̃�2
𝑘𝜌 + _̃𝑘

𝜌2

6

)
.

Finally, we see that a rescaling of the spacetime coordinates produces an effective
potential equivalent to the original one, but in terms of dimensionless quantities
only:

𝑈𝑘 (𝜌) = −
∫
√
𝑘𝐻𝑥

(
�̃�2
𝑘𝜌 + _̃𝑘

𝜌2

6

)
.

The 𝛽−functions for the dimensionless couplings �̃�2
𝑘
and _̃𝑘 can now be read off

the evolution equations of the dimensional couplings, since from their definitions

𝑘𝜕𝑘�̃�
2
𝑘 = 𝐻−2𝑘𝜕𝑘𝑚

2
𝑘 , 𝑘𝜕𝑘 _̃𝑘 = 2_̃𝑘 +

𝑘2

𝐻2 𝑘𝜕𝑘_𝑘 .

The substitution gives the 𝛽−functions for the dimensionless couplings:

𝑘𝜕𝑘�̃�
2
𝑘 =

_̃𝑘

16𝜋

{
log

12𝐻2

`2 + 𝜓
(

3
2
+ a

)
+ 𝜓

(
3
2
− a

)
(8.32)

− 1
2a

(
�̃�2
𝑘 + 2(6b − 1) + 𝑘2/𝐻2) [

𝜓 (1)
(

3
2
− a

)
− 𝜓 (1)

(
3
2
+ a

)] }
.
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and

𝑘𝜕𝑘 _̃𝑘 = (8.33)

2_̃𝑘 +
3_̃2

𝑘

16𝜋a

{
𝜓 (1)

(
3
2
+ a

)
− 𝜓 (1)

(
3
2
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)
+ 1

4a2

(
�̃�2
𝑘 + 2(6b − 1) + 𝑘2/𝐻2)[

𝜓 (1)
(

3
2
− a

)
− 𝜓 (1)

(
3
2
+ a

)
+ 2a

(
𝜓 (2)

(
3
2
+ a

)
+ 𝜓 (2)

(
3
2
− a

))] }
.

By choosing `2 = 12𝐻2, we can remove all the dependence on the additional
parameter `. This is possible in de Sitter since we have a newmass scale 𝐻−2 which
enters the flow equations as an “external parameter”, and does not depend on the
scale, similar to the inverse temperature 𝛽 in the flow equation for thermal theories
we considered in the last Section. Comparing with the Minkowski equations, we
see that the first term in the 𝛽-function for _̃𝑘, corresponds to an effective dimen-
sion of 2 in the flow equation for _̃𝑘.

However, the 𝛽−functions are still non-autonomous, due to terms 𝑘2/𝐻2 in the
r.h.s. of the 𝛽−functions. To remove this dependencies, we take the limit 𝑘2/𝐻2 →
0, corresponding to an inflationary regime in de Sitter. In this limit, the 𝛽-functions
become autonomous and read

𝑘𝜕𝑘�̃�
2
𝑘

𝑘2/𝐻2→0
−−−−−−−→ (8.34)

_̃𝑘

16𝜋
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𝜓 (0)

(
3
2
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√︂
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𝑘
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4

)
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√︂
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𝑘
− 12b + 9

4

)
− 1

2
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�̃�2
𝑘
− 12b + 9

4

(�̃�2
𝑘 + 12b − 2)
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3
2
−
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�̃�2
𝑘
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4

)
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3
2
+
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�̃�2
𝑘
− 12b + 9

4

) ]}
.

and

𝑘𝜕𝑘 _̃𝑘
𝑘2/𝐻2→0
−−−−−−−→ (8.35)

2_̃𝑘 +
3_̃2

𝑘

64𝜋a2

{ (3�̃�2
𝑘
− 60b + 11)
a
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𝜓 (1)

(
1
2

(√︃
4�̃�2

𝑘
− 48b + 9 + 3

))
− 𝜓 (1)

(
1
2

(
3 −

√︃
4�̃�2

𝑘
− 48b + 9

)) ]
+ (�̃�2

𝑘 + 12b − 2)
[
𝜓 (2)

(
1
2

(√︃
4�̃�2

𝑘
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))
+ 𝜓 (2)

(
1
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(
3 −
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4�̃�2

𝑘
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)) ]}
.

The 𝛽−functions (8.34) and (8.35) can now be analysed at different non-minimal
couplings b . For b = 1/6, they exhibit a non-trivial fixed point in the spontaneously
broken phase. It can be approximately computed by expanding the 𝛽−functions up
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to third order, 𝛽𝑚2 in �̃�2
𝑘
and 𝛽_ in _̃𝑘. The result is

𝛽𝑚2 = (8.36)

−
(�̃�2

𝑘
)3 _̃𝑘 (3 + 𝜓 (2) (1) + 𝜓 (2) (2))
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𝑘
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32𝜋

−
�̃�2
𝑘
_̃𝑘

8𝜋
+ (1 − 2𝛾) _̃𝑘

16𝜋
+ ((�̃�2

𝑘)
4) ,

and

𝛽_ = 2_̃𝑘 +
_̃2
𝑘

16𝜋 (4�̃�2
𝑘
+ 1)3/2

(8.37){
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𝑘
+ 1 + 3

))
− 𝜓 (1)

(
1
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(
3 −
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𝑘
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))]
+ 3�̃�2

𝑘

√︃
4�̃�2

𝑘
+ 1

[
𝜓 (2)

(
1
2

(
3 −

√︃
4�̃�2

𝑘
+ 1

))
+ 𝜓 (2)

(
1
2

(√︃
4�̃�2

𝑘
+ 1 + 3

))] }
+𝑂

(
_̃3
𝑘

)
.

These approximated 𝛽−functions exhibit two fixed points, the Gaussian one
and a non-trivial fixed point at

�̃�2
𝑘 → −0.0809878 , _̃𝑘 → 18.4348 . (8.38)

The non-trivial fixed point appears stable under the inclusion of higher orders,
in a systematic expansion of the 𝛽−functions (8.34) and (8.35).

Figure 8.4: Flow diagram for the 𝛽−functions (8.34) and (8.35). The non-trivial fixed
point is marked with a dot. The flow is in the direction of decreasing 𝑘 (towards
the IR).

8 .4 asymptotic safety in covariant quantum gravity

As a final application, we study the RG flow of quantum gravity in a simple trun-
cation, the Einstein-Hilbert truncation. To do so, we take as theoretical framework
QG as a locally covariant QFT [64, 65]. In this context, gravity is quantised on a
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fixed, globally hyperbolic spacetime (, �̄�) with background metric �̄�; our com-
putation is background independent in the sense that is fixed, but arbitrary, thus
studying the RG equations in all spacetimes at once [66].

Gravity as a locally covariant QFT can be treated with the standard BV formal-
ism that we discussed in Chapter 3, and as such it is completely analogous to gauge
theories such as Yang-Mills. Moreover, the proper solution of the CME (3.10) for
gravity is linear in the antifields, i.e. it is of Yang-Mills-type. It follows that our for-
malism can handle the case of gravity with no difficulty. Here we review the main
points, mainly to set the notation.

The space of off-shell configurations is E() = Γ(𝑇∗()⊗2) ∋ ℎ̂, the space
of symmetric bi-tensors. As usual, the configuration space must be extended to in-
clude the ghosts 𝑐, the antighosts ˆ̄𝑐, and the Nakanishi-Lautrup fields �̂�. We col-
lect an element of the extended configuration space in the field multiplet 𝜑 :=
{ℎ̂, 𝑐, �̂�, ˆ̄𝑐} ∈ E(). As we discussed in Chapter 3, in the BV formalism [26–28]
the configuration space is doubled to include the antifields, identified with the ba-
sis of the tangent space, 𝜑‡ := 𝛿

𝛿𝜑
. The classical BV algebra is thus the algebra of

local functions on the odd cotangent bundle of the extended configuration space
[116, 119].

The dynamics is governed by the Euler-Lagrange equations of the action

𝐼 := 𝐼𝐸𝐻 + 𝐼𝑎𝑓 + 𝛾Ψ = 𝐼𝐸𝐻 + 𝐼𝑎𝑓 + 𝐼𝑔ℎ + 𝐼𝑔𝑓 , (8.39)

where 𝐼𝐸𝐻 = 2Z 2
∫


√︁
− det �̂�(𝑅( �̂�) − 2Λ) is the Einstein-Hilbert action in terms

of the full metric �̂� := �̄� + ℎ̂, and Z 2 = (32𝜋𝐺)−1 where 𝐺 is Newton’s constant.
The antifield term is

𝐼𝑎𝑓 :=
∫


√︁
− det �̂�𝑐 �̂�

𝑎𝑏ℎ
‡
𝑎𝑏
+ 𝑐𝑏𝜕𝑏𝑐𝑎 𝑐‡𝑎 + 𝑖�̂�𝑎𝑐‡𝑏 ,

where 𝑐 is the Lie derivative. The gauge-fixing Fermion Ψ in the De-Donder
gauge is

Ψ = 𝑖

∫


√︁
− det �̄� ˆ̄𝑐𝑏(∇𝑎ℎ̂𝑎𝑏 −

1
2
∇𝑏ℎ̂𝑎𝑐 �̄�𝑎𝑐) .

We recall that the BRST differential is defined as 𝛾 := {·, 𝐼𝑎𝑓 } [29–31].
We then proceed with deformation quantization, as explained in Chapters 2

and 3. We split the action 𝐼 into a term quadratic in the fields 𝐼0 and a remain-
ing, interacting term 𝑉 := 𝐼 − 𝐼0. The free part 𝐼0 is used to define the quan-
tum products and the time-ordered products; the Epstein-Glaser renormalization
procedure constructs the time-ordered products of local functions at coincidence
points. Interacting observables are thus represented as formal power series in the
∗−algebra of free observables.

To define the generating functionals, we introduce the sources 𝐽 :=
∫
 𝑗𝐴𝜑

𝐴

and the classical BRST sources Σ :=
∫
 𝜎𝐴𝛾𝜑

𝐴. Finally, we need to introduce the
regulator terms 𝑄𝑘. These are chosen as local terms quadratic in the fields, acting
as artificial masses in the correlation functions:

𝑄𝑘 := −1
2

∫


√︁
− det �̄�(𝑥)

[
𝑇 (ℎ̂𝑎𝑏𝑞𝑘𝑎𝑏𝑐𝑑 ℎ̂𝑐𝑑) + 2𝑇 ˆ̄𝑐𝑎𝑞𝑘𝑎𝑏𝑐𝑏

]
, (8.40)

where 𝑇 is the time-ordering operator. Together with the regulator term, we also
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introduce the source for its BRST variation,

𝐻 ([) :=
1
2

∫


√︁
− det �̄�(𝑥)

[
[(𝑥) 𝛾 (ℎ̂𝑎𝑏(𝑥)ℎ̂𝑎𝑏(𝑥)) + [̃𝛾 ( ˆ̄𝑐𝑎(𝑥)𝑐𝑎(𝑥))

]
.

(8.41)

The scale-dependent BVdifferential is 𝑠𝑘 := 𝑠+
∫
 𝑞𝑘𝐴

𝛿
𝛿[𝐴

, where the BVdifferential
is 𝑠 := {·, 𝐼}. The extended action 𝐼𝑒𝑥𝑡 := 𝐼 +Σ+𝑄𝑘 +𝐻 then satisfies the symmetry
identity (8.42), extending the BV invariance of the classical action 𝐼 to

𝑠𝑘𝐼𝑒𝑥𝑡 = 0 . (8.42)

The regularised generating functional for time-ordered correlation functions
is defined as in Def. 7.20,

𝑍𝑘 ( �̄�; 𝑗, 𝜎 , [) := ⟨𝑇 exp{Σ + 𝐽 + 𝑄𝑘 + 𝐻}⟩ . (8.43)

The Effective Average Action (EAA) Γ𝑘 ( �̄�; 𝜙, 𝜎 , [) is defined in the standardway:
it is the modified Legendre transform of the regularised generating functional of
connected Green’s functions𝑊𝑘 = −𝑖 log 𝑍𝑘 with respect to the sources. The EAA
is thus a function of the classical fields 𝜙 := {ℎ, 𝑐, 𝑏, 𝑐}, with 𝜙 = ⟨𝜑⟩. Thanks to
the extended symmetry (8.42), the Legendre EAA Γ̃𝑘 := Γ𝑘 + 𝑄𝑘 (𝜙) satisfies the
extended Slavnov-Taylor identity, Eq. (7.35):∫



1√︁
− det �̄�(𝑥)

[
𝛿 Γ̃𝑘

𝛿𝜎𝐴(𝑥)
𝛿 Γ̃𝑘

𝛿𝜙𝐴(𝑥)
+ 𝑞𝐴𝑘 (𝑥)

𝛿 Γ̃𝑘
𝛿[𝐴(𝑥)

]
= 0 . (8.44)

The EAA is then constrained by the cohomology of the BRST operator 𝛾 in ghost
number zero; it follows that the EAA must be a BRST-invariant functional of the
full classical metric 𝑔 := �̄� + ℎ thanks to Eq. (7.50).

8 .4 . 1 Renormalization Group flow equations

The RG flow equations for gravity are derived in complete analogy with the gauge
theory case and they are given by Eq. (5.6),

𝜕𝑘Γ𝑘 ( �̄�; 𝜙) = 𝑖

2

∫


Tr
{
𝜕𝑘𝑞𝑘 (𝑥) : 𝐺𝑘 :�̃�𝐹 (𝑥, 𝑥)

}
. (8.45)

The trace is over Lorentz and field indices. The equations are written in terms of
Γ𝑘 ( �̄�, 𝜙) = Γ𝑘 ( �̄�, 𝜙, 𝜎 = 0, [ = 0), with the field 𝑏 integrated out, and the interacting
propagator, satisfying

𝛿2

𝛿𝜙(𝑥)𝛿𝜙(𝑧) (Γ𝑘 + 𝑄𝑘)𝐺𝑘 (𝑧, 𝑦) = −𝛿 (𝑥, 𝑦)I ,

where I denotes an appropriate tensor identity. The normal-ordering prescrip-
tion is given by a point-splitting procedure. Formally divergent quantities, such
as ⟨ℎ̂𝑎𝑏(𝑥)ℎ̂𝑐𝑑 (𝑥)⟩ = −𝑖𝐺ℎℎ

𝑘

𝑐𝑑

𝑎𝑏
(𝑥, 𝑥), are replaced by point-split expressions, such

as 𝐺ℎℎ
𝑘

𝑎′𝑏′

𝑎𝑏
(𝑥, 𝑦), for 𝑦 in the vicinity of 𝑥 and space-like separated. The singu-

lar terms in the coincidence limit are subtracted, obtaining the regularised corre-
sponding quantity : 𝐺ℎℎ

𝑘

𝑎𝑏

𝑎𝑏
: (𝑥, 𝑦).
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We now assume that the operator Γ(2)
𝑘

− 𝑞𝑘 is Green hyperbolic, with the ki-
netic term, apart from a possible wavefunction renormalization 𝑍𝑘, given by the
free part of the action: Γ(2)

𝑘
− 𝑞𝑘 = 𝑍𝑘𝐷 − 𝑞𝑘 + 𝑈 (2)

𝑘
, where 𝐷 = 𝐼

(2)
0 . In this ap-

proximation, the effective potential 𝑈 (2)
𝑘

does not contain derivatives of the Dirac
delta.

As we proved in Section 8.1, in this case the interacting propagator coincides
with the propagator of the free theory, with a mass modified by 𝑈𝑘 [83, 95]. Thus,
for 𝑦 in a normal convex neighbourhood of a given 𝑥, the interacting propagators
must have the same Hadamard singularity structure of the free propagator:

𝐺𝑘 =
𝑖

8𝜋2Z 2
𝑘

(𝐻𝑘 +𝑊 ) , (8.46)

written in terms of a smooth contribution 𝑊 and the Hadamard parametrix, cap-
turing its universal UV singularity structure:

𝐻𝑘 (𝑥, 𝑦) =
𝑖

8𝜋2Z 2
𝑘

lim
𝜖→0+

[
Δ1/2

𝜎𝜖 (𝑥, 𝑦)
I + 𝑉 log

𝜎𝜖 (𝑥, 𝑦)
`

]
.

In the last equations, Z 2
𝑘

:= 𝑍𝑘Z
2, 𝜎 (𝑥, 𝑦) is the squared geodesic distance taken

with sign between 𝑥 and 𝑦 and 𝜎𝜖 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) + 𝑖𝜖, Δ is the van-Vleck-Morette
determinant.

The distributions 𝑉, 𝑊 can be expanded in a covariant Taylor expansion as
𝑉 =

∑
𝑛=0 𝑉𝑛𝜎

𝑛 and𝑊 =
∑
𝑛=0 𝑊𝑛𝜎

𝑛; the Hadamard recursion relations determine
higher orders in the expansion from the zeroth order [91]. The zeroth term 𝑉0 is
completely determined by the quantum wave operator and the background geom-
etry by the formula [143]

𝑉0 = −1
2

𝛿2

𝛿𝜙𝛿𝜙
(Γ𝑘 + 𝑄𝑘)Δ1/2I , (8.47)

and the coincidence values Δ1/2(𝑥, 𝑥) = 1, ∇𝑎∇𝑏Δ1/2(𝑥, 𝑥) = 1/6�̄�𝑎𝑏 [75]. The
smooth contribution 𝑊0 remains arbitrary; once 𝑊0 is fixed, it uniquely identify
the state.

The subtraction of theHadamard parametrix defines the normal-ordered quan-
tity : 𝐺𝑘 ::= 𝐺𝑘 − 𝐻𝑘, smooth in the coincidence limit; the FRGE for Γ𝑘 thus be-
comes

𝜕𝑘Γ𝑘 ( �̄�; 𝜙) = − 1
16𝜋2Z 2

𝑘

∫


Tr
{
𝜕𝑘𝑞𝑘 (𝑥)

[
𝑆0 + 𝑉0 log

𝑀2

`2

]}
. (8.48)

The logarithmic term log𝑀2 is a smooth contribution coming from the arbitrary
function𝑊 , and it is necessary to make the logarithm in (8.55) dimensionless; 𝑆0 is
the remaining smooth contribution in the coincidence limit.

8 .4 .2 Einstein-Hilbert truncation

The Einstein-Hilbert truncation assumes an Ansatz for the effective average action
in the form

Γ𝑘 ( �̄�; 𝜙, 𝜎 , [) = Γ𝐸𝐻𝑘 ( �̄�, 𝑔) + Γ
𝑔ℎ

𝑘
( �̄�, ℎ, 𝑐, 𝑐)
+ Γ

𝑔𝑓

𝑘
( �̄�, ℎ, 𝑏, 𝑐, 𝑐) + Σ( �̄�; 𝜙, 𝜎 ) + 𝐻 ( �̄�; 𝜙, [) . (8.49)
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The Einstein-Hilbert contribution is

Γ𝐸𝐻𝑘 = 2Z 2
𝑘

∫


√︁
− det 𝑔(𝑅(𝑔) − 2Λ𝑘) .

In terms of the fluctuation field ℎ := ⟨ℎ̂⟩ = 𝑔 − �̄�, the ghost and gauge-fixing terms
are

Γ
𝑔ℎ

𝑘
= Z 2

𝑘

∫


√︁
− det �̄�𝑐𝑎( �̄�𝑎𝑏□ + �̄�𝑎𝑏( �̄�))𝑐𝑏 ,

Γ
𝑔𝑓

𝑘
= −Z 2

𝑘

∫


√︁
− det �̄�𝑏𝑎(∇𝑏ℎ𝑎𝑏 −

1
2
∇𝑎 �̄�𝑏𝑐ℎ𝑏𝑐) ,

and Σ and 𝐻 correspond to the classical contributions.
The equations for the interacting propagators are derived expanding the effec-

tive average action up to second-order in a Taylor expansion in the fluctuation field
ℎ, Γ𝑘 ( �̄� + ℎ) = Γ𝑘 ( �̄�) +(ℎ) +Γquad

𝑘
(ℎ, �̄�); the contribution Γquad

𝑘
(ℎ, �̄�) gives raise to

a ℎ-independent, but background dependent quantum wave operator.
We can now specify the regulator terms 𝑞𝑘, 𝑞𝑘. They are chosen to act as artifi-

cial masses for the fields, dressing the d’Alembertians as□ → □ − 𝑘2:

𝑞𝑘
𝑎𝑏
𝑐𝑑 = Z

2
𝑘 𝑘

2𝐾𝑎𝑏𝑐𝑑 , 𝑞𝑘𝑎𝑏 = Z
2
𝑘 𝑘

2 �̄�𝑎𝑏 , (8.50)

where 𝐾𝑎𝑏𝑐𝑑 = 1/2( �̄�𝑎𝑐 �̄�𝑏𝑑 + �̄�𝑏𝑐 �̄�𝑎𝑑 − �̄�𝑎𝑏 �̄�𝑐𝑑). More explicitly, the regulator matrix
is

𝑘𝜕𝑘𝑞𝑘 = (2Z 2
𝑘 𝑘

2 + 𝑘2 𝑘𝜕𝑘Z
2
𝑘 )

©«
𝐼 𝑐𝑑
𝑎𝑏

0 0 0
0 −1/2 0 0
0 0 0 �̄�𝑎𝑏

0 0 −�̄�𝑎𝑏 0

ª®®®®®¬
. (8.51)

The graviton propagator may be decomposed in the sum of a tensor 𝐺𝑇
𝑘
and a

scalar 𝐺𝑆
𝑘
= �̄�𝑎𝑏𝑔𝑐′𝑑′𝐺

ℎℎ
𝑘

𝑐𝑑

𝑎𝑏
contribution [9]. The equations of motion then read

Z 2
𝑘 [ �̄�𝑎𝑐 �̄�𝑏𝑑

(
□ − 𝑘2 + 2Λ𝑘 −

1
2
�̄�

)
− 𝑃𝑎𝑏𝑐𝑑 ]𝐺

𝑇
𝑘

𝑎𝑏𝑐′𝑑′
(8.52)

= −1
2

(
�̄� 𝑐′
𝑐 �̄� 𝑑′

𝑑 + �̄� 𝑐′

𝑑 �̄� 𝑑′
𝑐 − �̄�𝑐𝑑 �̄�

𝑐′𝑑′
)
𝛿 (𝑥, 𝑦)

−
Z 2
𝑘

2
(□ − 𝑘2 + 2Λ𝑘)𝐺𝑆

𝑘 = −𝛿 (𝑥, 𝑦) , (8.53)

Z 2
𝑘

[
�̄�𝑎𝑏(□ − 𝑘2) + �̄�𝑎𝑏

]
�̃�𝑎𝑏′

𝑘 = −�̄� 𝑏′

𝑏 𝛿 (𝑥, 𝑦) . (8.54)

The tensor 𝑃 𝑐𝑑
𝑎𝑏

:= −2�̄� 𝑐 𝑑
(𝑎 𝑏) − 2�̄� (𝑐(𝑎 �̄�

𝑑)
𝑏) + �̄�

𝑐𝑑 �̄�𝑎𝑏 + �̄�𝑎𝑏�̄�𝑐𝑑 is a potential term.
In the last relation, all curvature quantities are constructed from the background
metric �̄�; the d’Alembertian is□ = �̄�(∇,∇).

Each propagator has a corresponding Hadamard expansion:

𝐺𝑆
𝑘 = − 𝑖

4𝜋2Z 2
𝑘

{
𝐻𝑆
𝑘 + 𝑉

𝑆
0 log𝑀2

𝑆 + 𝑆
𝑆
0
}

(8.55)

𝐺𝑇𝑘
𝑎𝑏𝑐′𝑑′

=
𝑖

8𝜋2Z 2
𝑘

{
𝐻𝑇
𝑘

𝑎𝑏𝑐′𝑑′ + 𝑉𝑇0
𝑎𝑏𝑐′𝑑′

log𝑀2
𝑇 + 𝑆𝑇0

𝑎𝑏𝑐′𝑑′
}

(8.56)

�̃�𝑎𝑏′

𝑘 =
𝑖

8𝜋2Z 2
𝑘

{
�̃�𝑎𝑏′

𝑘 + 𝑉0
𝑎𝑏′ log �̃�2 + 𝑆0

𝑎𝑏′
}
, (8.57)
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The terms 𝑉𝑇0 , 𝑉
𝑆
0 , and �̃�0 arising from the equations (8.52)-(8.54) can be computed

from Eq. (8.47); they are given by [9, 34]

𝑉𝑆0 =
1
2
(𝑘2 − 2Λ𝑘) −

1
12
�̄� (8.58)

𝑉𝑇
𝑐𝑑

0𝑎𝑏 =
1
2

(
𝑘2 − 2Λ𝑘 +

1
3
�̄�

)
𝐾 𝑐𝑑
𝑎𝑏 + 1

2
(𝑃 𝑐𝑑

𝑎𝑏 − 1
2
�̄�𝑐𝑑𝑃 𝑒

𝑎𝑏𝑒 ) (8.59)

�̃� 𝑎𝑏
0 = − 1

12
�̄�𝑎𝑏�̄� + 1

2
(𝑘2 �̄�𝑎𝑏 − �̄�𝑎𝑏) . (8.60)

8 .4 .3 Universal terms and state dependence

The RG equations (8.48) depends on the choice of a state. This is the main difficulty
in applying the LorentzianRG equations, in comparisonwith their Euclidean coun-
terpart. In particular, Hadamard states for the graviton are not known in general
spacetimes, but only in specific geometries [7, 10, 36, 111, 125, 130, 237]. The con-
struction of a Hadamard vacuum state for the graviton is well beyond the scope of
this short note. Thus, here we take into account only universal contributions to the
evolution equations, that are present in anyHadamard state and in all backgrounds.
The evaluation of state-dependent contributions is possible only selecting a class
of backgrounds, and it will be addressed in future works.

To solve the FRGE (8.48), we need to evaluate 𝑆𝑆0 , 𝑀
2
𝑆
, 𝑆0, 𝑀

2
𝑇
and 𝑆0, �̃�

2. First
of all, the smooth functions 𝑆𝑆0 , 𝑆0, 𝑆0 vanish in the flat space limit [10, 168]. More-
over, any 𝑘−independent term can be removed by a re-definition of the effective
average action, while terms proportional to the scale 𝑘 can be removed by an appro-
priate choice of the renormalization ambiguities [158, 160, 161]. Since the remaining
contributions are completely state dependent, here we neglect 𝑆𝑆0 , 𝑆0 and 𝑆0.

On the other hand,while the specific expressions for the functions𝑀2
𝑇
, 𝑀2

𝑆
, �̃�2

are state-dependent, they must be present in any Hadamard state. They are func-
tions ofmass dimension 2, analytic in the physical parameters. The only dimension-
2 term in the Hadamard expansion for the interacting propagator is 𝑉0; we thus
choose

𝑀2
𝑆 = 𝑉

𝑆
0 , 𝑀2

𝑇 = 𝑉𝑇
𝑐𝑑

0𝑎𝑏 𝐼𝑎𝑏𝑐𝑑 , �̃�2 = �̃� 𝑎𝑏
0 �̄�𝑎𝑏 ,

where 𝐼𝑎𝑏𝑐𝑑 = 1/2( �̄�𝑎𝑐 �̄�𝑏𝑑 + �̄�𝑏𝑐 �̄�𝑎𝑑) is the identity for symmetric four-tensors.
These choices completely fix 𝑊0 , �̃�0 and thus they fix a vacuum-like state

through theHadamard recursion relations. In the case of the scalar field, this choice
coincides with the Minkowski vacuum state [83].

The last term to be fixed is the arbitrary mass `. Contrary to the mass terms
𝑀2
𝑇
, 𝑀2

𝑆
, and �̃�2, depending on the choice of the state, this term is actually an

arbitrary mass contribution coming from the choice of the Hadamard parametrix.
Thus, we are free to choose a running Hadamard mass ` = 𝑘2, adjusting the UV
regularisation to the renormalization scale 𝑘.

With these choices, the FRGE (8.48) is written in terms of state-independent,
universal quantities. Of course, state-dependent terms in specific backgrounds can
significantly alter the FRGE.

8 .4 .4 Phase diagram

We can now compute the 𝛽−functions for the dimensionless constants 𝑔𝑘 and
_𝑘, related to the dimensionful running Newton’s and cosmological constants by
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Figure 8.5: Phase diagram obtained by numerical integration of the 𝛽−functions
(8.61)-(8.62), with the distinguished Great Wave off Kawanaga shape [154]. The solid
line is the separatrix, connecting the non-Gaussian fixed point (circle) to the Gaus-
sian one (square); the dashed line denotes the locus where [N diverges.

canonical rescalings:

(32𝜋Z 2
𝑘 )

−1 = 𝐺𝑘 = 𝑘
−2𝑔𝑘 , Λ𝑘 = 𝑘

2_𝑘 .

Expanding the r.h.s of (8.48) up to first order in the background Ricci scalar �̄�
then gives the 𝛽−functions for the dimensionless couplings 𝑔𝑘 and _𝑘,

𝑘𝜕𝑘𝑔𝑘 = ([N + 2)𝑔𝑘 (8.61)

𝑘𝜕𝑘_𝑘 = −(2 − [N)_𝑘 +
𝑔𝑘

4𝜋

{
4(log 16 − [N log 4) + (2 − [N) (8.62)

(1 − 2_𝑘)
[
8 log[4(1 − 2_𝑘)] + log[1

2
(1 − 2_𝑘)]

] }
,

in terms of the anomalous dimension [N := 𝐺−1
𝑘
𝑘𝜕𝑘𝐺𝑘:

[N(𝑔𝑘, _𝑘) =
𝑔𝑘

6𝜋
27 log(1 − 2_𝑘) + 7 + 37 log 2

1 + 𝑔𝑘
12𝜋 (37 log 2 + 27 log(1 − 2_𝑘))

. (8.63)

The flow exhibits one non-trivial fixed point for positive 𝑔𝑘 and _𝑘, and it in-
terrupts at _𝑘 = 1/2, where the logarithms diverge; the fixed point 𝑔∗ = 1.15, _∗ =
0.42 realises the analogue of the Reuter fixed point in Lorentzian spacetimes. The
product 𝑔∗_∗ = 0.48, known to be more stable under changes in the renormaliza-
tion scheme, can be compared to the value found in the Euclidean case [215, 220],
that is 𝑔𝐸∗ _𝐸∗ ≈ 0.13. The computation in the Lorentzian case with the ADM formal-
ism gives 𝑔𝐸∗ _𝐸∗ ≈ 0.06 [184]. The critical coefficients for the Lorentzian fixed point
are a pair of complex conjugate values, \1,2 = 5.11 ± 11.59𝑖; therefore _𝑘 and 𝑔𝑘
are two relevant directions, agreeing again with Euclidean results. The fixed point
(𝑔∗, _∗) thus provides a realisation of the AS scenario in Lorentzian spacetimes.

The novel RG framework allows for an investigation of Lorentzian flows in a
non-perturbative regime for gravity. In this short computation, we have seen that
the contribution of universal, background independent terms in the flow of the
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Einstein-Hilbert truncation supports the evidence that gravity is non-perturbatively
renormalizable also in the Lorentzian case.

To preserve background independence,we have restricted our attention to con-
tributions to the flow coming only from universal terms. The important question
now is if the non-trivial fixed point persists when state-dependent terms are taken
into account. The investigation of state-dependent terms, however, requires to se-
lect a background. The Lorentzian FRGE (8.48) then allows for a systematic investi-
gation of these state-dependent contributions in specific background geometries.

On the other hand, the universal RG flow that we studied here allows for quick
generalisations to more advanced truncations: in fact, in any given truncation, it is
sufficient to compute the 𝑉0 terms in the Hadamard expansion from Eq. (8.47) to
investigate the universal contributions to the RG flow.

Finally, while the EAA is a gauge-dependent quantity, gauge-invariant rela-
tional observables have been already studied in the context of locally covariant QG
[62, 121–123] and in Euclidean fRG flows [15]. In future works, we plan to investigate
the RG flow of gauge-invariant observables in Lorentzian quantum gravity.



9 Relative entropy and dynamical black holes

9 . 1 a quantum cup of tea

In this final Chapter we leave the intricacies of interacting quantum field theories
for the simpler model of a free scalar field, propagating on a curved spacetime.
Despite its simplicity, even the toy model of a free scalar shows some remarkable
properties, in particular in its interactions with the underlying geometry. In fact,
if the background has been a non-dynamical spectator up until this point in the
discussion, in this final Chapter we shall study the perturbations of the metric of a
dynamical black hole under the influence of the scalar field. The interplay between
black holes and scalar fields gives raise to an intriguing scenario, in which every
area of physics plays a fundamental act: quantum physics and gravity, special rela-
tivity and thermodynamics, which was first discovered by the pioneering work of
Hawking [146].

Nature enjoys the rich and the subtle, and gravity makes no exception: General
Relativity is perhaps the best example of a theory hiding its best secrets because of
its essential loftiness, but not by means of ruse [194]. In General Relativity, gravity and
matter fields dance together a choreography that, giving shape to the Universe, de-
termines the dynamical evolution of matter. The study of classical General Relativ-
ity already unravels spectacular phenomena, themost famous of which arewithout
a doubt black holes. At a first glance, black holes are actually the simplest objects
in the Universe: in fact, black hole solutions are characterised by three parame-
ters only, their mass, their electric charge, and their angular momentum. However,
the laws of black holes mechanics display a remarkable similarity with the prin-
ciples of thermodynamics, suggesting that black holes, far from being the simple
objects that they appear, are actually complicated thermodynamical actors inter-
acting with continuous exchanges of energy with the surrounding matter. If black
holes can have exchanges of energy, it is natural to wonder if they can also have
thermodynamical properties, such as a temperature or entropy.

The idea to assign an entropy dates back to the beginning of the ’70s, when
professor JohnWheeler and his then-graduate student, Jacob Bekenstein, were dis-
cussing over a cup of tea [199] the idea that black holes can be described by a handful
of parameters only: in their ownwords, that black holes have “no hair” [189]. “What
would happen”, asked the professor, “if I throw this cup of tea into a black hole?”

General Relativity would say that the black hole would bear no trace of the
cup of tea’s microscopic properties, in striking contrast with the second law of
Thermodynamics: if the black hole has no temperature nor entropy, the entropy
of the Universe would decrease every time an object falls behind its horizon.

For this reason, Bekenstein proposed that black holes do indeed carry an en-
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tropy, which would compensate the loss of entropy due to matter falling behind
the horizon. In fact, black hole entropy was already been introduced as a useful
mathematical analogy between the laws of black hole mechanics and the laws of
thermodynamics [19], but it did not have a true physical meaning. Thanks to a se-
ries of gedanken experiments, Bekenstein was able to predict that the entropy must
be proportional to the black hole horizon area [32], with a proportionality factor
of approximately [ = 1

2 ln 2 [33].
Bekenstein’s theoretical insight was put on a firm ground by Hawking. He sub-

stituted the cup of tea with a quantum cup of tea; that is, he considered the effects of
a black hole on the propagation of a quantum field, performing the computation in
a semi-classical context. He showed that black holes do indeed emit a thermal radi-
ation of particles with a black-body spectrum and a well-defined temperature [146,
147]; thanks to the analogy between the laws of black hole mechanics and the laws
of thermodynamics [19], this in turn fixed the entropy of a black hole to one-fourth
of the horizon area.

However, far from being resolved, the puzzle of black hole thermodynamics
becomes just more mysterious after Hawking’s discovery. In fact, thanks to Boltz-
mann law, we know that entropy counts the microscopic states of a macroscopic
thermodynamical system; however, in General Relativity a black hole has no mi-
crostates, since it is described by three parameters only. It is then natural to look for
the black hole microstates in terms of quantum degrees of freedom. The first pro-
posal in this sense has been made by Bombelli and his collaborators [46]: their idea
was that the black hole entropy comes from the entanglement entropy between the
quantum degrees of freedom behind the event horizon, and those outside the black
hole. Starting from a pure quantum state over the entire spacetime, defined assign-
ing a free particle to each node on a lattice with spacing 𝜖, the trace over degrees
of freedom outside the black hole defines a reduced density matrix that accounts
for the degrees of freedom inside the black hole only. The entanglement entropy
is then computed as a von Neumann entropy for the reduced density matrix.

The entanglement entropy is indeed proportional to the area of the entangling
surface, but it is divergent in the continuum limit 𝜖 → 0, and it depends on the
regularisation scheme. It also depends on the number of fields present in themodel
(see e.g. [157] for a review on the entanglement measures in the algebraic approach
toQFT, and [228] for the applications to black hole entropy). For these limitations, it
was argued (as Bekenstein originally stated [33]) that to correctly take into account
themicroscopic gravitational degrees of freedom, a quantum theory of gravity was
needed: for example, string theory [234] or the more indirect approaches based on
AdS/CFT, as in [107]. Indeed, both in the context of string theory [232] and loop
quantum gravity [224], it has been possible to reproduce the Bekenstein-Hawking
entropy from the counting of quantum-gravitational degrees of freedom. Both the-
ories, however, apart from technical difficulties (in string theory, only the entropy
of certain classes of supersymmetric black holes has been computed; in loop quan-
tum gravity, the entropy is computed in terms of the Barbero-Immirzi parameter,
which must be tuned to a peculiar value), make speculative assumptions on the
nature of quantum gravity, which have not been experimentally confirmed yet.

In this Chapter, we prove an area law for the black hole entropy in a spirit close
to Bekenstein’s original proposal, without the mathematical analogy between the
laws of black hole mechanics and the principles of thermodynamics, and without
assumptions on the microscopic nature of quantum gravity. We will follow Hawk-
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ing’s original idea, of computing the effects of the entropy of a quantum field on
the metric of a dynamical black hole, in the semi-classical context of a quantum
field propagating on a curved spacetime.

In general QFTs, entropic measures are difficult to define and perhaps even
harder to explicitly compute. In fact, the algebras arising in free QFT are generally
von Neumann factors of type III, which do not admit a trace operation; it follows
that the von Neumann entropy cannot be computed in this context. Here, we use
results on the relative entropy between coherent states in flat spacetime developed
in [73] and [183]. The Araki formula [13] defines the relative entropy as the expecta-
tion value of a particular operator, constructed using the Tomita-Takesaki theory
of modular automorphisms of a von Neumann algebra [235], [140]. The Araki for-
mula holds in general von Neumann algebras, so it is a suitable definition also in
the context of QFTCS. In this regard, relative entropy completely avoids the diver-
gences of entanglement entropy in the continuum limit, which arises because the
continuum limit of Quantum Mechanics (generally described by a type I factor)
is a QFT. Moreover, in Quantum Mechanics, the relative entropy reduces to the
entanglement entropy formula, regularised subtracting a vacuum contribution.

We will also make extensive use of the geometric description of dynamical
black hole backgrounds [3, 151].

The strength of this approach comes from the fact that it does not make use
of unknown physics, since it is only based on QFTCS and General Relativity, and
it does not rely on the mathematical analogy between the laws of black hole me-
chanics and the laws of Thermodynamics, which is based on a quasi-stationary
approach; instead, we directly compute the black hole contribution to the relative
entropy, that is, we compute the variation in the black hole geometrical quantities
as the relative entropy of the matter fields coupled to the curvature varies in the
black hole exterior.

Our starting point is the analysis made in [155] for a static black hole. In their
work, Hollands and Ishibashi considered a free, massless, scalar field propagat-
ing over a Schwarzschild background, and they computed the relative entropy be-
tween a suitably defined ground state and a classical wave, treated as a coherent
state which acted as a second order perturbation of the metric. The classical the-
ory is defined as a solution of a Cauchy problem for the Klein-Gordon equation, for
which one needs to give Cauchy data on some space-like Cauchy surface [239]. Hol-
lands and Ishibashi chose as partial Cauchy surface a region of the event horizon
and a region of the conformal future infinity, thus giving Cauchy data in the distant
future. The ground state is given as the vacuum with respect to the affine parame-
ters along the event horizon and the conformal future infinity, and they computed
the relative entropy between the ground state and a coherent perturbation, using
the Araki formula for coherent perturbations [73, 183]. The relative entropy is found
to be the sum of two integrals, respectively over the event horizon and at future
null infinity. Using the Raychaudhuri equation, to compute the evolution of the null
geodesic generators of the event horizon [239], they showed that the event horizon
integral can be rewritten as one-fourth of the event horizon area. They were able
to find an evolution equation in the form of d

d𝑡
(
𝑆 + 1

4 𝛿
2𝐴

)
= 2𝜋𝐹, where 𝑆 is the

matter relative entropy, 𝛿2𝐴 is the second order perturbation of the horizon area
due to the scalar and gravitational perturbations, and 𝐹 is the matter/gravitational
radiation flux at infinity.

Herewe follow the procedure outlined above, generalised to the case of a spher-
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Figure 9.1: Penrose diagram of the dynamical black hole.

ically symmetric, asymptotically flat, dynamical black hole. We do not assume any
energy condition on the source matter, so that the black hole can either grow due
to infalling matter, or evaporate via Hawking radiation. Such a spacetime develops
a dynamical horizon which does not coincide with the usual event horizon of a sta-
tionary black hole. Here, we consider the notion of dynamical horizon as the outer,
future, trapping surface, in the sense of Hayward [151]; we will give more details on
the definition in Section 9.2.

We then consider a free, massless, scalar field propagating over the background,
giving initial data on a suitable Cauchy surface. Since the theory does not depend
on the Cauchy surface, but it is influenced on its causal development only, we can
consider the limit in which a part of the Cauchy surface coincides with a part of
past null infinity. Therefore, we give initial data in the distant past, and we observe
the evolution of the scalar field in time, as it is most natural from a physical point
of view. The advantage of this approach is that we do not need to assume that the
horizon is space-like or null, and thus our analysis applies both in the case of a
black hole in formation or in evaporation.

A schematic Penrose diagram is given in figure 9.1. For simplicity, we consider
a Schwarzschild black hole for 𝑣 < 𝑣0, which dynamically evolves from the in-
stant 𝑣0 on due to the presence of a non-vanishing energy-momentum tensor. The
black hole develops a dynamical horizon inside the event horizon  , which
evolves according to the presence of matter. We denoted conformal infinity with
standard notation. The Cauchy surface  for the propagation of the quantum field
is in red; we give non-vanishing initial data for the perturbation on the region lying
at past null infinity. To prove our result, we will consider the flux of the Kodama
current ([174], see Section 9.2.3) across the four boundaries of the shaded region.

We choose a ground state for the quantum field which is vacuum with respect
to modes incoming from past infinity, and regular (in Hadamard sense [171], see
Section 2.5.1 for the definition) otherwise. We will call such a state the ground state.
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Our model is then independent on the details of the collapse of the black hole. We
then consider a classical, massless wave, which acts as a perturbation on the geom-
etry and as a coherent state with respect to the vacuum, which is switched on at the
instant 𝑣0; in other words, we give non-vanishing initial data, with spatially com-
pact support, on the part of the Cauchy surface lying on past null infinity, − (𝑣0).

Assuming that the Klein-Gordon wave has initial data with spatially compact
support, the second-order perturbation 𝛿2𝑔 = 1

2
d2

d_2 𝑔

���
_=0

goes to zero at space-

like infinity 𝑖0. Since the space is asymptotically a Schwarzschild background, we
are able to use the same formula as in [155] for the relative entropy between the
coherent state and the ground state, which is given in terms of integrals along the
Cauchy surface. Furthermore, we can use the decaying properties of the scalar field
at infinity for a Schwarzschild background [88]. Using the formulas for the relative
entropy between coherent states [73, 183], we get an expression for the derivative
of the relative entropy along a vector tangent to past null infinity, (9.2).

We then need to connect the variation of relative entropy with the variation
of the dynamical horizon, as the classical wave �̂� perturbs the black hole. To this
end, we make use of the Kodama vector [174]. The Kodama vector is a divergence-
free vector, which in spherically symmetric spacetimes takes the same role as a
time-like Killing vector in static spacetimes. It reduces to a time-like Killing vec-
tor at infinity, its integral parameter can be taken as a preferred time coordinate
[3], and its contraction with a conserved energy-momentum tensor give raise to
a conserved current. We consider the conserved current constructed from the en-
ergy momentum-tensor of the coherent wave. In the exterior of the black hole,
we consider a region whose boundaries are given by the null hypersurface Σ𝑣0 at
𝑣 = 𝑣0, the future null, time-like, and space-like infinity +, 𝑖+, and 𝑖0, the region
of past null infinity with 𝑣 ≥ 𝑣0, denoted by − (𝑣0), and the corresponding region
of dynamical horizon  (𝑣0); the region is coloured in grey in figure 9.1. Using
the Stokes theorem [239], we can convert the conservation law for the Kodama cur-
rent into an equation for its flux across the four boundaries. We then proceed to
show that the flux term across past null infinity equals the variation of the relative
entropy between the coherent wave and the ground state, with respect to a rigid
translation of 𝑣0 in the 𝑣 direction. On the other hand, the flux term computed on
the dynamical horizon can be written as the derivative, in the 𝑣 direction, of one
quarter of the perturbation of the horizon area caused by the coherent wave. Our
main result is stated in Eq. (9.65): we find that, to a variation of the relative entropy
of the quantummatter, we can associate a variation of one-fourth of the dynamical
horizon area; it is therefore natural to interpret the area as the entropy of the black
hole. The result thus generalises that of [155] to the case of dynamical, spherically
symmetric, asymptotically flat black holes.

9 .2 geometric setup

9 .2 . 1 Warped-product spacetimes

Ourmodel for a dynamical black hole is a spherically symmetric Lorentzian space-
time , whose metric 𝑔 can always be written as a warped product between the
radial-temporal plane and the 2-spheres of symmetry, = 2 × 𝑆2. The metric
admits a similar decomposition [3]

d𝑠2 = 𝑥𝑎𝑏d𝑥𝑎d𝑥𝑏 = 𝛾𝑖 𝑗d𝑥𝑖d𝑥 𝑗 + 𝑟2(𝑥)𝜎𝛼𝛽d\𝛼d\𝛽 , (9.1)
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where 𝜎𝛼𝛽d𝑥𝛼d𝑥𝛽 = d\2 + sin \d�̂�2 is the angular metric on the spheres of symme-
try, and 𝛾𝑖 𝑗 is the metric on the radial-temporal plane; 𝑟 is a function of the planar
coordinates. Indices from the beginning of the Latin alphabet (𝑎, 𝑏, 𝑐, . . .) denote
the coordinates on the whole spacetime, indices from the middle of the Latin al-
phabet (𝑖, 𝑗, 𝑘, . . .) are for the planar components, and indices from the Greek alpha-
bet (𝛼, 𝛽, 𝛾, . . .) denote the angular components. The metric highlights the warped
product structure of a spherically symmetric spacetime, but the particular choice
of planar and angular coordinates remains arbitrary; later, we will make a partic-
ular choice of coordinates to perform explicit computations, Eq. (9.6). Assuming
asymptotic flatness the metric reduces to the standard Schwarzschild metric at in-
finity, and so it exhibits the same conformal structure at the boundary of a static
black hole. By a conformal embedding we can identify the spacetime boundaries
with past and future null infinities ±, time-like infinities 𝑖±, and the space-like
infinity 𝑖0. An asymptotically flat dynamical black hole thus describes the forma-
tion or evaporation of a black hole influenced by some local distribution of matter,
isolated from the rest of the Universe.

In spherical symmetry, it is possible to define the Israel-Hawking/Misner-Sharp
quasi-local mass

𝑚 =
𝑟

2
(1 − ∇𝑎𝑟∇𝑎𝑟) . (9.2)

TheMisner-Sharpmass satisfies the correctNewtonian, small-sphere, large-sphere,
special-relativistic, and test particle limits, and thus represents a good notion of
gravitational mass in spherical symmetry [150].

Using the Misner-Sharp mass and the metric decomposition (9.1), the Einstein
tensor takes the expression

𝐺𝑖 𝑗 = −
2∇𝑖∇𝑗𝑟

𝑟
+

(
2□𝑟
𝑟

− 2𝑚
𝑟3

)
𝛾𝑖 𝑗 (9.3)

𝐺𝑖𝛼 = 0 (9.4)

𝐺𝛼𝛽 =

(
− 𝑟2

2
𝑅𝑖 𝑗𝛾

𝑖 𝑗 + 𝑟□𝑟
)
𝜎𝛼𝛽 (9.5)

where 𝑅𝑖 𝑗 is the planar component of the Ricci tensor.
In order to make explicit computations, we will choose coordinates so that the

metric takes the form

d𝑠2 = −𝑒2𝛾 (𝑣,𝑟) 𝑓 (𝑣, 𝑟)d𝑣2 + 2𝑒𝛾 (𝑣,𝑟)d𝑣d𝑟 + 𝑟2dΩ2 . (9.6)

𝛾 (𝑣, 𝑟) is an arbitrary function of the coordinates, while 𝑓 (𝑣, 𝑟) can be written in
terms of the Misner-Sharp mass as

𝑓 (𝑣, 𝑟) = 1 − 2𝑚(𝑣, 𝑟)
𝑟

. (9.7)

The assumption of asymptotic flatness implies that 𝛾 → 0 and 𝑓 → 1 at infinity,
so that the metric reduces to an asymptotically Schwarzschild spacetime.

Finally, we introduce the null vector field

𝑙 = 𝑒−𝛾 (𝑣,𝑟)𝜕𝑣 +
𝑓 (𝑣, 𝑟)

2
𝜕𝑟 , (9.8)

which describe the outgoing radial light-rays on the background metric.
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9 .2 .2 Dynamical horizons

An event horizon is by definition a global feature of a spacetime [148]. To locate
it, an observer should sit at infinite future, collect all light-rays coming from all re-
gions of theUniverse, and identify the event horizon as the boundary of the regions
from which light-rays did not escape. While this definition provided dramatic in-
sight in the causal structure of General Relativity, in dynamical settings, and more
so for practical observations, the event horizon is not well-suited. Rather, in the
literature it is possible to find different notions of horizons adapted to describes
the dynamics of a black hole that evolve under in-falling matter [14, 49]. Here we
follow the definition given by Hayward, based on marginal spheres [151].

A sphere is said to be untrapped, trapped, or marginal if ∇𝑎𝑟 is respectively spa-
tial, temporal, or null. A hypersurface foliated by marginal spheres is called a trap-
ping horizon, which can be outer, degenerate, or inner if□𝑟 > 0,□𝑟 = 0, or□𝑟 < 0
respectively, where □ = 𝑔𝑎𝑏∇𝑎∇𝑏. If ∇𝑎𝑟 is future- (past-) directed, the trapping
horizon is said to be future (past). A dynamical horizon is then an outer, future trap-
ping horizon, and defines the black hole boundary. Such a definition provides a
local definition of a black hole, based on local measurements on the light-rays. The
dynamical horizon is space-like if the black hole is growing, time-like if it is evapo-
rating, and null if it is stationary; in this last case it coincides with the event horizon
for stationary black holes. However, a dynamical horizon evolves according to the
dynamics of localmatter distributions, in contradistinctionwith the event horizon;
their different behaviours can be analysed in detail in specific examples, as Vaidya
backgrounds [50].

In the coordinates (9.6), the dynamical horizon is located at 𝑓 = 0; the radial co-
ordinate at the dynamical horizon thus satisfies the implicit equation 2𝑚(𝑣, 𝑟) =
𝑟 .

9 .2 .3 Kodama conservation law

In dynamical spacetimes, there is not an a priori preferred direction of time, since
it is not possible to define an asymptotically time-like Killing vector field. However,
in spherically symmetric spacetimes it is possible to introduce a vector that, while
not being a Killing vector, shares many of the important properties of a time-like
Killing vector field, and in particular has an associated conservation law [3, 174].

Definition 9.1 (Kodama vector).

𝑘𝑖 = 𝜖𝑖 𝑗∇𝑗𝑟 ,

where 𝜖𝑖 𝑗 denotes the volume form (Levi-Civita tensor) associated with the planar
metric 𝛾𝑖 𝑗, 𝜖𝑖 𝑗 =

√︁
− det 𝑔𝑒𝑖 𝑗, with 𝑒𝑖 𝑗 the Levi-Civita symbol.

In coordinates, the Kodama vector is

𝑘 = 𝑒−𝛾𝜕𝑣 . (9.9)

From the definition, it is possible to see that by symmetry

𝑘𝑎∇𝑎𝑟 = 0 . (9.10)

The Kodama vector is divergence-free for symmetry, as can be seen by a short
computation:

∇𝑖𝑘𝑖 = ∇𝑖 (𝜖𝑖 𝑗∇𝑗𝑟) = 𝜖𝑎𝑏∇𝑎∇𝑏𝑟 + ∇𝑎𝜖𝑎𝑏∇𝑏𝑟 = 0 . (9.11)
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The first term vanishes because it is the product of a symmetric tensor and an
antisymmetric tensor; the second term vanishes because the Levi-Civita symbol is
constant, and the covariant derivative of the metric determinant vanishes, since it
is proportional to the covariant derivative of the metric itself.

The conserved charge associated with the conservation law of the Kodama vec-
tor is just the areal volume 𝑉 = 4𝜋

3 𝑟
3,

𝑉 :=
∫
Σ
𝑘𝑎dΣ𝑎 , (9.12)

wheredΣ𝑎 is the oriented surface element of a 3-hypersurface,dΣ𝑎 = 𝑛𝑎 |det ℎ|1/2 d3 𝑦,
with 𝑛𝑎 the unit normal vector to the hypersurface, ℎ the induced 3-metric, and 𝑦𝑎

the induced coordinates on the hypersurface.
The miracle of the Kodama vector is that there is another conserved current,

the Kodama current, defined by the contraction of the Kodama vector with the Ein-
stein tensor:

𝐽𝑎 :=
1

8𝜋
𝐺𝑎𝑏𝑘

𝑏 . (9.13)

Naturally, the Kodama current can be written in terms of the stress-energy tensor
via the Einstein’s equations, 𝐽𝑎 := 𝑇𝑎𝑏𝑘𝑏.

Lemma 9.1. The conserved charge associated with the Kodama conservation law is
then the Misner-Sharp mass [151],

𝑚(𝑞) − 𝑚(𝑝) = −
∫
Σ
𝐽𝑎dΣ𝑎 , (9.14)

where the integral is performed from the point 𝑝 to the point 𝑞 on a hypersurface Σ.

Proof. By definition, the contraction of the Einstein’s tensor with the Kodama vec-
tor is

𝐺𝑖 𝑗𝑘
𝑗 = −2

𝑟
∇𝑖 (∇𝑗𝑟) 𝜖 𝑗𝑘∇𝑘𝑟 +

(
2
𝑟
□𝑟 − 2𝑚

𝑟3

)
𝑘𝑖 . (9.15)

The result relies on the identity

𝜖[ 𝑗𝑘∇𝑖]𝑟 = 0 . (9.16)

Since the radial-temporal covariant derivative of the 2-dimensional volume form
vanishes, we can write

∇𝑗 (∇𝑖𝑟)𝜖 𝑗𝑘∇𝑘𝑟 = ∇𝑗 (𝜖 𝑗𝑘∇𝑖𝑟)∇𝑘𝑟 =

= −∇𝑘𝑟∇ 𝑗
(
𝜖𝑘𝑖∇𝑗𝑟 + 𝜖𝑖 𝑗∇𝑘𝑟

)
= 𝑘𝑖□𝑟 −

1
2
𝜖𝑖 𝑗∇ 𝑗 (∇𝑘𝑟∇𝑘𝑟) . (9.17)

Using the definition of the Misner-Sharp mass (9.2), we find

𝐺𝑖 𝑗𝑘
𝑗 = −1

𝑟
𝜖𝑖 𝑗∇ 𝑗 ( 2𝑚

𝑟
) − 2𝑚

𝑟3 𝜖𝑖 𝑗∇
𝑗𝑟 = − 2

𝑟2 𝜖𝑖 𝑗∇
𝑗𝑚 , (9.18)

Using the Einstein equations for the background energy-momentum tensor,
and using the symmetries to extend the relation to the full spacetime, we obtain

𝐽𝑎 = −𝜖𝑎𝑏
∇𝑏𝑚
4𝜋𝑟2 . (9.19)
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Notice that the proof relies only on the geometrical properties of the Ein-
stein’s tensor, associated with the warped product structure of spherically sym-
metric spacetimes.

The Kodama vector reduces to the Killing field at infinity, where the spacetime
is stationary, and its conserved current is naturally interpreted as the energy of the
system, in analogy with the usual Minkowski case in which energy is the Noether
charge associated to time translations. Moreover, from its definition we see im-
mediately that the Kodama vector becomes null on the dynamical horizon, just as
the Killing vector is null on the event horizon. It thus provides a notion analogous
to the time-like Killing vector of Schwarzschild, and it defines a natural notion of
time.

9 .3 matter content and coherent perturbations

In the matter content sourcing the dynamics of the black hole, we consider, among
other possible contributions, a free, minimally coupled, massless, scalar field 𝜑. The
scalar field is described by the Klein-Gordon (K-G) equation, Eq. (2.25), and the clas-
sical solutions, togetherwith a symplectic formgiven in (9.29), forms the symplectic
space of the classical theory. In particular, we give non-vanishing initial data on the
region of null past infinity with 𝑣 ≥ 𝑣0. The quantization of the scalar field goes
along the lines presented in Section 2.4, and in particular, since the field is free, we
can construct theWeyl𝐶∗−algebra of observables. We consider a class of quasifree
states 𝜔 that are of Hadamard type, and that are vacuum-like with respect tomodes
coming from past infinity; we give the explicit two-point function in Section 9.4.1.

From an arbitrary solution of the K-G equation _�̂� with initial given on the
interval 𝑣 ≥ 𝑣0 on past infinity, it is possible to construct the corresponding Weyl
unitary𝑊 (𝑓 ), where 𝑓 are the initial data for �̂�. Using the Hadamard lemma for the
Baker-Campbell-Hausdorff formula,

𝑒𝑋𝑌𝑒−𝑋 =
∑︁
𝑛≥0

1
𝑛!
[𝑋, 𝑋, . . .︸︷︷︸

𝑚

[𝑋, 𝑌 ] . . .] ,

and the Weyl relations it is possible to show that

Φ := 𝑊 (𝑓 )∗𝜑(𝑥)𝑊 (𝑓 ) = 𝜑 + _�̂�(𝑥) ,

since _�̂� = 𝐸𝑓 .
It follows that in the quasifree state 𝜔, the expectation value of𝑊 (𝑓 )∗𝜑(𝑥)𝑊 (𝑓 )

is given by
𝜔 (𝑊 (𝑓 )∗𝜑(𝑥)𝑊 (𝑓 )) = _�̂� ,

since the state is quasifree, so that the observable Φ describes a coherent pertur-
bation of the vacuum-like state 𝜔. We call �̂� the coherent wave. We can then con-
sider the combination Φ = 𝜑 + _�̂� as “the quantum field” 𝜑 plus a coherent per-
turbation, where we introduced the perturbative parameter _. Φ has an associated
stress-energy tensor 𝑇 (Φ), defined by quantum counterpart of the familiar classi-
cal expression,

𝑇 (Φ) = 𝜕𝑎Φ𝜕𝑏Φ + 1
2
𝑔𝑎𝑏𝜕𝑐Φ𝜕

𝑐Φ .

The expectation value of 𝑇 (Φ) in the state 𝜔 represents a perturbation of the back-
ground by a classical perturbation �̂�. Since the state is quasifree, the perturbative
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expansion of the expectation value of a term quadratic in the fields gives

𝜔(Φ(𝑥)Φ( 𝑦)) = 𝜔(𝜑(𝑥)𝜑( 𝑦))+
+ _ (𝜔(𝜑(𝑥)) �̂�( 𝑦) + 𝜔(𝜑( 𝑦)) �̂�(𝑥)) +
+ _2�̂�(𝑥) �̂�( 𝑦) + o(_2) .

(9.20)

Since the state is quasifree, 𝜔(𝜑) = 0, the coherent wave represents only a second
order perturbation of the stress-energy tensor, so that the expectation value of the
stress-energy tensor associated with Φ gives a second-order correction,

𝜔(𝑇𝑎𝑏(Φ)) = _2𝑇𝑎𝑏(�̂�) = _2
[
𝜕𝑎�̂�𝜕𝑏�̂� +

1
2
𝑔𝑎𝑏𝜕𝑐 �̂�𝜕

𝑐 �̂�

]
.

Remark 9.1 (Alternative description of the coherent wave). There is an alterna-
tive description of the coherent wave. Above, we described the coherent wave as
the operator Φ := 𝑊 (𝑓 )∗𝜑𝑊 (𝑓 ) in the𝐶∗−algebra, whose expectation value in the
vacuum-like state 𝜔 equals the classical wave solution 𝜔(Φ) = �̂�. Here, we discuss
an equivalent description in terms of a coherent state 𝜔�̂� in which we take expec-
tation values of the stress-energy tensor associated with 𝜑.

From an arbitrary solution of the K-G equation _�̂� with initial data given on
the interval 𝑣 ≥ 𝑣0 on past infinity, it is possible to construct a coherent state of the
vacuum, by actingwith aWeyl unitary (see Section 2.7), as 𝜔�̂� (·) := 𝜔(𝑊 (𝑓 )·𝑊 (𝑓 )∗).
In the classical solution, we identified a perturbative parameter _. The coherent
state satisfies by definition 𝜔�̂� (𝜑) = �̂�, that is, the expectation value of the quantum
field corresponds to the classical solution.

The stress-energy tensor of the scalar field in the coherent state gives a classical
contribution,

𝜔�̂� (𝑇𝑎𝑏(𝜑)) = _2𝑇𝑎𝑏(�̂�) = _2
[
𝜕𝑎�̂�𝜕𝑏�̂� +

1
2
𝑔𝑎𝑏𝜕𝑐 �̂�𝜕

𝑐 �̂�

]
. (9.21)

Since the stress-energy tensor is quadratic in the field, the coherent wave repre-
sents a second-order correction in the energy. ■

The classical wave therefore acts as a second order correction to the stress-
energy tensor. The expectation value of the stress-energy tensor then represents
a perturbation of the black hole dynamics, and we have a one-parameter analytic
family of stress-energy tensors 𝑇 (_), which can be expanded in a perturbative se-
ries,

𝑇 (_) = 𝑇 (0) + 1
2
_2 d2𝑇

d_2

����
_=0

+ o(_2) . (9.22)

𝑇 (0) := 𝑇 (0) represents the background matter content sourcing the dynamical
black hole, and 1

2
d2𝑇
d_2

���
_=0

= 𝑇 (�̂�) is the stress-energy tensor of the coherent wave.
The Einstein equations are then satisfied order by order: we can perturbatively

expand the Einstein tensor,

𝐺(_) = 𝐺(0) + 1
2
_2 d2𝐺

d_2

����
_=0

+ o(_2) . (9.23)

Denoting 𝐺 (0) := 𝐺(0), the perturbed Einstein equations read

𝐺 (0) = 8𝜋𝑇 (0) (9.24)
1
2

d2𝐺

d_2

����
_=0

= 8𝜋
1
2

d2𝑇

d_2

����
_=0

:= 8𝜋𝑇 (�̂�) := 8𝜋𝑇�̂� . (9.25)
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It follows from the perturbative expansion of Einstein’s equations that there is a
corresponding one-parameter family ofmetrics described by a function 𝑔(_) of the
perturbative parameter _; the background metric (9.1) (or, in explicit coordinates,
Eq. (9.6)) equals 𝑔(0). The Einstein tensor 𝐺 thus depends through the metric on
the perturbative parameter _, 𝐺(_).

Since the coherent wave preserves spherical symmetry by assumption, the ar-
bitrary functions 𝛾 (𝑣, 𝑟) and𝑚(𝑣, 𝑟) (or, equivalently, 𝑓 (𝑣, 𝑟) = 1−2𝑚/𝑟) appearing
in the background metric get corrected, due to the coherent wave, by a second or-
der perturbation, which replaces in the definitions of the geometrical quantities
𝛾 → Γ(𝑣, 𝑟) = Γ(0) (𝑣, 𝑟) + 𝛿2𝛾 (𝑣, 𝑟), 𝑚 → 𝑀 (𝑣, 𝑟) = 𝑀 (0) (𝑣, 𝑟) + 𝛿2𝑚(𝑣, 𝑟), where
𝐹 (0) = 𝐹 (_ = 0) and 𝛿2𝑓 = _2

2
d2𝐹
d_2

���
_=0

.
The location of the dynamical horizon is given by

𝑟 = 2𝑀 (𝑣, 𝑟) , (9.26)

that is, it is translated by 𝑟 − 𝑟 (0) = 2𝛿2𝑚.
We can now introduce the geometric setup we discussed in the Introduction.

To this end, we consider a region in the black hole exterior bounded by four hyper-
surfaces: future infinity, the null hypersurface at 𝑣 = 𝑣0, and the two segments of
the dynamical horizon 𝑟 = 2𝑀 and of past null infinity with 𝑣 ≥ 𝑣0. The resulting
region, shaded in grey in figure 9.1, is a deformation of a double cone, in which one
of the four null boundaries is substituted by the dynamical horizon.

We then construct the Kodama current associated with the stress-energy ten-
sor of the scalar field, 𝑗𝑎 := 𝑇 𝑎𝑏

�̂�
𝑘𝑏. This current is conserved, and its integral along

a segment between two points of any hypersurface Σ equals the variation of the
second-order perturbation of the Misner-Sharp mass, (9.14).

Thanks to the Stokes theorem [239], the conservation law for the Kodama cur-
rent can be converted into an equation for its flux 𝐹 across the five boundaries
of the shaded region. We denote with (𝑣0) (respectively − (𝑣0)) the region of
the perturbed dynamical horizon (resp. past null infinity) with 𝑣 ≥ 𝑣0, and with
Σ𝑣0 the null hypersurface at 𝑣 = 𝑣0. The remaining pieces of the boundary are
space-like infinity 𝑖0 and null (+) and time-like (𝑖+) future infinity. Since the co-
herent perturbation is switched on at 𝑣 = 𝑣0, we can immediately see that 𝐹𝑣0 = 0
for causality. Since the coherent wave is a spatially compact solution of the Klein-
Gordon equation, the flux at space-like infinity vanishes as well, 𝐹𝑖0 = 0. Finally,
since the spacetime is asymptotically flat, we can apply the decaying properties for
the scalar fields at infinity in a Schwarzschild background, studied in [88]; in partic-
ular, they showed that the flux at time-like future infinity vanishes as well, 𝐹𝑖+ = 0.
Therefore, the flux is naturally composed by three terms:

𝐹 + 𝐹+ = 𝐹− , (9.27)

where each term is in the form 𝐹Σ =
∫
Σ
𝑗𝑎dΣ𝑎, with the convention such that the

directed surface element dΣ𝑎 is always future-directed.
We will show in the next Sections that the horizon term gives the derivative

along the outgoing light-rays of one-fourth of the horizon area, while the term at
past infinity is the derivative of the relative entropy between the classical wave and
the ground state. In order to relate the flux term at past infinity with an expression
for the relative entropy, the next Section deals with introducing in some detail
the algebraic formalism for the quantization of free fields on globally hyperbolic
spacetimes, and the Tomita-Takesaki modular theory to define the relative entropy.

sec:cup of tea
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9 .4 relative entropy between coherent states

9 .4 . 1 Quantization of the free, scalar, massless field on globally hyperbolic spacetimes

On the black hole spacetime = 2 × 𝑆2, equipped with the metric 𝑔 given in
(9.1), we now consider a solution of the Klein-Gordon (K-G) equation (2.25),

□𝜑 = 0 ,

where□ = 𝑔𝑎𝑏∇𝑎∇𝑏 is the K-G operator for amassless field withminimal coupling.
The scalar field can be quantised along the lines discussed in Chapter 2. In

particular, we consider the symplectic space (Eos, 𝜎 ) of smooth solutions of the
K-G equation with spatially compact support, equipped with the symplectic form

𝜎 (𝜑1, 𝜑2) =
∫
Σ
(𝜑2∇`𝜑1 − 𝜑1∇`𝜑2)𝑛` dΣ , (9.28)

where Σ is a Cauchy hypersurface (a surface whose causal development covers
[148]) and 𝑛 is the unit, future-directed normal vector to Σ. As a Cauchy surface we
choose the surface denoted by Σ in figure 9.1, andwe give non-vanishing initial data
for the coherent wave on − (𝑣0), i.e., the region of past null infinity with 𝑣 > 𝑣0.
The resulting classical wave represents a perturbation coming from the distant past.
The Cauchy surface Σ is a particular limit of a space-like Cauchy surface, in which
a part of it corresponds with past null infinity. In this limit, the symplectic form
becomes

𝜎 (𝜑1, 𝜑2) =
∫
− (𝑣0 )

(�̃�2∇` �̃�1 − �̃�1∇` �̃�2)𝑛`− d𝑣dΩ , (9.29)

where 𝑛− is the unit, future-directed vector normal to − , and �̃� = 𝑟𝜑. It has
been shown that, in the case of a Schwarzschild background, this is the correct
limit to past infinity of a space-like Cauchy hypersurface [88]; since our spacetime
approaches the Schwarzschild spacetime in the asymptotic past, we can assume the
same formula for the symplectic form.

We then quantise the scalar field providing the Weyl 𝐶∗−algebra W of Weyl
unitaries𝑊 (𝑓 ) presented in Section 2.7.

We now need to choose a quasifree, Hadamard state. We want a state that best
represents a vacuum-like state, or more generally a ground state, for modes com-
ing from past infinity. For a Schwarzschild black hole, the Unruh state [238] is the
most physically sensible candidate for the vacuum [72] in both the interior and the
exterior of the black hole, since it approaches aMinkowski vacuum at past infinity,
exhibits Hawking radiation at late times, and is regular on the horizon. In particu-
lar, it has been proved [88] that it is of Hadamard form.

For our purposes, however, since we are not interested in the details of the
black hole dynamics on the past horizon, we will consider a slightly more gen-
eral class of states. In particular, we fix the form of the 2-point function at past
infinity only, assuming that it is regular in the sense of Hadamard on the rest of
the Cauchy surface. The 2-point function restricted to Σ then defines the quasifree
state in 𝐷(Σ), the causal development of Σ, via the K-G equation. Since our space-
time coincides with the Schwarzschild spacetime at past infinity, we choose the
2-point function of a Unruh state on − , so that the state is a vacuum with respect
to modes coming from past infinity. Denoting �̃�𝑓 = 𝑟𝜑𝑓

��
− , and remembering that
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we have non-vanishing initial data on − (𝑣0) only, we choose the 2-point function
to be

Δ+(𝑓 , 𝑔)
����
−

=
1
𝜋

∫
− (𝑣0 )

�̃�𝑓 (𝑣1) �̃�𝑔 (𝑣2)
(𝑣2 − 𝑣1 − 𝑖𝜖)2 d𝑣1d𝑣2dΩ , (9.30)

where dΩ = sin \d\1d\2 is the volume form of a unit 2-sphere. The integral is
computed only on the region of null past infinity in which we give initial data,
− (𝑣0). The 2-point function (9.30) is given by the Unruh 2-point function on −

of a Schwarzschild black hole. Our choice for a class of ground states, to which we
will refer for simplicity as the ground state, is then defined by the requirement that
the 2-point function is

Δ+(𝑓 , 𝑔) = Δ+(𝑓 , 𝑔)
����
−

+ Δ+(𝑓 , 𝑔)
����
Σ \ −

. (9.31)

We only assume that Δ+(𝑓 , 𝑔)
��
Σ \ − is of Hadamard form.

This ground state can now be represented in the GNS reconstruction as the
vacuum of a symmetrised Fock space, |Ω⟩. The coherent wave �̂�, propagating over
the spacetime with initial data on − (𝑣0) is then a coherent perturbation of the
ground state, which can be represented as |Φ⟩ = 𝑊 (𝑓 ) |Ω⟩, where �̂� = 𝐸𝑓 . The cor-
responding state functional and its GNS vector representative is 𝜔�̂� (·) = ⟨Φ| · |Φ⟩.

9 .4 .2 Tomita-Takesaki modular theory

Tomita-Takesaki modular theory provides a tool to describe the entropy of a free
QFT as the expectation value of an operator in the corresponding vonNeumann al-
gebra, constructed from the GNS representation of the ∗−algebra on some Hilbert
space. In recent years, the Araki formula [13] for the relative entropy between co-
herent states received some attention [73, 77, 78, 155], since it has been proven that
it can be computed by a simple expression in terms of the symplectic structure of
the classical theory and the modular flow only [182, 183]. Here we provide a brief re-
view of Tomita-Takesaki modular theory (see e.g. [51, 140, 233, 252, 253] for reviews),
in order to re-derive the formula for the relative entropy between coherent states
in our setting.

We start very general, and we slowly reduce to the case of coherent states for
a QFT. We will prove the properties of Tomita-Takesaki theory which are most
useful for the characterization of the relative entropy of coherent states, with no
attempt to be exhaustive.

Let vN() be a von Neumann algebra on a Hilbert space , and let |Ω⟩ ∈ 
be a cyclic and separating vector, i.e., i) given a vector |Ω⟩ ∈  and an operator
𝜋 (𝐴) over , 𝜋 (𝐴) |Ω⟩ is dense in , and ii) 𝜋 (𝐴) |Ω⟩ = 0 ⇒ 𝜋 (𝐴) = 0 ∀ 𝐴 ∈ A.
There exists a unique antilinear operator 𝑆Ω, called themodular involution orTomita
operator, such that

𝑆Ω𝐴 |Ω⟩ = 𝐴∗ |Ω⟩ . (9.32)

From the definition, it is clear that 𝑆2
Ω = 1, and therefore it is invertible. Moreover,

𝑆Ω |Ω⟩ = |Ω⟩.
An invertible, closed operator always admits a unique polar decomposition,

𝑆Ω = 𝐽ΩΔ
1/2
Ω , where the modular conjugation 𝐽Ω is an anti-linear, unitary operator

and themodular operator ΔΩ is self-adjoint and non-negative. The Tomita operator
as defined in (9.32) is not closed, but it is closable. We denote the closure of 𝑆Ω with
the same symbol.
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As 𝑆Ω |Ω⟩ = 𝑆∗Ω |Ω⟩ = |Ω⟩, it is immediate to see that ΔΩ |Ω⟩ = |Ω⟩ and there-
fore 𝐽Ω |Ω⟩ = |Ω⟩. Moreover, from 𝑆2

Ω = 1, we have that

1 = 𝐽ΩΔ
1/2
Ω 𝐽ΩΔ

1/2
Ω ⇒ 𝐽ΩΔ

1/2
Ω 𝐽Ω = Δ−1/2

Ω .

Expanding in Taylor seriesΔ𝑖𝑠, it is possible to show that 𝐽ΩΔ𝑖𝑠Ω 𝐽Ω = Δ𝑖𝑠Ω holds. Using
twice the above property„ and the invariance of |Ω⟩ under 𝐽Ω, we have

𝑆Ω = 𝐽ΩΔ
1/2
Ω = 𝐽2

ΩΔ
−1/2
Ω 𝐽Ω = 𝐽2

Ω 𝐽ΩΔ
1/2 .

By uniqueness of the polar decomposition it follows that 𝐽2
Ω = 1.

The logarithm of ΔΩ defines the modular Hamiltonian, in terms of which it is
possible to compute the relative entropy between coherent states.

Definition 9.2 (Modular Hamiltonian).

𝐾Ω = − logΔΩ .

𝐾Ω is a self-adjoint operator with generally unbounded spectrum, which is
well-defined sinceΔΩ is non-negative. By StoneTheorem, 𝐾Ω defines a 1-parameter
group of unitary operators on the von Neumann algebra called modular flow,

Definition 9.3 (Modular flow).

𝛼𝑠 (𝐴) = 𝑒−𝑖𝐾Ω𝑠𝐴𝑒𝑖𝐾Ω𝑠 = Δ𝑖𝑠Ω𝐴Δ
−𝑖𝑠
Ω .

The Tomita operator for the commutant of vN(), that is, the set of bounded
operators vN′() = {𝑈 ′ | [𝑈,𝑈 ′] = 0∀𝑈 ∈ vN()}, is defined in an analogous
way. The von Neumann algebra, the modular flow, and its commutant are related
by [235]

𝐽ΩvN() 𝐽Ω = vN()′ (9.33)

Δ𝑖𝑠ΩvN()Δ−𝑖𝑠
Ω = vN() , Δ𝑖𝑠ΩvN()′Δ−𝑖𝑠

Ω = vN()′ . (9.34)

The first property says that the modular conjugationmaps the algebra into its com-
mutant. The second one states that the modular flow defines an automorphism of
the algebra.

The action of the modular operator on observables is in general very hard to
compute, since from its definition the modular operator is a non-local operator.
However, for free theories on flat spacetimes the Bisognano-Wichmann Theorem
[45] links the modular flow to a geometric action.

In Minkowski , we consider the region 𝑊 = {x ∈ R1,3 | 𝑥 > |𝑡 |}, called
Rindler wedge. This is the domain of dependence of the surface Σ = {x ∈ R1,3 | 𝑡 =
0, 𝑥 > 0}. Consider the vacuum vector |Ω⟩ for the theory defined on the whole
Minkowski spacetime vN(). By theReeh-Schlieder theorem [252], this is a cyclic
and separating vector for the algebra of observables restricted to the Rindlerwedge
vN(𝑊 ). The Bisognano-Wichmann theorem states that [45]

𝐽Ω = Θ𝑈 (𝑅1(𝜋)) ΔΩ = 𝑒−2𝜋𝐾1 , (9.35)

where Θ is the CPT operator, 𝑈 (𝑅1(𝜋)) is the unitary operator representing a
space rotation of 𝜋 degrees around the 𝑥 axis and 𝐾1 is the generator of the one-
parameter group of boosts in the plane (𝑡, 𝑥). The theorem admits a generalisation
[67] to the algebras defined on a spacetime with a group of symmetries, in which a
“wedge region” can be defined. In this perspective, past null infinity falls into this
category: the group of symmetries are translations along 𝑣, and the region 𝑣 ≥ 𝑣0
represents the wedge.
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9 .4 .3 Relative entropy

Now, we consider the induced von Neumann algebra vN(A) as the GNS repre-
sentation of a C*-algebra A, defined by a state functional 𝜔, and the cyclic and
separating vector |Ω⟩ representative of 𝜔. If we consider the so-called natural cone,
that is, the set of vectors

Ω = {𝐴𝑗Ω(𝐴) |Ω⟩ | 𝐴 ∈ 𝔄} , (9.36)

where the bar means the closure and 𝑗Ω(𝐴) = 𝐽Ω𝐴𝐽Ω, any state 𝜔Φ has a unique
representative vector |Φ⟩ in Ω, represented in the usual way, 𝜔Φ (𝐴) = ⟨Φ|𝐴|Φ⟩.

Now, given two cyclic and separating vectors, |Ω⟩ ∈  , |Φ⟩ ∈ Ω, the relative
entropy provides a notion of distance between the two. First, the relative Tomita
operator (or relative modular involution) provides a generalisation of the Tomita op-
erator, since

𝑆Ω,Φ𝐴 |Φ⟩ = 𝐴∗ |Ω⟩ . (9.37)

Just as the Tomita operator, the relative Tomita operator admits the unique polar
decomposition 𝑆Ω,Φ = 𝐽Ω,ΦΔ

1/2
Ω,Φ. Since |Φ⟩ is in the natural cone, one can show that

𝐽Ω,Φ = 𝐽Ω [252]. The relative modular Hamiltonian is defined as

𝐾Ω,Φ = − logΔΩ,Φ . (9.38)

Finally, the Araki formula gives the relative entropy:

Definition 9.4 (Araki relative entropy).

𝑆(𝜔Ω |𝜔Φ) = ⟨Ω|logΔΩ,Φ |Ω⟩ = − ⟨Ω|𝐾Ω,Φ |Ω⟩ .

In the case of Quantum Mechanics, where states are realised as density ma-
trices, 𝜔(𝐴) = Tr 𝜌Ω𝐴, the relative entropy takes the familiar form 𝑆(Ω|Φ) =

−Tr 𝜌Ω(log 𝜌Φ − log 𝜌Ω) [13], and represents a regularisation of the entanglement
entropy by subtraction of the vacuum entanglement.

9 .4 .4 Relative entropy for coherent states

Now, we consider two cyclic and separating vectors |Ω⟩ and |Φ⟩ and some unitary
operator 𝑈 ∈ vN(A) which is an automorphism of the algebra, 𝑈∗vN𝑈 = vN.
In this case, for 𝐴 ∈ vN, it holds that [73]

𝑈𝑆Ω,Φ𝑈
∗𝐴𝑈 |Φ⟩ = 𝑈𝑆Ω,Φ (𝑈∗𝐴𝑈) |Φ⟩ = 𝑈 (𝑈∗𝐴𝑈)∗ |Ω⟩ = 𝐴∗𝑈 |Ω⟩ , (9.39)

which implies
𝑈𝑆Ω,Φ𝑈

∗ = 𝑆𝑈Ω,𝑈Φ . (9.40)

We cannowchoose |Φ⟩ = 𝑗Ω(𝑈)𝑈 |Ω⟩, for someunitary operator𝑈 ∈ vN().
The operator �̃� = 𝑗Ω(𝑈)𝑈 is still a unitary operator, and the corresponding state
functional is 𝜔Φ (𝐴) = ⟨Ω𝑈 |𝐴𝑈Ω⟩ = 𝜔(𝑈∗𝐴𝑈). The above property in this special
case becomes

𝑆Ω,Φ = 𝑆Ω,�̃�Ω = 𝑆�̃��̃�∗Ω,�̃�Ω = �̃�𝑆�̃�∗Ω,Ω�̃�
∗ = 𝑈 𝑗Ω(𝑈)𝑆�̃�∗Ω,Ω(𝑈 𝑗Ω(𝑈))∗ . (9.41)

A similar property for the relative modular operator follows, Δ1/2
Ω,𝑈Ω = 𝑈Δ1/2

𝑈∗Ω,Ω𝑈
∗.

These properties let us express the relative entropy between two coherent states
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in terms of the relative entropy of a coherent state with respect to the vacuum. In
fact, suppose we have two different coherent vectors of the same state |Ω⟩, |Φ⟩ =

𝑊 (𝑓 ) |Ω⟩ and |Ψ⟩ = 𝑊 (𝑔) |Ω⟩, in the natural cone of |Ω⟩, for some test functions
𝑓 , 𝑔. Suppose we want to compute the relative entropy between the vectors |Φ⟩ and
|Ψ⟩. Then, one can show that [73]

𝑆(𝜔Ψ |𝜔Φ) = 𝑆(𝜔𝑊 (𝑓−𝑔)Ω |𝜔Ω) . (9.42)

𝑊 (𝑔 − 𝑓 ) |Ω⟩ is still a coherent vector. Therefore, we can restrict our attention to
the relative entropy of a coherent vector with respect to a reference vector |Ω⟩.

From property (9.33), acting with𝑈𝑆Ω 𝑗Ω(𝑈∗)𝐴 on |Φ⟩ for some operator 𝐴, we
can see that

(𝑈𝑆Ω 𝑗Ω(𝑈∗)) 𝐴 |Φ⟩ = 𝑈𝑆Ω(𝐴𝑈) |Ω⟩ = 𝐴∗ |Ω⟩ = 𝑆Ω,Φ𝐴 |Φ⟩ . (9.43)

Therefore, the relative Tomita operator between |Ω⟩ and |Φ⟩ can be computed us-
ing the Tomita operator only:

𝑆Ω,Φ = 𝑈𝑆Ω 𝑗Ω(𝑈∗) . (9.44)

By polar decomposition, one can see that

Δ1/2
Ω,Φ = 𝑗Ω(𝑈)Δ1/2

Ω 𝑗Ω(𝑈∗) 𝐾Ω,Φ = 𝑗Ω(𝑈)𝐾Ω 𝑗Ω(𝑈∗) . (9.45)

It follows that the relative entropy between |Ω⟩ and |Φ⟩ depends only on the
modular operator, not the relative modular operator:

𝑆(𝜔Ω |𝜔Φ) = ⟨Ω|logΔΩ,𝑈Ω |Ω⟩ =

= 2 ⟨Ω|logΔ1/2
Ω,Φ |Ω⟩ = 2 ⟨Ω|log

(
𝑗Ω(𝑈)Δ1/2

Ω 𝑗Ω(𝑈∗)
)
|Ω⟩ , (9.46)

Since log( 𝑗Ω(𝑈)ΔΩ 𝑗Ω(𝑈∗)) = 𝑗Ω(𝑈) logΔΩ 𝑗Ω(𝑈∗), using the invariance of |Ω⟩ un-
der 𝐽Ω, and the fact that 𝐽ΩΔΩ 𝐽Ω = Δ−1

Ω , it is a straightforward computation to show
that:

𝑆(𝜔Ω |𝜔𝑈Ω) = 𝑖
d
d𝑡

⟨𝑈∗Ω|𝑒−𝑖𝐾𝑡 |𝑈∗Ω⟩
����
𝑡=0

. (9.47)

Finally, we specialise to the case in which 𝜔Ω is the ground state functional,
which will denote simply by 𝜔, with vector representative |Ω⟩, and 𝜔𝑈Ω is a coher-
ent state, for some test function 𝑓 , which will be denoted by 𝜔𝑓 (𝐴) = ⟨Φ|𝐴|Φ⟩ =

𝜔(𝑊∗(𝑓 )𝐴𝑊 (𝑓 )). We use 𝑓 as a label to remember that is a coherent state, and can
be considered a classical perturbation �̂�𝑓 = 𝐸𝑓 of the ground state. The unique rep-
resentative vector of 𝜔𝑓 in the natural cone Ω is |Φ⟩ = 𝑗Ω(𝑊 (𝑓 ))𝑊 (𝑓 ) |Ω⟩. The
entropy for coherent states is indeed computed using the classical structure only,
that is, from the symplectic form of Eos. In particular, it holds that

Proposition 9.2 (Relative entropy between coherent states). The relative entropy
between two coherent states 𝜔 and 𝜔𝑓 , with GNS representatives, respectively, |Ω⟩ and
|Φ⟩ = 𝑗Ω(𝑊 (𝑓 ))𝑊 (𝑓 ) |Ω⟩, can be computed from the following formula:

𝑆(𝜔|𝜔𝑓 ) =
1
2
𝜎 ( d

d𝑡
𝛼𝑡 (�̂�𝑓 )

����
𝑡=0
, �̂�𝑓 ) .
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Proof. Choosing𝑈 = 𝑊 (𝑓 ) in Eq. (9.47), we have

𝑆(𝜔|𝜔𝑓 ) = 𝑖
d
d𝑡

⟨Ω|𝑊 (𝑓 )∗Δ𝑖𝑡𝑊 (𝑓 ) |Ω⟩
����
𝑡=0

. (9.48)

Using the invariance of the vacuum with respect to ΔΩ it is possible to rewrite this
expression as the action of the automorphism 𝛼𝑡 introduced in (9.3) over the Weyl
operator:

𝑖
d
d𝑡

⟨Ω|𝑊∗(𝑓 )Δ𝑖𝑡𝑊 (𝑓 )Δ−𝑖𝑡 |Ω⟩
����
𝑡=0

= 𝑖
d
d𝑡

⟨Ω|𝑊∗(𝑓 )𝛼𝑡𝑊 (𝑓 ) |Ω⟩
����
𝑡=0

, (9.49)

and using the Weyl relations,

𝑊∗(𝑓 )𝑊 (𝛼𝑡 (𝑓 )) = 𝑒−
𝑖
2 𝜎 (−�̂�𝑓 ,𝛼𝑡 ( �̂�𝑓 ) )𝑊 (𝛼𝑡 (𝑓 ) − 𝑓 ) (9.50)

and
⟨Ω|𝑊 (𝑓 ) |Ω⟩ = 𝑒− 1

2Δ+ (𝑓 ,𝑓 ) . (9.51)

The expectation value then becomes

⟨Ω|𝑊∗(𝑓 )𝑊 (𝛼𝑡 (𝑓 )) |Ω⟩ =

exp
{
−
𝑖𝜎 (−�̂�𝑓 , 𝛼𝑡 (�̂�𝑓 ))

2
− 1

2
Δ+(𝛼𝑡 (𝑓 ) − 𝑓 , 𝛼𝑡 (𝑓 ) − 𝑓 )

}
. (9.52)

Now, we have

d
d𝑡
Δ+(𝛼𝑡 (𝑓 ) − 𝑓 , 𝛼𝑡 (𝑓 ) − 𝑓 )

����
𝑡=0

=

=

(
Δ+(

d
d𝑡
(𝛼𝑡 (𝑓 ) − 𝑓 ), 𝛼𝑡 (𝑓 ) − 𝑓 )+

+ Δ+(𝛼𝑡 (𝑓 ) − 𝑓 ,
d
d𝑡
(𝛼𝑡 (𝑓 ) − 𝑓 )

)
𝑡=0

= 0 , (9.53)

since 𝛼𝑡 (𝑓 )
��
𝑡=0 = 𝑓 . Therefore, the derivative with respect to 𝑡 of (9.52), evaluated

at 𝑡 = 0, gives

𝑖
d
d𝑡

⟨Ω|𝑊∗(𝑓 )𝑊 (𝛼𝑡 (𝑓 )) |Ω⟩
����
𝑡=0

=

=

[
1
2

d
d𝑡

(
𝜎 (−�̂�𝑓 , 𝛼𝑡 (�̂�𝑓 )

)
×

× 𝑒− 1
2 (𝑖𝜎 (−�̂�𝑓 ,𝛼𝑡 ( �̂�𝑓 ) )+Δ+ (𝛼𝑡 (𝑓 )−𝑓 ,𝛼𝑡 (𝑓 )−𝑓 )

]
𝑡=0

=

=
1
2
𝜎

(
d𝛼𝑡 (�̂�𝑓 )

d𝑡

����
𝑡=0
, �̂�𝑓

)
.

(9.54)

This conclude the derivation of the main result of this Section, which can be
found (each in a slightly different derivation) in [155], [73], and [183]: the relative
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entropy between a coherent state and the vacuum is given by the derivative of the
symplectic form of the associated classical solution.

We can now use proposition (9.2) to compute the relative entropy between
the ground state defined by (9.30) and a coherent perturbation, with the symplec-
tic form given in (9.29). First notice that, from their respective expressions, these
equations actually defines an algebra on the half-infinite region of past null infin-
ity − (𝑣0), which coincides with the restriction of the quantum theory in the bulk
to past null infinity, A(− (𝑣0)). On such a spacetime, the generalisation of the
Bisognano-Wichmann theorem by Brunetti, Guido, and Longo applies [67, 155], so
that the modular action 𝛼𝑡 (�̂�(𝑓 )) acts as a boost in the radial-temporal plane: in
our coordinates,

𝛼𝑡 (�̂�(𝑣, \, �̂�)) = �̂�(𝑣0 + 𝑒−2𝜋𝑡 (𝑣 − 𝑣0), \, �̂�) . (9.55)

Therefore, the relative entropy (9.2) in the region 𝑣 > 𝑣0 becomes

𝑆(𝜔|𝜔�̂�) =

= −𝜋
∫
− (𝑣0 )

[̃̂
𝜑𝜕𝑎 [(𝑣 − 𝑣0)𝜕𝑣𝜑] − (𝑣 − 𝑣0)𝜕𝑣𝜑𝜕𝑎𝜑

]
𝑛𝑎−d𝑣dΩ . (9.56)

Integrating by parts the first term in the integral, it follows that

𝑆(𝜔|𝜔�̂�) = 2𝜋
∫
− (𝑣0 )

(𝑣 − 𝑣0)𝜕𝑎𝜑𝜕𝑏𝜑 𝑛𝑎−𝑘
𝑎 d𝑣dΩ , (9.57)

where we used 𝑘𝑎− = 𝜕𝑣.
As argued in [155], using results on Schwarzschild background [88], this entropy

formula remains finite, due to the decaying properties of �̂� at large radii.
In order tomake the connectionwith the conservation law for theKodamaflux,

(9.27), the above expression can be written in terms of the stress-energy tensor of
the scalar field at infinity,

𝑇𝑎𝑏 = 𝜕𝑎𝜑𝜕𝑏𝜑 −
1
2
𝑔𝑎𝑏𝜕𝑖𝜑𝜕

𝑖 �̂� . (9.58)

Since the metric is anti-diagonal at past infinity, while the vectors 𝑘 and 𝑛− are
parallel, we have 𝑔𝑎𝑏𝑘𝑎𝑛𝑏− = 0. The relative entropy can thus be written as

𝑆(𝜔|𝜔�̂�) = 2𝜋
∫
− (𝑣0 )

(𝑣 − 𝑣0)𝑇𝑎𝑏 𝑛𝑎−𝑘
𝑎 d𝑣dΩ (9.59)

We can now consider what happens if we rigidly translate the boundary of the
region in which the field propagate by a finite amount, 𝑣0 → 𝑣0 + b . We can write
the derivative of the relative entropy as

− 1
2𝜋

d
d𝑣0

𝑆(𝜔|𝜔�̂�) =
∫
− (𝑣0 )

𝑇𝑎𝑏𝑘
𝑏𝑛𝑎− d𝑣dΩ . (9.60)

Such a derivative can be interpreted as the derivative with respect to the instant in
which we switched on the perturbation 𝑣, evaluated for 𝑣 = 𝑣0.
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9 .5 variation of generalised entropy

We now return to the original task of computing the various terms in the conser-
vation law for the Kodama flux, (9.27). Of the three terms, we have just seen that
− 1

2𝜋 𝑙(𝑆(𝜔|𝜔�̂�)) (𝑣0) = 𝐹− . On the other hand, on the dynamical horizon of the
perturbed spacetime, we consider the flux term

𝐹 =

∫
 (𝑣0 )

𝑗𝑎dΣ𝑎 , (9.61)

where the integral is extended over the region of dynamical horizon with 𝑣 > 𝑣0.
Using (9.14), and the fact that the perturbation goes to zero at future infinity,

it is immediate to see that the flux term equals the mass contribution to the black
hole by the scalar field,

𝐹 = 𝛿2𝑚𝑖+ − 𝛿2𝑚(𝑣0, 𝑟) , (9.62)

where the minus sign in (9.14) is compensated by the minus sign coming from the
evaluation of the integral on the lower extreme, and 𝛿2𝑚𝑖+ = 𝛿

2𝑚(𝑣 = ∞, 𝑟).
On the other hand, we can compute the derivative of 𝐴 = 4𝜋𝑟2 along the back-

ground outgoing light-rays on the apparent horizon, 𝑙(𝐴) . As we said, however,
the apparent horizon is not at 𝑟 = 2𝑚, but gets translated to 𝑟 = 2𝑀 (𝑣, 𝑟). This
implies that 𝑓 = 1

2𝑀 (2𝑀 − 2𝑚), and so

𝑙(𝐴)
����
𝑟=2𝑀

=
2𝑀 − 2𝑚

4𝑀
𝜕𝑟𝐴

����
𝑟=2𝑀

= 8𝜋 (𝑀 − 𝑚) = 8𝜋𝛿2𝑚 . (9.63)

Evaluating the above equation for 𝑣 = 𝑣0, we can conclude that

𝐹DH =
1

8𝜋
𝑙(𝛿2𝐴)

����


(𝑣0) − 𝛿2𝑚𝑖+ . (9.64)

We can now conclude our computation of the Kodama flux. In the flux conser-
vation law (9.27), we have shown that the dynamical horizon term can be rewritten
as a variation of the area of the horizon, giving (9.64); on the other hand, the past
infinity term has been rewritten as a variation of the relative entropy of the pertur-
bation, via the Araki formula for coherent states (9.2), obtaining (9.60). Substituting
in the flux conservation law (9.27) equations (9.64) and (9.60), gives

𝑙(𝑆(𝜔|𝜔�̂�))− (𝑣0) +
1
4
𝑙(𝐴) (𝑣0) = 2𝜋 (𝐹+ + 𝛿2𝑚𝑖+) . (9.65)

Equation (9.65) generalises the result by Hollands and Ishibashi [155], from the
event horizon of a static black hole to the case of dynamical horizons of dynamical,
spherically symmetric black holes.

If we now consider a coherent wave such that �̂� → 0 for large 𝑣, then 𝛿2𝑚 → 0
both at time-like and null future infinity, the right-hand side of the equation above
vanishes identically. It is then straightforward to integrate the left-hand side along
the geodesic congruence tangent to 𝑙. Choosing the surface 𝑣 = 𝑣0 as the surface
on which the integral parameter 𝜏 of 𝑙 vanishes, and integrating between 0 and +∞,
that is, from the surface 𝑣 = 𝑣0 to +, we find

Δ𝑆𝑔𝑒𝑛 = 𝑐(b) , (9.66)

where it is natural to introduce a generalised entropy 𝑆𝑔𝑒𝑛 = 𝑆(𝜔|𝜔�̂�) + 1
4 𝐴, and

𝑐(b) is an arbitrary function of the integral parameter of the ingoing light-rays.
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𝑖+

𝑖−

𝑖0

𝑣0

𝑣1

+

−

𝑟 = 0





Σ𝑣0

Σ𝑣1



Figure 9.2: Kodama flux across the boundaries of a finite region.

9 .6 thermodynamic interpretation

First of all, the result (9.65) immediately reduces to the Bekenstein-Hawking for-
mula, and coincides with Hollands and Ishibashi’s result, if we take the limit of a
static black hole, Γ → 0 and 𝑀 (𝑣, 𝑟) → 𝑀. Moreover, we see that, at least for
the case of coherent perturbations, the relative entropy approach solves two of
the problems emerged using the entanglement entropy approach [46], [228]: the di-
vergence in the continuum limit and the dependence on the number of fields. As
proved in [155], the relative entropy formula (9.56) is finite. On the other hand, if
we had more than one field, we could simply sum each contribution to get the rela-
tive entropy for thematter fields, while the sums of the energy-momentum tensors
would give the total variation of the area.

We want to consider now what happens if, instead of performing the compu-
tation in the region extended up to infinity, we use the flux conservation law in a
finite region. To this end, we take two null hypersurfaces, at 𝑣 = 𝑣0 and 𝑣 = 𝑣1, and
the finite regions of past null infinity 𝛿− and 𝛿 in the interval 𝑣 ∈ [𝑣0, 𝑣1] ,
see figure 9.2. We then consider the Kodama flux across the four boundaries of the
shaded region, associated to a coherent wave with initial data on 𝛿− ,

𝐹𝛿 + 𝐹Σ𝑣1 = 𝐹𝛿− . (9.67)

This is the analogue of Eq. (9.27), where the flux acrossΣ𝑣0 can again be immediately
put to zero for causality.

The term on the dynamical horizon can be computed following the same steps
of Section 9.5; the only difference now is that, when we evaluate the integral (9.64),
the boundary term does not vanish, yielding

𝐹𝛿 = − 1
8𝜋

(𝑙(𝐴) (𝑣1) − 𝑙(𝐴) ((𝑣0))
����


. (9.68)
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The construction of the relative entropy term is more delicate. We start consid-
ering a coherent wave with initial data on − (𝑣0), just as we did in 9.4.4. Following
the same steps, we arrive at Eq. (9.60). We can now consider the same computa-
tion, in the case of a quantum theory with a Cauchy surface which coincides with
past null infinity from the instant 𝑣 = 𝑣1, denoted with Σ1 in figure 9.2, with non-
vanishing initial data on − (𝑣1). In this case, the derivative of the relative entropy
would give

− 1
2𝜋
𝑙(𝑆(𝜔|𝜔�̂�)) (𝑣1) =

∫
− (𝑣1 )

𝑗𝑎𝑛
𝑎
− d𝑣dΩ . (9.69)

Taking the difference between the derivatives of the relative entropy, we get

1
2𝜋

(
𝑙(𝑆(𝜔|𝜔�̂�) (𝑣1) − 𝑙(𝑆(𝜔|𝜔�̂�)) (𝑣0)

)
= Φ𝛿− , (9.70)

where the right-hand side is given by the difference of the integrals at past infinity.
Then, substituting (9.68) and (9.70) in (9.67), we get

𝑙

(
𝑆(𝜔|𝜔�̂�)− + 1

4
𝐴

)
(𝑣1) − 𝑙

(
𝑆(𝜔|𝜔�̂�)− + 1

4
𝐴

)
(𝑣0) =

= 2𝜋𝐹𝑣1 . (9.71)

We see again the emergence of the generalised entropy, 𝑆+ 1
4 𝐴, as the entropy term

associated to the gravitational and matter content of the model, equals to the work
done on the black hole plus the energy flux emitted towards the future. The main
difference, with the result (9.65), is that the difference of relative entropies cannot
be immediately interpreted as the relative entropy of a coherent wave with non-
vanishing initial data on 𝛿− , and therefore the result can seem somewhat formal.

Finally, we want to make contact with the first law of dynamical black holes
found by Hayward [151]. In his paper, he introduced two invariant quantities, the
scalar

𝑤 = −1
2
𝛾𝑖 𝑗𝑇

𝑖 𝑗 , (9.72)

and the vector
𝜓 = 𝑇𝑎𝑏∇𝑏𝑟 + 𝑤𝑘𝑎 . (9.73)

𝜓 plays the role of a localized Bondi energy flux, while𝑤 is interpreted as an energy
density. Hayward showed that, along any vector 𝑡 tangent to the dynamical horizon,
it holds that

−𝐹 (𝑣0 ) =

∫


d𝑚 =

∫


( ^
8𝜋

∇𝑎𝐴 + 𝑤∇𝑎𝑉
)
𝑡𝑎d3 𝑦 , (9.74)

where ^ is the surface gravity associated to the Kodama vector,

𝑘𝑎∇[𝑎𝑘𝑏] = ^𝑘𝑏 . (9.75)

Equation (9.74) resembles (and, in fact, coincides with, see [151] for the details) the
first law of thermodynamics, d𝐸 = 𝑇d𝑆 + 𝑝d𝑉 . Now, we want to show that the
relative entropy term at past infinity can also be interpreted as a thermodynamic
contribution to the system.

In fact, if we introduce a new coordinate 𝑉 = 𝑒^ (𝑣−𝑣0 ) , a boost acts in this case
as

𝑉 → 𝑒^𝑒
−2𝜋𝑡 (𝑣−𝑣0 ) = 𝑉 𝑒

−2𝜋𝑡
. (9.76)
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The modular action on the scalar field restricted to − therefore is

d
d𝑡
𝛼𝑡 (�̂�(𝑉, \1, \2))

����
𝑡=0

= 2𝜋𝑉𝜕𝑉 �̂�(𝑉, \1, \2) . (9.77)

On the other hand, the Kodama vector in this new coordinate is 𝑘 = 𝜕𝑉
𝜕𝑣
𝜕𝑉 = ^𝑉𝜕𝑉 ,

and therefore, computing (9.2) in these coordinates, following the same passages
we did in Section 9.4.4, we arrive at

𝑆𝑣0 (𝜔|𝜔�̂�) = 2𝜋
∫
− (𝑣0 )

1
^
𝑇𝑎𝑏𝑘

𝑎dΣ𝑏 (9.78)

Since ^ is a constant at infinity, we get

^

2𝜋
𝑆𝑣0 (𝜔|𝜔�̂�) = Φ− . (9.79)

We see then that the relative entropy has a clear thermodynamic interpretation as
a true entropy contribution from the scalar field, where the temperature is given
by 𝑇 = ^

2𝜋 , which is analogous to the Hawking temperature for the black hole,
while the Kodama flux is the energy contribution of the scalar field. The role of
^/2𝜋 is that of temperature of a dynamical, spherically symmetric black holes, as
the temperature of states of a scalar field near the dynamical horizon (in analogy
with Hawking’s characterization of a Schwarzschild black hole temperature) [175].

9 .7 cosmological horizons in de sitter space

The same approach can be used to test the entropy of cosmological horizons [82,
131]. In fact, using the Raychaudhuri equation for the null generators of the cosmo-
logical horizon, the back-reaction of relative entropy between coherent states can
be put in relation with the area of the cosmological horizon in de Sitter (dS) space
[86].

Here we only briefly recall the main steps in the computation, as the general
construction closely follows the one given for dynamical black hole. The dSmetric
in null coordinates is

d𝑠2 =
4

𝐻2(𝑢 + 𝑣)2

[
−d𝑢d𝑣 + (𝑣 − 𝑢)2

4
dΩ2

]
, (9.80)

and the future cosmological horizon is the surface 𝑣 = 0, 𝑢 ∈ [−2ℓ , 0]. As in
the dynamical black hole case, the relative entropy between coherent states can be
given as the surface integral of the stress-energy tensor for the coherent wave on
some Cauchy surface Σ. Since the formula for the relative entropy is independent
on the choice of the Cauchy surface [124], we can consider the limit in which Σ
coincides with the cosmological horizon. In this limit, the relative entropy is given
by [86]

𝑆
(
𝜔|𝜔�̂�

)
= −2𝜋

ℓ

∫ 0

−2ℓ

∫
𝑇𝑢𝑢 |𝑣=0𝑢(𝑢 + 2ℓ)dΩd𝑢 . (9.81)

Here ℓ denotes a particular value for the affine parameter 𝑢 along the horizon, sim-
ilar to 𝑣0 in the computation for dynamical black holes.

To determine the change of the horizon area to leading order in perturbations,
we compute the back-reaction of the matter on the geometry analogously to the
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case of black holes [155]. The leading correction to themetric under the influence of
the stress tensor of the coherent wave is again quadratic in the perturbation. Hence,
the leading-order correction to the Raychaudhuri equation, in null coordinates,
determines the back-reaction on the background geometry,

d𝛿2Θ

d𝑢
|𝑣=0 = −32𝜋𝑇𝑢𝑢 , (9.82)

where 𝛿Θ denotes the geodesic expansion of the cosmological horizon due to the
coherent perturbation. Both the shear and vorticity tensors, as well as the contribu-
tion quadratic in Θ, do not contribute to the right-hand side of the Raychaudhuri
equation when evaluated at second order in perturbations [155].

Multiplying the Raychaudhuri equation with 𝑢(𝑢 + 2ℓ) and integrating over 𝑢
and Ω, Eq. (9.81) can be written as

𝑆
(
𝜔|𝜔�̂�

)
=

∫ 0

−2ℓ

𝑢(𝑢 + 2ℓ)
16ℓ

∫
d𝛿2Θ

d𝑢
|𝑣=0dΩd𝑢 . (9.83)

Since on the background we have dΘ/d𝑢 = 0, to leading order in perturbations
we can replace 𝛿2Θ by the complete geodesic expansion Θ + 𝛿2Θ = Θ̃. In the same
way, dΩ is substituted by the complete line element dΩ̃ =

√
𝛾d\d𝜙. Thenwe use the

definition of the expansion as the logarithmic derivative of the cross-sectional area
of the geodesic congruence [239], Θ̃ = d

(
ln√

𝛾
)
/d𝑢, and integrate by parts. Since

the fields are massless and propagate along null geodesics, the area perturbations
at time-like and space-like infinity vanish. Thus, the computation results in

𝑆
(
𝜔|𝜔�̂�

)
=

1
4
⟨⟨𝐴H⟩⟩ , (9.84)

where the cross-sectional area of the perturbed cosmological horizon is given by

𝐴H(𝑢) =
∫ √︁

𝛾 (𝑢)d\d𝜙 , (9.85)

and we defined the null average

⟨⟨𝐴⟩⟩ = 1
2ℓ

∫ 0

−2ℓ
𝐴(𝑢)d𝑢 . (9.86)

It follows that to leading order in matter perturbations, the perturbation of
generalized entropy 𝛿𝑆gen = −𝑆

(
𝜔|𝜔�̂�

)
+ 1

4𝐺N
⟨⟨𝛿 𝐴H⟩⟩ vanishes for dS diamonds.

We note that the minus sign in the generalized entropy, which gave raise to some
subtle interpretations [17], naturally arises in this context. Hence the generalized
entropy conjecture, according to which 𝑆gen does not increase when perturbing
dS, holds in our case, and we expect that it decreases when we take into account
also the back-reaction of quantized metric perturbations.

9 .8 future directions

Let us conclude with a review on the assumptions, and the possible future gener-
alisations.

The method presented here relies on two essential geometrical assumptions:
an asymptotic boundary and a conservation law. In the case of dynamical black
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holes, the asymptotic boundary is conformally flat, and this allows to directly use
the Bisognano-Wichmann theorem, or its generalisation, to compute the relative
entropy.

Any boundary with a group of symmetries in principle allows for such an anal-
ysis of the relative entropy. Moreover, a conservation law for the stress-energy
tensor is necessary to compute the entropy flux on the horizon.

Our method can thus be generalised to a variety of situations, and it can be
considered as a test to compute the reaction of the black hole to matter entropy. It
can be in principle applied to asymptotically de Sitter or Anti de Sitter black holes,
and in the presence of angular momentum and electric charge, both in a stationary
and in a dynamical phase, either using a Killing field or the Kodama field.

Modifications on the matter content are more delicate. Usually, relative en-
tropy is known when it can be reduced to a computation of the modular Hamilto-
nian, instead of the relative modular Hamiltonian; it thus can be computed when-
ever the modular Hamiltonian is known. By now, other than for coherent states
of scalar fields, the relative entropy has been computed for unitarily excited states
[176], in scalar field theories, and in certain conformal field theories. Recently, Ga-
landa [126], and Galanda,Much and Verch [127] produced new results extending the
computation of relative entropy to fermionic systems. All these cases can be fur-
ther generalised to curved spacetimes: for example, Fröb computed the modular
Hamiltonian for causal diamonds in de Sitter [124]. These recent advances in the
computation of relative entropy open up exciting new directions to investigate the
relation between entropy and geometry.



10 Conclusions

General Relativity was discovered in 1915, and Quantum Mechanics in 1926. The
realisation that the gravitational field should have been quantised along the same
lines of the electromagnetic field came almost immediately. Already in 1916, Ein-
stein pointed out that quantum effects would modify the theory of General Rela-
tivity [104, 229]. The first technical paper on a quantum theory of gravity was pub-
lished in 1930 by Rosenfeld [222]. For over a century, the search of quantum gravity
has been fascinated generations of physicists. Despite enormous progress, and the
development of many approaches [89], we still do not have a complete theory of
quantum gravity.

Amongmany conceptual difficulties, the problemof quantumgravity faces two
important technical considerations, one theoretical, the other experimental. The
first one is the realisation that quantum gravity, when treated with the standard
approaches of QFT, is perturbatively non-renormalizable [2, 136, 137]. The second
issue is the difficulty of directly probing the energy scales at which quantumgravity
should become relevant.

The problem of renormalizability leaves open the possibility of the Asymptotic
Safety scenario [214, 241, 242], in which a QFT of the metric tensor provides a quan-
tum theory of gravity, that remains finite at arbitrary high-energies thanks to the
existence of a non-trivial fixed in its RG flow. In the absence of experimental ver-
ifications, theoretical approaches to quantum gravity must be based on internal
consistency, conceptual clarity and mathematical rigour.

In this thesis, motivated by the asymptotic safety scenario, we took a small
step forward in the search of quantum gravity, providing a tool to investigate the
non-perturbative renormalization of gauge theories on curved spacetimes. Thanks
to the algebraic approach, we were able to have good control on the assumptions
behind our RG flow equations, so that that no divergences arise in any step of
their derivation. A Hadamard-type regularisation, similar to the point-splitting
procedure that have been extensively studied to construct the renormalized stress-
energy tensor in curved spacetime, eliminates possible UV divergences in the RG
equations, so that the flow remains finite. The RG flow equations can then be ex-
panded in series, and it is possible to construct systematic truncation schemes
based on the Hadamard expansion of propagators, similar to the ones that are stud-
ied in Euclidean signature based on the heat kernel expansion.

Thanks to the conceptual distinction between algebras and states at the heart of
the algebraic approach, the RG flow equations in Lorentzian spacetime exhibits a
distinctive dependence on the state. In order to write closed differential equations
for the effective average action, we exploited this dependence fixing a reference
Hadamard state for the free theory, as a new, initial datum that has to be provided
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in order to have awell-definedRGflow.We then showed that the choice of different
states has important physical consequences in the phase structure of a given theory.

Thanks to the BV formalism, the gauge invariance of on-shell observables can
be compactly summarised in the fundamental requirement that the bare action sat-
isfies the Quantum Master Equation. This equation in turn provides a non-trivial
symmetry identity for the effective average action, in the formof extended Slavnov-
Taylor identities. The use of an extended regulator sector, supplemented by the
BRST variation of the regulator term, allows a treatment of the extended Slavnov-
Taylor identities with cohomological methods, providing a non-perturbative con-
trol on the symmetries of the effective average action.

Finally, we were able to prove a theorem on the existence of local solutions of
the RG flow equations, based on the Nash-Moser theorem, with the assumptions
that the effective average action is local in the fields and does not contain deriva-
tives higher than second order of the fields. The proof of the Nash-Moser theorem
is constructive, and it is based on an iteration procedure generalising Newton’s
method with the introduction of suitable smoothing operators. The method can
then be used to construct approximate, explicit solutions of the RG flow and prove
their convergences in specific examples.

The novel non-perturbative, Lorentzian RG flow developed in this thesis can
nowbe applied to investigateQFT in curved spacetimes in strong coupling regimes,
and in situations where classical and quantum gravity can play a major role. In-
deed, we showed that the minimal ingredients of universal contributions provide
a mechanism for Asymptotic Safety, the first background-independent and covari-
ant result on the non-perturbative renormalizability of quantum gravity also in
Lorentzian spacetimes.

Our journey started with a glass of wine, and it ended, as usual, with black
holes. Perhaps the most important lesson is that there is still much to be learned
about “good old Quantum Field Theory” [181]. QFT is, by now, our theoretical tool
that makes the most accurate predictions on the observed Universe [145]. Despite
this spectacular success, QFT is still a largely mysterious theory, whose mathemat-
ical foundations have yet to be understood completely. Going back to the minimal
ingredients of a set of observables, their symmetries, and the causal structure of
the underlying background, can provide valuable insight on what are the essential
principles of the theory, and what are its most far-reaching consequences. And the
applications of QFT to gravity, which are now living a reviving interest, can un-
ravel a world of riches and subtle dynamics that shaped our Universe from its first
instants to the cosmological scales around us, and it is all to be discovered. Looking
at the starry night with new eyes, we can see that there still is so much beauty yet
to be found.
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